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Grounded Planning Domain

Definition (Legal Action and Fluent Instances)

Let PD = 〈Π, 〈D,R〉〉 be a planning domain and M be a unique
stable model of Π.
An action (resp. fluent) instance θ(p(X1, . . . ,Xn)) is legal if there
exists a θ-instance of an action (resp. fluent) declaration in D of
a form

p(X1, ..., Xn) requires t1, ..., tm

such that M |= {θ(t1), . . . , θ(tm)}.

Example

occupied(a) is a legal fluent instance.
move(table, b) is an action instance which is not legal.
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State Transition

Definition (State)

A state is any consistent set of legal fluent instances and their
negations.

Definition (State Transition)

A state transition is a tuple 〈s,A , s′〉 where s and s′ are states and
A is a set of legal action instances.

Example

s = {on(a, table), on(b , a), on(c, b)}
A = {move(c, table)}
s′ = {on(a, table), on(b , a), on(c, table),−on(c, b)}
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Initial State

Definition (Initial State)

Let PD = 〈Π, 〈D,R〉〉 be a positive planning domain and M be
a unique stable model of Π.
A state s is an initial state if it is the least set such that for all initial
state constraints in R of a form

initially caused f if B

holds s ∪M |= B ⇒ s |= f .

Example
initially on(a, table).
initially on(b, a).
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Executable Actions

Definition (Executable Action Set)

Let PD = 〈Π, 〈D,R〉〉 be a positive planning domain and M be
a unique stable model of Π.
A set of legal action instances A is executable w.r.t. a state s if for
all a ∈ A there exists an executability condition in R of a form

executable a if C

such that s ∪ A ∪M |= C.
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Legal State Transition

Definition (Legal State Transition)

Let PD = 〈Π, 〈D,R〉〉 be a positive planning domain and M be
a unique stable model of Π.
A state transition 〈s,A , s′〉 is legal if A is a legal action set
executable in s and s′ is the least set such that for all causation
rules in r of a form

caused f if B after C

holds s ∪ A ∪M |= C ∧ s′ ∪M |= B ⇒ s′ |= f .
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Planning Domain Reduction

Definition (Reduction)

Let PD = 〈Π, 〈D,R〉〉 be a planning domain, M be a unique model
of Π, and t = 〈s,A , s′〉 be a state transition.
A planning domain reduction of PD by t is a positive planning
domain PD t = 〈Π, 〈D,R t 〉〉 where R t is obtained from R by
deleting

each r ∈ R where s′ ∪M 6|= {∼ bk+1, . . . ,∼ bl}

each r ∈ R where s ∪ A ∪M 6|= {∼ cm+1, . . . ,∼ cn}

remaining default literals
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General Planning Domains

Definition
Let PD = 〈Π, 〈D,R〉〉 be a planning domain and M be a unique
model of Π.

A state s is an initial state of PD if s is an initial state of
PD〈∅,∅,s〉.

A set of action instances A is executable w.r.t. s in PD if A is
executable w.r.t. s in PD〈s,A ,∅〉.

A state transition 〈s,A , s′〉 is legal in PD if 〈s,A , s′〉 is legal in
PD〈s,A ,s

′〉.

Definition (Legal Transition Sequence)

A sequence of legal state transitions
T = 〈〈s0,A1, s1〉, 〈s1,A2, s2〉, . . . , 〈sn−1,An, sn〉〉, 0 ≤ n is legal if s0

is an initial state.
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Plans

Definition (Optimistic Plan)

Let P = 〈PD, q〉 be a planning problem.
A sequence of action sets 〈A1, . . . ,An〉, n ≥ 0, is an optimistic plan
if there exists a legal transition sequence
T = 〈〈s0,A1, s1〉, . . . , 〈sn−1,An, sn〉〉, 0 ≤ n such that sn |= q.

Definition (Secure Plan)

An optimistic plan 〈A1, . . . ,An〉, n ≥ 0, is secure if for every initial
state s0 and legal transition sequence
T = 〈〈s0,A1, s1〉, . . . , 〈sm−1,Am, sm〉〉, 0 ≤ m ≤ n either m = n and
sm |= q or m < n and there exists some legal transition
〈sm,Am+1, sm+1〉.
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Auxiliary predicates

〈〈s0,A1, s1〉, . . . , 〈sn−1,An, sn〉〉

Example (Translation)
time(0).
...
time(n).
next(0, 1).
...
next(n-1, n).
actiontime(0).
...
actiontime(n-1).
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Causation Rules

caused f if B after C

fluent atom f and all fluent atoms from B are expanded with
additional parameter T1

if f = false, the resulting rule is a constraint

all action and fluent atoms from C are expanded with
additional parameter T0

type atoms remain unchanged

we add time(T1) to the body, if A is empty, next(T0,T1)
otherwise

to make a rule safe, for a fluent literal f and for default negated
action and fluent literals from B ∪ C, we add typing
information from corresponding declaration to the body
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Causation Rules

Example
fluents: on(B, L) requires block(B), location(L).

occupied(B) requires block(B).
actions: move(B, L) requires block(B), location(L).
always: caused occupied(B) if on(B1, B).

caused on(B, L) after move(B, L).

becomes

Example
occupied(B, T1) :- on(B1, B, T1), block(B), time(T1).
on(B, L, T1) :- move(B, L, T0), block(B),

location(L), next(T0, T1).
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Executability Conditions

executable a if C

the head is a ∨ ¬ a expanded with additional parameter T0

all action and fluent atoms from C are expanded with
additional parameter T0

type atoms remain unchanged

we add actiontime(T0) to the body

to make a rule safe, for an action literal a and for default
negated action and fluent literals from C, we add typing
information from corresponding declaration to the body
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Executability Conditions

Example
actions: move(B, L) requires block(B), location(L).
always: executable move(B, L) if B <> L.

becomes

Example
move(B, L, T0) v -move(B, L, T0) :- B <> L,

block(B), location(L), actiontime(T0).
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Initial State Constraints

initially caused f if B.

Like static causation rules, but with T1 = 0.

Example
initially: on(a, table). on(b, table). on(c, a).

becomes

Example
on(a, table, 0).
on(b, table, 0).
on(c, a, 0).
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Goal Query

g1, ..., gm, not gm+1, ..., gn?

the head is a new predicate symbol goal

the body is g1, ..., gm, not gm+1, ..., gn expanded
with new additional parameter i (the length of a plan)

new constraint :- goal is added

Example
goal: on(c, b), on(b, a), on(a, table)?

Example
goal :- on(c, b, 3), on(b, a, 3), on(a, table, 3).

:- not goal.
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Completeness and Correctness

Theorem

Let P be a planning problem and let lp(P) be the generated logic
program. For any interpretation S and j ≥ 0 we define

AS
j = {a(t) | a(t , j − 1) ∈ S, a(t) is an action atom}

sS
j = {f(t) | f(t , j) ∈ S, f(t) is a fluent literal}

For each optimistic plan P = 〈A1, . . . ,An〉 and witnessing
sequence T = 〈〈s0,A1, s1〉, . . . , 〈sn−1,An, sn〉〉 there exists an
answer set S such that Aj = AS

j , 0 < j ≤ n and sj = SS
j , 0 ≤ j ≤ n.

For each answer set S, P = 〈A1, . . . ,An〉 is an optimistic plan
witnessed by sequence T = 〈〈s0,A1, s1〉, . . . , 〈sn−1,An, sn〉〉 where
Aj = AS

j , 0 < j ≤ n and sj = sS
j , 0 ≤ j ≤ n.
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