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Abstract—The imperfect nature of context in Ambient In-
telligence environments and the special characteristics of the
entities that possess and share the available context information
render contextual reasoning a very challenging task. The accom-
plishment of this task requires formal models that handle the
involved entities as autonomous logic-based agents and provide
methods for handling the imperfect and distributed nature of
context. This paper proposes a solution based on the Multi-
Context Systems paradigm, in which local context knowledge
of ambient agents is encoded in rule theories (contexts), and
information flow between agents is achieved through mapping
rules that associate concepts used by different contexts. To handle
imperfect context, we extend Multi-Context Systems with non-
monotonic features; local defeasible theories, defeasible mapping
rules, and a preference ordering on the system contexts. On top of
this model, we have developed an argumentation framework that
exploits context and preference information to resolve potential
conflicts caused by the interaction of ambient agents through the
mappings, and a distributed algorithm for query evaluation.

Index Terms—Ambient Intelligence, contextual reasoning, de-
feasible reasoning, argumentation systems

I. INTRODUCTION

COMPUTING is moving towards pervasive, ubiquitous
environments in which devices, software agents and ser-

vices are all expected to seamlessly integrate and cooperate in
support of human objectives, anticipating needs and delivering
services in an anywhere, any-time and for-all fashion [1].
Pervasive Computing and Ambient Intelligence are considered
to be key issues in the further development and use of
Information and Communication technologies, as evidenced,
for example, by the IST Advisory Group [2].

The study of Ambient Intelligence environments and per-
vasive computing systems has introduced new research chal-
lenges in the field of Distributed Artificial Intelligence. These
are mainly caused by the imperfect nature of context and the
special characteristics of the entities that possess and share
the available context information. Henricksen and Indulska
characterize in [3] four types of imperfect context: unknown,
ambiguous, imprecise, and erroneous. The agents that operate
in ambient environments are expected to have different goals,
experiences and perceptive capabilities and use distinct vocab-
ularies to describe their context. Due to the highly dynamic
and open nature of the environment and the unreliable wireless
communications that are restricted by the range of transmitters,
ambient agents do not typically know a priori all other entities
that are present at a specific time instance nor can they
communicate directly with all of them.
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So far, Ambient Intelligence systems have not managed to
efficiently handle all these challenges. As it has been already
surveyed in [4], most of them follow classical reasoning ap-
proaches that assume perfect knowledge of context, failing to
deal with cases of missing, inaccurate or inconsistent context
information. Regarding the distribution of reasoning tasks,
a common approach followed in most systems assumes the
existence of a central entity, which is responsible for collecting
and reasoning with all the available context information.
However, Ambient Intelligence environments have much more
demanding requirements. The dynamics of the network and the
unreliable and restricted wireless communications inevitably
call for the decentralization of the reasoning tasks.

In previous works, we presented a formal approach for
representing imperfect and distributed context in Ambient
Intelligence environments [5], and described application sce-
narios of our approach in the Ambient Intelligence domain
[6]. Our approach is based on a formalism from Distributed
Artificial Intelligence, known as Multi-Context Systems (MCS).
Specifically, we model the involved entities as autonomous
logic-based agents; the knowledge possessed by an agent as
a local context rule theory; and the associations between the
context knowledge possessed by different ambient agents as
mappings between their respective context theories. To support
cases of missing or inaccurate local context knowledge, we
represent contexts as local theories of Defeasible Logic; and
to handle potential inconsistencies caused by the interaction of
contexts, we extend the MCS model with defeasible mapping
rules, and with a preference ordering on the system contexts.
The main contribution of this paper is to provide a semantic
characterization of the model using arguments. The use of
arguments is a natural choice in multi-agent systems, as
evidenced for example in [7], and aims at a more formal
and abstract description of our approach. Conflicts that arise
from the interaction of mutually inconsistent contexts are
captured through attacking arguments, and conflict resolution
is achieved by ranking arguments according to a preference
ordering on the system contexts. We also provide an op-
erational model in the form of a distributed algorithm for
query evaluation. The algorithm has been implemented in Java
and evaluated in a simulated P2P system, and the results are
available in [8]. Here, we focus more on its formal properties.

The rest of the paper is organized as follows: next section
describes a motivating scenario that highlights the special char-
acteristics of contextual reasoning in Ambient Intelligence.
Section III presents background information and related work
on contextual reasoning. Section IV presents the proposed rep-
resentation model, while Section V describes its argumentation
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semantics. Section VI presents the distributed algorithm for
query evalaution and studies its properties, while last section
summarizes and discusses future work.

II. MOTIVATING SCENARIO

In this section we describe an imaginary scenario from the
Ambient Intelligence domain and discuss the challenges of
reasoning with the available context information.

A. Context-Aware Mobile Phone in an Ambient Classroom

The scenario involves a context-aware mobile phone that
has been configured by Dr. Amber to decide whether it should
ring (in case of incoming calls) based on his preferences and
context. Dr. Amber has the following preferences: His phone
should ring in case of an incoming call, unless it is in silent
mode or he is giving a lecture.

Consider the case that Dr. Amber is currently located in
the ’RA201’ university classroom. It is class time, but he has
just finished with a course lecture, and still remains in the
classroom reading his emails on his laptop. The mobile phone
receives an incoming call, while it is in normal mode.

The phone cannot decide whether it should ring based only
on its local context knowledge, which includes information
about incoming calls and the mode of the phone, as it is not
aware of other important context parameters (e.g. Dr. Amber’s
current activity). Therefore, it attempts to contact through the
wireless network of the university other ambient agents that are
located nearby, import from them further context information,
and use this information to reach a decision.

In order to determine whether Dr. Amber is currently giving
a lecture, the mobile phone uses two rules. The first rule states
that if at the time of the call there is a scheduled lecture, and
Dr. Amber is located in a university classroom, then he is
possibly giving a lecture. Information about scheduled events
is imported from Dr. Amber’s laptop, which hosts Dr. Amber’s
calendar. According to this, there is a scheduled class event.
Information about Dr. Amber’s location is imported from the
wireless network localization service, which at the time of
the call localizes Dr. Amber (actually his mobile phone) in
’RA201’ university classroom. The second rule states that if
there is no class activity in the classroom, then Dr. Amber
is rather not giving a lecture. Information about the state
of the classroom is imported from the classroom manager, a
stationary computer installed in ’RA201’. In this case, based
on local information about the state of the projector (it is off),
and information about the presence of people in the classroom
that it imports from an external person detection service, which
in this case detects only one person, the classroom manager
infers that there is no class activity.

The overall information flow in the scenario is depicted in
Figure 1. Eventually, the mobile phone will receive ambiguous
information from the various ambient agents operating in the
classroom. Information imported from Dr. Amber’s laptop and
the localization service leads to the conclusion that Dr. Amber
is currently giving a lecture, while information imported from
the classroom manager leads to the contradictory conclusion
that Dr. Amber is not currently giving a lecture. To resolve

class
RA201

one person 
detected

no class 
activity

Fig. 1. Context Information Flow in the Scenario

this conflict, the mobile phone must be able to evaluate the
information it receives from the various sources. For example,
in case it is aware that the information derived from the
classroom manager is more accurate than the information
imported from Dr. Amber’s laptop, it will determine that Dr.
Amber is not currently giving a lecture, and therefore reach
the ’ring’ decision.

B. Assumptions and Challenges

In the scenario presented above, we have implicitly made
the following assumptions:

• There is an available means of communication through
which an ambient agent can communicate and exchange
context information with a subset of the other available
ambient agents.

• Each agent is aware of the type and quality of knowledge
that each of the other agents possesses, and has specified
how part of this knowledge relates to its local knowledge.

• Each agent has some computing and reasoning capabili-
ties that it enables it conducting simple reasoning tasks.

• Each agent is willing to disclose and share part of its
local knowledge.

The challenges of contextual reasoning in the described
scenario include:

• Local context knowledge is incomplete, meaning that
none of the agents involved in the scenario has immediate
access to all available context information.

• Context knowledge is ambiguous; specifically, the infor-
mation imported from the laptop, the localization service
and the classroom manager leads to a conflict about Dr.
Amber’s current activity.

• Context knowledge is imprecise; e.g. Dr. Amber’s sched-
ule may be inaccurate.

• The computational capabilities of some of the devices
are restricted (e.g. the mobile phone), so the overhead
imposed by the reasoning tasks must not be too heavy.

• The communication load must not also be too heavy, so
that the mobile phone can quickly reach a decision.

• Real-time requirements on overall system performance.
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III. BACKGROUND & RELATED WORK

A. Multi-Context Systems

Since the seminal work of McCarthy [9] on context and
contextual reasoning, two main formalizations have been pro-
posed to formalize context: the Propositional Logic of Context
(PLC [10], [11]), and the Multi-Context Systems (MCS) intro-
duced in [12], which later became associated with the Local
Model Semantics [13]. MCS have been argued to be most
adequate with respect to the three dimensions of contextual
reasoning (partiality, approximation, proximity) and shown to
be technically more general than PLC [14]. A MCS consists
of a set of contexts and a set of inference rules (known as
mapping rules) that enable information flow between different
contexts. A context can be thought of as a logical theory (a set
of axioms and inference rules) that models local knowledge.
Different contexts are expected to use different languages,
and although each context may be locally consistent, global
consistency cannot be required or guaranteed.

