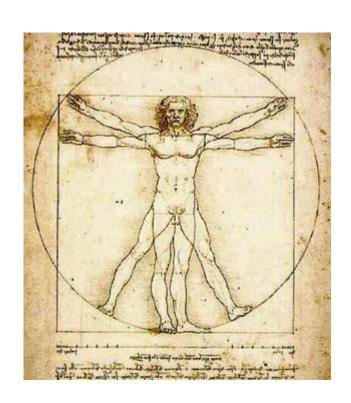
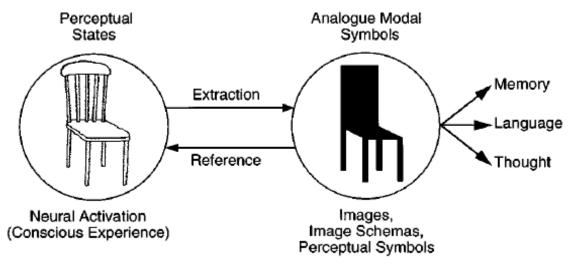

Introduction to cognitive science

Session 7: Embodiment and Situated Cognition

Martin Takáč
Centre for cognitive science
DAI FMFI Comenius University in Bratislava

Príprava štúdia matematiky a informatiky na FMFI UK v anglickom jazyku ITMS: 26140230008

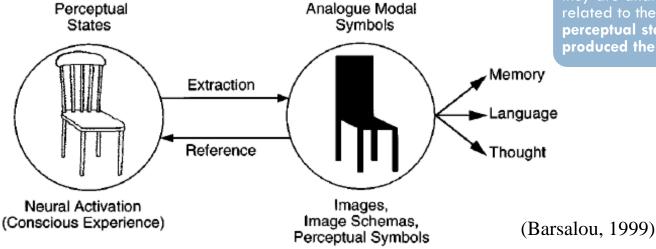

Amodal conceptual representations


- Basic assumption: Internal (cognitive) structure does not resemble the perceptual states from which they originate.
- E.g., amodal representation of the colour of an object in the absence of that object is located in a different neural system from the representations of that colour during the process of perception.

Grounded cognition

- Nature of the human mind is largely determined by the form of the human body
- Cognition arises from bodily interactions with the world
- Cognition shares the same mechanisms with perception, action and introspection
 - Senses
 - Effectors
 - Environment
- Rejects that amodal symbols represent knowledge

Perceptual symbol systems


Simulation

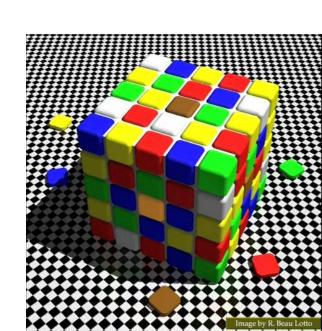
- A core form of computation in the brain
- Reenactment of perceptual, motor and introspective states acquired during experience
- As experience occurs, the brain captures the states across modalities and integrates them with a multimodal representation stored in memory

Perceptual symbol systems

internal structure of these symbols is **modal**

they are analogically related to the perceptual states that produced them

Simulation


- A core form of computation in the brain
- Reenactment of perceptual, motor and introspective states acquired during experience
- As experience occurs, the brain captures the states across modalities and integrates them with a multimodal representation stored in memory

Categorization

- Lakoff's "Woman, Fire and Dangerous Things: What categories reveal about the mind."
- Categorization is one of the most basic ability of living beings.
 - Even amoeba categorizes the things into food and nonfood.
 - Animals categorize food predators, possible mates, members of their own species, etc.
- Why do we need categorization?
 - Reduction in complexity of rich sensory input
 - Generalization

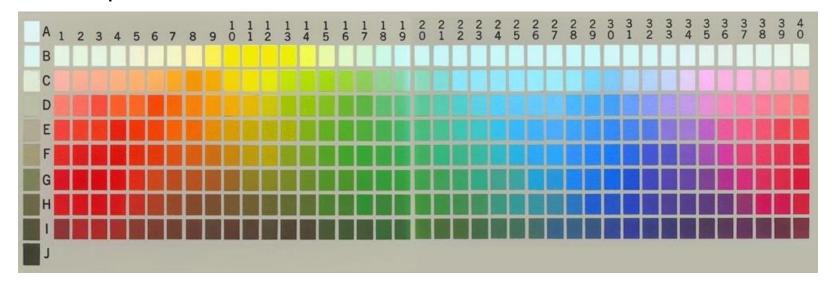
What exactly categories are?

