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Abstract

The dynamical hypothesis is the claim that cognitive agents are dynamical systems. It stands
opposed to the dominant computational hypothesis, the claim that cognitive agents are digital
computers. This target article articulates the dynamical hypothesis and defends it as an open
empirical aternative to the computational hypothesis. Carrying out these objectives requires
extensive clarification of the conceptua terrain, with particular focus on the relation of
dynamical systems to computers.
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Long Abstract

The heart of the dominant computational approach in cognitive science is the hypothesis that
cognitive agents are digital computers; the heart of the alternative dynamical approach is the
hypothesis that cognitive agents are dynamical systems. This target article attempts to
articulate the dynamical hypothesis and to defend it as an empirical alternative to the
computational hypothesis. Digital computers and dynamical systems are specific kinds of
systems. The dynamical hypothesis has two major components: the nature hypothesis
(cognitive agents are dynamical systems) and the knowledge hypothesis (cognitive agents can
be understood dynamically). A wide range of objections to this hypothesis can be rebutted.
The conclusion is that cognitive systems may well be dynamical systems, and only sustained
empirical research in cognitive science will determine the extent to which that is true.

1. Introduction

Some five decades after Principia Mathematica, David Hume dreamt of a scientific
psychology in which mathematical laws would govern the mental realm, just as Newton’'s laws
governed the material realm (Hume, 1978). The universal force of gravitation, whereby
bodies attract in proportion to their masses, would be replaced by a universal force of
association, whereby ideas attract in proportion to their similarity. The dynamics of matter
would be paraleled by a dynamics of mind.

The Humean dream was not the first vision of mind inspired by the emergence of modern
science. The new physics had uncovered mathematical laws of great simplicity and elegance,
but laborious calculation was required to derive the messy details of actual behaviors. Thomas
Hobbes took this calculating activity itself as his model of the mechanisms of mental
operation. Perhaps thought is symbolic computation, the rule-governed manipulation of
symbols inside the head (Hobbes, 1651/1962).

Seventeenth-century speculation became twentieth-century science. Hobbes's idea
evolved into the computational hypothesis (CH), that cognitive agents are basically digital
computers. Perhaps the most famous rendition is Newell and Simon’s (1976) doctrine that
“A physical symbol system has the necessary and sufficient means for general intelligent
action.” They proposed this hypothesis as a “law of qualitative structure,” comparable to the
cell doctrine in biology or plate tectonics in geology. It expresses the central insight of the
research paradigm which has dominated cognitive science for some forty years.

In recent years, however, the Humean alternative has been gaining momentum. One of the
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most notable developments has been the rise of connectionism, which models cognition as the
behavior of dynamical systems (Smolensky, 1988), and often understands those models from
a dynamical perspective. Equally significant is the emergence of cognitive neuroscience, and
within it, the increasing prevalence of dynamical theorising. Dynamics forms the general
framework for growing amounts of work in psychophysics, perception, motor control,
developmental psychology, cognitive psychology, situated robotics and autonomous agents
research, artificial intelligence, and social psychology. It is central to a number of general
approaches, such as ecological psychology, synergetics, and morphodynamics.?

The dynamical hypothesis (DH) is the unifying essence of dynamical approaches to
cognition. It is encapsulated in the simple slogan, cognitive agents are dynamical systems.
The aims of this target article are (1) to articulate the hypothesis—i.e., to explain what the
slogan means—and (2) to defend it as an open empirical hypothesis standing as a substantive
aternative to the CH. The DH contends for the status of the “law of qualitative structure”
concerning the nature of cognition.

One goal in undertaking this philosophical work is to clarify the conceptual terrain.
Another is to help clear rhetorical space for dynamicists in cognitive science to get on with
the hard work of developing detailed accounts of specific cognitive phenomena. The most
important goal, however, is to gain insight into the nature of people—for people are, among
other things, cognitive agents.

This paper ploughs an interdisciplinary field. Boulders of ambiguity, vagueness and
confusion must be cleared away. Much effort is devoted simply to establishing a single
coherent and reasonably precise framework for discussion. This framework involves
commitments at terminological, conceptual and even metaphysical levels. Its development
requires many choices and stipulations, often somewhat arbitrary in nature. Occasional
conflicts with existing intuitions are unavoidable. Still, some such regimentation is essential,
for otherwise debating the DH is just a futile exercise in miscommunication. Table 2 in the
appendix summarizes the framework by listing key terms and their meanings as deployed
here.

2. Some Examples

A first task is to sketch some representative examples of dynamical cognitive science, to serve
as a backdrop for the following discussion. Space limits dictate brevity; readers are
encouraged to visit the original sources for proper treatment.

Consider how we come to make choices between actions with various possible outcomes.
If we were digital computers, we would symbolically represent to ourselves the various options
and their outcomes, together with our estimates of the likelihood of those outcomes and their
value to us. Reaching a decision would then be a matter of calculating the most promising
option. An alternative Humean account has been proposed by psychologists Jerome
Busemeyer and Jim Townsend (Busemeyer & Townsend, 1993). In their “Decision Field
Theory” (DFT) model, relevant aspects of the decision situation are represented not by

1 Examples: cognitive neuroscience: (Amit, 1989; Babloyantz & Lourenco, 1994; Cohen,
1992; Guckenheimer, Gueron, & HarrissWarrick, 1993; Mpitsos, forthcoming; Skarda &
Freeman, 1987); psychophysics: (Gregson, 1995); perception: (Bingham, Rosenblum, &
Schmidt, in press; Grossberg & Rudd, 1992; McClelland & Rumelhart, 1981; Port,
Cummins, & McAuley, 1995); motor control: (Bullock & Grossberg, 1988; Saltzman,
1995; Turvey, 1990); developmental psychology: (Smith & Thelen, 1993; Thelen &
Smith, 1993); cognitive psychology: (Busemeyer & Townsend, 1993; Grossherg &
Gutowski, 1987; Grossberg & Stone, 1986; Leven & Levine, 1996; Tabor, Juliano, &
Tanenhaus, 1996); situated robotics and autonomous agents research: (Beer, 1995b; Cliff,
Harvey, & Husbands, 1993; Smithers, 1994); artificial intelligence (Jaeger, 1996; Pollack,
1991); socia psychology (Kaplowitz & Fink, 1992; Vallacher & Nowak, 1993);
ecological psychology (Kugler, Kelso, & Turvey, 1980; Kugler, Kelso, & Turvey, 1982;
Turvey & Carello, 1995); synergetics (Haken & Stadler, 1990); morphodynamics:
(Petitot, 1985b; Thom, 1983; Wildgen, 1982). (Port & van Gelder, 1995) is a
representative sampling of the dynamical approach. Note that works cited here are
intended as examples and pointers, rather than any kind of exhaustive or definitive listing.
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symbols but by means of continuous quantities. Decision-making is the interdependent
evolution of these quantities over time as governed by mathematical equations (as opposed to
algorithms). Decisions are made when certain thresholds are passed. The scientific question
then is. Which kind of model best accounts for the actual psychological data on human
decision-making? Busemeyer & Townsend claim that their model predicts actual decisions
better than any “static-deterministic” model, as well as describing temporal properties of
decision processes beyond the scope of traditional models.

Approach System M = motivational value of a consequence
W = weight connecting a consequence to an action
V = valence = momentary anticipated value of an action
P = preference state = tendency to approach-avoid an act
X = output position = actual behavior of decision-maker
w S = stability matrix - controls rate of growth of preferences
C = contrast matrix - determines how acts are compared
R = function determining nature of movement

Valence System Decision _ Motor _
System - System o
Avoidance System V(1) = W(H).M() 1 )
Mp1 - -
dP(t+h)/h = -S.P(t)+C.V(t+h) dX(t+h)/h = R[X(1),P(t+h)]

Decision and Motor Systems

Figure 1. Outline of the “Decision Field Theory” dynamical model of decision-making
processes (Busemeyer & Townsend, 1993). The decision-making process begins (far left)
with a set of possible gains and losses (M), filtered by attentional weights (W) to form the
valence (momentary anticipated value, V) of an action. The decision system temporally
integrates the valences to produce a preference state for each action (P). The preferences
drive a motor system producing an observed action. (Figure and legend adapted from
(Busemeyer & Townsend, 1995).)

For an example of a very different kind, consider how we manage to move our limbs. A
Hobbesian would maintain that we calculate how and when to contract muscles, much as a
digital computer lands a 747 by calculating engine thrust, flap angle, etc.. A dynamical
aternative has been under development by Scott Kelso and coworkers. His classic example is
coordinating the wagging of your index fingers. Performance on this task has some
remarkable properties. At low wagging speeds there are two comfortable coordination
patterns, inphase and antiphase (bistability). As speed is gradually increased, anti-phase
patterns start to lose their stability; eventually a point comes where only inphase patterns are
stable (bifurcation). As speed decreases, antiphase patterns become possible again, but not
until somewhat below the original collapse point (hysteresis). Kelso found that these and
other properties can be described and predicted in detail by assuming that a single,
continuous, high level, “collective” variable—relative phase—evolves in a way governed by a
suitable form of a simple differential equation (Kelso, 1995, p. 55).2 Variants of this “HKB”

2 The basic Haken-Kelso-Bunz equation is
@=—asing-2bsin2¢
Here @is the single “collective” state variable of the system; in the finger coordination
model, it corresponds to the oscillation phase of one finger relative to the other. The
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model have been applied in diverse cognitive domains.3 The basic insight is that coordination
is best thought of as explained not as masterminded by a digital computer sending symbolic
instructions at just the right time, but as an emergent property of a nonlinear dynamical
system self-organizing around instabilities.

These models purport to provide the best available empirical accounts of phenomena in
their domains. Whether they succeed is an interesting question for specialists to address. What
matters here is that they nicely illustrate the dynamical approach to cognition.

3. Systems, Digital Computers, and Dynamical Systems

A critical step in articulating the DH is stating, in a reasonably precise yet flexible way, just
what dynamical systems are. A useful approach is to distinguish dynamical systems and
digital computers as different kinds of systems.

3.1 Systems

Systems are here taken to be sets of interdependent variables.# A variable is simply some
entity that can change, i.e., be in different states at different times. Variables are
interdependent when the way any one changes depends on others, and change in others
depends on it. The state of the system is simply the state or value of all its variables at a time;
the behavior of the system consists of transitions between states.

For example, the solar system of classical mechanics is the set of positions and
momentums of the sun and planets; these are the quantities whose behaviors are described by
Newton’s laws. Note that the variables of the solar system in this sense are properties of the
sun and planets. We must therefore distinguish objects (parts of the world such as the sun and
planets, Macintoshes, and cognitive agents) from the systems they instantiate. Any given
object will usually instantiate a great many systems of different kinds.

Concrete systems are those, like the solar system, whose variables are actual features of the
real world changing in real time in accordance with natural laws. Abstract systems are just sets
of abstract variables governed by mathematical rules. Concrete systems can realize abstract
systems. For example, two HP61 calculators realize exactly the same abstract computational
system.