The MCS paradigm has been the basis of two recent
studies that were the first to deploy non-monotonic features in
contextual reasoning: (a) the non-monotonic rule-based MCS
[15], which supports default negation in the mapping rules al-
lowing to reason based on the absence of context information;
and (b) the multi-context variant of Default Logic (ConDL
[16]), which additionally handles the problem of mutually
inconsistent information provided by two or more different
sources using default mapping rules. However, ConDL does
not provide ways to model the quality of imported knowledge,
nor preference between different information sources, leaving
the conflicts that arise in such cases unresolved.

The use of Multi-Context Systems as a means of specifying
and implementing agent architectures has been proposed in
some recent studies (e.g. [17], [18]). Specifically, they propose
breaking the logical description of an agent into a set of
contexts, each of which represents a different component of the
architecture, and the interactions between these components
are specified by means of bridge rules. A similar approach is
followed in [19], where contextual deliberation of cognitive
agents is achieved using a special extension of Defeasible
Logic. Here, we follow a different approach; a context does
not represent a logical component of an agent, but rather the
viewpoint of each different agent in the system.

B. Peer Data Management Systems

Peer data managements systems can be viewed as special
cases of MCS, as they consist of autonomous logic-based
entities (peers) that exchange local information using bridge
rules. Two prominent recent works that handle the problem of
peers providing mutually inconsistent information are: (a) the
approach of [20], which is based on non-monotonic epistemic
logic; and (b) the propositional P2P Inference System of [21].
A major limitation of both approaches is that conflicts are
not actually resolved using some external preference informa-
tion; they are rather isolated. Our approach enables resolving
such conflicts using a preference ordering on the information
sources. Building on the work of [21], [22] proposed an
argumentation framework and algorithms for inconsistency

resolution in P2P systems using a preference relation on
system peers. However, their assumptions of a single global
language and a global preference relation are in contrast with
the dimension of perspective in MCS. In our approach, each
agent uses its own vocabulary to describe its context and
defines its own preference ordering.

IV. REPRESENTATION MODEL

We model a MCS C as a collection of distributed context
theories Ci: A context is defined as a tuple of the form
(Vi, Ri, Ti), where Vi is the vocabulary used by Ci, Ri is
a set of rules, and Ti is a preference ordering on C.

Vi is a set of positive and negative literals. If qi is a literal
in Vi, ∼ qi denotes the complementary literal, which is also in
Vi. If qi is a positive literal p then ∼ qi is ¬p; and if qi is ¬p,
then ∼ qi is p. We assume that each context uses a distinct
vocabulary.

Ri consists of two sets of rules: the set of local rules and the
set of mapping rules. The body of a local rule is a conjunction
of local literals (literals that are contained in Vi), while its head
contains a local literal. There are two types of local rules:
• Strict rules, of the form

rl
i : a1

i , a
2
i , ...a

n−1
i → an

i

They express sound local knowledge and are interpreted
in the classical sense: whenever the literals in the body
of the rule (a1

i , a
2
i , ...a

n−1
i ) are strict consequences of the

local theory, then so is the conclusion of the rule (an
i ).

Strict rules with empty body denote factual knowledge.
• Defeasible rules, of the form

rd
i : b1

i , b
2
i , ...b

n−1
i ⇒ bn

i

They are used to express uncertainty, in the sense that
a defeasible rule (rd

i ) cannot be applied to support its
conclusion (bn

i ) if there is adequate contrary evidence.
Mapping rules associate literals from the local vocabulary

Vi (local literals) with literals from the vocabularies of other
contexts (foreign literals). The body of each such rule is
a conjunction of local and foreign literals, while its head
contains a single local literal. Mapping rules are modeled as
defeasible rules of the form:

rm
i : a1

i , a
2
j , ...a

n−1
k ⇒ an

i

rm
i associates local literals of Ci (e.g. a1

i ) with local literals
of Cj (a2

j ), Ck (an−1
k ) and possibly other contexts. an

i is a
local literal of the theory that has defined rm

i (Ci).
Finally, each context Ci defines a strict total preference

ordering Ti on C to express its confidence on the knowledge
it imports from other contexts. This is of the form:

Ti = [Ck, Cl, ..., Cn]

According to Ti, Ck is preferred to Cl by Ci, if the rank
of Ck is lower than the rank of Cl in Ti. The strict total
preference ordering enables resolving all potential conflicts
that may arise from the interaction of contexts through their
mapping rules. An alternative choice, which is closer to the
needs of ambient applications, is partial ordering. However,
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this would add complexity to the reasoning tasks, and would
enable resolving certain conflicts only.

We have deliberately chosen to use the simplest version
of Defeasible Logic, and disregard facts, defeaters and the
superiority relation between rules, which are used in fuller
versions of Defeasible Logic [23], to keep the discussion and
technicalities simple. Besides, the results of [23] have shown
that these elements can be simulated by the other ingredients
of the logic. We should also note that the proposed model may
also support overlapping vocabularies and enable different
contexts to use elements of common vocabularies (e.g. URIs)
by adding a context identifier, e.g. as a prefix in each such
word, adding the modified words in the vocabularies of the
contexts, and using appropriate mappings to associate them.

Example. The representation model described above is
applied as follows to the scenario described in Section II.
The local knowledge of the mobile phone (denoted as C1)
is encoded in strict local rules rl

1,1 and rl
1,2, while local

defeasible rules rd
1,3 and rd

1,4 encode Dr. Amber’s preferences.

rl
1,1 :→ incoming call1

rl
1,2 :→ normal mode1

rd
1,3 : incoming call1,¬lecture1 ⇒ ring1

rd
1,4 : silent mode1 ⇒ ¬ring1

Mapping rules rm
1,5 and rm

1,6 encode the associations of
the local knowledge of the mobile phone with the context
knowledge of Dr. Amber’s laptop (C2), the localization service
(C3), and the classroom manager (C4).

rm
1,5 : classtime2, location RA2013 ⇒ lecture1

rm
1,6 : ¬class activity4 ⇒ ¬lecture1

The local context knowledge of the laptop (C2), the localiza-
tion service (C3), the classroom manager (C4) and the person
detection service (C5) is encoded in rules rl

2,1, rl
3,1, rl

4,1 and
rl
5,1, respectively. To import this information from the person

detection service, the classroom manager uses rule rm
4,2.

rl
2,1 :→ classtime2

rl
3,1 :→ location RA2013

rl
4,1 :→ projector(off)4

rm
4,2 : projector(off)4, detected(1)5 ⇒ ¬class activity4

rl
5,1 :→ detected(1)5

The mobile phone is configured to give highest priority to
information imported by the classroom manager and lowest
priority to the person detection service. This is described in
preference order T1 = [C4, C3, C2, C5].

V. ARGUMENTATION SEMANTICS

The argumentation framework described in this section
extends the argumentation semantics of Defeasible Logic
presented in [24] (which in turn is based on the grounded
semantics of Dung’s abstract argumentation framework [25])
with the notions of distribution of the available knowledge,
and preference among system contexts. The framework uses
arguments of local range, in the sense that each one contains
rules of a single context only. Arguments of different con-
texts are interrelated in the Support Relation (defined below)

through mapping rules. The Support Relation contains triples
that represent proof trees for literals in the system. Each proof
tree is made of rules of the context that the literal in its root
is defined by. In case a proof tree contains mapping rules, for
the respective triple to be contained in the Support Relation,
similar triples for the foreign literals in the proof tree must
have already been obtained. We should note that, for sake
of simplicity, we assume that there are no loops in the local
context theories, and thus proof trees are finite. Loops in the
local knowledge bases can be easily detected and removed
without needing to interact with other agents. However, even
if there are no loops in the local theories, the global knowledge
base may contain loops caused by mapping rules. We should
also note that even if only classical (strict) negation is used in
the underlying object language, we can simulate negation as
failure using elements of the underlying language following a
technique based on auxiliary predicates first presented in [26].

Let C = {Ci} be a MCS. The Support Relation of C (SRC)
is the set of all triples of the form (Ci, PTpi

, pi), where Ci ∈
C, pi ∈ Vi, and PTpi is the proof tree for pi based on the set
of local and mapping rules of Ci. PTpi is a tree with nodes
labeled by literals such that the root is labeled by pi, and for
every node with label q:

1) If q ∈ Vi and a1, ..., an label the children of q then
• If ∀ai ∈ {a1, ..., an}: ai ∈ Vi then there is a local

rule ri ∈ Ci with body a1, ..., an and head q
• If ∃aj ∈ {a1, ..., an} such that aj /∈ Vi then there

is a mapping rule ri ∈ Ci with body a1, ..., an and
head q

2) If q ∈ Vj 6= Vi, then this is a leaf node of the tree and
there is a triple of the form (Cj , PTq, q) in SRC

3) The arcs in a proof tree are labeled by the rules used to
obtain them.

An argument A for a literal pi is a triple (Ci, PTpi , pi)
in SRC . Any literal labeling a node of PTpi is called a
conclusion of A. However, when we refer to the conclusion
of A, we refer to the literal labeling the root of PTpi (pi).
We write r ∈ A to denote that rule r is used in the proof tree
of A. A (proper) subargument of A is every argument with a
proof tree that is (proper) subtree of the proof tree of A.