- Objectivistic Aristotelian view
 - Woman, fire and dangerous things have some properties in common
- Research on categories
 - Wittgenstein
 - Family resemblances
 - Central and non-central members
 - Berlin & Kay
 - Neurophysiology of vision
 - Colors are not objectively "out there"
 - Eleanor Rosh

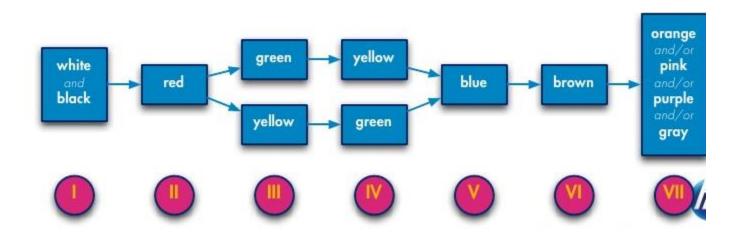
Eleanor Rosch

- Prototype theory
 - Research in New Guinea
 - Dani language
 - Mili = dark/cool (black, green, blue)
 - Mola = light/warm (white, red, yellow)
 - They choose focal colors as best examples
 - Primary colors are psychologically real even if they can't name them
 - Focal colors are learned more readily

Mola and Mili


Berlin & Kay

- 1969 study of 98 unwritten languages (20 in more detail) 25 speakers per language on avg.
- (1976-2009 follow up study on 110 languages World Color Survey)


Berlin & Kay - Instruction

- 1. Basic color terms: Find the smallest number of simple words with which you could name any color.
- 2. Focal colors: For each of the color terms, find its best example.
- 3. Category boundaries: For each of the color terms, mark all samples that can be named with the term.

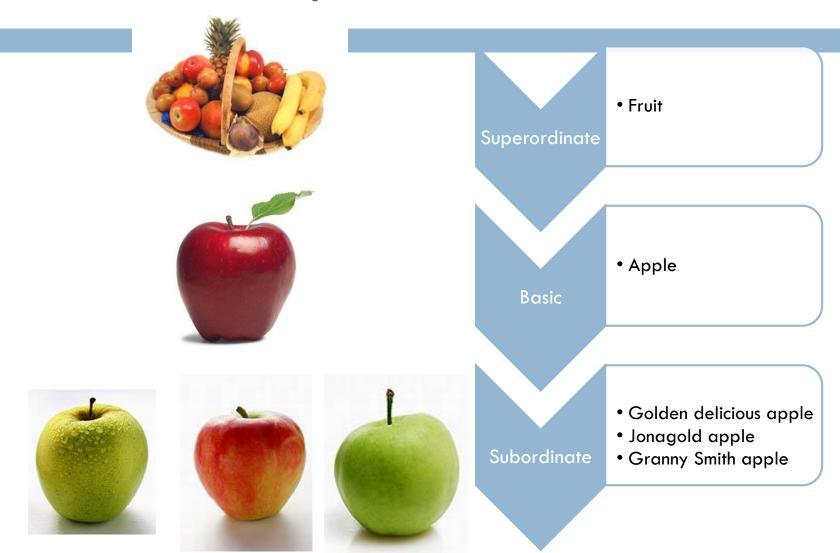
Munsell stripes:

Berlin & Kay - results

Berlin & Kay - results

- 1. All languages contain terms for black and white.
- 2. If a language contains three terms, then it contains a term for red.
- 3. If a language contains four terms, then it contains a term for either green or yellow (but not both).
- 4. If a language contains five terms, then it contains terms for both green and yellow.
- 5. If a language contains six terms, then it contains a term for blue.
- 6. If a language contains seven terms, then it contains a term for brown.
- 7. If a language contains eight or more terms, then it contains terms for purple, pink, orange, and/or gray.

- Eleanor Rosch
- Brown and Berlin
 - Basic level in nature



- □ Eleanor Rosch
- □ Brown and Berlin
 - Basic level in nature
 - People tend to name things on the level of genus instead of species
 - Short, most frequent, simple
 - Learned early in children, more readily
 - Greater cultural significance
 - Perceived as gestalts

Levels of conceptualization

Mental images

It is the highest level at which a single mental image can represent the entire category

2. Gestalt perception

It is the highest level at which category members have similarly perceived overall shapes

Motor programs

It is the highest level at which a person uses similar motor actions for interacting with category members.

