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Chapter 22

Automated Planning

Alessandro Cimatti, Marco Pistore,
Paolo Traverso

22.1 Introduction

We intuitively refer to the term Planning as the deliberation process that chooses and
organizes actions by anticipating their expected effects [24]. This deliberation aims at
satisfying some pre-defined requirements and achieving some prestated objectives.

The intuition is that actions are executed in a given domain. They make the do-
main evolve and change its state. For instance, in a robot navigation domain, an action
moving the robot changes its position; in the case of a microprocessor, an instruction
can be viewed as an action that changes the value of the registers; a web service for
booking flights can receive a message with a flight reservation confirmation, and this
is an action that changes its state.

The deliberation process can organize actions in different ways. For instance, mov-
ing a robot to a given room and then to the corridor is an example of a sequential
organization of actions; executing an instruction depending on the result of the ex-
ecution of a previous one is an example of a conditional combination of actions;
requesting for a flight reservation until a seat is available is an example of an itera-
tive combination.

Actions are organized and combined with the aim to satisfy some requirements on
the evolution of the domain. An example of a requirement for a mobile robot is that of
“reaching a given room”, while a requirement for a flight service can be that of “never
exceeding a given number of overbooking”.

Automated Planning is the area of Artificial Intelligence that studies this delibera-
tion process computationally. Its aim is to support the planning activity by reasoning
on conceptual models, i.e., abstract and formal representations of the domain, of the
effects and the combinations of actions, and of the requirements to be satisfied and the
objectives to be achieved. The conceptual model of the domain in which actions are
executed is called the planning domain, combinations of actions are called plans, and
the requirements to be satisfied are called goals. Intuitively, given a planning domain
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and a goal, a planning problem consists in determining a plan that satisfies the goal in
a given domain.

In this Chapter, we provide a general formal framework for Automated Planning.
The framework is defined along the three main components of the planning problem:
domains, plans, and goals.

– Domains. We allow for nondeterministic domains, i.e., domains in which ac-
tions may have different effects, and it is impossible to know at planning time
which of the different possible outcomes will actually take place. We also al-
low for partial observability. It models the fact that in some situations the state
of the domain cannot be completely observed, and thus cannot be uniquely de-
termined. A model with partial observability includes the special cases of full
observability, where the state can be completely observed and thus uniquely de-
termined, and that of null observability, where no observation is ever possible at
run time.

– Plans. We define plans where the action to be executed in a given state can de-
pend on available information about the history of previous execution steps. The
definition is general enough to include sequential plans, i.e., plans that are sim-
ply sequences of actions, conditional plans, i.e., plans that can choose a different
action depending on the current situation at execution time, iterative plans that
can execute actions until a situation occurs. We can have plans that depend on
a finite number of execution steps (finite-memory plans), as well as plans that
do not depend on the previous execution steps (memory-less plans). In general,
plan executions result in trees (called execution trees) whose nodes correspond
to states of the domain.

– Goals. We define goals as sets of acceptable trees that corresponds to desired
evolutions of a planning domain. They can represent classical reachability goals
that express conditions on the leaves of execution trees, which determine the
final states to be reached after a plan is executed. More in general, they can
represent more complex forms of “extended goals”, like temporally extended
goals, that express conditions on the whole execution tree.

Our framework is general enough to represent a relevant and significant set of
planning problems. Classical planning (see, e.g., [22, 40]) can be modeled with de-
terministic domains, plans that are sequences of actions, and reachability goals. In
addition, our framework is well suited for modeling certain forms of planning under
uncertainty and incomplete information, which are being recently addressed in the
research literature and are relevant to several real-world applications. Indeed, non-
deterministic domains model uncertainty in action effects, while partial observability
models uncertainty in observations. For instance, the so-called conformant planning
(see, e.g., [14, 9]) can be modeled with nondeterministic domains, null observability,
sequential plans, and reachability goals. Contingent planning (see, e.g., [13, 32, 5]) can
be modeled with nondeterministic domains, conditional plans, and reachability goals.
Planning for temporally extended goals (see, e.g., [44, 1, 35]) can be modeled with
nondeterministic domains, history dependent plans, and goals that represent desired
evolutions of the domain.
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For practical reasons, the framework cannot be so general to include all the differ-
ent planning problems that have been addressed in the literature so far. For instance, a
difference with respect to planning based on Markov Decision Processes (MDP) [8] is
that we do not represent probabilities of action outcomes in action domains, and goals
represented as utility functions.

A final remark is in order. We define the planning framework model theoretically,
independently of the language that can be used to describe the three components of a
planning problem. For instance, different languages can be used to describe planning
domains and plans, see, for instance [39, 26, 23, 38, 27]. This is the case also for goals.
For instance, propositional logic can be used to represent reachability goals, while
different temporal logics, such as LTL or CTL [21], or specialized goal languages
(see, e.g., [17]) can express temporally extended goals.

In this Chapter, we start by defining a general framework that can model domains,
plans and goals. In the next sections, we instantiate the framework to some specific
cases along the different dimensions of the planning components: domains, plans, and
goals. We conclude by reporting on state-of-the-art techniques in the field, and dis-
cussing some future research challenges.

22.2 The General Framework

In this section we define a general, formal framework for Automated Planning, which
is able to capture a wide variety of planning problems addressed by the literature.
In the next sections, we will show how the framework can by applied to capture the
different specific problems.

22.2.1 Domains

A planning domain is defined in terms of its states, of the actions it accepts, and of the
possible observations that the domain can exhibit. Some of the states are marked as
initial states for the domain. A transition function describes how (the execution of) an
action leads from one state to possibly many different states. Finally, an observation
function defines what observations are associated to each state of the domain.

Definition 22.2.1 (Planning domain). A nondeterministic planning domain with par-
tial observability is a tuple D = �S,�,O, I,R,X �, where:

– S is the set of states.

– � is the set of actions.

– O is the set of observations.

– I ⊆ S is the set of initial states; we require I �= ∅.

– R : S × � → 2S is the transition function; it associates to each current state
s ∈ S and to each action a ∈ � the setR(s, a) ⊆ S of next states.

– X : S → 2O is the observation function; it associates to each state s the set of
possible observations X (s) ⊆ O.
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We say that action a is executable in state s if R(s, a) �= ∅. We require that in each
state s ∈ S there is some executable action, that is some a ∈ � such thatR(s, a) �= ∅.
We also require that some observation is associated to each state s ∈ S , that is,
X (s) �= ∅.

We say that D is finite state if sets S , �, O are finite.

Technically, a domain is described as a nondeterministic Moore machine, whose
outputs (i.e., the observations) depend only on the current state of the machine, not on
the input action. Uncertainty is allowed in the initial state and in the outcome of action
execution. Also, the observation associated to a given state is not unique. This allows
modeling noisy sensing and lack of information.