Concrete systems are dlices of the causal organization of nature. Causal organization
comes in many kinds and at many levels. Distinct systems can be intimately related. Compare
the classical solar system with the system made up of al the positions and momentums of all
their constituent subatomic particles. The (macro)variables of the former are built up out of
the (micro)variables of the latter. The relationship between these systems is neither identity®

equation specifies how relative phase changes as a function of its current value. aand b
are parameters of this system; their ratio corresponds to the rate of wagging of the
fingers. The equation is such that gradual changes in a and b can yield just the kind of
gualitative changes in relative phase found in the behavior of real subjects.

This simple “frictionless” equation is altered in various ways to generate models with
better fit to experimental data. For example, fluctuations and symmetry-breaking
considerations are accomodated by adding terms for noise and for differences in
frequency between limbs and metronome (Kelso, DelColle, & Schéner, 1990).

3 These include aspects of motor skill learning (Schoner, Zanone, & Kelso, 1992),
interpersonal coordination (Schmidt & Turvey, 1994), speech perception (Tuller, Case,
Mingzhou, & Kelso, 1994), and visual perception (Hock, Kelso, & Schoner, 1993). See
(Kelso, 1995) for an overview.

4 This definition accords with ordinary usage (e.g., Websters Dictionary: “a regularly
interacting or interdependent group of items forming a unified whole”) and systems
theory (e.g., “a set of elements standing in interrelations,” (von Bertalanffy, 1973),
p.55). The stance on the metaphysical status of sets adopted here is the “set-theoretic
realism” elaborated in (Maddy, 1990). In this account, sets of physical entities are
themselves physical entities, as much part of the ordinary world as planets, people and
PCs.

5 In set theory, set identity is a matter of having exactly the same members. A set of setsis
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nor instantiation. In what follows, a lower-level system will be said to implement a higher-level
system when the variables of the latter are somehow constructed out of variables of the
former. Note that implementation licenses us to identify the behavior of the one system with
the behavior of the other, despite failure of strict identity between the systems themselves.

Often, change in a system depends on factors outside the system itself (e.g., the force of
gravity), referred to here as parameters. Sometimes, changes in a parameter depend in turn on
the system itself. For example, the position of the moon both depends upon, and affects, the
position of the planets. This kind of reciprocal, direct dependence is known as coupling.
System variables and coupled parameters can be regarded as forming a larger system. This
illustrates the semi-arbitrariness of systems. It is always up to us to nominate a set of concrete
variables as the system we will study. Reality determines whether that set isin fact a system,
and how it behaves.

All systems in the current sense change in time. In general, time is just some intrinsically
ordered set, or orderS, serving to provide orderings over other things. The rea time of
concrete systems is the set of instants at which things can actually happen, ordered by
temporal priority (before/after). Concrete events are paired with instants or periods of time,
and hence stand in temporal relations with each other. Abstract systems are not situated in real
time at all, and so must take some other set as their time set; usualy, it is the positive integers
or the real numbers. The mathematical rule imposes orderings over states of the system by
pairing them with members of this set.

3.2 Digital Computers

The CH has benefitted from considerable philosophical scrutiny. One result is a remarkable
level of consensus over its basic commitments’. In particular, it is widely agreed to maintain
that cognitive agents are digital computers. But what is a digital computer, as a kind of
system?

A computer is simply anything that computes in some way or other. Computing is an
informal notion; the basic idea is that of a process systematically transforming “qguestions’
into “answers’— inputs into outputs, start states into final states, etc.. The function computed
by that process is the set of question/answer pairs themselves, or the set of pairs of entities they
represent. In this general sense pretty much anything can be construed as a computer.
Computation only gets interesting when significant constraints are placed on the kinds of
processes involved. In classical computation theory, the standard approach has been to
require that processes be effective, i.e., produce their results by means of a finite number of
basic operations specified by an algorithm (a finite recipe, or set of instructions specifying
basic operations).

Digital computers, in the sense that matters for cognitive science, are systems which carry
out effective computation over representations. That is, they are systems whose behaviors are
algorithmically specified finite sequences of basic operations constituting manipulations of
representations. This characterization can be broken down into four fundamental
requirements on a system to count as a digital computer:

(1) Digital variables and states. First, for each variable there must be some set of discrete
values which the variable instantiates digitally for the purposes of system behavior. In the

not identical with the set of the elements of those sets. Thus, strictly speaking, a set of
pairs of socks is not identical with the set of socks belonging to those pairs. Of course,
there is still an obvious and important sense in which these sets are the same. In this paper,
this sense is captured by the notion of implementation.

6 A non-empty set X isan order, or isordered, if there is arelation < over its elements with
the property that for each x,y U X, either x <y, ory<x, or x =Y.

7 For expressions of this consensus see, for example, (Clark, 1989; Copeland, 1993;
Dreyfus, 1992; Fodor, 1975; Fodor & Pylyshyn, 1988; Newell, 1980; Newell & Simon,
1976; Pylyshyn, 1984). The version of this consensus now most widely accepted as
definitive is probably that laid out in (Haugeland, 1985). The account of digital
computers here is essentially just Haugeland's definition of computers as interpreted
automatic formal systems as massaged into the present framework.
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concrete case, this means that the variable must instantiate those variables positively and
reliably.8 When all variables in a system are digital, the system’s states are also digital. The
basic operations required by effective computation correspond to digital state transitions.

(2) Time as discrete order. The time set must be a discrete order whose elements are the times
at which the system digitally occupies its states. In abstract systems, this is usually the positive
integers. In concrete systems, it is the set of periods of real time at which the machine digitally
instantiates its states, as rendered discrete by the flux of transition between states. These are
indexed by the positive integers (t,, t,, €tc.).

(3) Algorithm. Effective computation requires basic operations to be specified by an
algorithm, i.e., a finite recipe specifying state transitions solely on the basis of digital
properties of states. For example, the infinite range of behaviors of a Turing Machine is
governed by its machine table, a finite set of instructions expressed only in terms of the
digital values of tape squares, head position, and head state. In concrete systems, this rule must
capture one level of causal organization. That is, the transitions described by the rule must
happen the way they do because the states bear the digital properties in terms of which the
rule is expressed.

(4) Interpretation. The system’s states and behaviors must yield to systematic interpretation.
That is, there must be some domain, and correspondences between the system and the
domain, such that (a) the correspondences are systematic with respect to those digital aspects
of the system in terms of which the rule governs system behavior, and (b) the system’s states
and behaviors make sense in the light of those correspondences.®

The distinction made above (S.3.1) between the solar system of classical mechanics on
one hand and the sun and planets on the other is mirrored by a distinction between digital
computers and the ordinary notion of computers as what you take out of the box and plug
into the wall. The digital computer system is the object of theoretical interest. The hunk of
silicon, plastic, glass, metal, etc., instantiates some digital computer (system), and of course
many other systems as well.

3.3 Dynamical Systems

By comparison with the CH, the DH has been starved of attention.10 Partly as aresult, thereis
no established consensus over what dynamical systems are for the purposes of the hypothesis.
Unfortunately, there is also a wide range of definitions in mathematics and science more
generally (Table 1). These range from older, narrow definitions in terms of particles
governed by forces to more recent broad definitions which subsume all systems in the current
sense. There is no single officia definition waiting to be lifted off the shelf. Nevertheless,
cognitive scientists do have a good working grasp of the issue. In the vast mgjority of cases
they agree whether a system counts as dynamical in the sense that matters for them. The
challenge here is to articulate that intuitive understanding.

8  See (Haugeland, 1985), Chapter 2. In abstract systems, discreteness of values suffices for
digitality.

9  What isit to “make sense”? This is a difficult issue; see (Haugeland, 1985), Chapter 3,
for discussion. Every digital system can be set up in systematic correspondence with some
domain (such as integers and functions over them) but not all such systems have an
interpretation in the current sense. The ones that do are those exhibiting a further kind of
order that does or could seem patterned or reasonable to us (humans); thus, whether
something is a digital computer is human-relative.

Note that having an interpretation in the current sense may not be enough to

guarantee that the system has “meaning” in some stronger sense, (and hence, perhaps,
“mind”). For discussion of these issues, see Harnad (1990) and Searle (1980).

10 Recently, philosophers have begun to repair this neglect. See, for example, (Giunti,
forthcoming; Horgan & Tienson, 1996; van Gelder, 1995; van Gelder & Port, 1995) for
discussion more or less closely related to the current issues.
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Table 1. Some examples of common definitions of the term “ dynamical system” from outside
cognitive science, arranged roughly in order, from older narrower definitions to more

recent wider ones.

Guiding I dea

Examples

1. A system of bodies whose
motions are governed by
forces.

Such systems form the
domain of dynamics
considered as a branch of
classica mechanics.

“a collection of a large number of point particles.”
(Desloge, 1982) p.215

Webster’s: “dynamics...a branch of mechanics that deals
with forces and their relation primarily to the motion... of
bodies of matter.”

2. A physical system whose state

variables include rates of
change

“In the origina meaning of the term a dynamical system
is a mechanical system with a finite number of degrees of
freedom. The state of such a system is usually
characterized by its position...and the rate of change of
this position, while alaw of motion describes the rate of
change of the state of the system.” (1989) p.328

3. A system of first-order
differential equations;

equivalently, a vector field on

a manifold

a dynamical system is “simply a smooth manifold M,
together with a vector field v defined on M.” (Casti,
1992) p.109

4. Mapping on a metric space

“A dynamical system is atransformation f:Z - Z on a
metric space (Z, d).” (Barnsley, 1988) p.134.

5. State-determination

“a dynamical system...is one whose state at any instant
determines the state a short time into the future without
any ambiguity.” (Cohen & Stewart, 1994) p.188

6. Any mapping, equation, or
rule.

A dynamical system may be defined as a deterministic
mathematical prescription for evolving the state of a
system forward in time.” (Ott, 1993) p.6

7. Change in time

“A dynamical system is one which changes in time.”
(Hirsch, 1984) p.3

“The term dynamic refers to phenomena that produce
time-changing patterns...the term is nearly synonymous
with time-evolution or pattern of change.” (Luenberger,
1979) p.1

An obvious feature distinguishing dynamical models in cognitive science from standard
computational models is that their variables are numerical. One reason numbers are so useful
in science is that they have quantitative properties. This suggests that dynamical systems in
cognitive science might be defined as quantitative systems. Roughly, a system is quantitative
when there are distances in state or time, such that these distances matter to behavior. This can
be true in progressively deeper ways, giving rise to progressively more substantial senses in
which a system can count as dynamical.

(1)Quantitative in state. First, there can be distances between any two overall states of the
system, such that the behavior of the system depends on these distances. More precisely, a
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system is quantitative in state when there is a metric! over the state set such that behavior is
systematically related to distances as measured by that metric. Such systems will be governed
by a rule compactly specifying this distance-dependent change. For example, the difference
equations in the DFT model describe how the system changes by telling us the distance
between the values of variables at time t and their values at time t+h.

Standardly, the relevant quantitive properties of state sets are derived from quantitive
properties of the variables. Quantitive variables can be either abstract or concrete. For
example, the variable @in the HKB model is an abstract mathematical magnitude whose
values are real numbers. This variable corresponds (via measurement; see Krantz, Luce,
Suppes, & Tversky, 1971) to a concrete quantity whose values are relative phases of
oscillation of index fingers. The model works precisely because the quantitative properties of
the concrete variable are reflected in the quantitative properties of the abstract counterpart.

