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1 Introduction

The idea that boolean valuation trees can be used as formal calculus for first-
order logic was certainly implicit in the work of Beth which lead to his devel-
opment of semantic tableaux. In this paper we present a calculus for first-order
logic with finite valuation trees being the proofs. The calculus has a flavor of
Hilbert systems (one rule and many axioms), yet it exhibits, as it should, a close
connection to semantic tableaux and Gentzen’s style sequent calculi. To the best
knowledge of authors, this idea is not directly present in any extant proof cal-
culus, except perhaps in a rather rudimentary form, in the decision procedures
based on the calculus of Davis and Putnam.

Our calculus seems to be of interest on its own in pure logic, especially in
classroom situations and in self-contained expositions of (classical) first-order
logic. This is because the role of syntax in our exposition is absolutely minimal —
just the finite valuation trees — and even they are, per definitionem, of semantic
character.

Yet, our main motivation for the development of the calculus is entirely
pragmatical. It is to be a formal basis for a new version of our Intelligent Proof
Assistant (IPA) for a programming language CL (Clausal Language) [CL97].
Programs in CL are just certain implications in extensions by definitions of
Peano Arithmetic. We have successfully used CL for the last ten years in the
teaching of first-order logic and also in our courses on program verification.

A typical work in an IPA is shown in Fig. 1. A theory is extended by a
definition of the symbol f and a lemma (n) about it is proved. The lemma is
then used in a proof of the theorem (m). The proof of (m) is itself done in the
style of extensions. The theory is locally extended with the symbol g and a local
lemma (i) about is is proved. Both lemmas are used to finish the proof of (m).
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’ Definition: Va Vy (f(z) =y« ---) ‘

’Lemman: Vm(~~~f~--)Fproof

Q.E.D.

’ Theorem m: Vo Vy (---f--) ‘— proof

Definition: Yz Vy (g(z) =y < --)

Lemma 4: Vz (---g---f---)— proof

Q.E.D.
case analysison ---V ---:
1. .-
use of Lemma n
2. use of Lemma, 7
Q.E.D.

Fig. 1. A schema of development of proofs by a proof assistant in extensions of theories.

IPAs should offer the natural mathematical style of proofs because computer
programming is a mentally exhausting activity. It is doubly so when coupled
with the formal verification of programs. Good IPAs can certainly help with
the development of correct programs (at least the mission critical ones), and
so the search for them is a worthwhile research in applied logic. The reader
will note that the cut elimination is not a central issue in IPAs because natural
mathematical proofs without cuts (in the form of lemmas) are impossible.

This paper is developed as a purely logical exposition of proofs in extensions
of first-order theories starting from propositional logic (Sect. 2). We then treat
quantification (Sect. 3), equality (Sect.4), and extensions by definitions (Sect. 5).
We will not deal here with the all important pragmatical aspects of computer-
assisted theorem proving, except briefly, in Par. 2.11. We, however, recommend
that the reader pays a closer attention to the example given there.

2 Propositional Logic

2.1 Syntactic preliminaries. We use the standard notions of language (de-
noted by L) for first-order logic with predicate symbols (P, R, ...) and function
symbols (f, g, ...), terms (¢, s, ...). We will be concerned with countable lan-
guages only. Formulas (A, B, ...) are built up from atomic formulas by the
propositional connectives —, A, V, —, and the quantifiers V, 3 binding variables
(z,y, 2, ...). We use A < B as an abbreviation for (A — B) A (B — A).

A sentence is a formula with no free variables. A set of sentences is a theory
if it can be recursively coded. Theories are denoted by the letters 7' and S. We
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write T, S and A, T as abbreviations of TU S and {A} U T respectively. Finite
theories are denoted by the capital greek letters I" and A.

2.2 Propositional semantics. A truth assignment is a set Z of atomic and
quantified sentences (i.e., Vz A[z] or 3z A[z]). A truth assignment Z proposition-
ally satisfies an atomic or quantified sentence A, in writing 7 =, A, if A € 7.
We inductively extend the relation k|, to all sentences using the classical inter-
pretation of propositional connectives. We write 7 =, T if T =, Afor all A € T.
We define 7 =, T to hold if Z =, A for some A € T.