A local argument of a context Ci is an argument that
contains only local literals of Ci. If a local argument A
contains only strict rules, then A is a strict local argument;
otherwise it is a defeasible local argument. A is a mapping
argument if its proof tree contains at least one foreign literal.
ArgsCi is the set of arguments derived from context Ci.
ArgsC is the set of all arguments in C: ArgsC =

⋃
ArgsCi .

The conclusions of all strict local arguments in ArgsCi are
local logical consequences of Ci. Distributed logical conse-
quences are derived from a combination of local and mapping
arguments in ArgsC . In this case, we should also consider
conflicts between competing rules, which are modeled as
attacks between arguments, and preference orderings, which
are used in our framework to rank mapping arguments.

The rank of a literal p in context Ci (denoted as R(p, Ci))
equals 0 if p ∈ Vi. If p ∈ Vj 6= Vi, then R(p, Ci) equals
the rank of Cj in Ti. The rank of an argument A in Ci
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(denoted as R(A,Ci)) equals the maximum between the ranks
in Ci of the literals contained in A. It is obvious that for
any three arguments A1, A2, A3: If R(A1, Ci) ≤ R(A2, Ci)
and R(A2, Ci) ≤ R(A3, Ci), then R(A1, Ci) ≤ R(A3, Ci);
namely the preference relation < on ArgsC , which is build
according to ordering Ti, is transitive.

The definitions of attack and defeat apply only for local
defeasible and mapping arguments. An argument A attacks
a local defeasible or mapping argument B at pi, if pi is
a conclusion of B, ∼ pi is a conclusion of A, and the
subargument of B with conclusion pi is not a strict local
argument. An argument A defeats an argument B at pi,
if A attacks B at pi, and for the subarguments of A, A′

with conclusion ∼ pi, and of B, B′ with conclusion pi:
R(A′, Ci) ≤ R(B′, Ci).

To link arguments through the mapping rules that they
contain, we introduce the notion of argumentation line. An
argumentation line AL for a literal pi is a sequence of
arguments in ArgsC , constructed in steps as follows:
• In the first step add in AL one argument for pi.
• In each next step, for each distinct literal qj labeling a

leaf node of the proof trees of the arguments added in
the previous step, add one argument with conclusion qj ;
the addition should not violate the following restriction.

• An argument B with conclusion qj can be added in AL

only if AL does not already contain a different argument
D with conclusion qj .

The argument for pi added in the first step is called the
head argument of AL. If the number of steps required to build
AL is finite, then AL is a finite argumentation line. Infinite
argumentation lines imply loops in the global knowledge base.
Arguments contained in infinite lines participate in attacks
against counter-arguments but may not be used to support the
conclusion of their argumentation lines.

The notion of supported argument is meant to indicate when
an argument may have an active role in proving or preventing
the derivation of a conclusion. An argument A is supported
by a set of arguments S if: (a) every proper subargument of
A is in S; and (b) there is a finite argumentation line AL with
head A, such that every argument in AL − {A} is in S.

A local defeasible or mapping argument A is undercut by
a set of arguments S if for every argumentation line AL with
head A, there is an argument B, such that B is supported by
S, and B defeats a proper subargument of A or an argument
in AL − {A}. That an argument A is undercut by a set of
arguments S means that we can show that some premises of
A cannot be proved if we accept the arguments in S.

An argument A is acceptable w.r.t a set of arguments S if:
1) A is a strict local argument; or
2) A is supported by S and every argument defeating A is

undercut by S

Intuitively, that an argument A is acceptable w.r.t. S means
that if we accept the arguments in S as valid arguments, then
we feel compelled to accept A as valid. Based on the concept
of acceptable arguments, we define justified arguments and
justified literals. JC

i is defined as follows:
• JC

0 = ∅;

• JC
i+1 = {A ∈ ArgsC | A is acceptable w.r.t. JC

i }
The set of justified arguments in a MCS C is JArgsC =⋃∞
i=1 JC

i . A literal pi is justified if it is the conclusion of an
argument in JArgsC . That an argument A is justified means
that it resists every reasonable refutation. That a literal pi is
justified actually means that it is a logical consequence of C.

Finally, we also introduce the notion of rejected arguments
and rejected literals for the characterization of conclusions that
are not derived by C. An argument A is rejected by sets of
arguments S, T when:

1) A is not a strict local argument, and either
2) a) a proper subargument of A is in S; or

b) A is defeated by an argument supported by T ; or
c) for every argumentation line AL with head A there

exists an argument A′ ∈ AL−{A}, such that either
a subargument of A′ is in S; or A′ is defeated by
an argument supported by T

That an argument is rejected by sets of arguments S and
T means that either it is supported by arguments in S, which
can be thought of as the set of already rejected arguments, or
it cannot overcome an attack from an argument supported by
T , which can be thought of as the set of justified arguments.
Based on the definition of rejected arguments, we define RC

i

as follows:
• RC

0 = ∅;
• RC

i+1 = {A ∈ ArgsC | A is rejected by RC
i , JArgsC}

The set of rejected arguments in a MCS C is RArgsC =⋃∞
i=1 RC

i . A literal pi is rejected if there is no argument
in ArgsC − RArgsC with conclusion pi. That a literal is
rejected means that we are able to prove that it is not a logical
consequence of C.

Lemmata 1-3 describe some formal properties of the frame-
work. Their proofs are presented in the Appendix. Lemma 1
refers to the monotonicity in JC

i and RC
i (T ).

Lemma 1: The sequences of sets of arguments JC
i and

RC
i (T ) are monotonically increasing.
Lemma 2 represents the fact that no argument is both

”believed” and ”disbelieved”.
Lemma 2: In a defeasible Multi-Context System C:
• No argument is both justified and rejected.
• No literal is both justified and rejected.
If we assume consistency in the local strict rules of a

context (two complementary conclusions may not be derived
as strict local consequences of a context theory), then using the
previous Lemma, it is easy to prove that the entire framework
is consistent; this is described in the following Lemma.

Lemma 3: If the set of justified arguments in a MCS
C, JArgsC , contains two arguments with complementary
conclusions, then both arguments are strict local arguments.

Example (continued). The arguments that are derived from
the MCS C of the example described in the previous section
are the arguments depicted in Figure 2 and their subarguments.

A1, B1 and D1 are in ArgsC1 ; the first two of them are
mapping arguments, while D1 is a strict local argument of C1.
B2, B3 and A5 are strict local arguments of C2, C3 and C5,
respectively, while A4 is a mapping argument of C4.
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Fig. 2. Arguments in the Ambient Intelligence Scenario

JC
0 contains no arguments, while JC

1 contains the strict
local arguments of the system; namely A′1, D1, B2, B3, A′4
and A5, where A′1 is the subargument of A1 with conclusion
incoming call1, and A′4 is the subargument of A4 with
conclusion projector(off)4.

JC
2 additionally contains A4, since A4 and A5 form an

argumentation line (AL4) with head A4, both A5 and A′4 (the
only proper subargument of A4) are in JC

1 , and there is no
argument that attacks A4.

JC
3 additionally contains A′′1 (the subargument of A1 with

conclusion ¬lecture1), since A5, A4 and A′′1 form an argu-
mentation line with head A′′1 , A4 and A5 are both in JC

2 ,
and the only argument attacking A′′1 , B1, does not defeat A′′1 ,
as according to T1 = [C4, C3, C2, C5], R(A′′1 , C1) = 1 <
R(B1, C1) = 3.

Finally, JC
4 additionally contains A1, as all proper subargu-

ments of A1 (A′1 and A′′1 ) are in JC
3 , there is an argumentation

line with head A1, which consists of arguments A1, A4 and
A5, and both A4 and A5 are in JC

3 , while the only attacking
argument, B1, does not defeat A1.

JC
4 actually constitutes the set of justified arguments in C

(JArgsC = JC
4 ), as there is no other argument that can be

added in the next steps of JC
i . Hence, all the literals defined

in the system except lecture1 and silent mode1 are justified.
On the other hand, RC

0 (JArgsC) contains no arguments,
while RC

1 (JArgsC), which equals RArgsC(JArgsC) contains
only one argument, B1, as B1 is defeated by A1, which
is in JArgsC . Hence, the conclusion of B1, lecture1, is
rejected, since there is no other argument with this conclusion.
silent mode1 is also rejected, since it is not the conclusion
of any argument is ArgsC .

VI. DISTRIBUTED QUERY EVALUATION

P2P DR is a distributed algorithm for query evaluation
that implements the proposed argumentation framework. The
specific problem that it deals with is: Given a MCS C, and a
query about literal pi issued to context Ci, compute the truth
value of pi. For an arbitrary literal pi, P2P DR returns one

of the values: (a) true; indicating that pi is justified in C;
(b) false; indicating that pi is rejected in C; or (c) undefined;
indicating that pi is neither justified nor rejected in C.

A. Algorithm Description
P2P DR proceeds in four main steps. In the first step (lines

1-8 in the pseudocode given below), P2P DR determines
whether pi, or its negation ∼ pi are consequences of the local
strict rules of Ci, using local alg, a local reasoning algorithm,
which is described later in this section. If local alg computes
true as an answer for pi or ∼ pi, P2P DR returns true / false
respectively as an answer for pi and terminates.

In the second step (lines 9-12), P2P DR calls Support
(described later in this section) to determine whether there are
applicable and unblocked rules with head pi. We call appli-
cable those rules that for all literals in their body P2P DR
has computed true as their truth value, while unblocked are the
rules that for all literals in their body P2P DR has computed
either true or undefined as their truth value. Support also
returns two data structures for pi: (a) the set of foreign literals
used in the most preferred (according to Ti) chain of applicable
rules for pi (SSpi

); and (b) the set of foreign literals used in
the most preferred chain of unblocked rules for pi (BSpi). If
there is no unblocked rule for pi, the algorithm returns false
as an answer and terminates.

