A Proof Calculus
with Case Analysis as its Only Rule

Jan Kluka and Paul J. Voda

Dept. of Applied Informatics, Faculty of Mathematics, Physics, and Informatics,
Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia
{kluka,voda}@fmph.uniba.sk

1 Introduction

In [KV09] we have presented a proof calculus for first-order logic based on a
single rule of case analysis (cut). The calculus was to be used in our intelligent
proof assistant (IPA) system called CL. The proofs were binary trees labeled
with sentences. The idea was that D := Dl/%z proves a sequent I' = A iff
D, proves I A = A and D5 proves I' = A, A. Although the system looked like
a Hilbert-style system (one rule, many axioms), it had a quite pleasing property
of being able to simulate directly derivations in sequent calculi.

In the present self-contained paper we have made two substantial changes to
this treatment. First, we have realized that proofs D can be read as if-then-else
formulas used in some declarative programming languages with the meaning
(AA D)V (AN Dy). Instead of turning formulas to proofs (as it is sometimes
done in logic [Sch77,Ane90]), we have reversed the situation and constructed
formulas as if they were case analysis proofs. We have a system with a single
propositional proof rule:

a path in an if-then-else formula leading to its L leaf is inconsistent with
the formula.

This is extended to the full quantification logic in a style somewhat reminiscent
of Hilbert’s e-calculus. Instead of Skolem functions (a.k.a. e-terms) we use Henkin
witnessing constants.

The second change to [KV09] concerns definition hiding. Program verification
involves a series of extensions of a language £ by definitions of symbols F ,
followed by the proof of a property A of F. However, one would often prefer to
prove A as a specification of F , and hide the details of definitions within the
proof. Our proof system is explicitly designed to make this possible. At the end
of the paper, we will put forth an argument in favor of definition hiding in pure
mathematical logic.

If-then-else constructs are also used in binary decision diagrams (BDD) to
represent boolean functions. BDDs are intensively studied mainly in connection
with the verification of VLSI circuits ([Bry86]). As the experience with BDD
confirms, if-then-else formulas seem to capture the very essence of propositional
logic, namely, that a formula is a tautology if no consistent path through it leads

2 Jan Kluka and Paul J. Voda

to L. This intuition is more natural than the one achieved via the truth tables of
the usual connectives. Paths through formulas play central role to our definition
of provability.

When designing our calculus we have known about the role of the if-then-
else connective in BDDs, but we have arrived at its usefulness by analyzing our
previous attempt at a simple proof calculus. We have thought that BDDs were
concerned only with propositional logic. Only when we were finishing this paper,
we came across three instances of using BDDs as the basis for quantification
logic [PS95,GT03,Gou94]. All three are intended for the automated theorem
proving (ATP) community. Both the presentation and the means used (such as
unification, the restrictions of formulas A in the above D to prime formulas) are
specific to the community.

We think that we have succeeded in formulating our calculus in purely logical
terms free from the computer science terminology and notation (with the sole
exception of finite sequences in Par. 3.4, where we think that the well-tried out
computer science notation is superior). This should make the power and elegance
of the if-then-else connective available to the logic community at large. Besides,
the couching of calculus in human terms is essential in the IPA approach, while
it is less important in ATP (see Sect. 2). We consider this our first contribution.
Our second contribution is the already mentioned extensibility with definition
hiding.

Since not all computer scientists are expert logicians, we carry out the logical
arguments in a more detail than usual. Since not all logicians are expert computer
scientists, we discuss IPAs in Sect. 2 in a more detail than usual. Sections 3 and 4
deal with the syntax (formulas, proofs). In Sect. 5 we present a surprisingly
simple and elegant proof of completeness of our calculus. In Sect. 6 we discuss
the incremental construction of proofs by (local) derivation rules and show that
the proofs can be presented both in Hilbert and Gentzen styles.

2 Intelligent Proof Assistants

This is a short overview of assisted theorem proving for logicians. Readers fa-
miliar with IPAs can skip over it.

One of the main motivations for the development of our proof calculus was
entirely pragmatical. It was to be a formal basis for a new version of our pro-
gramming language CL (Clausal Language) [CL97] which will come with a new
IPA. Programs in CL are just certain implications in extensions by definitions
of Peano Arithmetic. We have successfully used CL for the last ten years in the
teaching of first-order logic and also in our courses on program verification.

