Semantics Translation

Answer Set Programming Reasoning about Actions

Martin Baláž

Department of Applied Informatics Comenius University in Bratislava

2009/2010

ヘロト ヘ部ト ヘヨト ヘヨト

Semantics

- Positive Planning Domains
- General Planning Domains

イロト イポト イヨト イヨト

General Planning Doma

Grounded Planning Domain

Definition (Legal Action and Fluent Instances)

Let $PD = \langle \Pi, \langle D, R \rangle \rangle$ be a planning domain and M be a unique stable model of Π .

An action (resp. fluent) instance $\theta(p(X_1, ..., X_n))$ is *legal* if there exists a θ -instance of an action (resp. fluent) declaration in *D* of a form

$$p(X_1, ..., X_n)$$
 requires $t_1, ..., t_m$

such that $M \models \{\theta(t_1), \ldots, \theta(t_m)\}$.

Example

occupied(a) is a legal fluent instance. move(table, b) is an action instance which is not legal.

ヘロト ヘヨト ヘヨト

Definition (State)

A *state* is any consistent set of legal fluent instances and their negations.

Definition (State Transition)

A state transition is a tuple (s, A, s') where s and s' are states and A is a set of legal action instances.

Example

 $s = \{on(a, table), on(b, a), on(c, b)\}$

$$A = \{move(c, table)\}$$

 $s' = \{on(a, table), on(b, a), on(c, table), -on(c, b)\}$

< ロト < 同ト < ヨト < ヨト

Definition (Initial State)

Let $PD = \langle \Pi, \langle D, R \rangle \rangle$ be a positive planning domain and M be a unique stable model of Π .

A state s is an *initial state* if it is the least set such that for all initial state constraints in R of a form

initially caused f if B

holds $s \cup M \models B \Rightarrow s \models f$.

Example

```
initially on(a, table).
initially on(b, a).
```

ヘロト ヘ部ト ヘヨト ヘヨト

Executable Actions

Definition (Executable Action Set)

Let $PD = \langle \Pi, \langle D, R \rangle \rangle$ be a positive planning domain and *M* be a unique stable model of Π .

A set of legal action instances A is *executable* w.r.t. a state s if for all $a \in A$ there exists an executability condition in R of a form

executable a if C

such that $s \cup A \cup M \models C$.

イロト イポト イヨト イヨト

Legal State Transition

Definition (Legal State Transition)

Let $PD = \langle \Pi, \langle D, R \rangle \rangle$ be a positive planning domain and *M* be a unique stable model of Π .

A state transition $\langle s, A, s' \rangle$ is *legal* if A is a legal action set executable in s and s' is the least set such that for all causation rules in r of a form

caused f if B after C

holds $s \cup A \cup M \models C \land s' \cup M \models B \Rightarrow s' \models f$.

イロト イポト イヨト イヨト

Planning Domain Reduction

Definition (Reduction)

Let $PD = \langle \Pi, \langle D, R \rangle \rangle$ be a planning domain, *M* be a unique model of Π , and $t = \langle s, A, s' \rangle$ be a state transition.

A planning domain reduction of *PD* by *t* is a positive planning domain $PD^t = \langle \Pi, \langle D, R^t \rangle \rangle$ where R^t is obtained from *R* by deleting

- each $r \in R$ where $s' \cup M \not\models \{\sim b_{k+1}, \ldots, \sim b_l\}$
- each $r \in R$ where $s \cup A \cup M \not\models \{\sim c_{m+1}, \ldots, \sim c_n\}$
- remaining default literals

・ロト ・ 四ト ・ ヨト ・ ヨト ・

General Planning Domains

Definition

Let $PD = \langle \Pi, \langle D, R \rangle \rangle$ be a planning domain and M be a unique model of Π .

- A state s is an initial state of PD if s is an initial state of PD^{⟨∅,∅,s⟩}.
- A set of action instances A is executable w.r.t. s in PD if A is executable w.r.t. s in PD^(s,A,0).
- A state transition ⟨s, A, s'⟩ is legal in PD if ⟨s, A, s'⟩ is legal in PD^{⟨s,A,s'⟩}.

Definition (Legal Transition Sequence)

A sequence of legal state transitions $T = \langle \langle s_0, A_1, s_1 \rangle, \langle s_1, A_2, s_2 \rangle, \dots, \langle s_{n-1}, A_n, s_n \rangle \rangle, 0 \le n$ is *legal* if s_0 is an initial state.