We say that 1" propositionally implies S, in writing T' £, S, if for all 7 s.t.
ZkEp,T we have 7, S.

We say that 1" propositionally implies one of S, in writing T' B, S, if for
all 7 s.t. T, T we have T =, S.

We call T' the antecedent of the assertion T' =, S, and S its succedent. Any
assertion T, T =, S, 5’ is called a weakening of T =, S.

2.3 Initial propositional properties. The assertions listed in Fig. 2 are
called the initial propositional properties. The properties are given parenthe-
sized names. The names relate to their use in Lemma 2.14 for the treatment of
eponymous rules of the propositional sequent calculus G3cp [TS00, page 77].
The rules of G3cp are listed in Fig. 4. Note that we use Dragalin’s variant with —
instead of L [Dra79].

(Ax) A, A (L) —A, A=, 0 (R-) 0 =p A A
(L-)A— B,A, B (R—1) 0=p A— B, A (R—2) BepA—B
(LA1)  AABBEp A (LA2) ANBEp B (RA) A, Bep ANB
(LV) AVBE, A B (RV1) A, AVB (RV2) Bpp,AVB

Fig. 2. Initial propositional properties.

It is decidable whether I' =, A is a weakening of an initial property.
The following lemmas assert obvious properties of the relation . They
form the basis of our proof calculus.

2.4 Lemma (Initial propositional properties). The initial propositional

properties are true. O
2.5 Lemma (Weakening). If T &, S, then T,T' =, S, 5. O
2.6 Lemma (Cut). T, S iff ATE, S and T p A, S. 0

2.7 Valuation trees. A waluation tree (denoted by D, &) is a tree with each
node either a leaf or an internal node with two ordered predecessors. A leaf
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is designated by the symbol o. Internal nodes are labeled with sentences, and

written down as
D £

A
where D and £ are the respective subtrees.

In Par. 2.8 we will fix the properties of valuation trees in a more general way,
but the following informal interpretation should give the reader an intuition
about them.

A valuation tree assigns the sentence A in an internal node the truth value
“true” in the left subtree D and “false” in the right subtree £. We will have

D proves A iff for every path p through D we have:
{B|Bepistrue},{-B| Bepis false} £, A .

Moreover, for each p, the truth of the satisfaction relation will be decided only
by the form of the sentences involved without involving semantics.

2.8 Proofs in propositional logic. We will now define a five-place relation
D p-witnesses (propositionally proves) T, I" =, S, A, in writing D -, T; 1"
S; A, as the least relation satisfying:

e o, T;I' =, S; Aif the assertion (T'NA),I' =, (SNTI), A is a weakening
of an initial propositional property,

. DTEH) T:T by S;Aif Dby TiA T By S;A and € by T T By

S; A, A.

We abbreviate D +p, 0; " =, 0; A and D+, T;0 & S;0 to D+, I' B A and
D Fp T B S respectively.

2.9 Lemma (Soundness). If D+, T;I' =, S; A, then T, ' =, S, A.

Proof. By induction on D. When D = o, then (TN A),I' =, (SNI),A
holds by Lemmas 2.4 and 2.5 because it is a weakening of an initial property
of . By another weakening we get T, I" =, S, A. The inductive case follows
from Lemma 2.6. a

2.10 Remark. Note that our proofs, i.e., the valuation trees D, are not, as it
is usual, related to syntactic objects (i.e., to sequents), but by Lemma 2.9 they
rather witness the truth of a semantic property. In order to avoid ambiguity,
the informal phrase “D p-witnesses T, 1" =, S, A” should be understood as the
assertion “D -, T;I' &, S; A”.