IPAs (e.g., Isabelle [NPWO02], Coq [BC04]) are distinguished from ATPs in
that the systematic proof searches, so typical for the latter, are not crucial.
Neither is an IPA prima facie an applied logical vehicle for the investigation
of cut elimination and proof transformations, including extraction of witnesses.
The case for an IPA can be briefly stated as follows:

A Proof Calculus with Case Analysis as its Only Rule 3

e The software development is quite error prone and formal vehicles for pro-
gram verification are sorely needed.

e Programs are constructed to accept inputs of arbitrary size, and thus the
main formal verification vehicle must of necessity be induction. ATPs can-
not generally find induction formulas automatically. Specialized SAT-solvers
used in hardware design typically deal with fixed sizes (i.e., the number of
logical gates).

e Quantifiers are necessary in the statement of program properties. Determin-
ing the witnessing terms is best left to humans. Unification used in some
ATPs degenerates to enumeration in the worst case.

e The construction of programs — which amounts to definition of primitive re-
cursive functions (or functionals) of rather low complexity (Grzegorczyk’s £
is already unfeasible) — is a difficult, mentally straining activity. The addi-
tional effort of verifying the programs usually more than doubles the level
of difficulty of programming.

e For many, so called mission critical programs, the correctness is crucial as
human lives and/or expensive equipment depend on their correct function-
ing.

e The correctness proofs are formally verified properties of concrete functions,
it is essential that the proofs are developed to details which can be machine
checked.

e The proofs are constructed by humans in that they formulate lemmas, choose
induction formulas, and guess witnessing terms.

e Although most IPAs work in sequent or tableau calculi with subformula
properties, the use of cuts (i.e., modus ponens) is crucial. This is because
the properties must be proved in a natural Hilbert style, just as it is done
in mathematics. This is to be contrasted with ATPs where the formulas to
be proved are preprocessed by skolemization and by reduction to clausal
(resolution-based ATPs) or if-then-else (BDD-based ATPs) normal form.

e IPAs should automatize the decidable (and boring) details of proofs such as
the use of propositional rules, handling of equality/orderings, expansion of
definitions, limited automatic use of simple lemmas (universal Horn clauses),
and limited guessing of witnesses.

IPAs work in various logics. CL and ACL? [KMMO02] work in first-order
logic, essentially in primitive recursive arithmetic (PRA). Most of IPAs work
with functionals, and many use constructive logic such as type theories. We
are concerened here with classical calculi whether one-sorted or many-sorted
(possibly with sorts for the functionals of finite types).

A typical work in an IPA is shown in Fig. 1. A theory is extended by a
definition of the symbol f and a lemma (n) about it is proved. The lemma is
then used in a proof of the theorem (m). The proof of (m) is itself done in the
style of extensions. The theory is locally extended (definition hiding) with the
symbol g and a local lemma (i) about is is proved. Both lemmas are used to
finish the proof of (m).

4 Jan Kluka and Paul J. Voda

‘ Definition: Va Vy (f(z) =y < -+) ‘

‘Lemman: Vat(---f~~~)}—proof

Q.E.D.

‘Theorem m: VeVy (- f--+) }— proof

Definition: Va Vy (g(z) =y < ---)

Lemma i: Vx (---g---f---)— proof

Q.E.D.
case analysison --- V.- -:
1. .-
use of Lemma n
2. use of Lemma, ¢
Q.E.D.

Fig. 1. A schema of development of proofs by a proof assistant in extensions of theories.

3 Formulas

3.1 Formulas and sentences. We use the standard notion of countable lan-
guages for first-order logic (denoted by £) with predicate symbols (R, ...) and
function symbols (f, g, ...). We denote symbols of any kind by F, G, and sets
of symbols by F. We denote by L[F] the language £ extended with the function
and predicate symbols F. We will abbreviate ey, ..., e, to €if n is known from
the context of irrelevant.

Terms (¢, s, ...) are built up from variables (z, y, z, ...) and applications of
function symbols (including constants). Atomic formulas are applications R(S)
or equalities s = t. Formulas are the least class containing atomic formulas,
T, 1, and closed under existential quantification dz A and if-then-else construct
If (A, B,C) with A, B, C formulas. Prime formulas (designated by P) are atomic
or existentially quantified formulas.

We will usually display If(A, B, C), whose intended interpretation is (A A
B)V (mAANC), as

A
/N .
B C
We call A the guard.

We use the standard notions of free and bound variables. We use Alx/t]
to designate the substitution of a closed term ¢ for all free occurrences of the
variable x in A. A sentence is a closed formula, i.e., a formula with no free
variables.

A Proof Calculus with Case Analysis as its Only Rule 5

A set of sentences is a theory if the codes of its sentences form a recursive
set. Theories are denoted by the letters 7' and S. We write 7,5 and A, T as
abbreviations of T'U S and {A} U T respectively.