Definition (Optimistic Plan)

Let $\mathcal{P} = \langle PD, q \rangle$ be a planning problem. A sequence of action sets $\langle A_1, \dots, A_n \rangle$, $n \ge 0$, is an *optimistic plan* if there exists a legal transition sequence $T = \langle \langle s_0, A_1, s_1 \rangle, \dots, \langle s_{n-1}, A_n, s_n \rangle \rangle$, $0 \le n$ such that $s_n \models q$.

Definition (Secure Plan)

An optimistic plan $\langle A_1, \ldots, A_n \rangle$, $n \ge 0$, is *secure* if for every initial state s_0 and legal transition sequence $T = \langle \langle s_0, A_1, s_1 \rangle, \ldots, \langle s_{m-1}, A_m, s_m \rangle \rangle$, $0 \le m \le n$ either m = n and $s_m \models q$ or m < n and there exists some legal transition $\langle s_m, A_{m+1}, s_{m+1} \rangle$.

イロト イヨト イヨト イヨト

Translation

- Macro expansion
- Background knowledge
- Auxiliary predicates
- Causation rules
- Executability conditions
- Initial state constraints
- Goal query

(4 冊) (4 回) (4 回)

Semantics Translation

Auxiliary predicates

 $\langle \langle s_0, A_1, s_1 \rangle, \dots, \langle s_{n-1}, A_n, s_n \rangle \rangle$

Example (Translation) time(0). . . . time(n). next(0, 1). . . . next(n-1, n). actiontime(0). . . . actiontime(n-1).

イロト イヨト イヨト イヨト

caused f if B after C

- fluent atom f and all fluent atoms from B are expanded with additional parameter T₁
- if f = false, the resulting rule is a constraint
- all action and fluent atoms from C are expanded with additional parameter T₀
- type atoms remain unchanged
- we add time(T₁) to the body, if A is empty, next(T₀, T₁) otherwise
- to make a rule safe, for a fluent literal *f* and for default negated action and fluent literals from $B \cup C$, we add typing information from corresponding declaration to the body

Causation Rules

Example

becomes

Example

イロト イヨト イヨト イヨト

Executability Conditions

executable a if C

- the head is $a \lor \neg a$ expanded with additional parameter T_0
- all action and fluent atoms from C are expanded with additional parameter T₀
- type atoms remain unchanged
- we add $actiontime(T_0)$ to the body
- to make a rule safe, for an action literal *a* and for default negated action and fluent literals from *C*, we add typing information from corresponding declaration to the body

(4 冊) (4 回) (4 回)

Semantics Translation

Executability Conditions

Example

actions: move(B, L) requires block(B), location(L).
always: executable move(B, L) if B <> L.

becomes

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Initial State Constraints

initially caused f if B.

Like static causation rules, but with $T_1 = 0$.

Example						
initially:	on(a,	table).	on(b,	table).	on(c,	a).

becomes

Examp	le	
on(a,	table,	0).
on(b,	table,	0).
on(c,	a, 0).	

・ロト ・ 四ト ・ ヨト ・ ヨト ・

크

Goal Query

 $g_1, \ldots, g_m, \text{ not } g_{m+1}, \ldots, g_n?$

- the head is a new predicate symbol goal
- the body is g_1, \ldots, g_m , not g_{m+1}, \ldots, g_n expanded with new additional parameter *i* (the length of a plan)
- new constraint :- goal is added

Completeness and Correctness

Theorem

Let \mathcal{P} be a planning problem and let $lp(\mathcal{P})$ be the generated logic program. For any interpretation S and $j \ge 0$ we define

$$\begin{array}{lll} A_j^S &=& \{a(t) \mid a(t,j-1) \in S, a(t) \text{ is an action atom} \} \\ s_j^S &=& \{f(t) \mid f(t,j) \in S, f(t) \text{ is a fluent literal} \} \end{array}$$

For each optimistic plan $P = \langle A_1, ..., A_n \rangle$ and witnessing sequence $T = \langle \langle s_0, A_1, s_1 \rangle, ..., \langle s_{n-1}, A_n, s_n \rangle \rangle$ there exists an answer set *S* such that $A_j = A_j^S$, $0 < j \le n$ and $s_j = S_j^S$, $0 \le j \le n$.

For each answer set S, $P = \langle A_1, ..., A_n \rangle$ is an optimistic plan witnessed by sequence $T = \langle \langle s_0, A_1, s_1 \rangle, ..., \langle s_{n-1}, A_n, s_n \rangle \rangle$ where $A_j = A_j^S$, $0 < j \le n$ and $s_j = s_j^S$, $0 \le j \le n$.

< ロト < 同ト < ヨト < ヨト