4. Knowledge structure

It is the level at which most of our knowledge is organized

Spatial-relations concepts

- □ How we make sense of space around us
 - We automatically "perceive" one entity as *in*, on, or across from another entity.
 - However such perception depends on an enormous amount of unconscious mental activity
 - Most spatial relations are complexes made up of elementary spatial relation
 - E.g. into, on
 - Elementary spatial relation have own structure
 - Image schema
 - Profile
 - Trajector-landmark structure

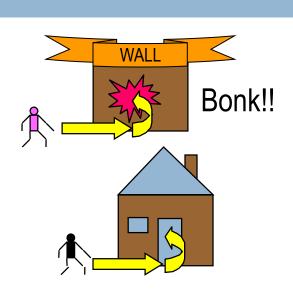
Meanings are embodied

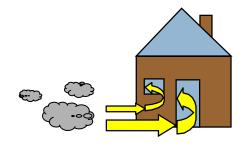
to

CAFE

- Goal of action = at cafe
- Source = away from cafe
- cafe = point-like location

into

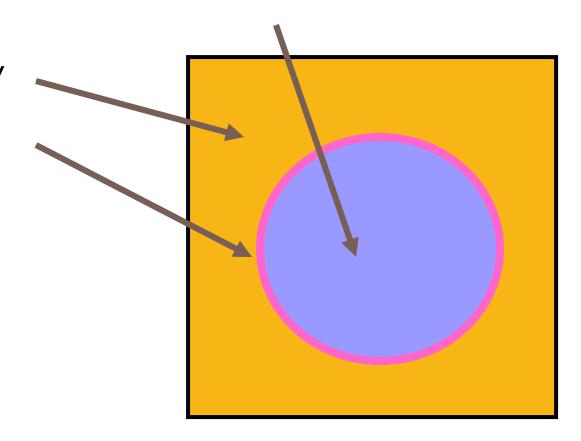

- Goal of action = inside cafe
- Source = outside cafe
- cafe = containing location


Syntax is not independent of semantics

The scientist walked into the wall.

The hobo drifted into the house.

The smoke drifted into the house.


Spatial-relations concepts

- English in consists of
 - Container schema (a bounded region in space)
 - Profile that highlights the interior of the schema
 - A structure that identifies the **boundary** of the interior as the landmark
 - Object overlapping with the interior as a trajector.
- Spatial relations have built-in spatial "logics"
 - □ Given 2 containers, A and B, and an object X, if A is in B and X is in A, then X is in B.

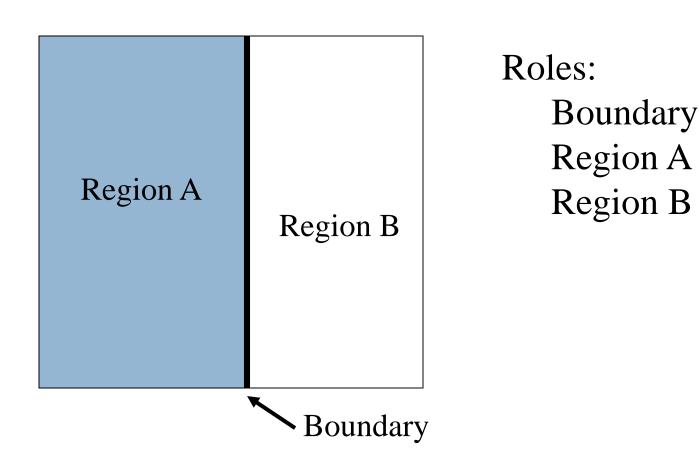
Container Schema

□ Roles:

- Interior: bounded region
- Exterior
- Boundary

Container schema

- □ It is a gestalt structure
 - The parts make no sense without the whole
 - There is no inside without an outside
- The structure is topological
 - The boundary can be made larger, smaller or distorted and still remain boundary

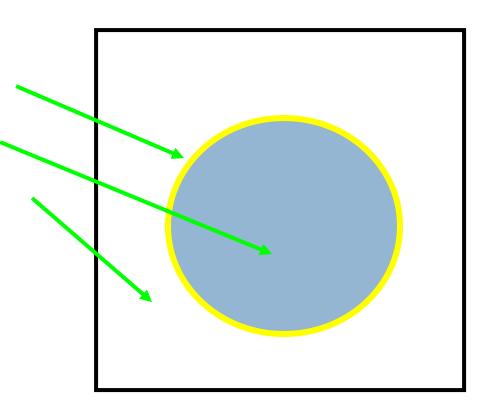

Other image schemas and elements of spatial relations

- Part-whole
- Center-periphery
- □ Link
- Cycle
- Iteration
- Contact
- Adjacency
- Forced motion
 - Pushing / pulling,...