3.2 Semantics of sentences. We employ the standard notion of a structure M
for a first-order language L. For a fixed structure M for £, a structure M’ is its
expansion to a language L[F], if the domains of the two structures are identical
and M’ coincides with M on all symbols of £. We denote by M[F — F] the
expansion to L[F] of the structure M for £ assigning the function/relation F to
the symbol F.

Satisfaction of a sentence A in a structure M, in writing M F A, is defined
to satisfy:

(i) the usual properties when A is atomic,
(i) ME A iff MEAand MFE B, orif M¥ Aand MFE C.
(iii) M E Jz A iff we have M[c — m] E Alz/c] for some m in the domain of M
and a constant symbol ¢ ¢ L.

A structure M is a model of a theory T', in writing M E T, if M E A for all
A eT. A theory T logically implies A, in writing T F, A, if both T and A are
in £ and each model of T satisfies A. A sentence A is valid, in writing £ A, if
0 E A. A theory T is unsatisfiable if it has no model, i.e., if T F L.

3.3 Abbreviations. We will now define the usual propositional connectives
and universal quantification without extending the class of formulas. The fol-
lowing definition of the negation connective is possible because the formula
If(A, B,C) has the same semantics as (A — B) A (mA — C) which is equiva-
lent to ~((AA —=B)V (mAA-C)):

-T: =1 -1:=T -P:= /\

A A
—|(/ N\) = / N .
B C -B -C
The reader will note that if-then-else formulas A are in the negation normal form
for which the law of double negation is a mere syntactic identity: -——A = A. The
Tarskian semantics of negation holds for all sentences A because induction on A

proves that M F —A iff M ¥ A.
The usual propositional connectives are defined as follows:

ANB:= /A\ AV B := /A\ A— B:= /A\ A—B:= /\
B 1 T B B T B

It is easy to see that the expected Tarskian properties of satisfaction hold for
the defined connectives.

We define the universally quantified sentences as Vo A := —3Jx - A and obtain
the expected semantics when M E Vz A iff for a constant symbol ¢ ¢ £ we have
M(c — m] E Alz/c] for all m in the domain of M.

6 Jan Kluka and Paul J. Voda

3.4 Finite sequences of sentences. We will use a computer science list nota-
tion for finite sequences of sentences. Empty sequence is () and the prefixing of a
sequence IT with a sentence A will be designated by the pairing function (A |IT).
Pairing is such that () # (A|II). We use abbreviations (A, B|II) := (A|(B | IT))
and (A1,...,4,) == (A1,..., A, | ()). Concatenation @ of sequences is defined

s()@oP:=d and (A|II) &P := (A|II P). All declarative programming
languages use lists in such a form. The presented notation is PROLOG’s but we
have replaced its square brackets with the angle ones.

The sequence II' extends IT if II' = IT § & for some ¢. We define

Set(II) ={A | II =1II, ® (A | II3) for some IIy, II5}.

We adopt a convention that an occurrence of a sequence II in a position where
a set is expected stands for Set(IT). Thus, for instance A € II stands for A €
Set(II) and T, I1 E IT’ for T, Set(IT) E Set(II').

Note that Set(IT&IT") = Set(IT)USet(I1’) and if IT’ extends IT then IT C IT'.

3.5 Paths through sentences. We define a partial function (A)j selecting
a subsentence of A at II to be defined only if it satisfies:

= (B)H

(B/A\c)<,4|n> (BA0> (~A|II) =

Note that we have (A)m,¢m, = ((A)m,) 1, if defined.

The set of all paths in A is defined as Ps(A) := {II | (A)r is defined}. We
say that IT is a path through A if IT selects T or 1 in A. We say that A has a
hole at II if IT selects 1 in A. A sentence A is syntactically valid if it has no
holes, i.e., if all paths through A select T.

We define a ternary partial replacement function A[II := D] to yield sen-
tences like A but with the subsentence selected by I (if any) replaced by D.
The function is defined only when it satisfies:

A =Dl:=D PUA)y=D)i= (/N)i(4)i=D]
A A
() AT =D1= ey) e
(A)[(ﬂA|H> D)= B/é[}[- D]

3.6 Lemma.

(i) For every sentence A € L and a structure M for L, there is a unique
path IT through A such that M F II.
(i) ITE A (A) for every IT € Ps(A).

A Proof Calculus with Case Analysis as its Only Rule 7

(iii) If A is syntactically valid, then E A.
(w) If T, 11 = L for every path II through D, then T,D E L.