Also note that we could have introduced the proof relation as a three-place
relation D |-, T' =, S, but then, even with 7" and S recursive, the relation would
not be decidable as expected, but only semi-decidable (r.e.). This is because
obp T Bp S would then mean an r.e. assertion that T' = S is a weakening
of an initial property. The inclusion of finite sets I" and A in the proof relation
makes it decidable.
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2.11 Example with discussion. In this paragraph we relate the valuation
trees to the workings of an IPA from Fig. 1, and also to tableau and sequent
proofs.

As an example, we demonstrate Pierce’s Law ((B — C) — B) — B. We
abbreviate the whole formula to P and its antecedent to A. In order to explain
easier Fig. 3(a) we work first informally in a more detailed way than humans
would need. We reason by contradiction where we assume P| (“thumbs down”
= false). For that it must be the case that AT and B|. Note that the cases
A] or BT cannot obtain because in the former we get a contradiction P71 from
0= A— B,A (R—1), and in the latter we get the same contradiction from
B & A — B (R—3). We now consider two cases. If B — C71, then we get a
contradiction BT from (B— C)— B,B—C k& B (L—). If B— C], we get a
contradiction B from () & B — C, B (R—1). Hence P is irrefutable.

Fig. 3(a) formally reflects exactly the above proof. The truth value arrows
emanate from below the formulas as | and \,. A missing arrow indicates a
contradiction in the missing direction.

(B=O=B)=5 ((B—C)—B)— Bl

N
(B—C)—B o o (B—C)—B1
T o B—C Bl
@ B b))~ o (9 /N
N\ (B—=C)—B B—C| Bt
B—C BT o
o)
(d) \(L—)/ \(R—1)/
\(R—2)/ B—C,(B—C)—B=B,P (B—C)—B=B—C,B,P
B,(B—C)—B=P (B—C)—B=B,P \(R—1)/
(B—C)—B=P =(B—C)—B,P

=P
P=(B—C)—B)—B

Fig. 3. Different renderings of a formal proof: (a) downwards growing proof tree,
(b) valuation tree, (c) signed tableau, (d) G3cp.

A
A transformation where we take a node T ™\ to the tree -1 D2
Dy A
transforms the tree (a) into the valuation tree p-witnessing () =, P which is
given in Fig. 3(b).

When we “unfold” the definition of p-witnessing (Par. 2.8), which can be
viewed as connecting valuation trees to sequents, we transform the valuation
tree (b) to a sequent proof of P in the calculus G3cp [TS00, page 77]. The
proof is given in Fig. 3(d) where the reader will note that all inferences are cuts.
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The “real” sequent rules are used only in the omitted upper branches where the
indicated initial properties are derived.

The tree in Fig. 3(a) is somewhat similar to the derivation of P in the
Smullyan’s [Smu68] calculus of signed tableaux. The tableau is given in Fig. 3(c).

The beauty of the tree Fig. 3(a) is that it can be also read positively. This is
the view taken by humans operating a proof assistant in the style of Fig. 1. The
theorem to be proved is ((B— C)— B)— B. The box below it contains its proof
where we first assume its antecedent (B — C) — B, and under this assumption
we prove the “lemma” B inside its own box. The proof of the lemma consists of
one case analysis on B — C.

2.12 Lemma (Proof weakening). If D \, T;I & S; A, then also D +,
(T7 Tl)v (Fa F/) ':’>P (57 Sl); (AvA/)

Proof. By induction on D. ad

2.13 Free cut free valuation trees. A valuation tree £ p-witnessing T, I" =,
S, A contains a free cut if it contains a non-leaf subtree such that

D1 Dy
S T ey S A

and the cut formula A is neither in T, S nor it is an immediate subformula of a
formula from I, A’. If £ contains no free cuts, it is free cut free.

2.14 Lemma (Reduction of G3cp proofs to |-, trees). If there is a deriva-
tion D of a closed sequent I' = A in G3cp, then there is a valuation tree D*
p-witnessing I' =, A. If D is cut free, then D* is free cut free.

Proof. By induction on the derivation D of a sequent I" = A in the calculus
G3cp. If D is an axiom of the sequent calculus, there is A € I'N A, and o |-,
I' =, A by the initial property (Ax) from Fig. 2.