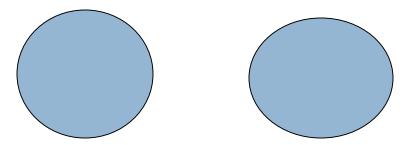
- Support
- Balance
- Near-far

- Orientations
 - Vertical
 - Horizontal
 - Front-back

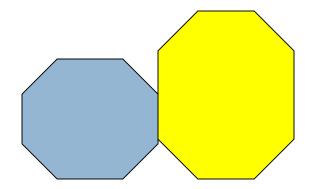
Boundary Schema


Bounded Region

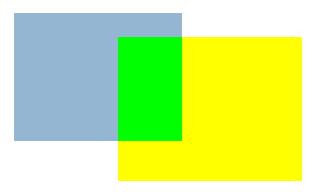
Roles:

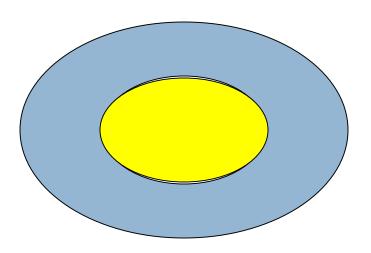

Boundary: closed

Bounded Region

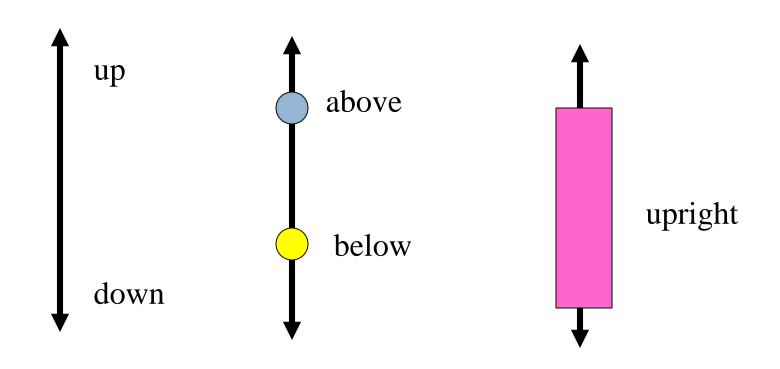

Background region

Separation

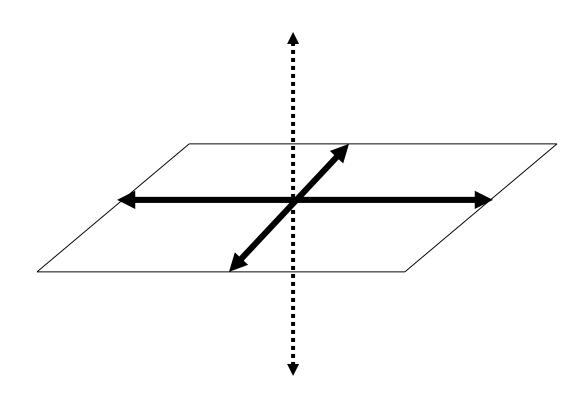

- Separation
- Contact


- Separation
- Contact
- □ Coincidence:

- Separation
- Contact
- □ Coincidence:
 - Overlap



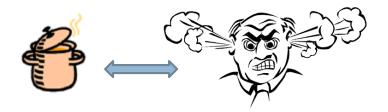
- Separation
- Contact
- □ Coincidence:
 - Overlap
 - Inclusion
- Encircle/surround


Orientation

□ Vertical axis -- up/down

Orientation

Horizontal plane – Two axes:



Conceptual metaphor theory

- Classical theories viewed metaphors as novel or poetic linguistic expressions outside the realm of ordinary everyday language.
- Metaphor has is in many cases central to understanding the meaning of many abstract concepts.
 - Many concepts that are important to us are either abstract or not well-defined in our experience
 - emotions, thoughts, time,...
 - We need to mediate access to them through the concepts that we understand more clearly
 - spatial orientation, objects,...