Proof. (i) By induction on A. If Ais T or L, the only path () is trivially satisfied
by M. If A is prime then if M F A, the path (A) is the only one satisfied by M.
If M ¥ A, the path (—A) is the only one satisfied by M. The case when A is an
if-then-else sentence follows from IH.

(ii) Observe first that if IT = (), then there is nothing to prove because
(A)y = A. For II # (), A cannot be T or L, and we continue by induction on A.
If A is prime, then the conclusion follows if IT = (A), since (A);; = T. The case
IT = (—A) is similar because then (4)y = L. If A= P, then we must have
IT = (B|II') with I € Ps(C) or IT = (—~B|II') with I’ € Ps(D). If the former,
then for any M E IT we have M E C < (C)p from IH. Since M E B, we have
M E A« C and the conclusion follows because (A); = (C) . The other case
is similar.

(iii) Take any M. By (i) there is a path IT through A such that M E II.
Since (A)y = T, we get M E A by (ii).

(iv) Suppose M E T, D for some M. By (i), M E II for some path IT
through D. This falsifies the assumption. a

4 Proofs

If a sentence A is valid, then all paths to a hole of A must be inconsistent.
A proof of A will be a sentence D “plugging all holes in A”. D will be obtained
from A by replacing its holes with sentences which decidably cannot be satisfied.

4.1 Regular sets of extension axioms. Sentences of the form Iz A— A[z/c]
defining the constant ¢ which does not occur in A are Henkin axioms. Sentences
of the form V# (R(Z) <> A) defining the predicate symbol R which does not occur
in A are defining azioms for R. Sentences of the form VZ3ly A — VZVy (f(Z) =
y <« A) defining the function symbol f which does not occur in A are defining
axioms for f. All three kinds of axioms are called extension axioms.

Let £ be a language, and F a countable set of symbols not in £. A set S
of extension axioms in L[F] is regular for F if S can be enumerated without
repetitions as {Slv}g1 where each extension axiom S; defines a symbol F; € F
not occurring in {S1,...,Si-1}.

4.2 Syntactic inconsistency. Let T be a theory in £ and S a set of extension
axioms in L[F] regular for F. We designate by X(T,S) the theory in L[F]
consisting of the following sentences:

s=t
Alz/t /N
(1) 3 ;Ex/_]l_ (2) t/:\t (3) Plefs] T for atomic P
)) RN r atomic P,
T/“’\L T 0 Plz/t] T
/ N\

T 1

8 Jan Kluka and Paul J. Voda

dr A

/7 N\
(4) Alz/c] T forall (Jx A— Alz/c]) € S, (5) T/A\J_ forall AeT,

T

6) " R@) = A) pall (V2 (R(F) — A)) € S,

T L

Vi 3y A
. o ~ \

(7) ity (F(@) =y = A)
T 1

T for all (VZ3ly A - VIVy (f(X) =y A)) € S.

-

We say that a path IT in L[F] is syntactically inconsistent with T and S if there
is a hole at II’ C IT in some A € I, X(T, S).

Let M be a model of T and S. The sentences (4)—(7) are equivalent to
the corresponding axioms from 7" and S, and are thus satisfied by M. The
sentences (1)—(3) are equivalent in that order to A[z/t] — 3z A, t = ¢, and
s = tAP[x/s]— Pz /t], and they are satified in any structure. Thus M F X (T, S).

For a sentence A in £ with a hole at II we say that a syntactically valid
sentence D in L[F] plugs the hole in A at II w.r.t. T and S if for every path IT’
through D, the path IT & II’ is syntactically inconsistent with 7" and S.

4.3 Proofs. A sentence D in a language E[f?} is a proof witnessing T F, A, in
writing D Fg T Ep A, if

(i) there is a regular set S in £[F] of extension axioms defining all symbols F,
(ii) all holes of A are at Iy, ..., IT,, and to every i = 1,...,n there is a D; in

L[F] plugging the hole at IT; w.r.t. T and S,
(iii) we have D = A[Il; := D4]---[II, := Dy,].

Note that D is syntactically valid.

We must show that the property D Fg T E; A is decidable. The paths
II; and the plugs D; can be recovered from A and D. We must be able to
test every path IT through D extending some II; for syntactic inconsistency.
There are only finitely many paths II’ C II from the definition of syntactic
inconsistency in Par. 4.2. Every such II’ can be tested for leading to a hole of
finitely many sentences A € I1. Failing this, I’ must lead to a hole in one of the
sentences (1)—(7). To test whether IT’ leads to a hole in (1)—(3) is easy. To see
whether 1’ leads to a hole in some axiom T', we observe that then II' = (A) for
some A and —=A must be in T'. This is decidable, since T is recursively coded.
The extension axioms can be fully determined from II’. There are only finitely
many candidates for the (finite) sets of extension axioms causing inconsistency
in D and they can be tested for regularity for F.