(2) Quantitative state/time interdependence. A system is quantitative in time when timeis a
guantity, i.e., there is a metric over the time set, such that system behavior is systematically
related to distances as measured by that metric. At least in cognitive science practice, systems
that are quantitative in time are also quantitative in space, and these properties are
interdependent. That is, the behavior of the system is such that amounts of change in state are
systematically related to amounts of elapsed time. Such systems are governed by a rule
specifying a quantitative relationship between change in state, elapsed time, and current state.
In concrete systems, this rule captures causal organization; that is, the system changes as it
does because system variables have the quantitative properties in terms of which the rule is
expressed. When both state and time are quantitative, the system exhibits rates of change.
Systems that are interdependently quantitative in state and time are governed by rules
specifying the rate of change in terms of current state (e.g., first-order differential equations).

(3)Rate dependence. Third, some systems are such that their rates of change depend on
current rates of change. In these systems, variables include both basic variables and the rates
of change of those variables. The solar system is a classic example. Systems whose behavior is
governed by rules most compactly expressed as sets of higher-order differential equations are
guantitative in this sense.

In what follows, a system is taken to be dynamical to the extent that it is quantitative in
one of the above senses.12 At least four considerations support this approach. First, it reflects
the actual practice of cognitive scientists in classifying systems as dynamical or not, or as
more or less dynamical. Second, it sits comfortably with existing definitions. The levels of
guantitative character roughly correspond to definitions 1-4 of Table 1. Third, it iscast in
terms of deep, theoretically significant properties of systems. For example, a system that is
guantitative in state is one whose states form a space, in a more than merely metaphorical
sense; states are positions in that space, and behaviors are paths or trajectories. Thus
guantitative systems support a geometric perspective on system behavior, one of the hallmarks
of a dynamical orientation. Other fundamental features of dynamical systems, such as
stability and attractors, also depend on distances. Fourth, the definition sets up a contrast
between dynamical systems and digital computers (see Section 6). For these reasons, defining
dynamical systems as quantitative systems facilitates articulation and defense of the DH.13

4. The Dynamical Hypothesis
What does it mean to say that cognitive agents are dynamical systems? First, note that the

11 A metric over aset X isafunction d:XxX - R that assigns to every pair of elements x and
y anumber d(x,y) 0 such that d(x,y)=0 iff x =y, d(x,y) = d(y,x), and d(x,y) d(x,2) + d(zy).

12 This formulation is designed to accomodate some rather special cases of dynamical
systems whose behavior is generally quantitative except at certain isolated points
(Gregson, 1993; Zak, 1990).

13 The concept of dynamical system changes over time, in cognitive science as €l sewhere.
Future developments might prompt broadening of the current definition. For example,
cognitive scientists may come to use as models systems whose state sets are not metric
spaces, but do possess some other kind of interesting topological structure relevant to
system behavior.
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hypothesis has two major components. The nature hypothesis is a claim about the nature of
cognitive agents themselves; it specifies what they are (i.e., dynamical systems). The
knowledge hypothesis a claim about cognitive science: namely, that we can and should
understand cognition dynamically. Obviously, these are closely related; the best evidence for
the former would be the truth of the latter. Nevertheless, they make different claims, and are
best elaborated separately.

First, some preliminary points. The proper domain of the DH is natural cognitive
agents—i.e., evolved, biological agents such as people and other animals. It need take no
stand on the possibility of artificial cognition in digital computers. Second, the DH is limited
in its explanatory pretensions. It is concerned only with the causal organization of agents
insofar as they exhibit cognitive performances. Other forms of explanation may also be
deeply illuminating. For example, evolutionary explanations might best explain why an agent
has a particular causal organization.

What is it to be cognitive? In the most traditional sense, cognitive processes are those
involving knowledge; cognitive science would then be the study of knowledge-based
processes. However, as cognitive science has matured it has diversified. Knowledge is now
only one indicator of cognitive status; others include intelligence, adaptability, and
coordination with respect to remote states of affairs. The concept now resists capture in terms
of any concise set of strict conditions. This paper simply takes an intuitive grasp of the issue
for granted. Crudely put, the question here is not what makes something cognitive, but how
cognitive agents work.

4.1 The Nature Hypothesis.

The nature hypothesis tells us what cognitive agents are by specifying the relation they bear
to dynamical systems. It is common to interpret the hypothesis as asserting that cognitive
agents are literally identical with some particular low-level system made up of a large number
of internal, low-level quantities such as neural firing rates. However, this needs correction in
almost every respect.

First, the relationship at the heart of the nature hypothesis is not identity but instantiation.
Cognitive agents are not themselves systems (sets of variables) but rather objects whose
properties, etc., can form systems. Cognitive agents instantiate numerous systems at any given
time. According to the nature hypothesis, the systems responsible for cognitive performances
are dynamical.

Second, cognitive agents “are,” in this sense, hot some particular dynamical system, but
as many systems as are needed to produce all the different kinds of cognitive performances
exhibited by the agent. Consider the DFT and HKB models from Section 2. These models
invoke quite different sets of variables. One suggests that cognitive agents make decisions by
virtue of change in valences, preferences, etc.; the other, that cognitive agents coordinate
finger movements by virtue of change in relative phase. These models are not in competition.
Both might be complete accounts of phenomena in their respective domains, implying that
cognitive agents are many dynamical systems at once.

Another noteworthy fact about these models is that the variables they posit are not low-
level (e.g., neural firing rates), but rather macroscopic quantities at roughly the level of the
cognitive performance itself. The lesson here is that the nature hypothesis is concerned in the
first instance not with low-level systems but with how agents are causally organized at the
highest level relevant to an explanation of cognitive performances, whatever that may be.

Finally, notice that the DFT model includes not only “internal” variables such as
preferences and valences, but also the “position” of the agent. More generadly, the
dynamical system responsible for a given kind of cognitive performance might include
variables not literally contained within the agent itself, on any ordinary conception of its
boundaries. For example, ecological psychologists understand visually guided locomotion as
change in a dynamical system which includes aspects of both the organism and the
environment (e.g., the optic flow; Warren, 1995).

4.2 The Knowledge Hypothesis.

It is one thing for cognitive agents to be dynamical systems, but it is quite another for us to
understand them as such. The knowledge hypothesis is the bold claim that cognitive science
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can and should take dynamical form. What does this involve?

4.2.1 Dynamical Models

Given something we wish to understand—an explanatory target—a model is some other
thing, relevantly similar but somehow more amenable to investigation. Understanding of the
model transfers to the target across the bridge of similarity. Note that often the full
complexity and detail of the target will defy human comprehension. In such cases, a model
provides scientific insight precisely becauseit is a simplification.

One of the most common strategies in science is the use of abstract dynamical systems as
models. The dynamical approach to cognition follows in this tradition. The performance of
interest is taken to be interdependent change in some concrete dynamical system instantiated
by the agent. The scientist furnishes an abstract dynamical system to serve as a model by
specifying abstract variables and governing equations. Simple models can be fully
understood by means of purely mathematical techniques. More commonly, however,
scientists enlist the aid of digital computers to simulate the model (i.e., compute approximate
descriptions of its behavior). The simulation results are compared against experimental data
from the target. To the extent that the correspondence is close, the target system is taken to be
similar in structure to the abstract dynamical model. Note that the digital computer, since it is
not itself a dynamical system (for explanation of this claim, see Section 6.2), is not similar in
the relevant sense to the target system, and so is not a model of it. We do not attempt to
understand the target by understanding the digital computer; rather, we use the computer as a
tool in our attempt to understand the target by understanding the abstract model.

The distinctive flavor of Humean dynamical modeling is enhanced by juxtaposition with
its Hobbesian counterpart (Figure 2). In both cases, there is a target system, an abstract model,
and a digital computer. In the latter case, however, the target is assumed to be a digital
computer; the abstract model is not a dynamical system but a digital computer; and the
concrete digital computer does not simulate but rather realizes the abstract system. Indeed, the
abstract model is often specified by providing the concrete computer which realizes it. Since
they are identical in computational structure, both will be relevantly similar to the target if
either is; therefore, both abstract and concrete systems count as models.
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Modeling Modeling ("GOFAI")
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System System Computer
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Figure 2. Basic structure of dynamical modeling as opposed to the kind of computational
modeling found in mainstream cognitive science.

The basic structure of dynamical modeling is nicely illustrated by the Busemeyer &
Townsend work. There are many parallels with classical mechanics. Such work comes perhaps
closest to realizing the Humean dream. However, it would be misleading to suggest that
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dynamical modeling in cognitive science is stuck in the mold of classical physics. Obviously,
cognitive phenomena differ in important ways from ordinary physical phenomena.
Dynamical cognitive science has had to generate its own variations on traditional practices of
dynamical modeling. Dimensions along which such variation is found include: (a) To what
do model variables correspond? The quantities invoked in dynamical accounts often differ
fundamentally from ordinary physical quantities. “Valence’ and “preference,” for
example, do not appear in textbooks of mechanics. (b) At what level is the correspondence
with the target? In physical models individual variables are usually taken to correspond
directly to concrete physical quantities. In dynamical modeling in cognitive science, there
might be no concrete quantity corresponding to individual variables. The correspondence
between model and reality is at higher levels of dynamical structure. Individual units of a
connectionist model, for example, may be significant only insofar as they support attractors
which do correspond to aspects of cognition, such as a recognition state. (c) Is the
correspondence quantitative or qualitative? Physical models are generally expected to match
empirical data in more or less precise quantitative detail. A model of global warming, for
example, should tell us exactly how much average temperature will rise. Such virtue is less
common in dynamical cognitive science: as often as not, models match data qualitatively, at
some level of abstraction. (In this respect dynamical modeling apes computational modeling.)

4.2.2 Dynamical Tools

Understanding cognitive agents as dynamical systems means more than just using certain
kinds of models. Those models, and so the cognitive performances themselves, must be
understood dynamically. Roughly, this means taking the resources of dynamics—as opposed,
for example, to mainstream computer science—as the basic descriptive and explanatory
framework. But what are those resources?

Within dynamics there is a convenient distinction between dynamical modeling, on one
hand, and dynamical systems theory (DST) on the other. Dynamical modeling is a branch of
applied mathematics; its concern is to understand natural phenomena by providing abstract
dynamical models. The skeletal structure of such modeling was described in the previous
section. The theory of dynamical modeling is a powerful repertoire of concepts, proofs,
methods, etc., for use in this activity. DST, on the other hand, is a branch of pure
mathematics. Its domain extends to any kind of describable change, but it focuses attention
particularly on systems for which there is no known way to specify behaviors as functions of
time (e.g., systems whose rule is a set of nonlinear differential equations with no solutions).
The fundamental move is to conceptualize systems geometrically, i.e., in terms of positions,
distances, regions, and paths in a space of possible states. DST aims to understand structural
properties of the flow, i.e., the entire range of possible paths.14

There is no clear line between these two sides of dynamics, but the contrast is significant.
Hume envisioned psychology as dynamical modeling, but that alone does not suffice. The
distinctive complexities of cognition yield to scientific understanding only when dynamical
modeling is enriched by the perspective and resources of DST. Poincaré pioneered DST late
last century, but the bulk of it has only been developed in the last few decades. Contemporary
dynamics would be a whole new subject to Newton or even Maxwell. Hume aspired to be the
Newton of the mind, but in hindsight Poincaré would have made a better model.

