
July 1972

LEARNING AND EXECUTING GENERALIZED ROBOT PLAS

Richard E. Fikes

Peter E. Hart

Nils J. Nilsson

Artificial Intelligence Center

Technical Note 70

SRI Project 1530

The research reported
the Advanced Research

of Defense, moni tored
Durham under Contract

herein was supported at SRI by
Proj ec ts Agency of the Department

by the U. S. Army Research Office-

DAHC04 72 C 0008.



I I SUMY OF STRI 

Description

Because STRIPS is basic to our discussion, let us briefly outline its

operation. (For a complete discussion and addi tional examples, see Ref. 1.

The primitive actions available to the robot vehicle are precoded in a set

of action routines. For example, execution of the routine GOTHRU(Dl,Rl, R2)

causes the robot vehicle actually to go through the doorway, Dl, from room

Rl to room R2. The robot system keeps track of where the robot vehicle 

and stores its other knowledge of the world in a model composed of well-

formed formulas (wffs) in the predicate calculus. Thus, the system knows

that there is a doorway Dl between rooms Rl and R2 by the presence of the

wff CONNECTSROOMS(Dl,Rl, R2) in the model.

Tasks are given to the system in the form of predicate calculus wffs.

To direct the robot to go to room R2, we pose for it the goal wff INROOM(ROBOT ,R2) .

The planning system, STRIPS, then attempts to find a sequence of primi ti ve

actions that would change the world in such a way that the goal wff is true

in the correspondingly changed model. In order to generate a plan of actions,

STRIPS needs to know about the effects of these actions; that is, STRIPS must

have a model of each action. The model act ions are called operators and, just

as the actions change the world, the operators transform one model into

another. By applying a sequence of operators to the initial world "model,

STRIPS can produce a sequence of models (representing hypothetical worlds)



ul timately ending in a model in which the goal wff is true. Presumably

then, execution of the sequence of actions corresponding to these operators

would change the world to accompl ish the task.

Each STRIPS operator must be described in some convenient way. 

characterize each operator in the repertoire by three entities: an add
function , a delete function , and a precondition wff. The meanings of these

enti ties are straightforward. An operator is applicable to a given model

only if its precondi tion wff is satisfied in that model. The effect of

applying an (assumed applicable) operator to a given model is to delete

from the model all those clauses specified by the delete function and to add

to the model all those clauses specified by the add function. Hence, the

add and delete functions prescribe how an operator transforms one state

into another; the add and delete functions are defined simply by lists of

clauses that should be added and deleted.

Wi thin this basic framework STRIPS operates in a GPS-like manner

First, i t tries to estabJJsh that a goal wff is satisf ied
by a model. (STRIPS uses the QA3 resolution-based theorem prover in its

attempts to prove goal wffs. If the goal wff cannot be proved, STRIPS

selects a "relevant " operator that is likely to produce a model in which

the goal wff lS more nearly satisfied. In order to apply a selected operator

the precondition wff of that operator must of course be satisfied: This pre-

condi tion becomes a new subgoal and the process is repeated. At some point



we expect to find that the precondition of a relevant operator is already

satisfied in the current model. When this happens the operator is applied

the initial model is transformed on the basis of the add and delete functions

of the operator, and the model thus created is treated in effect as a new

ini tial model of the world.

To complete our review of STRIPS we must indicate how relevant operators

are selected. An operator is needed only if a subgoal cannot be proved from

the wffs defining a model. In this case the operators are scanned to find

one whose effects would allow the proof attempt to continue. Specifically,

STRIPS searches for an operator whose add function specifies clauses that

would allow the proof to be successfully continued (if not completed). When

an add function is found whose clauses do in fact permit an adequate continua-

tion of the proof, then the associated operator is declared relevant; more-

over, the substi tu tions used in the proof continuat ion serve to instantiate

at least partially the arguments of the operator. Typically, more than one

relevant operator instance will be found. Thus, the entire STRIPS planning

process takes the form of a tree search so that the consequences of con-

sidering different relevant operators can be explored. In summary, then,

" . 

the lnner loop of STRIPS works as follows:

(1) Select a subgoal and try to establish that it is true in the

appropriate model. If it is, go to Step 4. Otherwise,



(2) Choose as a relevant operator one whose add function specifies

clauses that allow the incomplete proof of Step 1 to be con-

tinued.

(3) The appropriately instantiated precondition wff of the selected

operator constitutes a new subgoal. Go to Step 1.

(4) If the subgoal is the main goal, terminate. Otherwise, create

a new model by applying the operator whose precondi tion is the

subgoal just established. Go to Step 

The final outPllt of STRIPS, then, is a list of instantiated operators

whose corresponding actions will achieve the goal.