We write Tk Aif T and A are in £, and D g T F, A for some D and F.

4.4 Lemma. If T is a theory in L and S a set of extension azrioms regular
for F such that F C F, then

(i) any model of T can be expanded to a model of S,

A Proof Calculus with Case Analysis as its Only Rule 9

-,

(1) if IT in L]F] is syntactically inconsistent with T and S then T, S,ITE L.

Proof. (i) Let {Si}ﬁll be as in Par. 4.1 and let M for £ be a model of T. We
form a sequence {Mi}iilo of structures M, for L[Fq,...,F;] where My = M,
and for ¢ > 0, M, is an expansion of M,_; which satisfies the extension axiom S;
defining F;. Note that such M, can be always found, even if S; is a Henkin axiom
or an axiom introducing a function symbol, and we respectively have M,;_1 ¥
dx A or M;_1 ¥ VZ3dly A. We then simply choose arbitrary interpretation of F;.
The desired model of S is the union of structures M;.

(ii) Suppose the contrary, i.e., that M F T, S, II. Then also M E X(T,S).
From the assumption, there is A € IT, X(T,S) with a hole at some [T’ C II. By
Lemma 3.6(ii), we have M F A < (A)/. But this is a contradiction because
ME Aand (A) = L. O

4.5 Theorem (Soundness). If T . A, then T F A.

Proof. Let DFg T Ep Awith S, I14, ..., II,,and D, ..., D, asin Par.4.3. All
sentences D; are valid by Lemma 3.6(iii). Take any model M of T" and expand
it using Lemma 4.4(i) to a model M’ of S. By Lemma 3.6(i), there is a path I
through A s.t. M’ F IIy. The theorem will be proved if we contrive to show that
(A)r, = T, because then by (ii) of the same lemma, we will have M’ F A, and
hence M F A.

So assume, in a way of contradiction, that (A);, = L. We must then have
Il = II; for some i = 1,...,n. Take any path II through D,. Since D; plugs
a hole at Iy, the path IIy & IT is syntactically inconsistent with 7" and S.
Thus 1y, T,S,II E L by Lemma 4.4(ii). Lemma 3.6(iv) now applies, and we
get IIy,T,S,D; E L. We now have a contradiction M’ ¥ II; because of M’ E
T,8,D;. O

5 Completeness

We will prove completeness of our proof calculus by the simplest possible method.
We will construct a sequence of sentences {D;};cy such that Dy := A where
A is the sentence to be proved. The sentence D;;; will be obtained from D;
by plugging every hole in D; at a syntactically inconsistent path with T and
every other hole by a sentence L,Bk 1 With a suitable enumeration of sentences
{Bi}ien, we either stumble by this, rather brute-force, method at a syntactically
valid D; which will be a proof of A, or else we will be able to find an infinite
path H through all sentences D; starting at some hole at IT in A such that
some M is a model of H. As also M F I, it will follow that M ¥ A.

5.1 Witnessing expansion of L. The witnessing expansion of the language £
is a language L[C], in which there is a Henkin witnessing constant c3,4 € C for
each sentence 3z A in L[C]. The assignment of constants is such that the set

He:={3x A — Alz/c3.4]) | Fx A € LIC]}

10 Jan Kluka and Paul J. Voda

of Henkin axioms is regular for C.
Construction of the witnessing expansion is given, e.g., in [Bar77].

5.2 Hintikka sets. A theory H in L simply consistent if for each sentence
A € H we have (—A) ¢ H. A simply consistent theory H is mazimal if it has no
proper simply consistent extension in L, i.e., if for all A € £ either A or —A is
in H.

Let £[C] be the witnessing expansion of £. A theory H in L[C] is called a
Hintikka set if the following conditions are satisfied:

(i) Te H, and (t =t) € H for all terms ¢ in L[C].

(ii) If (s =t) € H and P[z/s] € H for atomic P, then P[z/t] € H.
(iif) If A, € H, then A€ H and B€ H, or (mA) € H and C € H.
(iv) If EIxA € H, then Alz/c3,4] € H.

v) If Vo A € H, then A[z/t] € H for all terms t in L[C].