22.2.2 Plans and Plan Executions

A plan is a definition of the next action to be performed on a planning domain in a
specific situation. A situation can be defined as the past history of the interactions of
the (executor of the) plan with the planning domain. In the initial situation, the only
information available to the executor is the initial (nondeterministic) observation o0,
and the executor reacts triggering action a1. This leads to a new (nondeterministic)
observation o1, to which the executor reacts with an action a2, which leads to a new
(nondeterministic) observation o2. This alternation of observations and actions can go
on infinitely, or can stop when the executor stops triggering new actions.

Formally, we will define a plan as a partial function π : O+ � � that associates an
action π(w) to a sequence of observations w = o0o1 . . . on. This way, the alternation
of outputs and actions just described is o0a1o1a2 . . . on, where ai+1 = π(o0o1 . . . oi).

Definition 22.2.2 (Plan). A plan for planning domain D = �S,�,O, I,R,X � is a
partial function π : O+ � � such that:

– if o0o1 . . . on ∈ dom(π) with n > 0, then o0o1 . . . on−1 ∈ dom(π).

If π(w) is defined for some w = o0o1 . . . on, then we denote with π
∗(w) the sequence

of outputs and actions o0a1o1a2 . . . on such that ai+1 = π(o0o1 . . . oi) for i = 1..n.

Notice that the previous definition ensures that, if a plan defines an action to be
executed for a sequence of observations, then an action is defined also for all the
nonempty prefixes of the sequence.

Since we consider nondeterministic planning domains, the execution of an action
may lead to different outcomes, and observations associated to these outcomes are
also nondeterministic. Therefore, the execution of a plan on a planning domain can be
described as a tree, where the branching corresponds to the different states reached by
executing the planned action, and by the observations obtained from these states.

Formally, we define a tree τ with nodes labeled on set Σ (or Σ-labeled tree) as a
subset of Σ+ such that, if ω · σ ∈ τ , with ω ∈ Σ+ and σ ∈ Σ , then also ω ∈ τ .
Notice that tree τ can have finite branches—corresponding to strings ω that cannot be
further extended in τ—as well as infinite branches—whenever there are sequences of
strings ω1, ω2, . . . , ωn, . . . such that ωi is a strict prefix of ωi+1.
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We can now define an execution tree as a (S×O)-labeled tree, where componentΣ
of the label of the tree corresponds to a state in the planning domain, while component
O describes the observation obtained from that state.

Definition 22.2.3 (Execution tree). The execution tree for domain D = �S,�,O, I,

R,X � and plan π is the (S×O)-labeled tree τ defined as follows:

– (s0, o0) ∈ τ , where s0 ∈ I and o0 = X (so);

– if (s0, o0)(s1, o1) . . . (sn, on) ∈ τ , π(o0o1 . . . on) = an, sn+1 ∈ R(sn, an) and
on+1 ∈ X (sn+1), then (s0, o0)(s1, o1) . . . (sn, on)(sn+1, on+1) ∈ τ .

Not all plans can be executed on a given domain. Indeed, it might be possible that
the actions prescribed cannot be executed in all the states. We now define executable
plans as those for which the triggered action is always executable on the domain.

Definition 22.2.4 (Executable plan). Let D = �S,�,O, I,R,X � be a planning do-
main and π be a plan for D. We say that π is executable if the following condition
holds on the execution tree τ for D and π :

– if (s0, o0)(s1, o1) . . . (sn, on) ∈ τ and π(o0o1 . . . on) = an thenR(sn, an) �= ∅.

22.2.3 Goals and Problems

A planning problem consists of a planning domain and of a goal g that defines the set
of desired behaviors. In the following, we assume that goal g defines a set of execution
trees, namely the execution trees that exhibit the behaviors described by the goal (we
say that these execution trees satisfy the goal).

Definition 22.2.5 (Planning problem). A planning problem is a pair (D, g), where
D = �S,�,O, I,R,X � is a planning domain and g is a set of (S×O)-labeled trees.
A solution to planning problem (D, g) is a plan π such that the execution tree for π
satisfies goal g.

22.3 Strong Planning under Full Observability

The first problemwe address is the problem of strong planning under full observability.
This problem can be defined restricting the framework with two assumptions, one on
the planning domain, and one on the goal.

The first assumption is that the domain is fully observable. This means that we can
assume that execution will have no run-time uncertainty whatsoever on the reached
state: before attempting an action, the executor will know precisely the state of the
domain. Intuitively, this can be modeled by letting the set of observations to coincide
with the set of states, and by assuming that the observation relation is actually an
identity function. Formally,

Definition 22.3.1 (Fully observable domain). A planning domain D = �S,�,O, I,

R,X � is fully observable iff O = S and X (s) = s.
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For simplicity, in the following we will assume that fully observable planning do-
mains are defined as tuples D = �S,�, I,R�.

The second assumption is that we are interested in strong solutions, that guarantee
that a set of target states will be reached in a finite number of steps, regardless of initial
uncertainty in the initial states, and of nondeterministic action effects.

Definition 22.3.2 (Goal for strong planning). Let G be a set of states. An execution
tree π is a solutions to the strong planning problem G iff every branch of π is finite
and ends in a state in G.

In this setting, we can restrict our solutions to a very specific form of plans, i.e.,
memoryless policies. Memoryless policies are plans where the selection of actions
depends on the last observation only.

Definition 22.3.3 (Memoryless plans). Let D = �S,�,O, I,R,X � be a finite state
domain. Plan π for domainD is memoryless if, for all ω, ω�, and o, π(ωo) = π(ω�o).

Intuitively, memoryless plans are enough to solve the problem due to full observ-
ability, and to the simplicity of the goal.

Memoryless plans can be described in a compact way as a partial function, called
state-action table, mapping states to the actions to be executed in such states. More
precisely, a state-action table SA is a subset of S ×�, and a deterministic state-action
table is a state-action table SA such that �s, a� ∈ SA and �s, a�� ∈ SA imply a = a�.
The definition of a plan corresponding to a deterministic state-action table is trivial.

We now describe an algorithm for strong planning. The algorithm operates on the
planning problem: the sets of the initial states I and of the goal states G are explicitly
given as input parameters, while the domain D = �S,�, I,R� is assumed to be
globally available to the invoked subroutines. The algorithm either returns a solution
state-action table, or a distinguished value for state-action tables, called ⊥, used to
represent search failure. In particular, we assume that ⊥ is different from the empty
state-action table, that we will denote with ∅.

The algorithm, presented in Fig. 22.1, is based on a breadth-first search proceeding
backwards from the goal, towards the initial states. At each iteration step, the set of
states for which a solution has been already found is used as a target for the expansion
preimage routine at line 5, that returns a new “slice” to be added to the state-action
table under construction. Functions STRONGPREIMAGE is defined as follows:

STRONGPREIMAGE(S) =̇
�
�s, a�: ∅ �= R(s, a) ⊆ S

�
.