If D derives I' = A by application of a rule, then for i = 1 or ¢ = 1,2 the
derivation D has predecessors D; deriving I; = A;. By induction hypotheses,
there are valuation trees D} |- I'; &, 4A;, and we construct a tree D* -, I' 5, A
as indicated in Fig. 4. If, for instance, D is formed by the rule L—, then we have
I' =A—BI; Iy, = B, I; Ay = A A; and A, = A. We construct the
derivation D* as follows:

Di+ B,AJA—B,[1EpA oA A— BTy B, A

B DirA— B,y A A
A

FA—-B,INBp, A

Note that by Lemma 2.12 both D and D5 witness also the indicated weakenings
of I; &, A;, and that the leaf in the construction witnesses a weakening of (L—).
If D is cut free, then there are no free cuts in D*. a
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D D*
Ax AT = A A ok (Ax)
D1
L I'= A A oF (L-) D
- —AT = A A
Dy
R AT = A Di ok (R-)
I = —A A A
Dy Ds D; ok (L—)
L =44 BI=A B Dj
-
A-B T = A A
D o (R—2) DY
R AT'= B A B ot (R—1)
I'=A—B,A A
D DI o (LA2)
LA ABT=A B ot (LAL)
ANB,T = A A
D1 Do O}—(R/\) DI
RA I'=AA I'=BA B D3
I'=AANB,A A
Dy Ds D; ol (Lv)
Ly AT'= A B, I'= A Dy B
AVB, T = A A
Dy ok (Rva) D1
Ry I'= A B, A ok (RVy) B
I'=AVB,A A
D, Do
g AT=A  I=4A4 D; D;
" I'=A A

Fig. 4. Translation of G3cp proofs to valuation trees.
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2.15 Lemma (Completeness). If T =, S, then D+, T = S for a free cut
free D.

Proof. If T =1, S, then by completeness of the calculus G3cp and by compact-
ness there is a derivation £ of a sequent I' = A for some I' = Cy,...,Cy C T
and A =Dy,...,D, CS. Cuts are eliminable in G3cp [TS00, page 92|, so we
can assume that € is cut free. By Lemma 2.14, there is a free cut free £* s.t.
E Fp I'ep A By Lemma 2.12, £ -, T, I' &, S; A holds. We construct a free
cut free D* s.t. D* |, T' B S as follows:

o E*

o

T
c FT=p S
Note that all indicated leaves witness a weakening of the identity axiom (Ax).
O

2.16 Corollary (Soundness and completeness of ). We have T =, S
iff Dip T Bp S for a free cut free D. ad

3 Quantification Logic

In this section, we extend our calculus to the first-order quantification logic
without equality.

3.1 Semantics of first-order quantification logic. We assume the standard
notion of a structure M for a first-order language £ not containing the equality
symbol =. A structure has a non-empty domain M, assigns meaning to function
and predicate symbols of £, and extends the meaning in the usual way to terms
and formulas. We write M E A when M satisfies the sentence A.

We define M £ T (M is a model of T), T E S, M T,and T & S
analogously to their propositional counterparts with the additional condition
that if T E S or T'= S, then T and S are theories in the same language.

3.2 Logical consequence in expansions of structures. We denote by E[,E]
a language which is just like £, but contains new predicate or functions symbols
F= Fi, ..., F,. Let M be a structure for a language £. As usual, a structure M’
is an expansion of M to L[F] if M is a structure for £[F] and coincides with M
on all symbols of £. This implies that the domains of M and M’ are identical.

We write T = £ S if all of the following conditions are satisfied: (a) £ is a
language, and F are new symbols, (b) T"is a theory in £, (c) S is a theory in L:[,E],
and (d) for each structure M for £ such that M E T, there is an expansion M’

.

of M to L[F] such that M’ = S.
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3.3 Lemma.

(a) If T =p S, and T, S are in the same language, then T = S.

(b)) Te SwithT and S in L iff TE,p S,

(c) (Weakening) If T =, ¢ S, then T, T' = £ S, S for any new G, T inL,
and S' in L[F, G).

