
Semantics
Translation

Answer Set Programming
Reasoning about Actions

Martin Baláž

Department of Applied Informatics
Comenius University in Bratislava

2009/2010

Martin Baláž Answer Set Programming

Semantics
Translation

Outline

1 Semantics
Positive Planning Domains
General Planning Domains

2 Translation

Martin Baláž Answer Set Programming

Semantics
Translation

Positive Planning Domains
General Planning Domains

Grounded Planning Domain

Definition (Legal Action and Fluent Instances)

Let PD = 〈Π, 〈D,R〉〉 be a planning domain and M be a unique
stable model of Π.
An action (resp. fluent) instance θ(p(X1, . . . ,Xn)) is legal if there
exists a θ-instance of an action (resp. fluent) declaration in D of
a form

p(X1, ..., Xn) requires t1, ..., tm

such that M |= {θ(t1), . . . , θ(tm)}.

Example

occupied(a) is a legal fluent instance.
move(table, b) is an action instance which is not legal.

Martin Baláž Answer Set Programming

Semantics
Translation

Positive Planning Domains
General Planning Domains

State Transition

Definition (State)

A state is any consistent set of legal fluent instances and their
negations.

Definition (State Transition)

A state transition is a tuple 〈s,A , s′〉 where s and s′ are states and
A is a set of legal action instances.

Example

s = {on(a, table), on(b , a), on(c, b)}
A = {move(c, table)}
s′ = {on(a, table), on(b , a), on(c, table),−on(c, b)}

Martin Baláž Answer Set Programming

Semantics
Translation

Positive Planning Domains
General Planning Domains

Initial State

Definition (Initial State)

Let PD = 〈Π, 〈D,R〉〉 be a positive planning domain and M be
a unique stable model of Π.
A state s is an initial state if it is the least set such that for all initial
state constraints in R of a form

initially caused f if B

holds s ∪M |= B ⇒ s |= f .

Example
initially on(a, table).
initially on(b, a).

Martin Baláž Answer Set Programming

Semantics
Translation

Positive Planning Domains
General Planning Domains

Executable Actions

Definition (Executable Action Set)

Let PD = 〈Π, 〈D,R〉〉 be a positive planning domain and M be
a unique stable model of Π.
A set of legal action instances A is executable w.r.t. a state s if for
all a ∈ A there exists an executability condition in R of a form

executable a if C

such that s ∪ A ∪M |= C.

Martin Baláž Answer Set Programming

Semantics
Translation

Positive Planning Domains
General Planning Domains

Legal State Transition

Definition (Legal State Transition)

Let PD = 〈Π, 〈D,R〉〉 be a positive planning domain and M be
a unique stable model of Π.
A state transition 〈s,A , s′〉 is legal if A is a legal action set
executable in s and s′ is the least set such that for all causation
rules in r of a form

caused f if B after C

holds s ∪ A ∪M |= C ∧ s′ ∪M |= B ⇒ s′ |= f .

Martin Baláž Answer Set Programming

Semantics
Translation

Positive Planning Domains
General Planning Domains

Planning Domain Reduction

Definition (Reduction)

Let PD = 〈Π, 〈D,R〉〉 be a planning domain, M be a unique model
of Π, and t = 〈s,A , s′〉 be a state transition.
A planning domain reduction of PD by t is a positive planning
domain PD t = 〈Π, 〈D,R t 〉〉 where R t is obtained from R by
deleting

each r ∈ R where s′ ∪M 6|= {∼ bk+1, . . . ,∼ bl}

each r ∈ R where s ∪ A ∪M 6|= {∼ cm+1, . . . ,∼ cn}

remaining default literals

Martin Baláž Answer Set Programming

Semantics
Translation

Positive Planning Domains
General Planning Domains

General Planning Domains

Definition
Let PD = 〈Π, 〈D,R〉〉 be a planning domain and M be a unique
model of Π.

A state s is an initial state of PD if s is an initial state of
PD〈∅,∅,s〉.

A set of action instances A is executable w.r.t. s in PD if A is
executable w.r.t. s in PD〈s,A ,∅〉.

A state transition 〈s,A , s′〉 is legal in PD if 〈s,A , s′〉 is legal in
PD〈s,A ,s

′〉.

Definition (Legal Transition Sequence)

A sequence of legal state transitions
T = 〈〈s0,A1, s1〉, 〈s1,A2, s2〉, . . . , 〈sn−1,An, sn〉〉, 0 ≤ n is legal if s0

is an initial state.

Martin Baláž Answer Set Programming

Semantics
Translation

Positive Planning Domains
General Planning Domains

Plans

Definition (Optimistic Plan)

Let P = 〈PD, q〉 be a planning problem.
A sequence of action sets 〈A1, . . . ,An〉, n ≥ 0, is an optimistic plan
if there exists a legal transition sequence
T = 〈〈s0,A1, s1〉, . . . , 〈sn−1,An, sn〉〉, 0 ≤ n such that sn |= q.