STRONGPREIMAGE(S) returns the set of state-action pairs �s, a� such that the execu-
tion of a in s is guaranteed to lead to states inside S, regardless of nondeterminism.
We contrast the definition of STRONGPREIMAGE with the WEAKPREIMAGE function
(that will be used in the following sections):

WEAKPREIMAGE(S) =̇
�
�s, a�: R(s, a) ∩ S �= ∅

�
.

Intuitively, WEAKPREIMAGE(S) returns the set of state-action pairs �s, a� such that
the execution of a in s may lead inside S, but it is not guaranteed to do so.
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1 function STRONGPLAN(I,G);
2 OldSA := ⊥;

3 SA := ∅;

4 while (OldSA �= SA ∧ I � (G ∪ STATESOF(SA))) do

5 PreImage := STRONGPREIMAGE(G ∪ STATESOF(SA));
6 NewSA := PRUNESTATES(PreImage,G ∪ STATESOF(SA));
7 OldSA := SA;

8 SA := SA ∪ NewSA;

9 done;

10 if (I ⊆ (G ∪ STATESOF(SA))) then

11 return SA;

12 else

13 return ⊥;

14 fi;

15 end;

Figure 22.1: The algorithm for strong planning.

In the strong planning algorithm, function STRONGPREIMAGE is called using as
target the goal statesG and the states that are already in the state-action table SA: these
are the states for which a solution is already known. The returned preimage PreImage
is then passed to function PRUNESTATES, defined as follows:

PRUNESTATES(π, S) =̇
�
�s, a� ∈ π : s /∈ S

�
.

This function removes from the preimage table all the pairs �s, a� such that a so-
lution is already known for s. This pruning is important to guarantee that only the
shortest solution from any state appears in the state-action table. The termination
test requires that the initial states are included in the set of accumulated states (i.e.,
G ∪ STATESOF(SA)), or that a fix-point has been reached and no more states can
be added to state-action table SA. In the first case, the returned state-action table is a
solution to the planning problem. In the second case, no solution exists.

Notice that the state-action table SA computed by the algorithm is not necessarily
deterministic. However, a deterministic state-action table can be obtained from SA
associating to state s an arbitrary action from set {a: �s, a� ∈ SA}, whenever this set
is notempty.

22.4 Strong Cyclic Planning under Full Observability

Strong cyclic planning can be defined in the same setting as strong planning: domains
are fully observable, and plans are memoryless policies. The variation is in the set of
acceptable executions: here, in addition to executions that terminate in the goal, we
also accept infinite executions (e.g., that can loop for ever), with the proviso that the
chance of reaching the goal is retained.

Definition 22.4.1 (Goal for strong cyclic planning). Let G be a set of states. Then an
execution tree π is a solution to the strong cyclic planning problem G iff every path in
π either ends in a state in G, or each of its finite prefixes has a suffix that ends in G.
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We now present an algorithm for strong cyclic planning. The main difference with
the algorithm presented in previous section is that here the resulting plans allow for
infinite behaviors: loops must no longer be eliminated, but rather controlled, i.e., only
certain, “good” loops must be kept. Infinite executions are accepted only if they corre-
spond to “unlucky” patterns of nondeterministic outcomes, and if a goal state can be
reached from each state of the execution under different patterns of nondeterministic
outcomes.

The strong cyclic planning algorithm is presented in Fig. 22.2. The algorithm starts
to analyze the universal state-action table with respect to the problem being solved, and
eliminates all those state-action pairs which are discovered to be source of potential
“bad” loops, or to lead to states which have been discovered not to allow for a solution.
With respect to the algorithms presented in previous section, here the set of states
associated with the state-action table being constructed is reduced rather than being
extended: this approach amounts to computing a greatest fix-point.

The starting state-action table in function STRONGCYCLICPLAN is the universal
state-action table UnivSA. It contains all state-action pairs that satisfy the applicability
conditions:

UnivSA =̇
�
�s, a�: R(s, a) �= ∅

�
.

The “elimination” phase, where unsafe state-action pairs are discarded, corre-
sponds to the while loop of function STRONGCYCLICPLAN. It is based on the repeated
application of the functions PRUNEOUTGOING and PRUNE UNCONNECTED. The role
of PRUNEOUTGOING is to remove all those state-action pairs which may lead out of
G ∪ STATESOF(SA), which is the current set of potential solutions. Because of the
elimination of these actions, from certain states it may become impossible to reach
the set of goal states. The role of PRUNEUNCONNECTED is to identify and remove
such states. Due to this removal, the need may arise to eliminate further outgoing
transitions, and so on. The elimination loop is quit when convergence is reached. The
resulting state-action table is guaranteed to generate executions which either terminate
in the goal or loop forever on states from which it is possible to reach the goal. Func-
tion STRONGCYCLICPLAN then checks whether the computed state-action table SA
defines a plan for all the initial states, i.e., I ⊆ G ∪ STATESOF(SA). If this is not the
case a failure is returned.

The state-action table obtained after the elimination loop is not necessarily a valid
solution for the planning problem. Indeed, it may contain state-action pairs that, while
preserving the reachability of the goal, still do not perform any progress toward it.
In the strong cyclic planning algorithm, function REMOVENONPROGRESS on line 9
takes care of removing all those actions from a state whose outcomes do not lead to any
progress toward the goal. This function is similar to the strong planning algorithm: it
iteratively extends the state-action table by considering states at an increasing distance
from the goal. In this case, however, a weak preimage is computed at any iteration step,
since it is sufficient to guarantee progress towards the goal for some outcome of action
execution. Moreover, the computed weak preimage is restricted to the state-action
pairs that appear in the input state-action table, and hence that are “safe” according to
the elimination phase.
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1 function STRONGCYCLICPLAN(I,G);
2 OldSA := ∅;

3 SA := UnivSA;

4 while (OldSA �= SA) do

5 OldSA := SA;

6 SA := PRUNEUNCONNECTED(PRUNEOUTGOING(SA,G),G);
7 done;

8 if (I ⊆ (G ∪ STATESOF(SA))) then

9 return REMOVENONPROGRESS(SA,G);
10 else

11 return ⊥;

12 fi;

13 end;

1 function PRUNEUNCONNECTED(SA,G);
2 NewSA := ∅;

3 repeat

4 OldSA := NewSA;

5 NewSA := SA ∩WEAKPREIMAGE(G ∪ STATESOF(NewSA));
6 until (OldSA = NewSA);
7 return NewSA;

8 end;

1 function PRUNEOUTGOING(SA,G);
2 NewSA := SA \ COMPUTEOUTGOING(SA,G ∪ STATESOF(SA));
3 return NewSA; ;

4 end;

1 function REMOVENONPROGRESS(SA,G);
2 NewSA := ∅;

3 repeat

4 PreImage := SA ∩WEAKPREIMAGE(G ∪ STATESOF(NewSA));
5 OldSA := NewSA;

6 NewSA := NewSA ∪ PRUNESTATES(PreImage,G ∪ STATESOF(NewSA));
7 until (OldSA = NewSA);
8 return NewSA;

9 end;

Figure 22.2: The algorithm for strong cyclic planning.