Example of conceptual metaphor

- ANGER IS HOT FLUID IN CONTAINER
 - His anger reached the top
 - His blood boiled
 - He was blowing off steam
 - He was about to blow out

SOURCE – HOT FLUID IN A CONTAINER	→	TARGET - ANGER
Container	\rightarrow	Body
Temperature / fluid level	\rightarrow	Intensity of anger
Temperature of the fluid / container	\rightarrow	Body temperature
Pressure in the container	\rightarrow	Blood pressure
Simmer of fluid	\rightarrow	Shivering of the body
Explosion	\rightarrow	Loss of self-control
Cold / still fluid	\rightarrow	Absence of anger

Simple metaphor processing

HAPPY IS UP

- When evaluating words as positive or negative, people are faster when word is flashed correspondingly (Meier & Robinson, 2004)
- Metaphorical movement
 - Quicker pushing button near/far to their bodies upon reading (Glenberg&Kaschak, 2002)
 - Adam conveyed the message to you / You conveyed the message to Adam

Cultural variance

- □ Núñez & Sweetser (2006):
 - Speakers of Aymara face the past and have their backs to the future
 - Nayra = past (eye, sight, or front)
 - Q"ipa = future (behind, back)
 - Q"ipüru = tomorrow = q"ipa + uru (some day behind one's back)
 - Analyzed gestures use when talking about time

Affective simulation

- Subjects' faces configured according to sentences with emotional content (Havas 2007)
- When facial emotion matched the content comprehension was better

Gesture

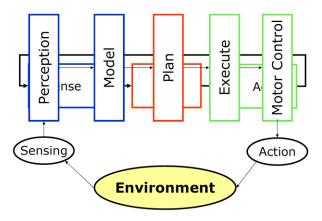
- Producing gestures helps speakers retrieve words whose meaning are related to the gestures (Krauss 1998)
- Also help listeners comprehend what speaker says
- Children can gesture before speaking

Social Cognition

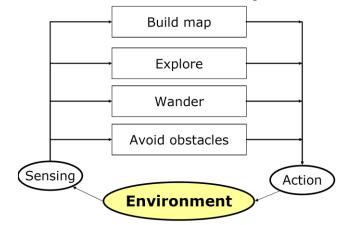
- Embodiment effects
 - Activating elderly stereotype causes people to walk slowly and to perform lexical decision slowly (Dijksterhuis & Bargh 2001)
 - Engaging the smiling musculature produces positive affect (Strack et al. 1988)

Inspiration from Al: Al Nouvelle

- Intelligence without representation (Brooks, 1991)
- "The world is its own best model." R. Brooks
 - example: <u>Mechanical lady bug</u>

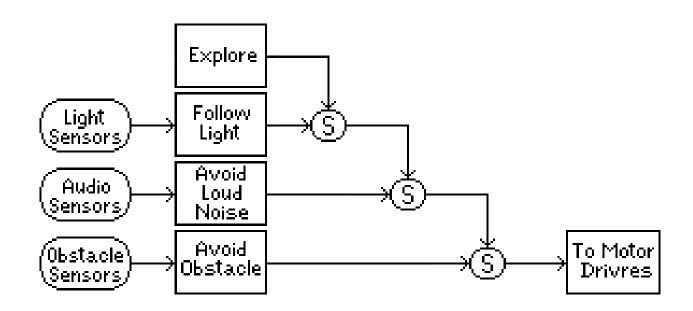

Nouvelle-Al

 Complete agents: Autonomy, embodiment and situatedness

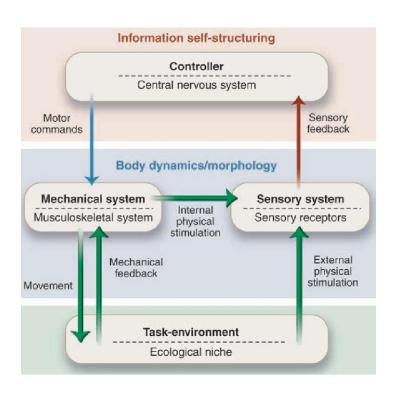


Nouvelle-Al

HorizontalDecomposition – centralised control



Vertical decomposition – layered design



Nouvelle-Al

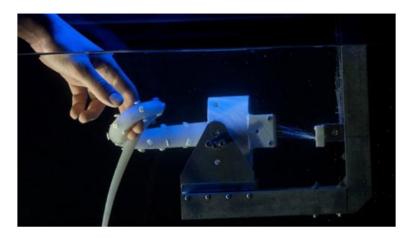
Subsumption architecture (Brooks, 1992)


Offloading intelligence to body

(Pfeifer et al., Science, 2007)

Intelligence in body mechanics

- □ Passive walkers (McGeer, 1990)
- Theo Jansen <u>Kinetic Sculptor</u> (see also his <u>TEDx</u>
 <u>Talk</u>)



Intelligence in material

- Soft robotics
- Coffee-filled balloon gripper robot (Cornell Uni iRobot)
- ☐ The Octopus Project

Body modification

- Self-modification <u>Evolvable hardware</u>
- Artificial evolution: <u>SIMS</u>

Questions?