Dynamics plays much the same role in dynamical cognitive science as computer science
(the theory of computational systems, particularly digital computers) plays in traditional
cognitive science. Computer science is not itself a theory of cognitive processes. Rather, it
provides a powerful set of tools for use in developing accounts of particular aspects of
cognition. Therein lies the hard empirical work of mainstream cognitive science. Likewise,
dynamics does not somehow automatically constitute an account of cognition. It is a highly
general framework which must be adapted, supplemented, fine-tuned, etc., to apply to any
particular cognitive phenomenon. This typically involves merging dynamics with other

14 For introductions to dynamical modeling, see (Beltrami, 1987; Luenberger, 1979). For
introductions to dynamical systems theory, see (Abraham & Shaw, 1982) or (Baker &
Gollub, 1990). (Abraham, Abraham, & Shaw, 1992; Kelso, Ding, & Schoner, 1992;
Norton, 1995) are chapter length overviews of dynamics for cognitive scientists.



-12 -

constructs (e.g., the schema (Rumelhart, Smolensky, McClelland, & Hinton, 1986b)) or
theoretical frameworks (e.g., ecological psychology (Turvey & Carello, 1995)). Some authors
have argued for even more dramatic reorientations in our understanding of dynamical
systems for the purposes of understanding biological or cognitive systems. See, for example,
the work of Robert Rosen on “anticipatory systems’ (Rosen, 1985) and George Kampis on
“component systems’ (Kampis, 1991).

Contemporary dynamics provides powerful resources for describing general properties of
the behaviour of systems. These resources can be brought to bear even in the absence of an
actual equation-governed model. If done rigorously, this can buy a qualitative or preliminary
understanding of the phenomenon, which may be the best available and forms a solid
foundation for further exploration.1> This approach is useful in situations where, for whatever
reason, providing a model is not currently feasible (e.g., Thelen, 1995).

4.2.3 Dynamical perspective

At the highest level, there are a number of general characteristics of a broadly dynamical
perspective on some natural phenomenon. The following stand out particularly strongly when
the subject is cognition and the contrast is with a computational approach:

4.2.3.1 Change versus state. Change and state are like two sides of one coin. Nevertheless,
theoretical perspectives can differ in their primary emphasis or focus. Dynamicists are
interested, in the first instance, in how things change; states are the medium of change, and
have little intrinsic interest. Computationalists, by contrast, focus primarily on states; change is
just what takes you from one state to another.

4.2.3.2 Geometry versus structure. How are states of a system conceptualised?
Computationalists focus on internal structure, and in particular on internal combinatorial or
syntactic structure—how basic pieces are combined to form structured wholes. Dynamicists,
by contrast, understand a state geometrically, in terms of its position with respect to other
states and features of the system’s dynamical landscape such as basins of attraction. In other
words, they focus on where the state is, rather than what it is made up of.

4.2.3.3 Structure in time. Sophisticated cognition demands structural complexity in the
cognitive system. How is that structure realized? Computationalists tend to think of it as laid
out statically—as all present at one time—and of cognition as simple transformations of static
structures. DST suggests an alternative. Systems with simple states—perhaps just one
variable—can behave in very complex ways. This enables dynamicists to think of cognitive
structure as laid out temporally, much like speech as opposed to the written word. Cognition
is then seen as the simultaneous, mutually influencing unfolding of complex temporal
structures.

4.2.3.4 Timing versus order. Dynamicists tend to be interested in how behaviors happen in
time, whereas computationalists are interested in what the behaviour is, regardless of timing
details. Put another way, computationalists focus on which states the system passes through,
whereas dynamicists focus relatively more on when it passes through them.

4.2.3.5 Parallel versus serial. Dynamicists tend to think of systems as operating in parallel,
i.e., al aspects changing interdependently at the same time. Computationalists, by contrast,
tend to think of systems as serial: most variables remain unchanged in any given state
transition. For a dynamicist, change is standardly global; for a computationalist, change is
standardly local.

4.2.3.6 Ongoing versus Input/Output. Computationalists standardly think of a process as
commencing with an input to the system. The task for the system is to produce an appropriate
output, and it does so via a sequence of internal operations culminating in the system halting
with that output. Dynamicists, by contrast, think of processes as always ongoing, not starting
anywhere and not finishing anywhere. The goal is not to map an input at one time onto an

15 If done poorly, on the other hand, it is little more than handwaving with impotent
metaphors. The jargon of dynamics does, unfortunately, provide all too many
opportunities for pseudo-scientific masquerading.
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output at some later time, but to constantly maintain appropriate change.

4.2.3.7 Interaction: state-setting or coupling? How does a cognitive system interact with
other things, such as the environment? Computationalists standardly think of interaction as
setting state; the system changes in its own way from that state, until new input resets state
again. Dynamicists recognize an aternative: interaction can be a matter of parameters
influencing the shape of change. Input is conceived as an ongoing influence on the direction
of change, and output as ongoing influence on something else, just as aradio set is
continuously modified by an incoming signal and at the same time is delivering its sound.
Sometimes interaction is a matter of coupling—two systems simultaneously shaping each
other’s change.

4.2.3.8 Representations. Standard explanations of how systems come to exhibit sophisticated
cognitive performances advert to internal representations. Computationalists take
representations to be static configurations of symbol tokens. Dynamicists conceive
representations very differently. They find their representations among the kinds of entities
that figure in DST, including parameter settings, system states, attractors, trgjectories, or even
aspects of bifurcation structures ( e.g., Petitot, 1985a). Currently, most dynamicists make use
of only the tip of the theoretical iceberg that is dynamics. As dynamical modeling increases
in mathematical sophistication, we can expect representations to take even more exotic forms.

4.2.3.9 Anti-representationalism. Unlike digital computers, dynamical systems are not
inherently representational. A small but influential contingent of dynamicists have found the
notion of representation to be dispensable or even a hindrance for their particular purposes.
Dynamics forms a powerful framework for developing models of cognition which sidestep
representation altogether. The assumption that cognition must involve representations is based
in part on inability to imagine how any non-representational system could possibly exhibit
cognitive performances. Within the dynamical approach, such systems can be not only
imagined, they can be modelled and constructed (see, e.g., Beer, 1995a; Beer, 1995b;
Freeman & Skarda, 1990; Harvey, 1992; Husbands, Harvey & Cliff, 1995; Skarda &
Freeman, 1987; Wheeler, 1994).

4.3 The Dynamical Hypothesis, Exposed.

Summarizing these points yields the following compact formulation of the DH: For every
kind of cognitive performance exhibited by a natural cognitive agent, there is some
guantitative system instantiated by the agent at the highest relevant level of causal
organization, such that performances of that kind are behaviors of that system; in addition,
causal organization can and should be understood by producing dynamical models, using the
theoretical resources of dynamics, and adopting a broadly dynamical perspective.

5. Considerations Favoring the Dynamical Hypothesis

What can be said in favor of the DH? Specific aspects of cognition generate idiosyncratic
cases for dynamical treatment, but our interest here is in general considerations. Space limits
preclude complete coverage, but the following arguments are among the most important.16

Most obviously, there is a kind of empirical success argument, paralleling Newell and
Simon’s primary argument for the CH.17 It starts from the impressive track record of
dynamics itself. Dynamics is arguably the most widely used and powerful explanatory
framework in science. An extraordinary range of natural phenomena have turned out to be
best described as—i.e., to be—a matter of interdependent coevolution of quantitative
variables. It would hardly be surprising if dynamics found application in the study of
cognition as well. Michael Turvey for one has long been arguing that the proper road to a
deep understanding of natural cognition is to strive patiently to extend and apply the tried

16 Discussion of a wider range of considerations is found in (van Gelder & Port, 1995).

17 In their celebrated paper “Computer Science as Empirical Enquiry,” Newell and Simon
argue for the computational hypothesis primarily on the basis of the success of Al in
producing intelligent computers, and the success of computational cognitive science in
modeling cognition. The only other argument they mention is “the absence of specific
competing hypotheses.” See (Newell & Simon, 1976).
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and true techniques of natural science to incrementally more complex biological and
cognitive phenomena (see, e.g., Swenson & Turvey, 1991; Turvey & Carello, 1981).

The empirical success argument in the form just presented has little weight on its own, for
cognition differs from other phenomena in important ways. Its force really comes into play
when combined with evidence of success in cognitive science itself. There is now a
considerable amount of such evidence, some of which has already been cited. Of course, the
claim is not that there is now sufficient empirical evidence to establish the supremacy of the
DH. Indeed, there are numerous aspects of cognition for which, considered in isolation, the
case for dynamical treatment is currently weak at best. The argument is that such successes as
do exist, in conjunction with the general track record of dynamics, augurs well for the DH.
The two levels of the argument require and reinforce each other.

What explains any success the dynamical approach has exhibited thus far? And what
underpins confidence that there will be more? The foremost consideration is simply that
natural cognition happens in real time. This blunt fact is multi-faceted. Every cognitive
process unfolds in continuous time, and the fine temporal detail calls out for scientific
accounting. Moreover, many cognitive structures are essentially temporal: like utterances,
they exist only as change in time. Often, getting the timing right is critical to the success of
cognitive performance; this is especially so when in direct interaction with surrounding
events.

Hobbesian computational models have made a bet that cognitive phenomena can be
described in a way that abstracts away from the full richness of real time, replacing it with
discrete orderings over formal states. From a dynamical perspective, this looks ill-advised.
Dynamics, by contrast, takes the nature of change in time as its primary focus. It is the
preeminent mathematical framework for description of temporal phenomena. Taking
cognitive agents to be dynamical systems alows scientific explanation to tap into this power.

A third argument focuses on the embeddedness of cognition. Even the loftiest forms of
natural cognition are in fact embedded three times over: in a nervous system, in a body, and
in an environment. Any account of cognition must eventually explain how it is that cognition
relates to that which grounds and surrounds it. Now, suppose the behavior of brain, body and
environment all turn out to be best described in dynamical terms. Suppose, in short, that
cognition is thoroughly embedded in dynamics. The challenge would then be to explain how
cognitive phenomena are constituted of, shaped by and interact with those dynamical
phenomena. While explaining embeddedness is never trivial, it stands to reason that there will
be greater problems in relating systems of fundamentally different kinds than in relating
systems of fundamentally the same kind. Mainstream computational cognitive science has for
the most part simply shelved problems of embeddedness, preferring to study cognition
independently of its neurobiological realization, and treating the body and environment as
belonging on the far side of occasional symbolic inputs and outputs. When embeddedness is
confronted head-on, dynamical accounts of cognition immediately become attractive. For
example, one virtue of the Catherine Browman and Louis Goldstein dynamical phonology
(Browman & Goldstein, 1992) is that it integrates directly with Elliot Saltzman’s dynamical
model of speech coordination (Saltzman & Munhall, 1989). Dynamical cognition sits
comfortably in a dynamical world.