Functions PRUNEOUTGOING, PRUNEUNCONNECTED, and REMOVENONPRO-
GRESS, also presented in Fig. 22.2, exploit primitives WEAKPREIMAGE and PRUNE
STATES, already defined in Section 22.3, and the primitive COMPUTEOUTGOING, that
takes as input a state-action table SA and a set of states S, and returns those state-action
pairs which are not guaranteed to result in states in S:

COMPUTEOUTGOING(SA, S) =̇
�
�s, a� ∈ SA: R(s, a) � S

�
.
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Figure 22.3: A simple nondeterministic planning domain.

22.5 Planning for Temporally Extended Goals under Full
Observability

We now extend the problem of planning in fully observable domains by considering
temporal goals. Under the hypothesis of full observability, the planning domain is still
the same as the one formalized in Section 22.3. Plans cannot instead be limited to
memoryless policies. In order to satisfy temporal goals, the plan function needs to
select actions depending on the previous execution steps. Intuitively, this is due to the
fact that plans need to keep track of which part of the temporal goal has been satisfied,
and which one is still open. Consider for instance the following example.

Example 22.5.1. A simple domain is shown in Fig. 22.3. It consists of a building of
five rooms, namely a store, a department dep, a laboratory lab, an office, and a corridor
corr. A robot can move between the rooms. The laboratory is a dangerous room it is
not possible to exit from. For the sake of simplicity, we do not model explicitly the
objects, but only the movements of the robot. Between rooms office and dep, there
is a door that the robot cannot control. Therefore, an east action from room office

successfully leads to room dep only if the door is open. Another nondeterministic
outcome occurs when the robot tries to move east from the store: in this case, the
robot may end nondeterministically either in room corr or in room lab. The transition
graph for the domain is represented in Fig. 22.4.

Consider now the goal of going from the corridor corr to room dep and then back
to room store. The action to execute in room corr depends on whether the robot has
already reached room dep and is going back to the store.

Plans are therefore regular plans that take into account previous execution steps
and that are instantiated to the case of fully observable domains.

Definition 22.5.2 (Regular plan). Plan π for finite state domain D = �S,�,O, I,

R,X � is regular if there is a finite set of contexts C and a function f : O+ → C

such that:

– if f (ω) = f (ω�) then π(ω) = π(ω�),

– if f (ω) = f (ω�), then f (ωo) = f (ω�o).
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Figure 22.4: The transition graph of the navigation domain.

It is easy to see that regular plans can be defined specifying: (1) the finite set of
contexts C, (2) an initialization function init : O � C defining the initial context
given the initial observation, and (3), an evolution function evolve : C × O � C,
defining the next context, given the current context and the observation.

In the following, we prefer a different alternative characterization of regular plans
for fully observable domains, which is more adequate for the planning algorithm that
we are going to define. More precisely, a regular plan can be defined in terms of an
action function that, given a state and an execution context, specifies the action to be
executed, and in terms of a context function that, depending on the action outcome,
specifies the next execution context.

Definition 22.5.3 (Regular plans (for temporally extended goals)). A plan for a fully
observable domain D is a tuple �C, c0, act, ctxt�, where:

– C is a finite set of (execution) contexts,

– c0 ∈ C is the initial context,

– act : S × C � � is the action function,

– ctxt : S × C × S � C is the context function.

We require that a plan satisfies the following conditions:

1. act(s0, c0) is defined for each s0 ∈ I;

2. whenever act(s, c) = a and ctxt(s, c, s�) = c�, then R(s, a) �= ∅ and s� ∈

R(s, a);
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act(store, c0) = south ctxt(store, c0, office) = c0
act(office, c0) = east ctxt(office, c0, dep) = c1

ctxt(office, c0, office) = c0
act(dep, c1) = west ctxt(dep, c1, office) = c1
act(office, c1) = north ctxt(office, c1, store) = c1
act(store, c1) = wait ctxt(store, c1, store) = c1

Figure 22.5: An example of plan.

3. whenever act(s, c) = a and s� ∈ R(s, a), then there is some context c� such
that ctxt(s, c, s�) = c� and act(s�, c�) is defined.

If we are in state s and in execution context c, then act(s, c) returns the action
to be executed by the plan, while ctxt(s, c, s�) associates to each reached state s� the
new execution context. Functions act and ctxt may be partial, since some state-context
pairs are never reached in the execution of the plan. We require plans to be defined
in all the initial states (Condition 1 in Definition 22.2.2), to be executable, i.e., the
actions should be applicable and contexts should be defined over states that are the
results of applying the actions (Condition 2), and to be complete, i.e., a plan should
always specify how to proceed for all the possible outcomes of any action in the plan
(Condition 3).

Example 22.5.4. An example of a plan is shown in Fig. 22.5. The plan leads the robot
from room store to room dep going through the office, and then back to the store, again
going through the office. Two contexts are used, namely c0 when the robot is going to
the dep and c1 when the robot is going back to the store. This allows the plan to
execute different actions in state office and in state store.

As discussed in Section 22.2, the execution of a plan can be described as a labeled
tree. In the case of a fully observable domain, observations are not important, and the
execution of a plan can be simply described as a S-labeled tree.

Definition 22.5.5 (Execution tree (in a fully observable domain)). The execution tree
for a fully observable domain D and regular plan π is the S-labeled tree τ defined as
follows:

– s0 ∈ τ , where s0 ∈ I;

– if s0s1 . . . sn ∈ τ , π(s0s1 . . . sn) = an, sn+1 ∈ R(sn, an), then s0s1 . . .
snsn+1 ∈ τ .

Notice that, due to Condition 3 in Definition 22.2.2, execution trees obtained from
regular plans do not contain finite paths.

We describe temporally extended goals by means of formulae in a temporal logic.
In this setting, we use Computation Tree Logic (CTL) [21] that enables us to charac-
terize the corresponding set of trees.
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Definition 22.5.6 (CTL goal). A CTL goal is defined by the following grammar, where
s is a state of the domain D1:

g ::= p | g ∧ g | g ∨ g | AX g | EX g

A(gU g) | E(gU g) | A(gW g) | E(gW g)

p ::= s | ¬p | p ∧ p

CTL combines temporal operators and path quantifiers. “X”, “U”, and “W” are the
“next time”, “(strong) until”, and “weak until” temporal operators, respectively. “A”
and “E” are the universal and existential path quantifiers, where a path is an infinite se-
quence of states. Formulas AF g and EF g (where the temporal operator “F” stands for
“future” or “eventually”) are abbreviations of A(�U g) and E(�U g), respectively.
AG g and EG g (where “G” stands for “globally” or “always”) are abbreviations of
A(gW⊥) and E(gW⊥), respectively. A remark is in order. Even if negation ¬ is
allowed only in front of basic propositions, it is easy to define ¬g for a generic CTL
formula g, by “pushing down” the negations: for instance, ¬AX g ≡ EX¬g and
¬A(g1 W g2) ≡ E(¬g2 U (¬g1 ∧ ¬g2)).