In the third step (lines 13-14), P2P DR calls Support to
compute the respective constructs for ∼ pi.

In the last step (lines 15-24), P2P DR uses the constructs
computed in the previous steps and the preference order
defined by Ci (Ti), to determine the truth value of pi. In case
there is no unblocked rule for ∼ pi (unb∼pi = false), or SSpi

is computed by Stronger (described later in this section) to be
stronger than BS∼pi , P2P DR returns true as an answer for
pi. That SSpi is stronger than BS∼pi means that the chains
of applicable rules for pi involve information from contexts
that are preferred by Ci to the contexts that are involved in
the chain of unblocked rules for ∼ pi. In case there is at least
one applicable rule for ∼ pi, and BSpi is not stronger than
SS∼pi , P2P DR returns false as an answer for pi. In any
other case, the algorithm returns undefined.

The context that is called to evaluate the query for pi (Ci)
returns through Anspi the truth value for pi. SSpi and BSpi

are returned to the querying context (C0) only if the two
contexts (C0 and Ci) are actually the same context. Otherwise,
the empty set is assigned to both SSpi and BSpi and returned
to C0. In this way, the size of the messages exchanged between
different contexts is kept small. Histpi is a structure used by
Support to detect loops in the global knowledge base. The
algorithm parameters are:
• pi: the queried literal (input)
• C0: the context that issues the query (input)
• Ci: the context that defines pi (input)
• Histpi : the list of pending queries ([p1, ..., pi]) (input)
• Ti: preference order of Ci (input)
• SSpi : a set of foreign literals of Ci denoting the Sup-

portive Set of pi (output)
• BSpi : a set of foreign literals of Ci denoting the Blocking

Set of pi (output)
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• Anspi : the answer returned for pi (output)

P2P DR(pi, C0, Ci,Histpi
, Ti, SSpi

, BSpi
, Anspi

)
1. call local alg(pi, localAnspi)
2. if localAnspi = true then
3. Anspi ← true, SSpi ← ∅, BSpi ← ∅
4. terminate
5. call local alg(∼ pi, localAns∼pi)
6. if localAns∼pi = true then
7. Anspi ← false, SSpi ← ∅, BSpi ← ∅
8. terminate
9. call Support(pi, Histpi , Ti, suppi , unbpi , SSpi , BSpi )

10. if unbpi = false then
11. Anspi ← false, SSpi ← ∅, BSpi ← ∅
12. terminate
13. Hist∼pi ← (Histpi − {pi}) ∪ {∼ pi}
14. call

Support(∼ pi, Hist∼pi , Ti, sup∼pi , unb∼pi , SS∼pi , BS∼pi )
15. if suppi = true and (unb∼pi = false

or Stronger(SSpi , BS∼pi , Ti) = SSpi ) then
16. Anspi ← true
17. if C0 6= Ci then
18. SSpi ← ∅, BSpi ← ∅
19. else if sup∼pi = true and

Stronger(BSpi , SS∼pi , Ti) 6= BSpi then
20. Anspi ← false, SSpi ← ∅, BSpi ← ∅
21. else
22. Anspi ← undefined
23. if C0 6= Ci then
24. SSpi ← ∅, BSpi ← ∅

local alg is called by P2P DR to determine whether the
truth value of the queried literal can be derived from the local
strict rules of a context theory (Rs).
local alg(pi, localAnspi)

1. for all ri ∈ Rs[pi] do
2. for all bi ∈ body(ri) do
3. call local alg(bi, localAnsbi)
4. if for all bi: localAnsbi = true then
5. return localAnspi = true and terminate
6. return localAnspi = false

Support is called by P2P DR to determine whether there
are applicable and unblocked rules for pi. In case there is at
least one applicable rule for pi, Support returns suppi = true;
otherwise, it returns suppi = false. Similarly, unbpi = true
is returned when there is at least one unblocked rule for pi;
otherwise, unbpi = false.

Support also returns two data structures for pi: SSpi , the
Supportive Set for pi; and BSpi , the Blocking Set for pi.
To compute these structures, it checks the applicability of the
rules with head pi, using the truth values of the literals in their
body, as these are evaluated by P2P DR. To avoid loops,
before calling P2P DR, it checks if the same query has been
issued before during the running call of P2P DR. For each
applicable rule ri, Support builds its Supportive Set, SSri ;
this is the union of the set of foreign literals contained in
the body of ri with the Supportive Sets of the local literals
contained in the body of the rule. Similarly, for each unblocked
rule ri, it computes its Blocking Set BSri using the Blocking
Sets of its body literals. Support computes the Supportive Set
of pi, SSpi , as the strongest rule Supportive Set SSri ; and its
Blocking Set, BSpi , as the strongest rule Blocking Set BSri ,

using the Stronger function. The parameters of Support are:
• pi: the queried literal (input)
• Histpi

: the list of pending queries ([p1, ..., pi]) (input)
• Ti: the preference ordering of Ci (input)
• suppi , indicating whether pi is supported in C (output)
• unbpi

, indicating whether pi is unblocked in C (output)
• SSpi : the Supportive Set of pi (output)
• BSpi

: the Blocking Set of pi (output)

Support(pi,Histpi
, Ti, suppi

, unbpi
, SSpi

, BSpi
)

1. suppi ← false
2. unbpi ← false
3. for all ri ∈ R[pi] do
4. cycle(ri) ← false
5. SSri ← ∅
6. BSri ← ∅
7. for all bt ∈ body(ri) do
8. if bt ∈ Histpi then
9. cycle(ri) ← true

10. BSri ← BSri ∪{dt} {where dt is literal bt if bt /∈ Vi;
otherwise dt is the first foreign literal of Ci added in
Histpi after bt}

11. else
12. Histbt ← Histpi ∪ {bt}
13. call

P2P DR(bt, Ci, Ct, Histbt , Tt, SSbt , BSbt , Ansbt)
14. if Ansbt = false then
15. stop and check the next rule
16. else if Ansbt = undefined or cycle(ri) = true then
17. cycle(ri) ← true
18. if bt /∈ Vi then
19. BSri ← BSri ∪ {bt}
20. else
21. BSri ← BSri ∪BSbt

22. else
23. if bt /∈ Vi then
24. BSri ← BSri ∪ {bt}
25. SSri ← SSri ∪ {bt}
26. else
27. BSri ← BSri ∪BSbt

28. SSri ← SSri ∪ SSbt

29. if unbpi = false or Stronger(BSri , BSpi , Ti) = BSri

then
30. BSpi ← BSri

31. unbpi ← true
32. if cycle(ri) = false then
33. if suppi = false or Stronger(SSri , SSpi , Ti) = SSri

then
34. SSpi ← SSri

35. suppi ← true

Stronger(A,B, Ti) returns the strongest between two sets
of literals, A and B, according to preference order Ti. A
literal ak (defined in Ck) is preferred to literal bj (defined
in Cl), if Ck precedes Cl in Ti. The strength of a set is
determined by the least preferred literal in this set.

Stronger(A,B, Ti)
1. if ∃bl ∈ B: ∀ak ∈ A: Ck has lower rank than Cl in Ti

or (A = ∅ and B 6= ∅) then
2. Stronger = A
3. else if ∃ak ∈ A: ∀bl ∈ B: Cl has lower rank than Ck in Ti

or (B = ∅ and A 6= ∅) then
4. Stronger = B
5. else
6. Stronger = None
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Example (continued) Given a query about ring1, P2P DR
proceeds as follows. It fails to compute an answer based on
C1’s local theory, and uses rules rm

1,5 and rm
1,6 to compute

an answer for ¬lecture1. Using the local rules of C2, C3,
C4 and C5, it computes positive answers for classtime2,
location RA2013 and ¬class activity4 respectively, deter-
mines that both rm

1,5 and rm
1,6 are applicable, and computes their

Supportive Sets: SSrm
1,5

= {classtime2,location RA2013}
and SSrm

1,6
= {¬class activity4}. As C4 precedes C2 in

T1, P2P DR determines that SSrm
1,6

is stronger, computes
a positive answer for ¬lecture1, and eventually (using rule
rd
1,3) returns true as an answer for ring1.

B. Properties of the Algorithm

Below, we describe some formal properties of P2P DR
regarding its termination, soundness and completeness w.r.t.
the argumentation framework, complexity and the ability
to create an equivalent defeasible theory from the dis-
tributed context theories. The proofs for Propositions 2, 3,
which refer to soundness and completeness, are presented
in the Appendix. The rest of the proofs are available at
www.csd.uoc.gr/∼bikakis/thesis.pdf.. Proposition 1 is a con-
sequence of the cycle detection process within the algorithm.

Proposition 1: The algorithm is guaranteed to terminate
returning one of the values true, false and undefined as an
answer for the queried literal.

Propositions 2 and 3 associate the results computed by
local alg and P2P DR with concepts of the argumentation
framework.