5.3 Lemma. FEvery mazimal simply consistent Hintikka set has a model.

Proof. For a similar construction see, e.g., [Bar77,Sho67]. O

5.4 Brute-force proof construction. Let A be a sentence, T a theory, both
in £, and He be as in Par. 5.1. To any pair of sentences D, B in L[C] we define a
sentence BF(D, B) which extends D with the sentence at its syntactically
consistent holes:

/B\
N

BF(D, B) := D|II, = E] - -+ [II,, := E,]
where Iy, ..., I, (n > 0) are paths to all holes in D, and for j =1,...,n

Ej = .
le\ | otherwise.

{T if IT; is syntactically inconsistent with 7" and He,
For an enumeration {B;}$°, of all sentences in L[C] we define a sequence of
sentences {D;}°, by Do := A and D,y := BF(D;, B;).

5.5 Theorem (Completeness). If T E; A, then T . A.

Proof Assume T E, A, construct the sequence {D;}$°, as in Par. 5.4, and let
I, ..., II,, be paths leading to all holes in A. A straightforward induction on i
proves:

For each i > 0 and each path II through D; extending some II;, we have
(Di))r = T 4ff IT is syntactically inconsistent with T and He.

We consider two cases. If D; = D;,; for some ¢, then D; has no holes, and so
the sentences (D;)m,, -.., (D;)m, are syntactically valid. Since by the above
property, each (D;)r, plugs the hole in A at II; w.r.t. T and He, we have
DiFE T Es A

A Proof Calculus with Case Analysis as its Only Rule 11

If all D; are different, we define the sequence {7;}5°, by

To := {II | A has a hole at II" and II' extends IT}
Tiv1:={IT | D; has a hole at IT} UT;,

and let 7 := | J;2, 7;. The set 7 is infinite and such that if I’ € 7 and II" ex-
tends IT, then IT € 7. This makes 7 a (set-theoretical) tree. It is finitely branch-
ing because every II € 7 has at most two immediate successors (extensions)
in 7. By Kénig’s lemma, 7 has an infinite branch ¢ C ¢; C & C --- C 7.
From the construction of 7, all @; are syntactically consistent (with 7" and He).
We set H :=|J;2,@; with the intention of showing that H is a maximal simply
consistent Hintikka set s.t. 7' C H. By Lemma 5.3, there will be then a structure
M E H. Since &; = II, for some j and k, we will get M ¥ A from Lemma 3.6(ii).
The retraction M’ to £ of M will contradict the assumption T F, A.

We first show that H is mazimal in L[C] by taking any B € L[C]. It is some B;
in the enumeration of £[C] and thus @, = @; & (B) or $;41 = ®; & (-B) for
some j > i. Hence one of B, =B is in H.

We will need two auxiliary properties of H:

No IT C H is a path to a hole in a sent. (1)—(5) of Par. 4.2 orin an A’ € H. (1)
For every sentence B € L|C] there is a path II through B s.t. II C H. ()

(t) Assume IT C H. If IT is a path to a hole in a sentence (1)—(5), then
1I C &, for some j, and @; is syntactically inconsistent. If II is a path to a hole
in A’, then A’, I C &; for some j, and ®; is syntactically inconsistent.

(¥) We proceed by induction on B. If Bis T or L, then set IT := () C H.
If B is prime, then by maximality B or —B is in H, and so set IT := (B) C H
in the first case, and II := (-=B) C H in the second. If B = “_, then C or
—C is in H by maximality. In the first case, set I := (C | II') where II" C H is
obtained from IH as a path through D. The second case is similar.

We will now show that H is simply consistent. Assume that both B and -B
are in H. By (x), there is a path IT through B s.t. I C H. Since the same IT
is also a path through —B, IT leads to a hole of exactly one of B or —=B. This
contradicts (1) where A’ is B or —B.

We will now show that T is a subset of H. Take any B € T. (-B) C H
violates (1)(5). Hence B € H by the maximality of H.

It remains to show that H is a Hintikka set:

(1) Since () C H, and it is a path to a hole of L, 1 € H would violate (}) with
A’ = 1. Hence T € H by the maximality of H. We cannot have (t # t) C H by
(1)(2). Hence (t = t) € H by the maximality of H.

(i) If (s = t), P[z/s] € H then, since (s =t, Plz/s],~P[z/t]) C H would
violate (1)(3), we must have P[z/t] € H by the maximality of H.

(iii) If A" :== P, € H, then there is a path I C H through A’ by (x).
By (1), II cannot lead to a hole of A’. Exactly one of B, =B is in H. If the
former, then IT = (B | II') with I’ a path through C. II’ cannot be a path to a
hole of C because then A’ would have a hole at IT. Hence II’ is a path to a hole

12 Jan Kluka and Paul J. Voda

of =C'. By (f), we must have (-C) ¢ H. Hence C' € H by the maximality of H.
The case when (—B) € H, which implies D € H, is similar.