Definition (Secure Plan)

An optimistic plan 〈A1, . . . ,An〉, n ≥ 0, is secure if for every initial
state s0 and legal transition sequence
T = 〈〈s0,A1, s1〉, . . . , 〈sm−1,Am, sm〉〉, 0 ≤ m ≤ n either m = n and
sm |= q or m < n and there exists some legal transition
〈sm,Am+1, sm+1〉.

Martin Baláž Answer Set Programming

Semantics
Translation

Translation

0 Macro expansion
1 Background knowledge
2 Auxiliary predicates
3 Causation rules
4 Executability conditions
5 Initial state constraints
6 Goal query

Martin Baláž Answer Set Programming

Semantics
Translation

Auxiliary predicates

〈〈s0,A1, s1〉, . . . , 〈sn−1,An, sn〉〉

Example (Translation)
time(0).
...
time(n).
next(0, 1).
...
next(n-1, n).
actiontime(0).
...
actiontime(n-1).

Martin Baláž Answer Set Programming

Semantics
Translation

Causation Rules

caused f if B after C

fluent atom f and all fluent atoms from B are expanded with
additional parameter T1

if f = false, the resulting rule is a constraint

all action and fluent atoms from C are expanded with
additional parameter T0

type atoms remain unchanged

we add time(T1) to the body, if A is empty, next(T0,T1)
otherwise

to make a rule safe, for a fluent literal f and for default negated
action and fluent literals from B ∪ C, we add typing
information from corresponding declaration to the body

Martin Baláž Answer Set Programming

Semantics
Translation

Causation Rules

Example
fluents: on(B, L) requires block(B), location(L).

occupied(B) requires block(B).
actions: move(B, L) requires block(B), location(L).
always: caused occupied(B) if on(B1, B).

caused on(B, L) after move(B, L).

becomes

Example
occupied(B, T1) :- on(B1, B, T1), block(B), time(T1).
on(B, L, T1) :- move(B, L, T0), block(B),

location(L), next(T0, T1).

Martin Baláž Answer Set Programming

Semantics
Translation

Executability Conditions

executable a if C

the head is a ∨ ¬ a expanded with additional parameter T0

all action and fluent atoms from C are expanded with
additional parameter T0

type atoms remain unchanged

we add actiontime(T0) to the body

to make a rule safe, for an action literal a and for default
negated action and fluent literals from C, we add typing
information from corresponding declaration to the body

Martin Baláž Answer Set Programming

Semantics
Translation

Executability Conditions

Example
actions: move(B, L) requires block(B), location(L).
always: executable move(B, L) if B <> L.

becomes

Example
move(B, L, T0) v -move(B, L, T0) :- B <> L,

block(B), location(L), actiontime(T0).

Martin Baláž Answer Set Programming

Semantics
Translation

Initial State Constraints

initially caused f if B.

Like static causation rules, but with T1 = 0.

Example
initially: on(a, table). on(b, table). on(c, a).

becomes

Example
on(a, table, 0).
on(b, table, 0).
on(c, a, 0).

Martin Baláž Answer Set Programming

Semantics
Translation

Goal Query

g1, ..., gm, not gm+1, ..., gn?

the head is a new predicate symbol goal

the body is g1, ..., gm, not gm+1, ..., gn expanded
with new additional parameter i (the length of a plan)

new constraint :- goal is added

Example
goal: on(c, b), on(b, a), on(a, table)?

Example
goal :- on(c, b, 3), on(b, a, 3), on(a, table, 3).

:- not goal.

Martin Baláž Answer Set Programming

Semantics
Translation

Completeness and Correctness

Theorem

Let P be a planning problem and let lp(P) be the generated logic
program. For any interpretation S and j ≥ 0 we define

AS
j = {a(t) | a(t , j − 1) ∈ S, a(t) is an action atom}

sS
j = {f(t) | f(t , j) ∈ S, f(t) is a fluent literal}

For each optimistic plan P = 〈A1, . . . ,An〉 and witnessing
sequence T = 〈〈s0,A1, s1〉, . . . , 〈sn−1,An, sn〉〉 there exists an
answer set S such that Aj = AS

j , 0 < j ≤ n and sj = SS
j , 0 ≤ j ≤ n.

For each answer set S, P = 〈A1, . . . ,An〉 is an optimistic plan
witnessed by sequence T = 〈〈s0,A1, s1〉, . . . , 〈sn−1,An, sn〉〉 where
Aj = AS

j , 0 < j ≤ n and sj = sS
j , 0 ≤ j ≤ n.

Martin Baláž Answer Set Programming

	Semantics
	Positive Planning Domains
	General Planning Domains

	Translation