Proposition 2: For a Multi-Context System C and a literal
pi in Ci ∈ C, local alg returns

1) localAnspi = true iff there is a strict local argument
for pi in JArgsC

2) localAnspi = false iff there is no strict local argument
for pi in JArgsC

Proposition 3: For a Multi-Context System C and a literal
pi in C, P2P DR returns:

1) Anspi = true iff pi is justified in C
2) Anspi = false iff pi is rejected in C
3) Anspi = undefined iff pi is neither justified nor

rejected in C

Propositions 4 and 5 are consequences of two structures that
P2P DR retains for each context, which keep track of the
incoming and outgoing queries of the context. The worst case
that both propositions refer to is when all rules of Ci contain
either pi (the queried literal) or ∼ pi in their head and all
system literals in their bodies.

Proposition 4: The total number of messages exchanged
between the system contexts for the evaluation of a query is,
in the worst case, O(n×∑

P (n, k)), where n stands for the
total number of literals in the system,

∑
expresses the sum

over k = 0, 1, ..., n, and P (n, k) stands for the number of
permutations with length k of n elements. In case, there are
no loops in the global knowledge base, the number of messages
is polynomial to the size of the global knowledge base.

Proposition 5: The number of operations imposed by one
call of P2P DR for the evaluation of a query for literal pi

is, in the worst case, proportional to the number of rules in
Ci, and to the total number of literals in the system.

Proposition 6 describes the ability to create an equivalent
global defeasible theory from the distributed context theories
in case there are no loops in the global knowledge base.
In this theory, local strict rules of the system contexts are
modeled as strict rules, local defeasible and mapping rules
are modeled as defeasible rules, and preference orderings are
used to derive priorities between competing rules. A complete
description of the procedure is described in [27]. This property
enables resorting to centralized reasoning by collecting all the
available information in a central entity. In addition, this result
is typical of other works in the area of Peer-to-Peer reasoning,
in which the distributed query evaluation algorithm is related
to querying a single knowledge base that can be constructed
(see, e.g. [28]).

Proposition 6: There is a standard process that takes as
input the distributed context theories and their preference
orderings and creates a global unified theory of Defeasible
Logic, which in case there are no loops in the global theory,
produces equivalent results with P2P DR, under the proof
theory of [23].

VII. CONCLUSION

The challenges of reasoning with the available context
knowledge in Ambient Intelligence environments have not yet
been successfully addressed by the existing Ambient Intelli-
gence systems. Most of them are either ad-hoc or make simpli-
fying assumptions: perfect knowledge of context, centralized
context, and unbounded computational and communicating
capabilities. The requirements, though, are much different in
such environments. The uncertainty of context and its distri-
bution to heterogeneous devices with restricted capabilities,
impose the need for different reasoning approaches.

This paper proposes a totally distributed approach for rea-
soning in Ambient Intelligence environments based on the
representation of context knowledge shared by ambient agents
as context theories in Multi-Context Systems. Using a total
preference ordering on the system contexts, our approach
enables resolving all potential conflicts that may arise from the
interaction of contexts through their mappings. The paper also
provides an argumentation-based semantic characterization of
the model, and a distributed algorithm for query evaluation
that implements the argumentation framework.

Our ongoing work involves: (a) defining average case
scenarios and studying the performance of the query evaluation
algorithm in such cases; (b) studying alternative methods for
conflict resolution, which differ in the way that agents evaluate
the imported context information; (c) studying the relation
between our reasoning model and loop checking variants of
Defeasible Logic, such as those described by Nute in [29],
[30]; and (d) implementing real-world applications of our
approach in Ambient Intelligence environments, with contexts
lying on a variety of stationary and mobile devices (such as
PDAs or cell phones), and communicating through wireless
communications. We have already described some possible
application scenarios of our approach in [6].
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APPENDIX

Lemma 1. The sequences of sets of arguments JC
i and

RC
i (T ) are monotonically increasing.

Proof. We prove the Lemma by induction on i. The inductive
base is trivial in both cases since JC

0 = ∅ and RC
0 (T ) = ∅

and thus JC
0 ⊆ JC

1 and RC
0 (T ) ⊆ RC

1 (T ).
By definition strict local arguments are acceptable w.r.t.

every set of arguments; thus they are in every JC
i .

Let A be an argument in JC
n and let B be an argument

defeating A. By definition, B is undercut by JC
n−1; namely for

every argumentation line BL with head B, there is a literal q
and an argument D, such that D is supported by JC

n−1 and D
defeats a proper subargument of B or an argument in BL −
{B} at q. By inductive hypothesis JC

n−1 ⊆ JC
n ; hence D is

also supported by JC
n . Consequently, B is undercut by JC

n .
Since A is an argument in JC

n , by definition A is supported
by JC

n−1, and by inductive hypothesis, A is also supported by
JC

n . Therefore A is acceptable w.r.t. JC
n , and A ∈ JC

n+1.
We consider now the sequence of rejected arguments.

Let A be an argument is RC
n (T ). By definition, A is not

a strict local argument and one of the three following
conditions hold: (a) A proper subargument of A, A′ is in
RC

n−1(T ). By inductive hypothesis RC
n−1(T ) ⊆ RC

n (T );
hence A′ ∈ RC

n (T ) and A ∈ RC
n+1(T ); (b) for every

argumentation line AL with head A, a subargument A′ of
an argument in AL − {A} is in RC

n−1(T ), and by inductive
hypothesis A′ ∈ RC

n (T ) ⇒ A ∈ RC
n+1(T ); or (c) a proper

subargument of A or an argument in AL − {A} is defeated
by an argument supported by T . In this case A ∈ RC

i (T ) for
every i, and therefore A ∈ RC

n+1(T ).

Lemma 2. In a Multi-Context System C:
1. No argument is both justified and rejected.
2. No literal is both justified and rejected.

Proof Suppose that there is an argument that is both justified
and rejected. Let n be the smallest index such that for some
argument A, A ∈ RArgsC(JArgsC) and A ∈ JC

n . Since
A ∈ JC

n , it holds that either (a) A is a strict local argument;
or (b) A is supported by JC

n−1 and every argument defeating
A is undercut by JC

n−1. Since A ∈ RArgsC(JArgsC), (a)
does not hold. Hence, there is an argumentation line A′L with
head A such that for every subargument of A or argument
in A′L − {A}, A′, it holds that A′ ∈ JC

n−1, and by Lemma
1 A′ ∈ JC

n . By definition, every argument defeating A′ is
undercut by JC

n−1.
Since A ∈ RArgsC(JArgsC), it holds by definition that

for every argumentation line AL with head A either (c)
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there exists an argument B that is supported by JArgsC and
defeats a subargument of A or an argument in AL − {A};
or (d) a subargument of A or an argument in AL − {A}
is in RArgsC(JArgsC). However, we have already proved
that A′ ∈ JC

n−1, and by supposition n is the smallest index
such that for some argument A, A ∈ RArgsC(JArgsC) and
A ∈ JC

n ; therefore (d) does not hold.
By (b) and (c), there exists an argument B′, such that B′

defeats A′, and is supported by JArgsC and undercut by JC
n−1.

Hence, for every argumentation line BL with head B′ there
is an argument D that is supported by JC

n−1 and defeats an
argument in BL − {B′} or a proper subargument of B′. By
definition of supported, there is an argumentation line B′

L with
head B′ such that every argument defeating an argument in
B′

L − {B} or a proper subargument of B′ is undercut by
JArgsC . Hence D is undercut by JArgsC ; namely, for every
argumentation line DL with head D there is an argument E
that is supported by JArgsC and defeats an argument in DL−
{D} or a proper subargument of D. Since D is supported by
JC

n−1, there is an argumentation line D′
L with head D s.t.

for every subargument of D or argument in D′
L − {D}, D′,

D′ ∈ JC
n−1. However, since D is undercut by JArgsC , D′ is

defeated by an argument E′ supported by JArgsC ; therefore
D′ ∈ RArgsC(JArgsC) and D′ ∈ JC

n−1, which contradicts
the assumed minimality of n. Hence the original supposition
is false, and no argument is both justified and rejected.

The second part follows easily from the first: if the literal
p is justified, then there is an argument A for p in JArgsC .
From the first part, A ∈ ArgsC − RArgsC(JArgsC). Thus
if p is justified then it is not rejected.

Lemma 3. If the set of justified arguments of C, JArgsC

contains two arguments with conflicting conclusions, then
both are strict local arguments.

Proof. Let the two arguments be A and B. Suppose B is
a strict local argument. Then, for A to be acceptable with
respect to every S, A must also be a strict local argument
(otherwise B would defeat A, and B cannot be undercut
by S). Thus, by symmetry, either A and B are both strict
local arguments, or they are both defeasible local or mapping
arguments. Suppose that both are defeasible local or mapping
arguments and B defeats A. Then A must be rejected because
it is defeated by an argument supported by JArgsC , and is
justified by assumption. By Lemma 2, this is not possible.
Similarly, if we assume that A defeats B, we will conclude
that B is both justified and rejected. Therefore, the two
arguments are strict local arguments.

Proposition 2. For a MCS C and a literal pi in Ci ∈ C,
local alg returns:

1. localAnspi = true iff there is a strict local argument for
pi in JArgsC

2. localAnspi = false iff there is no strict local argument
for pi in JArgsC

Proof (1, ⇒). We use induction on the number of calls of
local alg that are required to produce the answer for pi.

Inductive Base. Suppose that local alg returns localAnspi

= true in one call. This means that there is a local strict rule
with head pi in Ci, ri, such that body(ri) = ∅. Using ri we
can build a strict local argument for pi.