Proof. Straightforward. a

3.4 Initial quantification properties. The initial quantification properties
are (i) the initial properties from Fig. 2 with |, replaced by = ¢ provided A
and B are from £; (ii) the following initial properties of quantifiers:

(RI)  Ale/tl o I Ale], (V) Vo Ale] bry Ale/t],
(L3) 3z Alz] & Alz/c], (RY) 0= r.c Vo Alz], ~Alx/c]

provided z is the only free variable in A[z] from £, t is a closed term from L,
and ¢ ¢ L.

Note that by using the notion of logical consequence in expansions of struc-
tures we never have to deal with formulas containing free variables. We thus
escape the annoying problem of a variable capture by a quantifier when substi-
tuting a term with free variables for a variable.

3.5 Lemma (Initial quantification properties). Initial quantification prop-
erties are true.

Proof. Propositional properties are true by Lemma 3.3(a)(b). Quantifier instan-
tiation properties (R3) and (LV) hold trivially with [, thus also with =, and
hence with =, ¢ by Lemma 3.3(b). For the Henkin witnessing property (L3) it
suffices to expand any M for L s.t. M E 3z A[z] by interpreting ¢ as a witness
to satisfy A[x/c]. The Henkin counterexample property (RV) is made true by
interpreting ¢ in an expansion of M as a counterexample —Afx/c] whenever

M EVx Alz]. O

3.6 Theorem (Expansion cuts).

-, -,

TeroSiff (i) AIF,T = ciFe S and (i) T & F A[F], S.

-,

Proof. In the direction (—), (i) take any M such that M E A[F],T. Contract
it to M’ for £. We have M’ E T, and we get M’ =5 S, and hence M & S, from
the assumption. (ii) Take any M E T, we get M | S from the assumption.

—,

Arbitrary expansion of M to M’ for L[F] will satisfy one of S.
In the direction («), take any M for £ satisfying T'. From the assumption (ii),

-,

we get an expansion M’ satisfying one of A[F], S. If it is one of S, we also have

—.

M B S. Otherwise M’ £ A[F]. Now the assumption (i) applies, and we get
M’ = S, and hence M = S. O
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3.7 Proofs in quantification logic. Thm. 3.6 can be strengthened by re-
placing in it everywhere () with G. As can be seen from the form of the initial
properties in Par. 3.4 and from the following definition of proofs in -4, we will use
the notion of expansion consequence in an even weaker form with F containing
at most one symbol (including none).

A seven-place relation D g-witnesses T, 1" &2 £ S, A, in writing D - T; I’
B, FS; A4, is defined as the least relation satisfying:

ooty I:I' o f S;A if the assertion (TN A), I e (SNT),Als a
weakening of an initial quantification property,

.

. DA[_,}EI—Q T\ rg S; AN Dby T A[F), T 70 S; A and € o T; T
'ﬁkﬁ,ﬁ SvA[ﬁLA

3.8 Lemma (Reduction of G3c proofs to -4 trees). If there is a deriva-
tion € in G3c of a closed sequent I' = A in language L, then there is a valuation
tree £* q-witnessing I' = g A. If € is cut free, then £ is free cut free.

Proof. The proof goes along the lines of the proof of Lemma 2.14 with the
difference that we need to take into account the extensions of £ with Henkin
constants in the translated valuation tree £*. To that end, we assume that the
eigen-variable rules (L3) and (RV) applied in £ use new eigen-variables y. cor-
responding to the Henkin constants c. For the duration of the proof, we write
I’ for the set of formulas in I" with every eigen-variable y. replaced by the
constant ¢. We prove by induction on D the following property:

If D is a subtree of £ proving in G3c the sequent I = A, then there is a
valuation tree D* s.t. D* -q I'° &,/ g A° where L' is the extension of £
with Henkin constants corresponding to the eigen-variables . introduced
on the branch leading from D to £.

Note that for D = & we have L= L', ' =T, and A° = A.