We now define valid plans, i.e., plans that satisfy CTL goals, i.e., we define τ |= g,
where τ is the execution tree of a plan π for domain D, and g is a CTL goal. The
definition of predicate |= is based on the standard semantics of CTL [21].

Definition 22.5.7 (Valid plan for a CTL goal). Let π be a plan for domain D. Let τ
be the execution tree of π in domain D. Let n be a node of τ .

We define τ, n |= g as follows.

– τ, n |= s iff n = s.

– τ, n |= ¬s if n �= s.

– τ, n |= g ∧ g� if τ, n |= g and τ, s |= g�.

– τ, n |= g ∨ g� if τ, n |= g or τ, n |= g�.

– τ, n |= AX g if for all n� that are successors nodes of n in τ , then τ, n� |= g.

– τ, n |= EX g if there is some successor node n� of n in τ such that τ, n� |= g.

– τ, n |= A(gU g�) if for all paths n0n1n2 . . . in τ with n = n0 there is some i � 0
such that τ, ni |= g� and τ, nj |= g for all 0 � j < i.

– τ, n |= E(gU g�) if there is some path n0n1n2 . . . in τ with n = n0 and some
i � 0 such that τ, ni |= g� and τ, nj |= g for all 0 � j < i.

– τ, n |= A(gW g�) if for all paths n0n1n2 . . . of τ with n = n0, either τ, nj |= g

for all j � 0, or there is some i � 0 such that τ, ni |= g� and τ, nj |= g for all
0 � j < i.

1Here we chose to identify each state of the domain with a basic Boolean proposition of CTL formulas.
Actually, we would need only �log2 |S|� basic propositions, using a boolean encoding of the states.
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– τ, n |= E(gW g�) if there is some path n0n1n2 . . . in τ with n = n0 such that
either τ, nj |= g for all j � 0, or there is some i � 0 such that τ, ni |= g� and
τ, nj |= g for all 0 � j < i.

We define τ |= g if τ, n0 |= g for all the initial states n0 = s0 ∈ I of D.

A planning algorithm can search the state space by progressing CTL goals. A CTL
goal g defines conditions on the current state and on the next states to be reached.
Intuitively, if g must hold in s, then some conditions must be projected to the next
states. The algorithm extracts the information on the conditions on the next states
by “progressing” the goal g. For instance, if g is EF g�, then either g� holds in s
or EF g� must still hold in some next state, i.e., EXEF g� must hold in q. One of
the basic building blocks of the algorithm is the function progr that rewrites a goal
by progressing it to next states. progr is defined by induction on the structure of
goals.

– progr(s, s�) = � if s = s�, ⊥, otherwise;

– progr(s,¬s�) = ¬progr(s, s�);

– progr(s, g1 ∧ g2) = progr(s, g1) ∧ progr(s, g2);

– progr(s, g1 ∨ g2) = progr(s, g1) ∨ progr(s, g2);

– progr(s,AX g) = AX g and progr(s,EX g) = EX g;

– progr(s,A(gU g�)) = (progr(s, g) ∧ AXA(gU g�)) ∨ progr(s, g�);

– progr(s,E(gU g�)) = (progr(s, g) ∧ EXE(gU g�)) ∨ progr(s, g�);

– progr(s,A(gW g�)) = (progr(s, g) ∧ AXA(gW g�)) ∨ progr(s, g�);

– progr(s,E(gW g�)) = (progr(s, g) ∧ EXE(gW g�)) ∨ progr(s, g�).

The formula progr(s, g) can be written in a normal form. We write it as a disjunction
of two kinds of conjuncts, those of the form AX f and those of the form EXh, since
we need to distinguish between formulas that must hold in all the next states and those
that must hold in some of the next states:

progr(s, g) =
�

i∈I

� �

f∈Ai

AX f ∧
�

h∈Ei

EXh

�

,

where f ∈ Ai (h ∈ Ei) if AX f (EXh) belongs to the ith disjunct of progr(s, g).
We have |I | different disjuncts that correspond to alternative evolutions of the do-
main, i.e., to alternative plans we can search for. In the following, we represent
progr(s, g) as a set of pairs, each pair containing the Ai and the Ei parts of a dis-
junct:

progr(s, g) =
�
(Ai, Ei) | i ∈ I

�

with progr(s,�) = {(∅, ∅)} and progr(s,⊥) = ∅.
Given a disjunct (A,E) of progr(s, g), we can define a function that assigns goals

to be satisfied to the next states. We denote with assign-progr((A,E), S) the set of all
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the possible assignments i : S → 2A∪E such that each universally quantified goal is
assigned to all the next states (i.e., if f ∈ A then f ∈ i(s) for all s ∈ S) and each
existentially quantified goal is assigned to one of the next states (i.e., if h ∈ E and
h /∈ A then f ∈ i(s) for one particular s ∈ S).

Given the two basic building blocks progr and assign-progr, we can now describe
the planning algorithm build-plan that, given a goal g0 and an initial state s0, returns
either a plan or a failure.2 The algorithm is reported in Fig. 22.6. It performs a depth-
first forward search: starting from the initial state, it picks up an action, progresses the
goal to successor states, and iterates until either the goal is satisfied or the search path
leads to a failure. The algorithm uses as the “contexts” of the plan the list of the active
goals that are considered at the different stages of the exploration. More precisely, a
context is a list c = [g1, . . . , gn], where the gi are the active goals, as computed by
functions progr and assign-progr, and the order of the list represents the age of these
goals: the goals that are active since more steps come first in the list.

The main function of the algorithm is function build-plan-aux(s, c, pl, open), that
builds the plan for context c from state s. If a plan is found, then it is returned by
the function. Otherwise, ⊥ is returned. Argument pl is the plan built so far by the
algorithm. Initially, the argument passed to build-plan-aux is pl = �C, c0, act, ctxt� =

�∅, g0,∅,∅�. Argument open is the list of the pairs state-context of the currently open
problems: if (s, c) ∈ open then we are currently trying to build a plan for context c in
state s. Whenever function build-plan-aux is called with a pair state-context already in
open, then we have a loop of states in which the same sub-goal has to be enforced. In
this case, function is-good-loop((s, c), open) is called that checks whether the loop is
valid or not. If the loop is good, plan pl is returned, otherwise function build-plan-aux
fails.