A fourth argument focuses on the emergence and stability of cognition. Investigation of
some complex phenomenon can always take at least two directions: what is it like? And, how
does it get—and stay—that way? In the case of cognitive mechanisms and processes, we can
address their nature, or how it is that they arise and are sustained. In the long run, our answers
to these questions must hang together. Natural cognitive agents exhibit extraordinary levels of
structural complexity, yet there are no architects or engineers responsible for building and
maintaining that structure. The generic name for the answer to the problem of the emergence
and stability of cognition is self-organization. Self-organization of interesting kinds of
complex order appears to require systems in which there is simultaneous, mutually
constraining interaction between large numbers of components. DST is the dominant
mathematical framework for describing the behavior of such systems. In short, the claim is
that we must understand cognitive agents as dynamical systems, since only in that way will our
account of what cognition is be properly integrated with our account of how the world
sustains any of it.
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Each of these lines of thought was cast in the form of an attempt to demonstrate that the
DH is basically true. With respect to that goal, they are obviously not “knock down”
arguments. They do, however, indicate that the hypothesis is worthy of sustained empirical
investigation of precisely the kind that has been and is being conducted, and which forms the
basis of the formulation of the DH presented here.

6. The General Objections

This section considers a selection of general objections to the DH as an open empirical
hypothesis. As John Stuart Mill said, “three-fourths of the arguments for every disputed
opinion consist in dispelling the appearances which favour some opinion different from it.”18
Addressing these abjections is also a useful way to elaborate and clarify the hypothesis.

The objections considered fall into two main categories: those purporting to show that the
DH is not a genuine alternative to the CH, and those purporting to show that it is not open,
i.e., its empirical inadequacy is somehow already determined. All amount to sweeping
attempts to dismiss or downplay the DH in advance of detailed empirical investigation. All
mix insight with confusion to produce plausible but misguided attacks.

6.1 The “Trivially True” Objection

Everything is a dynamical system. Cognitive agents must be dynamical systems at some
level. The DH is trivially true, and makes no substantial claim about the nature of
cognition.
This objection is mostly bluff. No doubt there is some vague sense in which it could be said
that everything is a dynamical system. Properly interpreted, however, the DH makes a much
more specific claim.

On one hand, according to the nature hypothesis, cognitive agents instantiate quantitative
systems at the highest relevant level of causal organization. It may be trivial that every
cognitive agent instantiates some dynamical system or other. It is certainly not trivial that
every cognitive performance is at the highest level a dynamical phenomenon. This is not true
of ordinary digital computers, and according to the orthodox CH, it is not true of people.

On the other hand, according to the knowledge hypothesis, cognition can be understood
in dynamical terms. If this were trivialy true, cognitive science would have been completed
long ago. In practice, it is very challenging to establish that some aspect of cognition can be
understood dynamically. Patient steps in this direction are the stuff of which whole careers are
made. Some of the greatest achievements in science have amounted to describing some
natural phenomenon (e.g., celestial motion) in dynamical terms. This activity is no more
trivial in cognitive science than anywhere else.

6.2 The “False Opposition” Objection 1 - Computers are Dynamical Systems

Ordinary electronic computers are dynamical systems. In general, digital computers are
dynamical systems as well. The DH is therefore not an interesting alternative to the CH.

This objection gains plausibility by mixing together at least three distinct lines of thought.
Each is based on a different reason for thinking that digital computers are dynamical systems.
Each has elements of truth but also problems.

6.2.1 Digital computers are state-determined, rule-governed, etc.

A first line of thought takes digital computers to count as dynamical systems because they
satisfy some broad definition; e.g., they are state-determined systems, or they are governed by
some mapping, etc.. This kind of move is reasonable in the light of some strands of
contemporary usage (see Table 1). However, it only appears to constitute an objection to the
DH because it equivocates on the term “dynamical system”. The DH takes cognitive agents

18 (Mill, 1975) Chapter 2. In “Computing Machinery and Intelligence” (Turing, 1950),
Turing rebuts nine objections to his stance on whether computers can think; most are not
attributed to anyone in particular. This paper follows these august precedents. Except
where noted, the objections are not known to have appeared in print; rather, they are
based on the author’s experience of reactions to the dynamical hypothesis when
expounded in public presentations or in related work.
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to be dynamical systems in a much more specific sense, i.e., quantitative systems.

6.2.2 Digital computers are quantitative systems.

A second line of thought does not equivocate. Rather, it suggests that the definition of
dynamical systems as quantitative systems is broad enough to embrace digital computers as
such.

Digital computers and dynamical systems are two classes of systems picked out by
reference to different properties: roughly, effectiveness and interpretation as opposed to
guantitativeness. Generally, systems exhibiting the one property fail to exhibit the other and
vice versa. In atypical Turing Machine, for example, there is no systematic relationship
between system behavior and distances between states. A tape square’'s values are different but
not relevantly distant from each other. System behavior turns only on which values happen to
obtain (i.e., type identity), not on how far those values are from any others. Similarly in the
case of time. Turing Machine states are indexed by means of the positive integers. There are
distances between integers, but these distances generally bear no systematic relationship to
system behavior. The integers might just as well be replaced by any other sufficiently large
merely ordered set, such as names in the New Y ork telephone directory.

Since there are generally no relevant distances in state or time in digital computers, it
makes no sense to describe their behavior in terms of rates of change (not to mention
dependence on rates of change). This is why in practice computer scientists don’t bother with
distances between states, rates of change, etc..

There is a common temptation to suppose that digital computers count as quantitative
systems arising from the correct observation that certain metrics apply to any set of values,
regardless of the nature of those values (e.g., (Padulo & Arbib, 1974), pp.91-2). Thus every
variable is a quantity, and so even digital computers have metric spaces as state sets. The
crucia point, however, is that the distances measured by these trivial metrics bear no
systematic relationship to system behavior. Turing Machines bounce around their state spaces
in ways which will seem utterly erratic until one realizes that their order is based on formal
properties, not quantitative properties.

Oranges come in many kinds. Some are valencia, some are expensive; occasionally, an
orange is both. Similarly with digital computers and dynamical systems. In coincidental,
contrived, or trivial cases, one and the same set of variables might satisfy the conditions for
both classes. Nevertheless, digital computers and dynamical systems are classes of systems
picked out by reference to fundamentally different properties. In general, systems exhibiting
one property fail to exhibit the other.

6.2.3 Digital computers are dynamical systems at the hardware level.

A third line of thought is based on the idea that all concrete digital computers are in fact
dynamical systems at some lower level of description. For example, standard general purpose
digital computers such as Macintoshes are dynamical systems at the level of electronic
circuits. Now, there is truth in this, but not enough to vitiate the relevant contrast. The
fundamental problem here is that “are” is too crude; it rides roughshod over a number of
issues.

To sort out the relationship between digital computers and lower-level dynamical systems,
we must distinguish at least three different relationships: instantiation, identity, and
implementation. At any given time a Macintosh instantiates a great many different systems at
different levels. One of these is the high-level digital computer by virtue of which, for
example, it calculates my taxes. Presumably it also instantiates some hugely complex
electrical dynamical system. The Macintosh is not identical with either of these systems.
Neither are they strictly identical with each other; most obviously, they have different
numbers of variables. Of course, the macrovariables of the high-level digital computer are
ultimately built up out of the microvariables of the electronic system, and so there is
presumably some lower-level dynamical system implementing the high-level digital computer.
Thus, while there is one clear sense in which the digital computer “is” some lower-level
dynamical system, there is also a clear sense in which it “is” not that system.

6.3 The “False Opposition” Objection 2 - Dynamical Systems are Computers
Much recent research in computation theory has been exploring the computational power
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of dynamical systems. There is no inherent conflict between dynamics and computation, and
so there is no real opposition between the computational and dynamical hypotheses.

It is true that there is no inherent conflict between dynamics and computation, but the
conclusion does not follow. Again, the issues must be teased out more carefully.

Recall from Section 3.2 that effective computation is a specific kind of computation,
resulting from a certain kind of constraint on the processes involved. Other kinds of
computation result from adopting different constraints. In particular, we can focus attention
on some class of dynamical systems (Blum, Cucker, Shub, & Smale, forthcoming; Blum,
Shub, & Smale, 1989; Moore, 1991; Moore, 1996). As long as there is some way to specify
the “questions’ and “answers’ we can see dynamical processes as computing functions. For
example, Hava Siegelmann has extensively studied the computational properties of one class
of dynamical systems, recurrent neural networks (Siegelmann & Sontag, 1994). Indeed, it can
be proved that certain classes of dynamical systems are more powerful—can compute a wider
class of functions—than Turing Machines.1® So, dynamical systems can compute, i.e., be
computers, without needing to be digital computers. This is why research into the power of
dynamical systems an interesting new branch of computation theory!

The most famous and influential of all critiques of the mainstream computational
approach to cognition is surely What Computers Still Can’t Do (Dreyfus, 1992). In that book,
Dreyfus noted that brains might well be turn out to be “analogue” rather than digital
computers. Similarly, as Churchland and Sejnowski have argued at length, biological neural
networks can be understood as computing in ways that differ fundamentally from ordinary
digital computation (Churchland & Sejnowski, 1992). Like these perspectives, the DH can
embrace the idea that cognitive processes are computational, while preserving a contrast with
the CH. This does not diminish but rather fortifies the DH, by alowing it incorporate
computational ideas without inheriting orthodoxy’s excess baggage.

6.4 The “False Opposition” Objection 3 - Dynamical Systems are Computable

There is no good reason to think that any cognitive process is not effectively computable.
Even if cognitive agents are dynamical systems, they will still be computable systems.
Therefore, it is misguided to present the DH as an alternative to the CH.

One particularly troublesome mistake is blurring the distinction between computational and
computable. Just as employers and employees stand at opposite ends of an employment
contract, so computational and computable stand at opposite ends of the relation computes.
The former applies to whatever does the computing; the latter to whatever gets computed. In
classical theory, a digital computer does the computing, and a function over the integers gets
computed. The effectively computable functions over the integers are all and only the partial
recursive functions.

Computation theorists, including Turing himself, quickly turned to asking what else might
be effectively computed. Via arbitrarily good approximation, the purview of effective
computation was gradually extended to embrace real numbers, functions over real numbers,
differential equations, and so on (Earman, 1986; Grzegorczyk, 1957; Turing, 1936). In this
way, issues of effective computability can be raised for al the standard mathematical
constructs of analysis and physics. Just what is and is not effectively computable rapidly
becomes a rather complicated business ( see, for example, Pour-El & Richards, 1989).

Now, we can regard a system as computable just in case its behavior is governed by some
computable function. The solar system of classical mechanics is effectively computable in this
sense. Currently, as far as we can now see, most if not all dynamical systems of practical
relevance to cognitive science are effectively computable.20 This doesn’t make those systems

19 The general result that dynamical systems can have “super-Turing” capacities need not
be very surprising. Digital computers are a strictly delimited class of systems, and it makes
sense that classes defined by alternative sets of constraints would allow more powerful
processes.

20 Note that effectively computable is a theoretical notion; it is not the same as computable in
practice. As chaos theory reminds us, some systems will always outstrip our finite
computing resources.
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digital computers. Digital computers can compute functions governing systems which are not
themselves digital computers. Thus, the computability of dynamical models does not destroy
the contrast between the dynamical and computational hypotheses.