The translation of rules of G3c in the inductive step is the same as in
Lemma 2.14 for the propositional rules (see Fig. 4). The translation of quan-
tification rules is in Fig. 5. In order not to clutter the figures we ignore in both
of them the systematic replacement of eigen-variables by Henkin constants.

The most interesting case is the translation of (RV) where A = A[z/c], A;.
We first cut on the sentence —A°[z/c], and let the right leaf q-witness a weak-
ening of the initial quantification property (RV). We then cut the left branch
on A¢[z/c], let the left leaf g-witness a weakening of the initial propositional
property (L—): A¢[x/c],—A%[xz/c] B g0 0, and use the inductive hypothesis
Di tq I B riq,p A°lz/c], A to g-witness by the same valuation tree D7 its
weakening ~A°[x/c], I'® B /(g0 A°[z/c], Vo A%[x], Af.

If £ is cut free, then there are no free cuts in £*. a

3.9 Theorem (Soundness and completeness of y). We have in quantifi-
cation logic T =g S ff Diq T =19 S for a free cut free D.
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D D*
Dy
I' = Alz/t], 3z Alz], A o (R3) Di
I' = 3z Alz], A Alz/t]
D1
Ly Alz/t],Vz Alz], I’ = A D1 o (LV)
Ve Alz], I = A Alz/t]
D
L3 Alz/y], I = A D1 ot (L3)
Jx Alz], I’ = A Alz/c]
D1 ot (L-) Dy
RY I'= Alz/yc], A Alz/c] o+ (RVY)
I' = Vz Alz], A -Alz/c]

Fig. 5. Translation of G3c proofs to valuation trees.

Proof. The soundness direction («) is proved similarly to Lemma 2.9, and the
completeness direction (—) follows from Lemma 3.8 by an auxiliary lemma cor-
responding to Lemma 2.15. O

4 First-order Logic with Equality

Had a language £ of the quantification calculus from the previous section con-
tained the binary equality predicate symbol =, it would have to be treated as
a non-logical one, meaning that the usual properties of = would have to be
supplied by axioms in 7.

For the rest of this paper, we treat the equality symbol as a logical one, and
we will accordingly modify our proof calculus by strengthening the use of the
initial properties without changing the definition of expansion cuts.

4.1 Semantics of equality. For the rest of this paper, we assign in structures
the usual interpretation of the equality symbol always assumed to be in £. This
means that, although in the definition of = we add the clauses M E s = ¢, no
other semantic definition needs to be explicitly changed. Thus, in particular,
Lemma 3.3, Thm. 3.6, and Lemma 3.5 remain to hold.

4.2 Equality in sequent calculi. We have reduced the completeness proofs
for the calculus I, and |4 to the completeness of sequent calculi G3cp and G3c
respectively. In this section we will reduce the equation calculus G3c¢~ [NvP98]
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[TS00, page 134] to the calculus }, defined in Par. 4.7. The former calculus
contains two rules dealing with equality:

t=t,I'= A Plz/s], Plz/t],t = s, = A

Ref R
¢ = A P Pla/tl,t=s1 = A

where P is an atomic formula.

4.3 Lemma. Every G3c™ proof can be transformed by permuting its equational
rules above the logical rules. The relative order of equational rules is not changed.

Proof. The principal formulas of equation rules are atomic, and so the rules
can be permuted with all logical rules of G3c including cuts (even cuts with
principal formulas atomic). This is formally done by induction on the number of
permutations needed. d

4.4 Equality closure. For a theory T and a set of closed terms D we define
the equality closure of T over D as the smallest set Eq},(T) satisfying:

e TU{(t=1t)|te D} CEqp(T),
e Plz/s] € Eqp(T) provided Plz/t],(t = s) € Eqp(T) and P[z] is an atomic
formula with at most x free.

Let Terms(7T) denote the set of all subterms occurring in the atomic sentences
of T. We set Eqg g(T') := Eqp(T') where

D = Terms(T) U (Terms(S) \ {s | term s contains any of F}).