Function is-good-loop computes the set loop-goals of the goals that are active dur-
ing the whole loop: iteratively, it considers all the pairs (s�, c�) that appear in open up
to the next occurrence of the current pair (s, c), and it intersects loop-goals with the
set setof(c�) of the goals in list c�. Then, function is-good-loop checks whether there
is some strong until goal among the loop-goals. If this is a case, then the loop is bad:
the semantics of CTL requires that all the strong until goals are eventually fulfilled,
so these goals should not stay active during a whole loop. In fact, this is the differ-
ence between strong and weak until goals: executions where some weak until goal is
continuously active and never fulfilled are acceptable, while the strong until should be
eventually fulfilled if they become active.

If the pair (s, c) is not in open but it is in the plan pl (i.e., (s, c) is in the range
of function act and hence condition “defined pl.act[s, c]” is true), then a plan for
the pair has already been found in another branch of the search, and we return im-
mediately with a success. If the pair state-context is neither in open nor in the plan,
then the algorithm considers in turn all the executable actions a from state s, all the
different possible progresses (A,E) returned by function progr, and all the possi-
ble assignments i of (A,E) to R(s, a). Function build-plan-aux is called recursively
for each destination state in s� ∈ R(s, a). The new context is computed by function
order-goals(i[s�], c): this function returns a list of the goals in i[s�] that are ordered by

2It is easy to extend the algorithm to the case of more than one initial state.
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1 function build-plan(s0, g0): Plan
2 return build-plan-aux(s0, [g0], �∅, g0, ∅, ∅�,∅)

3
4 function build-plan-aux(s, c, pl, open): Plan
5 if (s, c) ∈ open then

6 if is-good-loop((s, c), open) then return pl
7 else return ⊥

8 if defined pl.act[s, c] then return pl
9 foreach a ∈ �(p) do

10 foreach(A,E) ∈ progr(s, c) do

11 foreach i ∈ assign-progr((A,E),R(s, a)) do

12 pl� := pl
13 pl�.C := pl�.C ∪ {c}

14 pl�.act[s, c] := a

15 open� := conc((s, c�), open)
16 foreach s� ∈ R(s, a) do

17 c� := order-goals(i[s�], c)
18 pl�.ctxt[s, c, s�] := c�

19 pl� := build-plan-aux(s�, c�, pl�, open�)
20 if pl� = ⊥ then next i

21 return pl�

22 return ⊥

23
24 function is-good-loop((s, c), open): boolean

25 loop-goals := setof(c)

26 while(s, c) �= head(open) do

27 (s�, c�) := head(open)
28 loop-goals := loop-goals ∩ setof(c�)

29 open := tail(open)
31 if ∃g ∈ loop-goals: g = A(_U_) or g = E(_U _) then

32 return false

33 else

34 return true

Figure 22.6: A planning algorithm for CTL goals.

their “age”: namely those goals that are old (they appear in i[s�] and also in c) appear
first, in the same order as in c, and those that are new (they appear in i[s�] but not in c)
appear at the end of the list, in any order. Also, in the recursive call, argument pl is
updated to take into account the fact that action a has been selected from state s in
context g. Moreover, the new list of open problems is updated to conc((s, c), open),
namely the pair (s, c) is added in front of argument open.

Any recursive call of build-plan-aux updates the current plan pl�. If all these re-
cursive calls are successful, then the final value of plan pl� is returned. If any of the
recursive calls returns⊥, then the next combination of assign decomposition, progress
component and action is tried. If all these combinations fail, then no plan is found and
⊥ is returned.
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22.6 Conformant Planning

The problem of conformant planning is the result of the assumption that no observation
is available at run time. In such a setting, the execution will have to proceed blindly,
without the possibility to acquire any information. Intuitively, we model the absence
of information by associating each state to the same observation.

Definition 22.6.1 (Unobservable domain). A planning domain D = �S,�,O, I,

R,X � is unobservable iff O = {•} and X (s) = •.

Since only one observation is available, it conveys no information at all. Therefore,
plans can only depend on the length of the history, since O∗ is a sequence of bullets.
In this setting, meaningful plans can be presented as sequences of actions.

Definition 22.6.2 (Sequential plan). Let a1, . . . , an be a sequence of actions. Then,
the corresponding plan is defined for any history of length i � n, and returns ai .

The problem of conformant planning requires to find a strong solution, that guar-
antees goal achievement for all initial states, and for nondeterministic action effects.

Definition 22.6.3 (Goal for conformant planning). Let G be a set of states. An execu-
tion tree π is a solution to a conformant planning problem G iff all the branches are
finite and of the same length, and they all end in G.

At this point, it should be clear that the problem we are tackling is much harder
than the classical planning problem. Suppose we are given a possible conformant plan,
having a run from one initial state to the goal; we still have to check that it is a valid
conformant plan, i.e., it is applicable in each state in I, and that the final state of each
run is in G. In fact, conformant planning reduces to classical planning if the set of
initial states is a singleton and the domain is deterministic.

We notice that the branching in the execution tree of a sequential plan is only due
to the nondeterminism in the action effects, since the same action is executed regard-
less of the activity of the system. Therefore, the ith level in the tree represents all the
possible system states which can be reached by the domain after the execution of the
first n actions in the plan. We also notice that such states are in fact “indistinguish-
able”. Based on this observation, conformant planning can be tackled as search in the
space of belief states. A belief state is a nonempty set of states, intuitively expressing
a condition of uncertainty, by collecting together all the states which are indistinguish-
able. Intuitively, a belief state can be used to capture the ith level of the execution tree
associated with a sequence of actions.

Belief states are a convenient representation mechanism: instead of analyzing all
the traces associated with a candidate plan, the associated set of states can be collected
into a belief state. In this setting, conformant planning reduces to deterministic search
in the space of belief states, called the belief space. The belief space for a given domain
is basically the power-set of the set of states of the domain. For technical reasons, we
explicitly restrict our reasoning to nonempty belief states, and define the belief space
as Pow+(S) =̇ Pow(S) \ ∅.
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1 function HEURCONFORMANTFWD(I,G)

2 Open := {�I, ε�};

3 Closed := ∅;

4 Solved := False;
5 while (Open �= ∅ ∧ ¬Solved) do

6 �Bs, π� := EXTRACTBEST(Open);
7 INSERT(�Bs, π�,Closed);
8 if Bs ⊆ G then

9 Solved := True; Solution := π;

10 else

11 BsExp := FWDEXPANDBS(Bs);
12 BsPList := PRUNEBSEXPANSION(BsExp,Closed);
13 for �Bsi , ai� in BsPList do

14 INSERT(�Bsi , π; ai�,Open)
15 endfor

16 fi

17 done

18 if Solved then

19 return Solution;
20 else

21 return ⊥;

22 fi

23 end

Figure 22.7: The forward conformant planning algorithm.

The execution of actions is lifted from states to belief states by the following defi-
nition.