Inductive Step. Suppose that n + 1 calls of local alg are
required to compute localAnspi

= true. This means that
there is a strict local rule with head pi (say ri) such that
∀ai ∈ body(ri), local alg returns localAnspi = true in n
or less calls. By inductive hypothesis, for every ai there is a
strict local argument for ai in ArgsC . Using the arguments
for ai and rule ri we can build a strict local argument for pi.

(1, ⇐). We prove the left to right part of (1) using induction
on the height of strict local arguments for pi in ArgsC .

Inductive Base. Suppose that there is a strict local argument
for pi in ArgsC (say A) with height 1. This means that there
is a strict local rule with head pi with empty body in Ci;
hence local alg will return localAnspi

= true.

Inductive Step. Suppose that A is a strict local argument
for pi with height n + 1 in ArgsC . Then, there is a strict
local rule with head pi (ri) in Ci, such that for every literal
ai in its body there is a strict local argument with height
≤ n in ArgsC . By inductive hypothesis, local alg returns
localAnsai = true for every ai ∈ body(ri). Consequently
local alg will return localAnspi = true.

(2, ⇒). By the definition of local alg it is trivial to verify
that local alg cannot return both true and false as an
answer for a literal pi. Suppose that local alg returns
localAnspi = false. Suppose that there is a strict local
argument for pi in ArgsC . Then (by the first part of the
Proposition) localAnspi = true, which contradicts our
original hypothesis. Consequently there is no strict local
argument for pi in ArgsC .

(2, ⇐). Similarly (for the right to left part) we suppose that
there is no strict local argument for pi in ArgsC . Supposing
that local alg returns localAnspi = true, we conclude (by
the first part of the Proposition) that there is a strict local
argument for pi in ArgsC , which contradicts our original
hypothesis.

Auxiliary Lemma. For a MCS C and a literal pi in C:
1. If P2P DR returns Anspi = true and SSpi = Σ,

then there is an argument A for pi in ArgsC , such that A
uses applicable rules, and R(A,Ci) equals 0 in case Σ = ∅,
or maxa∈Σ(R(a, Ci)) otherwise, and for any other argument
B for pi in ArgsC , such that B uses applicable rules:
R(A,Ci) ≤ R(B, Ci).

2. If P2P DR returns Anspi = true or Anspi

= undefined and BSpi = Σ, then there is an argument
A for pi in ArgsC , such that A uses unblocked rules, and
R(A,Ci) equals 0 in case Σ = ∅, or maxa∈Σ(R(a, Ci))
otherwise, and for any other argument B for pi in ArgsC ,
such that B uses unblocked rules: R(A,Ci) ≤ R(B, Ci).
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Proof (1). We use induction on the number of calls of
P2P DR that are required to compute Anspi and SSpi .

Inductive Base. Anspi = true derives in one call of
P2P DR. This means that either (a) localAnspi = true
and SSpi

= ∅, and by Proposition 2, there is a strict local
argument A for pi in ArgsC . For all literals a in the body
of the rules contained in A, localAnsa = true. Hence, A
uses only applicable rules. Since A is a local argument,
R(A,Ci) = 0. Hence, there is no argument B such that
R(B,Ci) < R(A,Ci); or (b) there is a local defeasible rule
with empty body and head pi in Ci. Using this rule, we can
build an argument A for pi such that R(A,Ci) = 0; therefore,
there is no argument B such that R(B, Ci) < R(A, Ci).

Inductive Step. Anspi
= true and SSpi

= Σ derives in n + 1
calls of P2P DR. This means that there is a rule ri with head
pi in Ci, such that ∀a ∈ body(ri): P2P DR returns Ansa =
true and SSa in at most n calls, and Σ = SSri . By inductive
hypothesis, for all a there is an argument Aa for a in ArgsC

such that Aa uses applicable rules, and R(Aa, Cj) equals 0 in
case SSa = ∅ or maxa′∈SSa(R(a′, Cj)) otherwise (where Cj

is the context such that a ∈ Vj), and for any other argument
Ba for a in ArgsC that uses applicable rules: R(Ba, Cj) ≥
R(Aa, Cj).

Using the arguments Aa and rule ri we build an argument
A for pi as follows: The subset of the arguments Aa that
support local literals of Ci (denoted as Aai ) are used as proper
subarguments of A, and ri is used in A to support pi, which
labels the root of A. By the definition of rank of arguments:

R(A,Ci) = max(maxAai
(R(Aai , Ci)),maxaj (R(aj , Ci)))

where aj are the literals in the body of ri such that aj /∈ Vi.
By inductive hypothesis:

R(A,Ci) =

max(maxa′∈⋃
SSai

(R(a′, Cj)),maxaj (R(aj , Ci)))

⇒ R(A,Ci) = maxd∈(
⋃

SSai
)∪(

⋃
aj)(R(d,Ci))

⇒ R(A,Ci) = maxd∈SSri
(R(d,Ci))

and for any other argument A′ for pi in ArgsC that uses rule
ri and applicable rules to support pi, R(A,Ci) ≤ R(A′, Ci).
In case Σ = SSri = ∅, which means that there is no
foreign literal in the body of ri, and for every ai ∈ body(ri):
SSai = ∅, using inductive hypothesis it is easy to verify that
R(A,Ci) = 0.

By the definition of P2P DR, it also holds that for
any other rule ti with head pi in Ci, either (a) there is a
literal γ in the body of ti such that P2P DR returns either
Ansγ = undefined or Ansγ = false - in this case ti is
not applicable; or (b) ∀γ ∈ body(ti): Ansγ = true and
Stronger(Σ, SSti , Ti) 6= SSti . The latter results are obtained
in n or less calls of P2P DR. By inductive hypothesis,
the argument for pi that uses rule ti and applicable rules to
support pi with the lowest rank w.r.t. Ci is F with rank:
R(F, Ci) = maxf∈SSti

(R(f, Ci)), and by the definition of

Stronger it holds that there is a literal f ′ in SSti
such that

for all d in Σ = SSri
, R(f ′, Ci) ≥ R(d,Ci). Therefore

R(A,Ci) ≤ R(F,Ci). Overall, the rank of A is equal or
lower than the rank of any other argument in ArgsC that
uses applicable rules to support pi.

(2). We use induction on the number of calls of P2P DR
that are required to compute Anspi

and BSpi
.

Inductive Base. As there are no loops in the local context
theories, at least two calls of P2P DR are required to return
undefined as an answer for pi. Hence, the Inductive Base for
the case that Anspi

= true is that this answer is returned
by P2P DR in one call. Similarly with the first part of the
Lemma, we can prove that BSpi = ∅, and there is an argument
A ∈ ArgsC for pi, such that R(A, Ci) = 0, and A uses only
applicable (and therefore unblocked) rules.

The Inductive Base for the case that Anspi = undefined
and BSpi

= Σ is two calls of P2P DR. Since we assume
that there are no loops in the local context theories, there are
no rules such that the literal in their head also belongs to the
body of the rule. Hence, the following conditions must hold:
(a) localAnspi = false; by Proposition 2 this means that
there is no strict local argument for pi in ArgsC ; (b) there is
no rule with head ∼ pi in Ci; and (c) there is only one rule
ri with head pi in Ci, with one literal in its body (say qj), for
which it holds (c1) qj /∈ Vi; (c2) there is no rule with head
∼ qj in Cj ; and (c3) there is only one rule with head qj (say
rj) in Cj , such that pi is the only literal in the body of tj .
Hence, the only argument for pi (A) can be obtained using
rule ri, and the only argument for qj (A′) can be obtained
using rule rj . Neither ri nor rj are blocked since there are no
rules with contradictory conclusions, and Σ = BSri = {qj}.
Therefore A uses unblocked rules, R(A, Ci) = R(qj , Ci) =
maxa∈ΣR(a,Ci) and there is no other argument for pi in
ArgsC .
Inductive Step. Anspi = true or Anspi = undefined and
BSpi = Σ derive in n+1 calls of P2P DR. This means that
there is a rule ri with head pi in Ci, such that ∀a ∈ body(ri):
P2P DR returns either Ansa = true or Ansa = undefined
and BSa in at most n calls, and Σ = BSri . By inductive
hypothesis, for all a there is an argument Aa for a in ArgsC

such that Aa uses unblocked rules, and R(Aa, Cj) equals 0
in case SSa = ∅ or maxa′∈SSa(R(a′, Cj)) otherwise, and for
any other argument Ba for a in ArgsC that uses unblocked
rules: R(Ba, Cj) ≥ R(Aa, Cj).

Similarly with the first part of the Lemma, using the
arguments for a and rule ri, we can build an argument A
for pi, such that A uses unblocked rules, and

⇒ R(A,Ci) = maxd∈BSri
(R(d,Ci))

and for any other argument A′ for pi in ArgsC that uses
unblocked rules to support pi, R(A,Ci) ≤ R(A′, Ci). In case
Σ = BSri = ∅, using inductive hypothesis it is easy to verify
that R(A, Ci) = 0.

Proposition 3. For a MCS C and a literal pi in Ci, P2P DR
returns:
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1. Anspi = true iff pi is justified
2. Anspi

= false iff pi is rejected by JArgsC

3. Anspi
= undefined iff pi is neither justified nor

rejected by JArgsC

Proof. (⇒). We prove the left to right part of the proposition
using induction on the calls of P2P DR.