4.5 Lemma. M £ T iff M & Eqg g(T) for all structures M for L and theories

—

T in L, S in L[F]. O

4.6 Lemma. If T E P and T U{P} consists of atomic sentences, then P €
Eq:i“erms(T,P) (T) :

Proof. Let D := Terms(T, P) and E := Eq},(T'). By way of contradiction assume
P ¢ E. We will construct a model M of T falsifying P. Define [t] = {s € D |
(t = s) € E}. Tt is easy to see that the sets [s] form a partition P of D. Let
P U {0} be the domain of M. Interpret every function symbol f and predicate
symbol R of L as follows:

fM(dh,dn): [f(tl,ﬂfn)] lfdlz[tl], ,dn:[tn], f(tl,,tn)GD,
0 otherwise;
RM(dy, ..., dy) i di=[t1], ..., du=[tn], R(t1,...,tn)EE for some ti, ..., t,.

It is easy to see that the interpretation is well-defined, and that M £ T. If
P is an equality ¢t = s, then it must be the case that t" = [t] # [s] = sM,
and so M £t = 5. If Pis R(ty,...,t,), then not RM([t1],...,[tn]), i.e., M K
R(t1, ... tn). O
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4.7 Proofs in first-order logic with equality. We now extend the relation
of g-witnessing (see Par. 3.7) to first-order logic with equality without adding
any new initial properties or changing the extension cuts. The difference is that
instead of letting o witness a set I' in antecedents of =, we saturate I" with
equalities by forming its equality closure.
The seven place relation D e-witnesses T,1" =, F S, 4, in writing D
T;I' =, F S; 4, is the least relation satisfying:
e ot TN S; A (TNA)Eqyp(I) Brp (SNT),Ais a weakening
of an initial quantification property,

o« D& TPy S AMD R T AF), D g Si A and € ko T5 T

A
'f?ﬁ,l? S? A[F]7 A.
Note that the relation is decidable because the equality closure for finite sets is
finite.

4.8 Lemma (Reduction of G3c™ proofs to |, trees). If there is a deriva-
tion € in G3c~ of a closed sequent I' = A in a language L, then there is a
valuation tree £ e-witnessing I' B g A. If € is cut free, then D* is free cut
free.

Proof. For the duration of the proof we write I'¢ for the set of formulas in I”
but with every eigen-variable y. replaced by the constant c. We write I'* for the
set of atomic formulas in I". We may assume that £ is in a form guaranteed by
Lemma 4.3. We proceed by induction on D similar to that in Lemma 3.8:

If D is a subtree of £ proving in G3c~ the sequent I = A and its
immediate ancestor in £ (if any) is not obtained by an equality rule
(Ref) or (Rep), then there is a valuation tree D* s.t. D* |-, I'® >z g A°
where £’ is the extension of £ with Henkin constants corresponding to
the eigen-variables y. introduced on the branch leading from D to £.

In the base case, D is a maximal branch consisting of at most rules (Ref) or
(Rep). Let the leaf of D be I = A. It must be an identity axiom and so there
is a formula A € It N A. We consider two cases: If A is not atomic, then we
must have A € I, and it suffices to set D* := o because Eqy. 4(I°) B,/ g A°
is a weakening of (Ax). If A is atomic, then we remove the non-atomic formulas
from all sequents in D whereby we obtain a proof D* of the sequent I'* = A®
with the leaf I'f" = A% s.t. A € I'f N A®. Define D := Terms(I'¢) U Terms(A°)
and
D' :=DuU{t| (t =t) is principal in a (Ref) rule of D}.

By the form of equational rules, we have I'f* C Eqp, (1'*). Thus Eqp), (1'*¢) E
A¢, and by Lemma 4.5 ¢ £ A°. By Lemma 4.6 we then get

A e Eq:;‘erms([""cyAc)(Fac) - Eq*D (Fac) - qu)(l—m)

Thus it suffices to set D* := o because o . I'® 5,y A°. The inductive case
goes through just as in the proof of Lemma 3.8.
If £ is cut free, then there are no free cuts in £*. a
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4.9 Theorem (Soundness and completeness of \-.). We have T =, S
WDrF T,y S for a free cut free D.