(iv) If 3x B € H then, since (3x B, ~B[z/c3,p]) C H would violate (t)(4),
we must have Blz/c3,p] € H by the maximality of H.

(v) For any t, if Vo B = -3z —-B € H, then, since (-B[z/t],~Jz-B) C H
would violate (T)(1), we must have B[z /t] € H by the maximality of H. O

6 Methods of Proof Construction

We have introduced a new proof calculus and demonstrated that its concept
of provability coincides, as it should, with logical consequence. It remains to
convince the reader that the calculus offers advantages over the standard proof
systems. In this section we will show that

e we can construct proofs incrementally by applying local proof rules,

e the rules are flexible enough to emulate Hilbert, as well as Gentzen style of
proofs,

e we can, because of definition hiding, transform proofs with flexibility not
afforded by the last two types of calculi.

6.1 Derivation rules. For the duration of this section we fix a (possibly empty)
theory T in some L. A derivation rule (R) is of the form

(r) L

where I is a finite set of sentences (possibly empty) in £, called premises, and

the sentence D in L[F] is the conclusion. The rule is sound if the following is
constructively proved:

-,

for all paths IT such that I" C I1, and every A in L[F] with a hole at IT
and such that T Fz(g A[Il := D], we have T' - A.

For the soundness of the rule (R) it suffices that D is such that every path I’
selecting T in D (if any) leads to inconsistency: 7', S, I', II" -, L for some S.
This is an easy consequence of the definition of proofs. The simplest proof of the
last condition is T when IT @ I’ is syntactically inconsistent with 7" and S.

6.2 The case analysis (cut) method. The case analysis (cut) method is
characterized by two rules:

(Close)

if I' is synt. inconsistent with 7" and some S

NEE

(Cut) A
1 L

Soundness of the two rules follows from the sufficient condition in Par. 6.1.

A Proof Calculus with Case Analysis as its Only Rule 13

6.3 The unboxing method. The unbozing method takes sentences out of
the guards of if-then-else connectives, possibly also by dropping quantifiers, and
plugs holes with them. Its rules are (Close) (see Par. 6.2), the rule “deeply”
unbozing a guard (Unbox), and five “shallowly” unboxing rules: (Th) for axioms
in T', rules (L3), (LV) for quantifiers, and the two rules for equality (Id), (Subst).

(Unbox) —- (Th) A ifAeT.
T
Vi A 3z A
(L) AL/ (L3 “Anyg HcEL
T T
s =t,Plz/s]

(Id) t=t (Subst) Pla/1] if P is atomic.
T /N
T

The rules are sound because they are reducible to those of the cut method.
We can, namely, construct all sentences in conclusions by one or more cuts.
What must be justified, is the correctness of applications of (Close) rules in the
conclusions of the rules.

So, let IT be the path to the hole we are trying to plug with one of the
listed rules. For (Unbox), let IT’ be a path selecting any T in its conclusion —A.
The path IT & II’ is syntactically inconsistent on account of A € IT and I’
being a path to a hole of A. We show only the soundness of (LV), the remaining
rules are dealt with similarly. The path to the T in the conclusion of (LV) is
II ® (—A[z/t]). It is inconsistent by containing a path to the hole of (1) of
Par. 4.2 because Vx A = -Jx —-A € 1.

Henkin axioms in the set S of extension axioms can be constructed “on the

fly” with every application of (L3). The same is achieved in the usual calculi by
eigen-variable conditions.

6.4 The sequent method. We will now show that our calculus can emulate
proofs in Gentzen’s sequent calculi. For that we need two rules:

A
VAN
B C
A
B~ 0O

P,-P

(Ax) for atomic P (If)

T T

The closure in (Ax) is justified by (—=P) being the path to the hole of P. With the
same premise as in (If), we would get by (Unbox) the conclusion _ 4 where
the sentences =B and —C' are unboxed. The rule (If) gives equivalent, but boxed
sentences. The two occurrences of T in its conclusion are not directly reducible

14 Jan Kluka and Paul J. Voda

to (Close). However, one can easily see that

A

T A
R A ASB R L

~) o~
S

4 e

BT

where BT is just like B with all holes replaced by T. There is an similar witness
of B/A\C, —A,-~C F, L. This is by Par. 6.1 sufficient for soundness of the rule.
The sequent rules are (Ax), (If), (Th), (LV), (L3), (Id), (Subst).
We now present a translation of a proof D of T' - A with all inferences
in D by sequent rules to a one-sided sequent calculus with sequents I" = . Such
sequents are dual to the well-known Schiitte-Tait one-sided sequents = A in the

calculus called GS in [TS00]. Assume that a sequent rule % has been applied

at a path II € Ps(D) leading through a hole of A. We translate it to the sequent

calculus inference
m,rin= ... I, II=

il =
where I1y, ..., II,, are all paths to holes in C. For instance, sequent calculus
inferences corresponding to (Ax), (If), and (LV) are respectively:

A, B, Il = -A,C, II = Alz/t], I =

——— (I
p-pi= 1) I = W) <oA=

(Ax)

6.5 Considerations of completeness. In this section we have concentrated
on the soundness of derivation rules. We know that the cut method is also
complete, because we have proved the completeness theorem 5.5 by its two rules.
Incidentally, we have proved more than completeness, we have also semantically
demonstrated the conservativity of extensions by definitions because we never
had to use other extension axioms than Henkin’s. It can be shown that also the
unboxing and sequent methods are complete in this sense.

When it comes to proving sentencess A in £[I? | by definition hiding, where
the extension axioms defining the symbols F are local to the proofs, then we
cannot hope for the completeness. This is because A can express a property of F
not satisfiable by any extensions by definitions.

6.6 Inversion. The rule (LV) in the one-sided sequent calculus is not invert-
ible. This means that given a proof D of the conclusion we cannot in gen-
eral eliminate all its uses with terms ¢y, ..., t, in D and obtain a proof of
Alx/t1],..., Alx/t,), I’ =. This is because the terms #; may contain eigen-
variables introduced by (L3) in D.

In our calculus we have weakened the eigen-variable conditions to the re-
quirement of regularity of extension axioms. This allows arbitrary permutations

B
where we can, for instance, replace D{A B anywhere in D by A~ A .
D2 D:} D1 bQ D1 b3
Thus, given a proof of 3z A, we can permute all applications of (LV) to Vz —A

in the proof to obtain a proof of \/, A[z/t;]. Note that this is an example of

A Proof Calculus with Case Analysis as its Only Rule 15

definition hiding where we assert a property of Henkin constants occurring in
the terms ¢; without exposing their defining axioms.

6.7 Future work. We are preparing a paper in which we will demonstrate
the usefulness to pure logic of our calculus, with its emphasis on paths through
formulas and definition hiding. The paper will be on the still difficult, and not
yet completely satisfactorily solved, IT9-analysis of some theories 7. The analysis
tries to characterize the witnessing functions f from a given proof of a sentence
VZ 3y R(Z,y) with R quantifier-free. The functions satisfy R(Z, f(gj’)) This is
equivalent to determining the ordinal bounds on such proofs.

The prepared paper will deal with predicate calculus (T' = @) and with Peano
Arithmetic (PA). In both cases, the Henkin witnessing constants introduced
from the descendants of cut formulas will be replaced by explicit quantifier-free
definitions of witnessing functions. In case of PA, also the induction axioms with
quantified formulas will be replaced by quantifier-free definitions of u-functions
yielding the least witnesses.

References

[Ane90] Anellis, LH.: From Semantic Tableauz to Smullyan Trees: A History of the
Development of the Falsifiability Tree Method. Modern Logic 1(1):36-69,
1990.

[Bar77] Barwise, J.: First-order logic. In Barwise, J., ed.: Handbook of Mathematical
Logic. North Holland, 1977.

[BCO4] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Devel-
opment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theo-
retical Computer Science. An EATCS series. Springer, 2004.

[Bry86] Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677-691, 1986.

[CL97] Clausal Language, http://ii.fmph.uniba.sk/cl/

[Gou94] Goubault, J.: Proving with BDDs and Control of Information. In Proc.
12™ Intl. Conf. on Automated Deduction (CADE’94), pp. 499-513, Springer,
1994.

[GT03] Groote, J.F., Tveretina, O.: Binary decision diagrams for first-order predi-
cate logic. J. Logic and Algebraic Programming 57(1-2):1-22, 2003.

[KMMO02] Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000.

[KV09] Kluka, J., Voda, P.J.: A Simple and Practical Valuation Tree Calculus.
Computation in Europe (CiE) 2009. http://dai.fmph.uniba.sk/“voda/
ext-proof.pdf

[NPWO02] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant
for Higher-Order Logic. LNCS 2283, Springer, 2002.

[PS95] Posegga, J., Schmitt, P.H.: Automated Deduction with Shannon Graphs.
J. Logic and Computation, 5(6):697-729, 1995.

[Sch77] Schiitte, K.: Proof Theory. Springer, 1977.

[Sho67] Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, 1967.

[TS00] Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Second edition.
Cambridge University Press, 2000.