Inductive Base. (1) P2P DR returns Anspi = true in one
call. This means that either (a) localAnspi

= true - then,
by Proposition 2, there is a strict local argument A for pi in
ArgsC . Hence, A ∈ JArgsC and pi is justified; or (b) there
is a local defeasible rule ri in Ci such that body(ri) = ∅ and
there is no rule with head ∼ pi in Ci. Therefore, there is an
argument A for pi in ArgsC with root pi, which contains
only rule ri, and there is no argument attacking A. Since A
has no proper subarguments and it is not attacked by any
argument, A ∈ JArgsC ; therefore pi is justified.

(2). P2P DR returns Anspi
= false in one call. This means

that localAnspi = false (by Proposition 2 this means that
there is no strict local argument for pi in ArgsC) and either
(a) localAns∼pi = true - there is a strict local argument
B for ∼ pi in ArgsC , which by definition is supported by
JArgsC , it defeats any non-strict argument for pi in ArgsC ,
and is not undercut by JArgsC , and therefore pi is rejected
by JArgsC ; or (b) there is a local defeasible rule si with
head ∼ pi in Ci, such that body(si) = ∅. Therefore, there
is an argument B for ∼ pi in ArgsC , with root pi, which
contains only rule si. For B it holds that it has no proper
subarguments - therefore it is supported and not undercut
by JArgsC - and R(B, Ci) = 0 - therefore it defeats any
non-strict argument for pi. Since there is no strict local
argument for pi in ArgsC , every argument for pi is defeated
by B; therefore pi is rejected by JArgsC .

(3). At least two calls of P2P DR are required to compute
undefined as an answer for pi. Since we assume that there
are no loops in the local context theories, there are no rules
such that the literal in their head also belongs to the body
of the rule. Hence, the following conditions must hold: (a)
localAnspi = false; by Proposition 2 this means that there
is no strict local argument for pi in ArgsC ; (b) there is no
rule with head ∼ pi in Ci, which means that there is no
argument in ArgsC attacking the arguments for pi at their
root; and (c) there is only one rule ri with head pi in Ci,
with one literal in its body (say qj), for which it holds (c1)
qj /∈ Vi; (c2) there is no rule with head ∼ qj in C; and
(c3) there is only one rule with head qj (say rj) in C, such
that pi is the only literal in the body of rj . Hence, the only
argument for pi (A) can be obtained using rule ri, and the
only argument for qj (A′) can be obtained using rule rj .
None of the two arguments is neither justified by JArgsC nor
rejected by JArgsC (since there are not attacking arguments).
Therefore, pi is neither justified nor rejected by JArgsC .

Inductive Step. (1). P2P DR returns Anspi = true in n + 1
calls. The following conditions must hold:

(a) there is a rule ri with head pi in Ci, such that for all
literals a in its body it holds that Ansa = true is returned
by P2P DR in at most n calls. By inductive hypothesis,
for every a, there is an argument Aa with conclusion a in
JArgsC . Therefore, for every Aa it holds that either Aa is
a local argument, or it is the head of an argumentation line
ALa, such that every argument in ALa is in JArgsC . Using
arguments Aa, argumentation lines ALa and rule ri, we can
build an argument A for pi and an argumentation line AL with
head A, such that every proper subargument of A and every
argument in AL − {A} are in JArgsC - in other words, A is
supported by JArgsC .

(b) localAns∼pi
= false - by Proposition 2, there is no

strict local argument for ∼ pi in ArgsC

(c) for all rules si with head ∼ pi in Ci, either (c1) there
is a literal b in the body of si for which P2P DR returns
Ansb = false in n calls. By inductive hypothesis, b is
rejected by JArgsC , which means that every argument for
b is defeated by an argument supported by JArgsC . Hence,
every argument B using rule si in ArgsC is undercut by
JArgsC ; or (c2) ∀b ∈ body(si): P2P DR returns either true
or undefined as an answer for b (in at most n calls) and
Stronger(SSri , BSsi , Ti) = SSri . By Auxiliary Lemma, we
conclude that there is an argument A for pi in ArgsC , which
uses rule ri and applicable rules to support pi, and has rank
R(A,Ci) = maxd∈SSri

(R(d,Ci)), and for every argument B
for ∼ pi in ArgsC that uses unblocked rules and rule si to
support ∼ pi, it holds that R(A,Ci) < R(B, Ci); therefore
every such argument B does not defeat A at pi.

Suppose that one of these arguments B defeats a proper
subargument of A, D at qi. Since A uses applicable rules,
for qi P2P DR returns Ansqi = true in n or less calls.
Therefore, by inductive hypothesis, there is an argument D′

for qi in JArgsC . B is not a strict local argument, as in that
case qi would be rejected. Suppose B defeats D′ at qi. Since
D′ is in JArgsC , B is undercut by JArgsC . In case B attacks
but cannot defeat D′, by definition it holds that R(D′, Ci) <
R(B,Ci). But since we have already supposed that B defeats
D; R(B, Ci) ≤ R(D,Ci). Therefore, R(D′, Ci) < R(D, Ci)
and R(A′, Ci) < R(A,Ci), where A′ is the argument for pi

that derives from A by replacing D with D′. Following the
same process for every subargument D of A, we can obtain an
argument A′ for pi, such that A′ is supported by JArgsC and
every argument B, such that B uses unblocked rules and B
defeats a proper subargument of A′, B is undercut by JArgsC .
And since R(A′, Ci) < R(A,Ci), it holds that for every such
argument B, R(A′, Ci) < R(B, Ci); therefore B does not
defeat A neither at its inner nodes nor at its root.

Suppose that an argument B for ∼ pi in ArgsC uses a rule
si that is not unblocked. By inductive hypothesis, for some
literal b in B, it holds that b is rejected; hence B is undercut
by JArgsC .

Overall, using A′ and the justified argumentation lines
for the foreign literals in the body of ri, we can obtain an
argument for pi, which is supported by JArgsC , and every
argument defeating A′ is undercut by JArgsC ; therefore A′

is acceptable w.r.t. JArgsC , and pi is justified.
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(2). P2P DR returns Anspi = false in n + 1 calls. The
following two conditions must hold: (a) localAnspi

= false;
hence there is no strict local argument for pi in ArgsC ; and
(b) for every rule ri with head pi, either (b1) there is a literal a
in the body of ri, such that P2P DR returns Ansa = false
in at most n calls. By inductive hypothesis, this means that a
is rejected, and therefore if a ∈ Vi, every argument A using
ri is defeated by an argument supported by JArgsC , while
if a /∈ Vi, every argumentation line with head A contains
an argument that is defeated by an argument supported by
JArgsC . In any of the two cases, the arguments using ri are
rejected by JArgsC ; or (b2) there is a rule si with head ∼ pi

in Ci, such that P2P DR returns Ansb = true for any literal
b in the body of si, and for all literals a in the body of ri,
P2P DR returns true or undefined in at most n calls, and
Stronger(BSri , SSsi , Ti) 6= BSri . By inductive hypothesis
and Auxiliary Lemma, in the same way with before, using
rule si we can build an argument B for ∼ pi such that B
is supported by JArgsC and has lower or equal rank than
any argument A for pi that uses unblocked rules and rule ri;
therefore B defeats any such argument for pi.

Consider now the arguments for pi in ArgsC that use at
least one rule that is not unblocked. In the same way with
before, we can prove that these arguments are defeated by an
argument supported by JArgsC .

Therefore, for every argument A for pi it holds that either
A or an argument in every argumentation line with head A is
defeated by an argument supported by JArgsC ; therefore pi

is rejected by JArgsC .

(3). P2P DR returns Anspi = undefined in n + 1 calls.
The following conditions must hold:

(a) localAnspi = false and localAns∼pi = false; by
Proposition 2, there are no strict local arguments for pi and
∼ pi in ArgsC ;

(b) for all rules ri with head pi in C either (b1) there is a
literal a in the body of ri such that P2P DR returns either
false or undefined as an answer for a in n or less calls; or (b2)
for all a, P2P DR returns true as an answer for a in n or
less calls, but there is a rule si with head ∼ pi in Ci, such that
for every literal b in the body of si, P2P DR returns either
true or undefined as an answer for b in n or less calls, and
Stronger(SSri , BSsi , Ti) 6= SSri . For the case described in
(b1), using inductive hypothesis, a is not justified; therefore
there is no argument for pi in ArgsC that is supported by
JArgsC . For the case of (b2), by inductive hypothesis and
Auxiliary Lemma, there is an argument B in ArgsC that uses
si to support ∼ pi, such that B uses unblocked rules, and for
every argument A in ArgsC that uses applicable rules and
ri to support pi, it holds that R(B, Ci) ≤ R(A,Ci), which
means that B defeats A at pi. In the same way with before,
we can prove that there is an argument B′ in ArgsC , which
also uses rule si, and has lower rank than B w.r.t. Ci, and an
argumentation line BL with head B′, such that no subargument
of B or argument in BL is defeated by an argument supported
by JArgsC . Therefore B′ is not undercut by JArgsC , and
defeats any non-strict argument with applicable rules with head
pi. Since there is no strict local argument for pi, and for the

arguments for pi that use rules that are not applicable w.r.t. C,
it is easy to verify that they are not supported by JArgsC , we
reach to the conclusion that for every argument A for pi in
ArgsC , A is either not supported by JArgsC , or it is attacked
by an argument in ArgsC , which is not undercut by JArgsC ;
therefore pi is not justified.