Proof. Soundness («) follows from the proposition
ZfD o T Bc.F S, then T =L F S,

proved by induction on D. In the base case, we have (T'N A),Eq g(I') Br.F
(SNT),A because it is a weakening of an initial quantification property. We
wish to show that also T', I" . £ S, A holds. So we take a structure M for £ of
T,I'. By Lemma 4.5, we also have M E Eq, ¢(I"), and thus M can be expanded
to satisfy one of (SNI"), A and hence one of S, A. Induction step follows directly
from Thm. 3.6 since we must have F = 0.

Completeness (—) follows from Lemma 4.8 by an auxiliary lemma corre-
sponding to Lemma 2.15. O

4.10 Discussion. Our treatment of full first-order logic uses equality automat-
ically. This is not only possible, but also feasible, by the existence of an efficient
congruence closure algorithm of [DSTS80).

We have on purpose proved the completeness of our calculi by reduction of
corresponding complete sequent calculi. The reason was that we wished to ex-
hibit similarities between sequent proofs and valuation trees. In a self-contained
exposition we would employ the well-known direct method used with sequent
calculi. The method is even more natural with valuation trees. We must permit
infinite valuation trees and assure that we systematically assign truth values to
all sentences in T', S as well as to all immediate subformulas of sentences appear-
ing on branches closer to the root of the constructed valuation tree. This means
in particular, that we must use all terms of £ for the instantiation of quantifiers.
If such a systematic procedure fails to stop with a finite valuation tree, and thus
fails to e-witness the property 7' = S, then the tree must contain an infinite
consistent path. We then perform the well-known construction used also in the
proof of Lemma 4.6 to construct a structure giving all sentences on the path
their assigned values. The structure will thus satisfy 7" and falsify all of S.

5 Extensions of Theories by Definitions

In this section we treat extension of theories by definitions of predicate and func-
tion symbols. For that it suffices to extend the base case of the proof predicate
. with new initial properties justifying the extensions.

5.1 Initial extension properties. Initial extension properties are the initial
quantification properties (see Par. 3.4) plus the following ones:

(PDef) 0 c.r VE(R(E)  Al)])
(FDef) V&3l BT, y] Er.¢ VEVy (F(Z) = y < B[, ).

for any formulas A[zy,...,z,], Blx1,...,2Zn,y] in £ with only the indicated
variables free and any symbols R, f not in L.
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5.2 Lemma. Initial extension properties are true.
Proof. See [Sho67]. O

5.3 Proofs in extension logic. We define define a new relation D d-witnesses
T,I' &, F S, A, in writing D g T;1" &, F S; A. The relation is just like the
. relation (see Par. 4.7) but we permit initial extension properties instead of
quantificational ones.

Thm. 5.4 asserts the well-known conservativity of extensions by definitions
where any use of new symbols in a 4 proof of a property not containing new
symbols can be eliminated so the property has an |, proof. Thm. 5.5 asserts
that that the 4 calculus is sound. We cannot have completeness unless we are
willing to examine all possible definitional extensions. For that we would have to
restrict the definition of B, ¢ in Par. 3.2 to Henkin and definitional extensions.
To examine all extensions is, however, not the intent of introducing new symbols.
They are introduced in order to manage the complexity of proofs by abbreviating
long formulas.

5.4 Theorem (Conservativity). If D q T g S, then D* e T g S
for some D*.

Proof. D* is obtained from D by a translation A* eliminating introduced pred-
icate and function symbols from formulas A. This is described by Shoenfield
[Sho67] and also by Troelstra and Schwichtenberg [TS00, page 124]. O

5.5 Theorem (Soundness of extensions). If D\q T =, F S, then T ¢ F
S.

Proof. Similarly to the proof of soundness in Thm. 4.9 except that we use
Lemma 5.2 in the base case instead of Lemma 3.5. O
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