Definition 22.6.4 (Action applicability, execution). An action a is applicable in a
belief state Bs iff a is applicable in every state in Bs. If a is applicable in a belief state
Bs, its execution in Bs, written Exec(a,Bs), is defined as follows:

Exec(a, Bs) =̇
�
s�: s ∈ Bs and s� ∈ R(s, a)

�
.

Definition 22.6.5 (Plan applicability, execution). The execution of plan π in a belief
state Bs, written Exec(π,Bs), is defined as follows:

Exec(ε,Bs) =̇ Bs,
Exec(π,⊥) =̇ ⊥,

Exec(a;π,Bs) =̇ ⊥, if a is not applicable in Bs,
Exec(a;π,Bs) =̇ Exec(π,Exec(a,Bs)), otherwise.

⊥ is a distinguished symbol representing violation of action applicability. Plan π is
applicable in a belief state Bs iff Exec(π, Bs) �= ⊥.

Fig. 22.7 depicts an algorithm for conformant planning. The algorithm searches the
belief space, proceeding forwards from the set of initial states I towards the goal G,
and can be seen as a standard best-first algorithm, where search nodes are (uniquely
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indexed by) belief states. Open contains a list of open nodes to be expanded, and
Closed contains a list of closed nodes that have already been expanded. After the
initialization phase, Open contains (the node indexed by) I, while Closed is empty.
The algorithm then enters a loop, where it extracts a node from the open list, stores it
into the closed list, and checks if it is a success node (line 8) (i.e., it a subset of G);
if so, a solution has been found and the iteration is exited. Otherwise, the successor
nodes are generated, and the ones that have already been expanded are pruned. The
remaining nodes are stored in Open, and the iteration restarts. Each belief state Bs is
associated with a plan π , that is applicable in I, and that results exactly in Bs, i.e.,
Exec(π, I) = Bs.

The algorithm loops (lines 5–17) until either a solution has been found (Solved =

True) or all the search space has been exhausted (Open = ∅). A belief state Bs is
extracted from the open pool (line 6), and it is inserted in closed pool (line 7). The
belief states Bs is expanded (line 11) by means of the FWDEXPANDBS primitive.
PRUNEBSEXPANSION (line 12) removes from the result of the expansion of Bs all
the belief state that are in the Closed, and returns the pruned list of belief states. If
Open becomes empty and no solution has been found, the algorithm returns with ⊥

to indicate that the planning problem admits no conformant solution. The expansion
primitive FWDEXPANDBS takes as input a belief state Bs, and builds a set of pairs
�Bsi , ai� such that ai is executable in Bs and the execution of ai in Bs is contained in
Bsi . Notice that ai is a conformant solution for the planning problem of reaching Bsi
from any nonempty subset of Bs.

FWDEXPANDBS(Bs) =̇
�
�Bsi , ai�: Bsi = Exec(ai,Bs) �= ⊥

�
.

Function PRUNEBSEXPANSION takes as input a result of an expansion of a belief
state and Closed, and returns the subset of the expansion containing the pairs where
each belief state has not been expanded. The PRUNEBSEXPANSION function can be
defined as:

PRUNEBSEXPANSION(BsP,Closed) =̇
�
�Bsi , ai�: �Bsi , ai� ∈ BsP, and �Bsi , π� ∈ Closed for no plan π

�
.

When an annotated belief state �Bs, π� is inserted in Open, INSERT checks if an-
other annotated belief state �Bs, π �� exists; the length of π and π � are compared, and
only the pair with the shortest plan is retained.

Obviously, the algorithm described above can implement several search strategies,
e.g., depth-first or breadth-first, depending on the implementation of the functions
EXTRACTBEST (line 6) and INSERT (line 14). Variations based on backward search
have been explored, but are not reported here for lack of space.

22.7 Strong Planning under Partial Observability

We consider now the problem of strong planning under partial observability. The prob-
lem is characterized by a generic domain, without constraints on the observations.

As in the case of strong planning under full observability, the acceptable execution
trees can be presented by a set of goal states, that must be reached regardless of the
initial condition and of nondeterministic action effects.
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Definition 22.7.1 (Goal for strong planning under partial observability). Let G be a
set of states. An execution tree π is a solution to a problem of strong planning under
partial observability G iff all the branches are finite, and they all end in G.

The availability of observations enables us to use richer plans than sequences: it is
possible to delay at execution time the choice of the next action, depending on the ob-
servation, even in presence of uncertainty due to lack of full observability. Tree-shaped
plans are needed, that define sequential courses of actions, which however depend on
the observation that will arise at run time. Such tree-shaped plans correspond to the
generic model of plans defined in Section 22.2, where observation histories identify
specific courses of actions, with the only constraint that plans should not contain infi-
nite branches.

Similarly to conformant planning, strong planning under partial observability can
be solved by means of a search in the space of beliefs. In fact, conformant planning can
be seen as a special case of planning with partial observability, where the observations
are disregarded. The new element (with respect to conformant planning) is that the
information conveyed by observations can be used to limit the uncertainty: the belief
state modeling the current set of uncertainty can be reduced by ruling out the states that
are incompatible with the observation. However, since the value of the observations
that will occur during execution is not available at planning time, all possible options
have to be taken into account: therefore, an observation “splits” a belief state in two
belief states. These two belief states must both be solved in order to find a strong
solution: for this reason, an AND/OR search in the space of beliefs is required (rather
than a deterministic search).

Strong planning under full observability can also be seen as a special case of the
problem addressed in this section. In fact, a memoryless policy can be mapped di-
rectly into a tree-shaped plan; however, the tree-shaped representation of the plan is
potentially much more expensive than the memoryless policy representation (which
is in essence a compact representation of a DAG). As far as the search algorithms
are concerned, it would be possible to solve strong planning under full observability
with an AND/OR search in the space of beliefs; however, full observability enables us
to rule out uncertainty at execution time, so that all the belief states degenerate into
singletons. In addition, the regressive search algorithm used with full observability
is more amenable to deal with the branching factor due to nondeterminism than the
progressive AND/OR search used with partial observability.

Finally, we notice that it would be in principle possible to reduce a problem of
strong planning under partial observability to a problem of strong planning under full
observability so that a regressive algorithm can be applied. However, this approach
would results in an exponential blow up, due to the fact that a state would be required
for every belief state in the original problem.

22.8 A Technological Overview

In this section, we overview the technologies underlying the main approaches to plan-
ning. Most of the work has been developed within the setting of classical planning.
The first remark is that most of the planners work at the level of the language describ-
ing the domain, rather than explicitly manipulating an explicit representation of the
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domain, which is in principle exponentially larger. Historically, the first classical plan-
ners were based on techniques such as regression and partial order planning, trying
to exploit the causal connection between (sub)goals and action effects. The first com-
putation breakthrough is due to the introduction of Planning Graphs [7], that enable
for a “less intelligent” but efficient and compact overapproximation of the state space.
Planning based on satisfiability decision procedures [36] is based on the generation of
a propositional satisfiability problem, that is satisfiable only if the planning problem
admits a solution (of given bound); the problem is then solved by means of efficient
propositional SAT solvers, that are typically able to solve structured problem with
large number of variables. Each of the problems is limited to bounded-length, i.e., it
looks for a strong solution of specified length l. When this does not exist, the bound
is iteratively increased l until a solution is found or a specified limit is reached. More
recently, classical planning has been tackled by means of the integration of planning
graphs with heuristic search techniques [31].