6.5 The “Straw Man” Objection

Turing Machines are caricatures of computers. The DH is being matched against a straw
man. It is not a substantial alternative to the CH as properly understood.

There are two issues here. One is whether the CH, as characterized here, is a straw man. Two
considerations suffice to dispel this objection. First, the characterization offered here is just
the standard philosophical account, as developed in numerous places.?! Second, a great many
models in cognitive science (e.g., those developed within the SOAR (Newell, 1991)
framework) do in fact conform to that account.

The other issue is whether the standard account misunderstands the “true” CH, i.e.,
deeply misconceives computers and computational modeling in cognitive science. This may
be; Brian Smith, for one, has begun formulating a critique of received wisdom in this area
(Smith, 1996; Smith, forthcoming). These issues go beyond the scope of the present
discussion. If and when some superior understanding of the CH clearly supplants the
orthodox account, the relationship between the dynamical and computational hypotheses will
need to be reconsidered.

6.6 The “Description, Not Explanation” Objection

Dynamical models are at best descriptions of the data, and do not explain why the data
take the form they do. For genuine explanation, we need computational models describing
the underlying causal mechanisms.

Dynamical theories of cognitive processes are deeply akin to dynamical accounts of other
natural phenomena such as celestial motion. Those theories constitute paradigm examples of
scientific explanation. Consequently, there is no reason to regard dynamical accounts of
cognition as somehow explanatorily defective.

Dynamical explanations typically proceed by providing equations defining an abstract
model. Many factors are relevant to the goodness of a dynamical explanation, but it should at
least capture succinctly the relations of dependency, and make testable predictions. A poor
dynamical account may amount to little more than ad hoc “curve fitting”, and would indeed
count as mere description. It's problem, however, is that it is poor, not that it is dynamical.

Traditional computational cognitive science offers explanations of a quite distinctive kind
(Haugeland, 1978), and many cognitive scientists have become so accustomed to such
explanations that anything else seems inadequate. The explanations offered in dynamical
cognitive science are indeed quite different (Garson, 1996; van Gelder, 1991), but are not for
that reason inferior.

6.7 The “Not As Cognitive” Objection

Dynamics is a general purpose framework which applies to any behavior of an agent,
regardless of whether that behavior is cognitive or not. Dynamics does not focus on the
specifically cognitive aspects of systems; it does not explain cognitive performances “ as
cognitive.” Genuine explanation in cognitive science must be framed in terms of aspects of
cognitive agents other than their purely dynamical properties.

This objection concedes that dynamical explanations are nontrivial empirical explanations,
and that they really are quite different from computational explanations. It challenges the
nature of the explanation being offered. Dynamics is held to be too general, failing to explain
cognition in terms of its distinctive features.

Underlying this objection is an important misconception about the DH. That hypothesis
asserts that cognitive agents are dynamical systems of quite special kinds. Therefore, as
emphasized in Section 4.2.2, understanding cognitive agents as dynamical systems is not
simply the routine application of generic dynamics to systems that happen to be exhibiting
cognitive performances. It requires that the resources of dynamics be developed and

21 Seenote 7.
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supplemented in order to provide explanations of those special kinds of behaviors. Thus,
dynamical cognitive science always incorporates considerations distinctive to particular kinds
of cognition into dynamica frameworks to produce explanations that are fundamentally
dynamical in form, but are nevertheless tailored to explain cognitive performances “as
cognitive.” To take just one example, Jean Petitot merges Ron Langacker’s cognitive
grammar with René Thom’'s morphodynamics to yield a thoroughly dynamical approach to
syntax (Petitot, 1995).

6.8 The “Wrong Level” Objection

There is an important role for dynamical descriptions in any complete account of the nature
of a cognitive agent, but they are pitched too low to explain cognition.22

A common misconception about the dynamical approach is that it operates solely or
primarily at “lower” or “micro” levels of description. In fact, dynamics is not intrinsically
limited to any level or domain. In the natural sciences, dynamics finds application at al levels
from quantum mechanics to cosmology. It gets its grip wherever sets of interdependently
changing quantities are found. Similarly in cognitive science: dynamicists develop their
explanations at the level of theoretical interest, whatever that might be (see Section 4.1).

One significant difference between the dynamical approach and PDP-style connectionism
turns on this point. They agree that cognitive performances are behaviors of dynamical
systems. The PDP approach, however, takes those systems to be high-dimensional neural
networks operating at a level below that of orthodox descriptions (Smolensky, 1988); as
expressed in the titles of the famous volumes,23 they constitute the microstructure of
cognition. The dynamical approach is more catholic; it embraces dynamical models of all
kinds and at all levels.

6.9 The Structure Objection

Sophisticated cognitive performances require complex internal structures. The dynamical
approach is taking a huge step backwards in trying to replace symbolic representations
with quantities. To explain high level cognition, dynamical systems will have to implement
computational mechanisms.

Almost everyone now agrees that most kinds of cognitive performance can only be explained
by reference to complex structures internal to the system responsible for those performances.
Still, it remains an open question what form those structures might take. Hobbesian cognitive
scientists are banking on the idea that they are the kind of structures found in digital
computers, i.e., symbol structures (Newell & Simon, 1976) or “classical” combinatorial
representations (Fodor & Pylyshyn, 1988). Lying behind this idea is an assumption that the
kinds of complex structures required cannot exist in any system except by instantiating
digital symbol structures.

However, as dynamical cognitive science has matured, it has become apparent that
dynamical systems can incorporate combinatorial structures in various ways without merely
implementing their digital cousins (van Gelder, 1990). For example, arbitrarily many
structures can be mapped onto states of a dynamical system, such that these states can then be
used as the basis of systematic processing (e.g., (Chrisman, 1991; Pollack, 1990)). Other work
has found combinatorial structure in the attractor basins of appropriate dynamical systems
(Noelle & Cottrell, 1996), or in the trajectories induced by sequences of bifurcations
(“attractor chaining”, (van Gelder & Port, 1994)). The possibilities have really only begun to
be explored. The dynamical approach is not vainly attempting to do without complex internal
structures. Rather, it isin the process of dramatically reconceiving how they might be
instantiated.

22 The “Peripheral” objection is very similar, and is dealt with by a similar response. It
maintains that dynamical explanations are concerned with peripheral aspects of cognitive
agents rather than cognition itself, which is more “central.”

23 (McClélland, Rumelhart, & The PDP Research Group, 1986; Rumelhart, McClelland, &
The PDP Research Group, 1986a).
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6.10 The Complexity Objection

Natural languages are only effectively described by some form of context-sensitive
grammar. In the standard Chomskian hierarchy, languages of this complexity can only be
handled by computers at least as powerful as linear-bounded automata (LBAs). Therefore,
natural language speakers must be computers at least as powerful as LBAs.

The conclusion of this argument is ambiguous, between computers in general and digital
computers. On the former interpretation, the argument is sound, but fails to conflict with the
DH. It was pointed out above that dynamical systems can compute, i.e., be computers. The
complexity of natural language constrains speakers’ computational power, but not the kind of
computer they instantiate. It remains an open empirical question whether the computers in
guestion are best thought of as digital or dynamical (Elman, 1995).

On the latter interpretation, the argument simply equivocates. The premises establish that
speakers must be computers in some sense; the conclusion claims they must be digital
computers. The dominance of digital computers in the theory of computation, cognitive
science, and computer technology, has created an unfortunate tendency to confuse computers
in general with digital computers. This is what drives the objection.

6.11 The “Not Cybernetics Again!” Objection
The dynamical approach is just cybernetics returning from the dead.

What was cybernetics? Wiener famously defined it as “the science of communication and
control in man and machine” but it soon developed into an even wider enterprise: a kind of
general, non-reductionistic study of systems, particularly self-sustaining systems in their
environments (see, e.g., (Parsegian, 1973)). Throughout its brief ascendancy, cybernetics
enthusiastically embraced anything of conceivable relevance to complex systems, including
information theory, communication theory, automata theory, neurophysiology, systems
theory, game theory and control theory.

Dynamics was certainly mixed up in all this, and the DH is sometimes traced back to a
leading cyberneticist, H. Ross Ashby. Still, the demise of cybernetics implies little about the
contemporary dynamical approach, for they differ in important ways. The DH is, by
comparison, tightly circumscribed. It is concerned with cognition specifically, rather than
systems generally, and is defined in terms of a core commitment to a single framework. The
fate of cybernetics as a whole no more attaches to the dynamical approach than it does to
other disciplines with ancestral links to cybernetics, such as computational neuroscience and
artificial intelligence. Moreover, much more powerful tools are available today. The bulk of
DST has been developed in the period since cybernetics. Also, dynamicists now have on their
desks computer simulation tools (hardware and software) beyond the dreams of
cyberneticists. Where cyberneticists could only speculate, dynamicists can nhow furnish and
understand complex models.

6.12 The “Humans Compute” Objection

Humans can do arithmetic in their heads. At least some cognitive activity is specifically
digital computation. Therefore, the DH cannot be the whole truth about cognition.

If it is granted that mental arithmetic and like processes are, literally, digital symbol
manipulation inside the head, then the DH should indeed graciously concede. The general
truth of the DH is compatible with certain specia activities counting as exceptions. However,
we should be wary of granting, in advance, that mental arithmetic is symbol manipulation.
Certainly, it seems like symbol manipulation: numerals, lines, etc. are “seen in the mind’s
eye’. It does not follow that there are symbols in the head, i.e., that the states and processes
that subserve such “seeing” actually instantiate symbols and their manipulations. Imagining
the Eiffel Tower does not entail that one has the Eiffel Tower, or even a picture of it, inside
one's head (Ryle, 1984, Ch.8). We must not confuse the content of experience with the
mechanisms implementing it. As usual, the question turns out to be the empirical one: in the
long run, what kind of models provide the best account of the mechanisms underlying the
relevant kind of cognitive performance?

7. Conclusion
The contemporary dynamical approach to cognition is part of a much wider scientific trend.
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In recent decades, there have been dramatic developments in the mathematics of DST,
especially the theory of nonlinear systems, complexity, and chaos. At the same time, there has
been exponential growth in available computing power, and the arrival of sophisticated
programs for exploring dynamical systems. The result is that dynamical theorising has come
to be applied to a wide range of natural phenomena that were previously either ignored
entirely, or regarded as beyond the scope of standard forms of scientific explanation. So with
cognition. The Humean dream of a dynamics of cognition can now be seriously pursued.
The explanatory umbrella which covers so much of the rest of the natural world so effectively
is gradually being extended to cover cognition as well.

The DH encapsulates the core commitment of the emerging dynamical approach. This
target article has attempted to say what it means, and to establish its status as an open
empirical hypothesis standing as a substantial alternative to the CH. It has not attempted to
demonstrate that cognitive agents are in fact dynamical systems. There is mounting evidence
that certain aspects of cognition are best thought of dynamically, but many others remain
completely unaddressed. Only sustained empirical investigation will determine the extent to
which the DH—as opposed to the CH, or perhaps some other hypothesis entirely—captures
the truth about cognition.