An Example

An understanding of STRIPS is greatly aided by an elementary

example. The following example considers the simple task of fetching a

box from an adjacent room. Let us suppose that the initial state of the

world is as shown below:

Room Rl Room R2

Door

BOXl
ROBOT

IDoorl
I D2 

Room R3



Ini tial Model

Mo : INROOM (ROBOT, Rl)

CONNECTS (Dl , Rl , R2)

CONNECTS (D2 , R2 , R3)

BOX (BOX1)

INROOM (BOXl , R2)

0fx Vy Vz) (CONNECTS(x,y, z) CONNECTS (x, z,y) )

Goal wff

Go : x) (BOX (x) A INROOM (x , Rl) )

We assume for this example that models can be transformed by two

operators GOTHRU and PUSHTHRU, having the descriptions given below. Each

description specifies an operator schema indexed by schema variables. 

will call schema variables parameters , and denote them by strings beginning

wi th lower-case letters. A particular member of an operator schema is

obtained by instantiating all the parameters in its description to constants.

It is a straightforward matter to modify a resolution theorem prover to

handle wffs containing parameters, 1 but for present purposes we need only

know that the modification ensures that each parameter can be bound only to

one constant; hence, the operator arguments (which may be parameters) can

assume unique values. (In all of the following we denote constants by



strings beginning with capital letters and quantified variables by x, y,

or z) 

GOTHRU (d, rl , r2)

(Robot goes through Door d from Room rl into Room r2.

Precondi tion wff

INROOM(ROBOT, rl) A CONNCTS (d, rl, r2)

Delete List

INROOM(ROBOT, $)

Our convention here is to delete any clause containing a predicate

of the form INROOM (ROBOT, $) for any value of $.

Add Lis t

INROOM (ROBOT, r2)

PUSHTHRU (b, d, rl, r2)

(Robot pushes Object b through Door d from Room rl into Room r2.

Precondi ti on wff

INROOM(b, rl) A INROOM(ROBOT,rl) A CONNECTS(d, rl,r2)

Delete List

INROOM (ROBOT, $)

INROOM (b, 

Add List

INROOM (ROBOT, ;r2)

INROOM (b, r2) .



When STRIPS is given the problem it first attempts to prove the goal

o from the initial model M
This proof cannot be completed; however, were

the model to contain other clauses, such as INROOM (BOX1, Rl), the proof attempt

could continue. STRIPS determines that the operator PUSHTHRU can provide the

desired clause; in particular, the partial instance PUSHTHRU(BOX1, d, rl , Rl)

provides the wff INROOM (BOXl , Rl) .

The precondition G
l for this instance of PUSHTHRU 

INROOM(BOX1, rl)

A INROOM(ROBOT, rl)

A CONNECTS(d, rl, Rl) .

This precondi tion is set up as a subgoal and STRIPS tries to prove it from

Al though no proof for G can be found, STRIPS determines that if

rl = R2 and d = Dl, then the proof of G could continue were the model to

contain INROOM(ROBOT ,R2). Again STRIPS checks operators for one whose

effects could continue the proof and settles on the instance GOTHRU(d,rl, R2) .

Its precondi tion is the next subgoal, namely:

INROOM(ROBOT, rl)

A CONNCTS (d, rl, R2) 

STRIPS is able to prove G from M , using the substi tutions rl = Rl and

d = Dl. It therefore applies GOTHRU(Dl, Rl, R2) to M
O to yield:



: INROOM(ROBOT,R2)

CONNCTS (Dl , Rl , R2)

CONNECTS(D2 , R2 , R3)

BOX (BOX1)

INROOM (BOX 1 , R2)

(Vx Vy Vz) (CONNECTS (x,y,z) ~ CONNECTS (x, z ,y)) .

Now STRIPS attempts to prove the subgoal G
l from the new model M

The

proof is successful with the instantiations rl = R2, d = Dl. These substi tu-

tions yield the operator instance PUSHTHRU(BOXl ,Dl , R2 , Rl) , which applied to

l yields

: INROOM(ROBOT,Rl)

CONNECTS(Dl , Rl , R2)

CONNECTS (Dl , R2 , R3)

BOX (BOX1)

INROOM(BOX1, Rl)

(Vx Vy Vz) (CONNECTS(x,y, z) ~ CONNECTS(x,z,y)).

Next, STRIPS attempts to prove the original goal, G ' from M
2 . 

This attempt

is successful and the final operator sequence 

GOTHRU(Dl, Rl, R2)

PUSHTHRU (BOXl , Dl , R2 , Rl) .