Some of the techniques developed in the setting of classical planning have also
been used to tackle the problems described in this paper. The work in [54, 41, 45]
pioneered the problem of generating conditional plans by extending the seminal ap-
proaches to classical planning (e.g., regression, partial order planning). These works
address the problem in the case of partial observability by exploiting the idea of “sens-
ing actions”, i.e., actions that when executed acquire information about the state of the
domain. The proposed solutions never demonstrated experimentally the ability to scale
up to nontrivial cases. Conformant and Sensorial Graphplan (CGP and SGP, resp.) [52,
55] were the first planners to extend planning graph techniques [7] to planning for
reachability goals in the case of null observability and partial observability, respec-
tively. These planners allowed for significant improvements in performance compared
with previous extensions of classical planners. However, a practical weakness of this
approach lies in the fact that algorithms are enumerative, i.e., a planning graph is
built for each state that can be distinguished by observation. For this reason, both CGP
and SGP are not competitive with more recent planners that address the same kind
of problems. More recently, planning graphs used in cooperation with propositional
satisfiability techniques in the CFF system, and efficient extension of the FF to deal
with Conformant and Conditional planning [9, 32]. In CFF, planning graphs are used
to compute heuristic measures and an AO*-like search is performed based on satisfia-
bility techniques.

Among the planners based on reduction to a satisfiability problem, QBFPLAN [47]
can deal with partial observability and reachability goals. The (bounded) planning
problem is reduced to a QBF satisfiability problem, which is given in input to an
efficient solver [48]. The approach exploits its symbolic approach to avoid exponential
blow up caused by the explicit enumeration of states, but seems unable to scale up to
large problems. Extensions to satisfiability techniques that can deal with conformant
planning are reported in [11, 25].

A different approach to the problem of planning under partial observability is the
idea of “Planning at the Knowledge Level”, implemented in the PKS planner [42]. This
approach is based on a representation of incomplete knowledge and sensing at a higher
level of abstraction. The extension presented in [43] provides a limited solution to the
problem of deriving complete conclusions from observations.
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Situation Calculus [46] provides a rather expressive formalism that has been used
to do automated planning by reasoning in first order logic. In situation calculus it
is possible to reason about actions with nondeterministic effects, which can be rep-
resented with disjunctive formulas. Partial observability has also been represented
through knowledge or sensing actions [51, 53]. The problem of making situation
calculus competitive in terms of performance with other more automated planning
techniques has been addressed by providing the ability to specify a plans as programs
(see, e.g., the work on Golog [37]).

DLVK [20] reduces conformant planning to answer set programming, by exploiting
the Disjunctive Datalog-based system DVL. The produced answer set is to be inter-
preted as a (parallel) plan. The domain description language of DLVK is K, where it is
possible to express incomplete information, action nondeterminism, and initial uncer-
tainty; in particular, inK it is possible to express transitions between knowledge states,
where predicates can be three-valued (known true, known false, unknown). DLVK can
produce conformant plans by requiring the underlying DLVK engine to perform “se-
cure” reasoning, which amounts to iteratively producing weak plans, i.e., plans that are
not guaranteed to reach the goal, and checking their security. DLVK tackles bounded
conformant planning problems, i.e., the length of plans must be provided to the sys-
tem.

Several approaches are based on the extension of techniques developed in model
checking [16]. Among these, SIMPLAN [35] adopts an explicit-state representations,
which limits its applicability to large state spaces. It was however the first planners
to deal with nondeterministic domains and goals expressed in LTL, in the case of full
observability. [18] presents an automata based approach to formalize planning in deter-
ministic domains. The work in [28, 30, 29] presents a method where model checking
with timed automata is used to verify that generated plans meet timing constraints.

A more recent approach is the one based on symbolic model checking. The work
on the MBP planner has addressed the problem of planning for reachability goals under
full observability [13], conformant planning [14], planning for reachability goals un-
der partial observability [5], and planning for temporally extended goals [44, 17]. The
underlying idea of symbolic model checking that is exploited in MBP is the following:
sets of states are represented as propositional formulas, and search through the state
space is performed as a set of logical transformations over propositional formulas.
Such logical transformations are implemented in planning algorithms by exploiting
Binary Decision Diagrams (BDDs) [10], that allow for a compact representation and
effective manipulation of propositional formulae. MBP accepts as input languages for
the description of the domain the �R action language [26]. A description of how
�R is used as an input language for the MBP planner is given in [12, 15]. Several
experimental comparisons show that symbolic model checking techniques are very
competitive for planning under uncertainty.

Other BDD-based approaches to the problem of strong planning under partial ob-
servability have been proposed in the YKA [49] and JUSSIPOP planners [50]. These
planners perform a backward search in the space of beliefs. As such, observations
are used to recombine beliefs, according to a fixed cardinality-based heuristics. Some
planners that are based on symbolic model checking techniques restrict to the case of
full observability, see, e.g., UMOP [33, 34], or to classical planning, see, e.g., MIPS
[19].
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Figure 22.8: The different dimensions of a planning problem.

22.9 Conclusions

In this Chapter, we have proposed a general framework for planning, and instantiated it
to some interesting planning problems. This is by no means exhaustive. Given the three
planning components, domains, plans, and goals, one can think of different possible
combinations (see Fig. 22.8).

We have started considering the case of full observability, and analyzing reachabil-
ity and temporally extended goals. We have shown that memory-less plans are enough
in the case of reachability goals, while finite-memory (or regular) plans are instead
needed in the case of temporal goals. Of course, it would be possible to study the case
in which we restrict acceptable solutions to memory-less plans, or plans with bounded
memory. In fact, for temporally extended goals, some planning problems that can be
solved with plans with finite but unbounded memory may have no solutions that are
memory-less or bounded memory plans.

In addition, we have shown how temporally extended goals can be expressed in
CTL. Different temporal logics can be used to express temporally extended goals, like
Linear Time Logic (LTL), which has incomparable expressive power with respect to
CTL (see [21] for a comparison), or more expressive temporal logics like CTL* or µ
calculus, or specific languages for extended goals (see, e.g., [17, 2]).

In the case of null observability, we have just limited the analysis to reachability
goals and sequential plans. We have not explored the case of null observability with
temporally extended goals.

In the case of partial observability, the analysis is restricted to the case of reach-
ability goals. Providing effective planning algorithm for the general case of partial
observability and extended goals is a research challenge for the future. Some prelimi-
nary results in this directions are presented in [4, 6, 3].
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