(c) for all rules si with head ∼ pi in Ci either (c1) there
is a literal b in the body of si, such that P2P DR returns
either false or undefined as an answer for b in n or less calls;
or (c2) for all b, P2P DR returns true as an answer for b
in n or less calls, but there is a rule ri with head pi in Ci,
such that for every literal a in the body of ri, P2P DR
returns either true or undefined as an answer for a in n or
less calls, and Stronger(BSri , SSsi , Ti) = BSri . In the
same way with before, we can reach to the conclusion that
there is an argument A in ArgsC , which uses rule ri, and
an argumentation line AL with head A, such that there is
no argument B that is supported by JArgsC and defeats an
argument in AL. Therefore pi is not rejected by JArgsC .

⇐ (1). We use induction on the stage of acceptability of
arguments with conclusion pi in ArgsC .

Inductive Base. Suppose that an argument A for pi in ArgsC

is acceptable w.r.t. JC
0 . This means that either: (a) A is a

strict local argument for pi; in this case, by Proposition 2,
P2P DR will return localAnspi = true, and therefore
Anspi = true; or (b) A is a defeasible local argument
in ArgsCi that is supported by JC

0 , and every argument
defeating A is undercut by JC

0 . Since A is supported by
JC

0 , A contains one defeasible rule with head pi (say ri)
with empty body. Suppose that there is a rule si with head
∼ pi in Ci, such that for all literals b in its body, P2P DR
returns either Ansb = true or Ansb = undefined and
Stronger(SSri , BSsi , Ti) = BSsi . This means, by Auxiliary
Lemma, that for all arguments for pi using applicable rules
and rule ri, there is an argument B′ that uses rule si

and unblocked rules, which has lower rank than A in Ci.
But, since R(A,Ci) = 0 (A is a local argument of Ci),
R(B′, Ci) < 0, which is not possible. Therefore for every
rule si with head ∼ pi in Ci, either (c) there is a literal b in
the body of si for which P2P DR returns Ansb = false,
or (d) Stronger(SSri , BSsi , Ti) 6= SSsi . Suppose that (d)
holds and Stronger(SSri , BSsi , Ti) = none. By definition
of Stronger and Auxiliary Lemma, this means that there is
an argument B for ∼ pi in ArgsC that uses unblocked rules
and rule si and R(B, Ci) = 0. Therefore B defeats A, and
for every rule used in B it holds that for all literals in its
body Ansb 6= false. By the first part of the Proposition, this
means that there is an argumentation line BL with head B,
such that and no argument in BL is defeated by an argument
supported by JC

0 . However, since B defeats A, B is undercut
by JC

0 . Hence for every argumentation line BL with head B,
there is an argument D that is supported by JC

0 and defeats
a proper subargument of B or an argument in BL − {B};
the latter conclusion contradicts our previous conclusion
that no argument in BL is attacked by JC

0 . Therefore
our supposition that Stronger(SSri , BSsi , Ti) = none
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does not hold. Consequently, for every rule si with head
∼ pi in Ci, either (a) there is a literal b in the body of
si for which P2P DR returns Ansb = false, or (b)
Stronger(SSri , BSsi , Ti) = SSri . Overall, P2P DR will
compute suppi

= true, and either unb∼pi
= false or

Stronger(SSpi , BS∼pi , Ti) = SSpi , and eventually will
return true as an answer for pi.

Inductive Step. Suppose that A is an argument for pi in
ArgsC that is acceptable w.r.t. JC

n+1. This means that either:
(a) A is a strict local argument for pi - in this case, by
Proposition 2, P2P DR will return localAnspi

= true,
and Anspi

= true; or (b) A is supported by JC
n+1 and

every argument defeating A is undercut by JC
n+1. That A

is supported by JC
n+1 means that every proper subargument

of A is acceptable w.r.t. JC
n , and there is an argumentation

line AL with head A such that every argument in AL is
acceptable w.r.t. JC

n . By inductive hypothesis, there is a rule
ri with head pi in Ci, such that for every literal a in the
body of ri, P2P DR returns Ansa = true. Suppose that
B is an argument in ArgsC that defeats A. By definition,
B is undercut by JC

n+1; namely, for every argumentation line
BL with head B, there is an argument D in ArgsC , which
is supported by JC

n+1, and defeats a proper subargument of
B or an argument in BL − {B}. Since D is supported by
JC

n+1, every subargument of D is acceptable w.r.t. JC
n , and

there is an argumentation line DL with head D, such that
every argument in DL is acceptable w.r.t. JC

n . Suppose that
D defeats B′ at qj (where B′ is either a proper subargument
of B or an argument in an argumentation line with head B).
By inductive hypothesis, there is a rule tj for qj in Cj , such
that for all literals d in the body of tj , P2P DR returns
Ansd = true. It also holds that R(D, Cj) ≤ R(B′, Cj).
Suppose that there is a rule sj with head qj in Cj such
that for all literals b in the body of sj , P2P DR returns
Ansb 6= false and Stronger(BSsj , SStj , Ti) = BSsj . By
Auxiliary Lemma, for every argument D′ for ∼ qj in ArgsC

that uses applicable rules and rule tj , there is an argument E
for qj in ArgsC , which uses unblocked rules and rule sj s.t.
R(E, Cj) < R(D′, Cj). As E uses unblocked rules, it easy
to verify by the first part of the Proposition, that E contains
no literals that are rejected by JArgsC , and that there is an
argumentation line EL for qj such that no argument in EL

is defeated by an argument supported by JArgsC . Following
the same process, for every literal that B′ is undercut at,
we can build an argumentation line BL for ∼ pi, such that
no argument in BL is defeated by an argument supported
by JArgsC . This contradicts the fact that every argument
defeating A is undercut by JArgsC . Therefore, for all rules sj

with head qj in Cj , either there is a literal b′ in the body of
sj , such that Ans′b = false, or there is a rule tj with head qj

in Cj , such that for all literals d in the body of tj , P2P DR
returns Ansd = true and Stronger(BSsj , SStj , Ti) 6= BSsj .
These conditions suffice for P2P DR to return false as an
answer for qj . Therefore, for rule si, which is used in B to
support ∼ pi, it holds that there is a literal b in the body of
si, such that Ansb = false.

Consider now a rule si with head ∼ pi in Ci, which

is contained in an argument in ArgsC , which does not
defeat A. Suppose that for all literals b in the body of si,
P2P DR returns either true or undefined as an answer for b,
and Stronger(SSri , BSsi , Ti) 6= SSri . Then, by Auxiliary
Lemma and by the first part of the Proposition, we can
verify that there is an argument B and an argumentation
line BL with head B, such that no argument in BL is
defeated by an argument supported by JArgsC , and for every
argument A′ that uses applicable rules and ri to support pi,
R(A′, Ci) ≥ R(B,Ci). Using the same reasoning with before,
we conclude that pi is not justified, which contradicts our
original supposition. Therefore, for every rule si with head
∼ pi in Ci, which is contained in an argument B that does
not defeat A, either there is a literal b in the body of si,
such that P2P DR returns false as an answer for b, or
Stronger(SSri , BSsi , Ti) 6= SSri .

Overall, there is a rule ri with head pi in Ci, such that
for every literal a in the body of ri, P2P DR returns
true as an answer for a, and for for every rule si for
∼ pi in Ci, either there is a literal b in the body of si,
such that P2P DR returns false as an answer for b, or
Stronger(SSri , BSsi , Ti) 6= SSri . Therefore, P2P DR
will compute suppi = true, and either unb∼pi = false
or Stronger(SSpi , BS∼pi , Ti) = SSpi , and eventually will
return true as an answer for pi.

⇐ (2). Suppose that for a literal pi that is rejected by JArgsC ,
it holds that P2P DR returns either true or undefined as an
answer for pi. By definition, either (a) localAnspi = true,
which means there is a strict local argument for pi in ArgsC ,
and leads to the conclusion that pi is justified, which by
Lemma 2 contradicts our original supposition that pi is
rejected by JArgsC ; or (b) there is a rule ri with head
pi in Ci, such that for all literals a in the body of ri,
P2P DR returns either true or undefined as an answer for
a, and for all rules si with head ∼ pi in Ci, either there
is a literal b in the body of si, such that Ansb 6= true or
Stronger(BSri , BSsi , Ti) = BSri . By Auxiliary Lemma
and the first part of the Proposition, this implies that there
is an argument A for pi in ArgsC and an argumentation
line AL with head A, such that no argument in AL − {A}
and no proper subargument of A is defeated by an argument
supported by JArgsC , and for every argument B for ∼ pi

in ArgsC , either B is not supported by JArgsC , or there
is an argument D for pi in ArgsC and an argumentation
line DL with head D, such that no argument in DL − {D}
and no proper subargument of D is defeated by an argument
supported by JArgsC , and R(D, Ci) < R(B, Ci). This leads
to the conclusion that pi is not rejected, which contradicts
our original supposition. Therefore, P2P DR will return
false as an answer for pi.

⇐ (3) For a literal pi, which is neither justified nor rejected
by JArgsC , suppose that Anspi = true. By the first part
of the theorem, pi is justified (contradiction). Suppose that
Anspi = false. By the first part of the theorem, this means
that pi is rejected by JArgsC (contradiction). Therefore, for
pi, P2P DR will return Anspi = undefined.