APPENDI X

Table 2. Key terms and their meanings in the present discussion. This table has no
pretensions beyond partially summarizing the particular regimentation proposed in this
paper for the purpose of clarifying the DH in cognitive science.

Term Meaning in this paper

Variable Anything that changes over time..

System A set of variables changing interdependently.

Instantiation A relation between a concrete system and some object or part of the

world. An object instantiates a system when all the variables of the
system are features of the object.

Implementation

A relation between concrete systems, obtaining when the variables of
one system are somehow built up out of the variables of the other.

Parameter Something outside (i.e., not a member of) a system, but upon which
change in the system depends.

Coupling Mutual direct dependence. Variables x and y are coupled when the
state of x shapes change in y and vice versa.

Concrete system A system whose variables are all concrete features of the concrete
world changing in real time.

Abstract system A system whose variables are all abstract entities.

Realization A relation between a concrete system and an abstract one, obtaining
when the former has the same structure as the latter.

Time Any intrinsically ordered set, serving to provide orderings over other
things. Real time is the set of instants at which things can happen,
ordered by priority (before/after).

Computer Anything that computes (carries out computation).

Computation/
Computing

Transforming some kind of question (e.g., input object or start state)
into some kind of answer (e.g., output object or final state).

Computational

Anything that computes (carries out computation).
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Digital Computer

A computer carrying out effective computation over representations.
A digital computer must have digital variables, discrete time,
algorithmically governed behavior, and an interpretation.

Effective Succeeding in a finite number of basic operations governed by an
algorithm.

Computable Capable of being computed; alternatively, being governed by a
computable function.

Quantity A variable with a metric over its values.

Dynamical System

A guantitative system. A system that is at least quantitative in state;
may also be interdependently quantitative in state and time, or even
rate dependent.

I dentity “being the very same thing as’. Identity is governed by Leibniz
Law: identical things have al and only the same properties. |dentity
for sets—and hence for systems—is having all and only the same
variables.

Simulate Compute a function approximately describing some process.

Dynamics Two closely related kinds of mathematics, dynamical modeling and
DST.

Dynamical Cognitive agents are dynamical systems. See Section 4.3.

Hypothesis (DH)

Computational Cognitive agents are digital computers.

Hypothesis (CH)

ACKNOWLEDGEMENTS

Significant improvements in this paper resulted from discussion with or feedback from many
people, but among the most influential were John Haugeland, Robert Port, Jim Townsend,

Dan Dennett, Herbert Jaeger, Tim Smithers, Robert Gregson, Clark Glymour, Brian Smith, Jeff

Pressing, Marco Giunti, Scott Kelso, and BBS referees.

References

(1989) Encyclopaedia of Mathematics. Dordrecht: Kluwer.

Abraham, F. D., Abraham, R. H., & Shaw, C. D. (1992) Basic Principles of Dynamical
Systems. In R. L. Levine & H. E. Fitzgerald ed., Analysis of Dynamic Psychological Systems,
Volume 1. Basic Approaches to General Systems, Dynamic Systems, and Cybernetics. New

York: Plenum Press,

Abraham, R., & Shaw, C. D. (1982) Dynamics-The Geometry of Behavior. Santa Cruz CA:

Aerial Press.

Amit, D. J. (1989) Modeling Brain Function: The World of Attractor Neural Networks.
Cambridge: Cambridge University Press.

Babloyantz, A., & Lourenco, C. (1994) Computation with Chaos: A Paradigm for Cortical
Activity. Proceedings of the National Academy of Sciences of the USA, 91, 9027-9031.

Baker, G. L., & Gollub, J. P. (1990) Chaotic Dynamics. An Introduction. Cambridge:
Cambridge University Press.

Barndey, M. (1988) Fractals Everywhere. San Diego: Academic Press, Inc.

Beer, R. D. (1995a) Computational and Dynamica Languages for Autonomous Agents. In R.

Port & T. van Gelder ed., Mind as Motion: Explorations in the Dynamics of Cognition.



- 23 -

Cambridge MA: MIT Press, 121-147.

Beer, R. D. (1995b) A dynamical systems perspective on agent-environment interaction.
Artificial Intelligence, 72, 173-215.

Beltrami, E. (1987) Mathematics for Dynamical Modeling. Boston: Academic Press Inc.

Bingham, G. P., Rosenblum, L. D., & Schmidt, R. C. (in press) Dynamics and the orientation
of kinematic forms in visual event recognition. Journal of Experimental Psychology: Human
Perception and Performance.

Blum, L., Cucker, F., Shub, M., & Smale, S. (forthcoming) Complexity and Real
Computation: A Manifesto. Berlin: Springer-Verlag.

Blum, L., Shub, M., & Smale, S. (1989) On a Theory of Computation and Complexity Over
the Real Numbers: NP Completeness, Recursive Functions and Universal Machines. Bulletin of
the American Mathematical Society, 21, 1-49.

Browman, C. P., & Goldstein, L. (1992) Articulatory phonology: an overview. Phonetica, 49,
155-180.

Bullock, D., & Grossberg, S. (1988) Neural dynamics of planned arm movements: Emergent
invariants and speed-accuracy properties during trajectory formation. Psychological Review,
95, 49-90.

Busemeyer, J. R., & Townsend, J. T. (1993) Decision field theory: a dynamic-cognitive
approach to decision making in an uncertain environment. Psychological Review, 100, 432-
459.

Busemeyer, J. R., & Townsend, J. T. (1995) Dynamic representation of decision making. In
R. Port & T. van Gelder ed., Mind as Motion: Explorations in the Dynamics of Cognition.
Cambridge MA: MIT Press,

Cadti, J. L. (1992) Reality Rules: Picturing the World in Mathematics (Vols 1, I1). New York:
J. Wiley.

Chrisman, L. (1991) Learning recursive distributed representations for holistic computation.
Connection Science, 3, 345-366.

Churchland, P. S., & Sejnowski, T. J. (1992) The Computational Brain. Cambridge MA:
Bradford/MIT Press.

Clark, A. (1989) Microcognition: Philosophy, Cognitive Science, and Parallel Distributed
Processing. Cambridge MA: MIT Press.

Cliff, D., Harvey, 1., & Husbands, P. (1993) Explorations in evolutionary robotics. Adaptive
Behavior, 2, 73-110.

Cohen, A. (1992) The role of heterarchical control in the evolution of central pattern
generators. Brain, Behavior and Evolution, 40, 112-124.

Cohen, J., & Stewart, 1. (1994) The Collapse of Chaos. New Y ork: Penguin.
Copeland, J. (1993) Artificial Intelligence: A Philosophical Introduction. Oxford: Blackwell.
Desloge, E. A. (1982) Classical Mechanics. New Y ork: John Wiley & Sons.

Dreyfus, H. L. (1992) What Computers Still Can't Do: A Critique of Artificial Reason.
Cambridge MA: The MIT Press.

Earman, J. (1986) A Primer on Determinism. Dordrecht: D. Reidel.

Elman, J. (1995) Language as a dynamical system. In R. Port & T. van Gelder ed., Mind as
Motion: Explorations in the Dynamics of Cognition. Cambridge MA: MIT Press,

Fodor, J. A. (1975) The Language of Thought. Cambridge MA: Harvard University Press.

Fodor, J. A., & Pylyshyn, Z. (1988) Connectionism and cognitive architecture: a critical
analysis. Cognition, 28, 3-71.



- 24 -

Freeman, W. J., & Skarda, C. A. (1990) Representations: Who needs them? In J. L. McGaugh,
J. L. Weinberger, & G. Lynch ed., Brain Organization and Memory: Cells, Systems and
Circuits. New York: Guildford Press, 375-380.

Garson, J. (1996) Cognition poised at the edge of chaos: A complex alternative to a symbolic
mind. Philosophical Psychology, 9, 301-321.

Giunti, M. (forthcoming) Computation, Dynamics, and Cognition. New Y ork: Oxford
University Press.

Gregson, R. (1995) Cascades and Fields in Perceptual Psychophysics. Singapore: World
Scientific.

Gregson, R. A. M. (1993) Learning in the context of nonlinear psychophysics. The Gamma
Zak Embedding. British Journal of Mathematical and Satistical Psychology, 46, 31-48.

Grossberg, S., & Gutowski, W. E. (1987) Neural dynamics of decision making under risk:
affective balance and cognitive-emotional interactions. Psychological Review, 94, 303-318.

Grossberg, S., & Rudd, M. E. (1992) Cortical dynamics of visual motion perception: group
and element apparent motion. Psychological Review, 99, 78-121.

Grossberg, S., & Stone, G. O. (1986) Neura dynamics of word recognition and recall:
attentional priming, learning, and resonance. Psychological Review, 93, 46-74.

Grzegorczyk, A. (1957) On the definitions of computable real continuous functions.
Fundamenta Mathematica, 44, 61-71.

Guckenheimer, J., Gueron, S., & HarrisWarrick, R. (1993) The dynamics of a conditionally
bursting neuron. Philosophical Transactions of the Royal Society of London B, 341.

Haken, H., & Stadler, M. (Ed.). (1990). Synergetics of Cognition. Berlin: Springer-Verlag.
Harnad, S. (1990) The symbol grounding problem. Physica D, 42, 335-346.

Harvey, I. (1992) Untimed and misrepresented: Connectionism and the computer metaphor.
University of Sussex Cognitive Science Research Paper No. 245. In

Haugeland, J. (1978) The nature and plausibility of cognitivism. Behavioral and Brain
Sciences, 1, 215-26.

Haugeland, J. (1985) Artificial Intelligence: The Very Idea. Cambridge MA: MIT Press.

Hirsch, M. (1984) The dynamical systems approach to differential equations. Bulletin of the
American Mathematical Society, 11, 1-64.

Hobbes, T. (1651/1962) Leviathan. New Y ork: Collier Books.

Hock, H. S., Kelso, J. A. S., & Schoéner, G. (1993) Bistability, hysteresis and loss of temporal
stability in the perceptual organization of apparent motion. Journal of Experimental
Psychology: Human Perception and Performance, 19, 63-80.

Horgan, T. E., & Tienson, J. (1996) Connectionism and the Philosophy of Psychology.
Cambridge MA: MIT Press.

Hume, D. (1978) A Treatise of Human Nature (1739-40). Oxford: Clarendon Press.

Husbands, P., Harvey, I., & Cliff, D. (1995) Circle in the round: State space attractors for
evolved sighted robots. Robotics and Autonomous Systems, 15, 83-106.

Jaeger, H. (1996) Dynamische Systeme in der Kognitionswissenschaft.
Kognitionswissenschaft, 5, 151-174.

Kampis, G. (1991) Self-Modifying Systems in Biology and Cognitive Science. Oxford:
Pergamon Press.

Kaplowitz, S. A., & Fink, E. L. (1992) Dynamics of attitude change. InR. L. Levine & H. E.
Fitzgerald ed., Analysis of Dynamic Psychological Systems, Volume 2: Methods and
Applications. New York: Plenum Press, 341-369.



- 25 -

Kelso, J. A. S. (1995) Dynamic Patterns: The Self-organization of Brain and Behavior.
Cambridge MA: MIT Press.

