

Introduction to cognitive science

Session 6: Computational modeling

Martin Takáč
Centre for cognitive science
DAI FMFI Comenius University in Bratislava

Príprava štúdia matematiky a informatiky na FMFI UK v anglickom jazyku ITMS: 26140230008

Computational models

- embody hypotheses about mechanisms and structures underlying cognition
- require theories to be operationally specified
- enable to control parameters (and gain data)
 inaccessible in humans

Types of models

- By paradigm/approach
 - Symbolic
 - Connectionist
 - Bayesian
 - Dynamical System
 - Multiagent system
 - Embodied (in physical robot)

- hypotheses, data, model, simulation
- model behaviour and model fit
- model parameters
- simplification
- proof-of-concept
- validation and verification

- hypotheses, data, model, simulation
- model behaviour and model fit
- model parameters
- simplification
- proof-of-concept
- validation and verification

Model fit

- hypotheses, data, model, simulation
- model behaviour and model fit
- model parameters
- simplification
- proof-of-concept
- validation and verification

Three Levels of Description (David Marr)

- Computational theory
- Representation and algorithm
- 3. Implementation level

- Modelled phenomenon: process of transformation of visual representation (written words) into sound patterns (spoken words)
- Empirical data to fit: reading patterns, types of errors, reaction times in healthy readers vs. readers with various disorders (dyslexias, alexias).

- Stimuli
 - words with regular pronunciation: hint, mood
 - words with irregular pronunciation: pint, flood
 - Non-words (pseudowords): flernish (but not wstoepfteg)
- Dyslexias
 - Surface dyslexia: non-words and regular words ok, irregular words impaired (regularized)
 - Phonological dyslexia: non-words impaired, words ok.

- A good model should account for:
 - reading patterns and RT for reading (or other tasks, such as lexical decision)
 - on regular and irregular words and non-words
 - in healthy readers, phonological and surface dyslectics
 - (in different languages: with shallow (e.g. Croatian) or deep (e.g. Hebrew) orthography)

- Selection of architecture:
 - dual-route model (left, Coltheart, 1985)
 - PDP models (right, Seidenberg & McClelland, 1989)

Coltheart et al. (1993): Models of Reading Aloud: Dual-Route and Parallel-Distributed-Processing Approaches, Psychological Review 100(4):589-608

- hypotheses, data, model, simulation
- model behaviour and model fit
- model parameters
- simplification
- proof-of-concept
- validation and verification

Verification vs. validation

- Verification: whether the model implementation realizes the abstract model design
- Validation: whether the model design is relevant for the real system (are simplifying assumptions realistic?) and reflects its behaviour.

Which model is the best one?

- validated by fit between simulated and real behavior (consistency with the data)
- the fit is not a proof of the hypothesis (model can be falsified by data, but not proved)!
- In case of good fit, the selection criterion is often parsimony (Occam's razor)

Life cycle of a modelling project

- 1. Gain theoretical insight, formulate hypotheses
- Choose a task/scenario
- 3. Add details, turn hypotheses about:
 - structure into model architecture design
 - processes into algorithms
 - behaviours into operationalized tests
- 4. Implement
- 5. Choose parameter values, run simulations, get results
- 6. Compare results with empirical data and evaluate goodness of fit
- Vary parameters, find optimal values, iterate steps 5-7
- 8. Analyse the results
- Extrapolate the results into the modelled domain to gain deeper understanding

Case study: Origin of language

 Phylogeny: Evolution of biological and cognitive predispositions

Ontogeny: Individual language acquisition

□ Glossogeny: Historical language changes

Origin of language

- Phylogeny: Evolution of biological and cognitive predispositions
 - Evolution
- Ontogeny: Individual language acquisition
 - Learning
- Glossogeny: Historical language changes
 - Cultural transmission

Origin of language

- Phylogeny: Evolution of biological and cognitive predispositions
 - Evolution: Evolutionary algorithms
- Ontogeny: Individual language acquisition
 - Learning: Machine learning, Artificial neural networks
- Glossogeny: Historical language changes
 - Cultural transmission: Multi-agent systems

Artificial evolution

- Population of individuals
- Each individual has a behavioural strategy (phenotype) encoded in genome (genotype)
- Individuals compete for resources (fitness-based selection)
- Multiple rounds, at the end of the round they reproduce (mutation, cross-over) and die

Examples

- Evolution of altruism, moral norms, etc.
- Prisoner's dilemma
- Cost matrix (Reward, Punishment, Temptation, Sucker): T>R>P>S

v	·	
	C2	D2
C1	R	S
D1	Τ	Р

	C2	D2
C1	5,5	0,3
D1	3,0	1,1

Example

- Cheating/checking (Knez, Takáč, 2014)
- □ Netlogo

- hypotheses, data, model, simulation
- model behaviour and model fit
- model parameters
- simplification
- proof-of-concept
- validation and verification

Models of cultural transmission

- Complex systems
- Emergence: local rules, global behaviours
- Multi-agent systems

Talking Heads (Steels, 1999)

Communication

Speaker:

- context, topic, background
- discriminating category
- lexicalization (signal selection)

Hearer:

Signal interpretation

Communication success

□ The same referents

Questions?