Kelso, J. A. S, DelCadlle, J., & Schéoner, G. (1990) Action-perception as a pattern formation
process. In M. Jeannerod ed., Attention and Performance XllII. Hillsdale NJ: Lawrence
Erlbaum Associates, 139-169.

Kelso, J. A. S., Ding, M., & Schoéner, G. (1992) Dynamic pattern formation: A primer. In J. E.
Mittenthal & A. B. Baskin ed., Principles of Organization in Organisms. Reading, MA:
Addison-Wesley,

Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971) Foundations of Measurement.
New York: Academic.

Kugler, P. N., Kelso, J. A. S., & Turvey, M. T. (1980) On the concept of coordinate structures
as dissipative structures: 1. Theoretical lines of convergence. In G. E. Stelmach & J. Requin
ed., Tutorials in Motor Behavior. Amsterdam: North Holland, 3-47.

Kugler, P. N, Kelso, J. A. S, & Turvey, M. T. (1982) On the control and coordination of
naturally developing systems. In J. A. S. Kelso & J. E. Clark ed., The development of
movement control and coordination. New York: Wiley, 5-78.

Leven, S. J, & Leving, D. S. (1996) Multiattribute decision making in context: a dynamic
neural network methodology. Cognitive Science, 20, 271-99.

Luenberger, D. G. (1979) Introduction to Dynamic Systems: Theory, Models, and
Applications. New Y ork: John Wiley & Sons.

Maddy, P. (1990) Realism in Mathematics. Oxford: Clarendon Press.

McClelland, J. L., & Rumelhart, D. E. (1981) An interactive-activation model of context
effects in letter perception: Part 1, an account of basic findings. Psychological Review, 88,
375-407.

McClelland, J. L., Rumelhart, D. E., & The PDP Research Group (Ed.). (1986). Parallel
Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 2,
Psychological and Biological Models. Cambridge MA: MIT Press.

Mill, J. S. (1975) On Liberty. New York: Norton.

Moore, C. (1991) Generalized shifts: Unpredictability and undecidability in dynamical
systems. Nonlinearity, 4, 199-230.

Moore, C. (1996) Dynamical Recognizers. Real-time Language Recognition by Analog
Computers. No. 96-05-023, Santa Fe Institute.

Mpitsos, G. J. (forthcoming) Attractor gradients: architects of developmental organization. In
J. L. Leonard ed., Identified Neurons. Twenty Five Years of Progress. Cambridge, MA: MIT
Press,

Newell, A. (1980) Physical Symbol Systems. Cognitive Science, 4, 135-183.
Newell, A. (1991) Unified Theories of Cognition. Cambridge MA: Harvard University Press.

Newell, A., & Simon, H. (1976) Computer science as empirical enquiry: Symbols and search.
Communications of the Association for Computing Machinery, 19, 113-126.

Noelle, D. C., & Cottrell, G. W. (1996) In search of articulated attractors. In G. W. Cottrell ed.,
Proceedings of the 18th Annual Conference of the Cognitive Science Society. Mahwah:
Lawrence Erlbaum, 329-334.

Norton, A. (1995) Dynamics: An Introduction. In R. Port & T. van Gelder ed., Mind as
Motion: Explorations in the Dynamics of Cognition. Cambridge MA: MIT Press,

Ott, E. (1993) Chaos in Dynamical Systems. Cambridge: Cambridge University Press.

Padulo, L., & Arbib, M. A. (1974) System Theory: A Unified State-Space Approach to
Continuous and Discrete Systems. Philadelphia: W.B. Saunders Co.



- 26 -

Parsegian, V. L. (1973) This Cybernetic World of Men, Machines and Earth Systems. Garden
City N.Y.: Doubleday & Co. Inc.

Petitot, J. (1985a) Les Catastrophes de la Parole. Paris: Maloine.
Petitot, J. (1985b) Morphogenése du Sens. Paris: Presses Universitaires de France.

Petitot, J. (1995) Morphodynamics and Attractor Syntax. In R. Port & T. van Gelder ed.,
Mind as Motion: Explorations in the Dynamics of Cognition. Cambridge MA: MIT Press,

Pollack, J. B. (1990) Recursive distributed representations. Artificial Intelligence, 46, 77-105.

Pollack, J. B. (1991) The Induction of Dynamical Recognizers. Machine Learning, 7, 227-
252.

Port, R., Cummins, F., & McAuley, J. D. (1995) Naive time, temporal patterns, and human
audition. In R. Port & T. van Gelder ed., Mind as Motion: Explorations in the Dynamics of
Cognition. Cambridge MA: Bradford Books/MIT Press, 339-72.

Port, R., & van Gelder, T. J. (1995) Mind as Motion: Explorations in the Dynamics of
Cognition. Cambridge MA: MIT Press.

Pour-El, M., & Richards, J. (1989) Computability in Analysis and Physics. New Y ork:
Springer-Verlag.

Pylyshyn, Z. W. (1984) Computation and Cognition: Toward a Foundation for Cognitive
Science. Cambridge MA: Bradford/MIT Press.

Rosen, R. (1985) Anticipatory Systems. New Y ork: Pergamon.

Rumelhart, D. E., McClelland, J. L., & The PDP Research Group (Ed.). (1986a). Parallel
Distributed Processing: Explorations in the Microstructure of Cognition. Vol 1: Foundations.
Cambridge MA: MIT Press.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986b) Schemata and
sequential thought processes in PDP models. In J. L. McCléelland, D. E. Rumelhart, & The
PDP Research Group ed., Parallel Distributed Processing: Explorations in the Microstructure
of Cognition. Cambridge MA: MIT Press, 7-57.

Ryle, G. (1984) The Concept of Mind (1949). Chicago: University of Chicago Press.

Saltzman, E. (1995) Dynamics and coordinate systems in skilled sensorimotor activity. In R.
Port & T. van Gelder ed., Mind as Motion: Explorations in the Dynamics of Cognition.
Cambridge MA: MIT Press,

Saltzman, E. L., & Munhall, K. G. (1989) A dynamical approach to gestural patterning in
speech production. Ecological Psychology, 1.

Schmidt, R. C., & Turvey, M. T. (1994) Phase-entrainment dynamics of visually coupled
rhythmic movements. Biological Cybernetics, 70.

Schoner, G., Zanone, P. G., & Kelso, J. A. S. (1992) Learning as a change of coordination
dynamics: Theory and experiment. Journal of Motor Behavior, 24, 29-48.

Searle, J. R. (1980) Minds, brains and programs. Behavioral and Brain Sciences, 3, 417-458.

Siegelmann, H. T., & Sontag, E. D. (1994) Analog Computation via Neural Networks.
Theoretical Computer Science, 131, 331-360.

Skarda, C. A., & Freeman, W. J. (1987) How brains make chaos to make sense of the world.
Behavioral and Brain Sciences, 10, 161-195.

Smith, B. C. (1996) On the Origin of Objects. Cambridge MA: MIT Press.

Smith, B. C. (forthcoming) The Middle Distance: On the Foundations of Computation and
Intentionality.

Smith, L. B., & Thelen, E. (1993) Dynamic Systems in Development: Applications.
Cambridge MA: MIT Press.



- 27 -

Smithers, T. (1994) On Behavior as Dissipative Structures in Agent-Environment System
Interaction Spaces. In Proceedings of Prerational Intelligence: Phenomenology of
Complexity in Systems of Smple Interacting Agents, Zentrum fir Interdisziplindre Forschung
(ZiF), University of Bielefeld, Germany.

Smolensky, P. (1988) On the proper treatment of connectionism. Behavioral and Brain
Sciences, 11, 1-74.

Swenson, R., & Turvey, M. T. (1991) Thermodynamics reasons for perception-action cycles.
Ecological Psychology, 3, 317-348.

Tabor, W., Juliano, C., & Tanenhaus, M. (1996) A dynamical system for language processing.
In Proceedings of the 18th Annual Meeting of the Cognitive Science Society. Hillsdale, NJ.
Lawrence Erlbaum,

Thelen, E. (1995) Time scale dynamics and the development of an embodied cognition. In R.
Port & T. van Gelder ed., Mind as Motion: Explorations in the Dynamics of Cognition.
Cambridge MA: MIT Press,

Thelen, E., & Smith, L. B. (1993) A Dynamics Systems Approach to the Development of
Cognition and Action. Cambridge MA: MIT Press.

Thom, R. (1983) Mathematical Models of Morphogenesis. Chichester: Ellis Horwood.

Tuller, B., Case, P., Mingzhou, D., & Kelso, S. J. A. (1994) The Nonlinear Dynamics of
Speech Categorization. Journal of Experimental Psychology: Human Perception and
Performance, 20, 3-16.

Turing, A. (1936) On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2, 42, 230-
65.

Turing, A. (1950) Computing machinery and intelligence. Mind, 59, 433-460.
Turvey, M. T. (1990) Coordination. American Psychologist, 45, 938-953.

Turvey, M. T., & Carello, C. (1981) Cognition: the view from ecological realism. Cognition,
10, 313-321.

Turvey, M. T., & Carello, C. (1995) Some Dynamical Themes in Perception and Action. In R.
Port & T. van Gelder ed., Mind as Motion: Explorations in the Dynamics of Cognition.
Cambridge MA: MIT Press,

Vallacher, R., & Nowak, A. (Ed.). (1993). Dynamical Systemsin Social Psychology. New
York: Academic Press.

van Gelder, T. J. (1990) Compositionality: a connectionist variation on a classical theme.
Cognitive Science, 14, 355-384.

van Gelder, T. J. (1991) Connectionism and dynamical explanation. In Proceedings of the
Thirteenth Annual Conference of the Cognitive Science Society. Hillsdale NJ: Erlbaum, 499-
503.

van Gelder, T. J. (1995) What might cognition be, if not computation? Journal of Philosophy,
91, 345-381.

van Gelder, T. J,, & Port, R. (1994) Beyond symbolic: Towards a Kama-Sutra of
compositionality. In V. Honavar & L. Uhr ed., Symbol Processing and Connectionist Network
Models in Artificial Intelligence and Cognitive Modelling: Steps Toward Principled
Integration. San Diego: Academic Press, 107-25.

van Gelder, T. J., & Port, R. (1995) It's About Time: An Overview of the Dynamical
Approach to Cognition. In R. Port & T. van Gelder ed., Mind as Motion: Explorations in the
Dynamics of Cognition. Cambridge MA: MIT Press,

von Bertalanffy, L. (1973) General System Theory: Foundations, Development, Applications.
Harmandsworth: Penguin.



- 28 -

Warren, W. H. (1995) Self-motion: Visual perception and visual control. In W. Epstein & S.
Rogers ed., Handbook of Perception and Cognition, v.5: Perception of Space and Motion.
New York: Academic Press, 263-325.

Wheeler, M. (1994) From activation to activity: representation, computation and the dynamics
of neural network control systems. Artificial Intelligence and Smulation of Behavior
Quarterly, 36-42.

Wildgen, W. (1982) Catastrophe Theoretic Semantics: An Elaboration and Extension of René
Thom's Theory. Amsterdam: John Benjamins Publishing Company.

Zak, M. (1990) Creative dynamics approach to neural intelligence. Biological Cybernetics,
64, 15-23.



