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Chapter 19

Nonmonotonic Causal Logic

H. Turner

This chapter describes a nonmonotonic causal logic designed for representing knowl-
edge about the effects of actions. A causal rule

φ ⇐ ψ

where φ and ψ are formulas of classical logic, is understood to express that (the truth
of) ψ is a sufficient condition for φ’s being caused. A causal theory T is a set of
causal rules, and is assumed to describe all such sufficient conditions. Thus, given an
interpretation I , the set of formulas

T I = {φ | φ ⇐ ψ ∈ T and I |= ψ}

can be understood to describe everything caused in a world such as I (according to T ).
The models of causal theory T are those interpretations for which what is true is ex-
actly what is caused: that is, the interpretations I such that I is the unique model of T I .
This fixpoint condition makes the logic nonmonotonic; adding causal rules to T may
produce new models.

Causal theories allow for convenient formalization of such challenging phenomena
as indirect effects of actions (ramifications), implied action preconditions, concurrent
interacting effects of actions, and things that change by themselves. These capabilities
stem from a robust solution to the frame problem [33]: one can write causal rules

Ft+1 ⇐ Ft+1 ∧ Ft

(19.1)¬Ft+1 ⇐ ¬Ft+1 ∧ ¬Ft

saying that a sufficient cause for fluent F ’s being true (respectively, false) at time t +1
is its being so at time t and remaining so at time t + 1. In this way, persistent facts are
effectively said to have inertia as their cause. On the other hand, the fixpoint definition
of a model of a causal theory T requires that everything have a cause (according to T ),
and so any facts not explained by inertia must have some other explanation. Conse-
quently, in the context of the fixpoint condition, the inertia rules (19.1) capture the
commonsense notion that things do not change unless they are made to. (The frame
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problem is briefly discussed in Chapter 6 as one of the motivations for nonmonotonic
logics, and other solutions to the frame problem are presented in Chapters 16–18.)

In a causal theory, one easily describes not only direct effects of actions, but also
their indirect effects, and even interacting effects of concurrent actions. For example,
suppose there is a large bowl of soup, with left and right handles. We can describe the
direct effect of lifting each side as follows.

up(left)t+1 ⇐ lift(left)t

(19.2)up(right)t+1 ⇐ lift(right)t

More interestingly, we can then describe, without reference to any action, that if only
one side of the bowl is up, then there is a cause for the soup’s being spilled.

(19.3)spilledt ⇐ up(left)t �≡ up(right)t

Under this description, if the soup is not already spilled and both sides of the bowl
are lifted at once, the soup will remain unspilled. But if only one side is lifted, the
soup will be spilled. Let us consider these two scenarios in more detail. Assume that
initially neither side is up and the soup is unspilled. In the first scenario, both handles
are lifted concurrently, and at the next time: by (19.2) there is a cause for both sides’
being up, and by inertia—that is, by (19.1) with spilled in place of F—there is a cause
for the soup’s being unspilled. For the second scenario, suppose instead that only the
left handle is lifted. Then, at the next time: by (19.2) there is a cause for the left side’s
being up, by inertia there is a cause for the right side’s remaining down, and by (19.3)
there is a cause for the soup’s being spilled. Notice that the formalization does not
support the incorrect alternative outcome in which, after lifting only the left handle,
both sides are up and the soup remains unspilled. Why not? By (19.2) there would be
a cause for the left side’s being up, and by inertia there would be a cause the soup’s
remaining unspilled, but there would be no cause for the right side to be up (and the
definition of a model requires that everything have a cause).

The prior example is meant to help with intuitions about the fixpoint definition of
a model and its role in the expressive possibilities of causal theories. In the interest
of clarity, it is important to emphasize that the example causal theory is incompletely
specified. Indeed, the fixpoint definition requires that everything have a cause accord-
ing to the theory. Accordingly, about occurrences and nonoccurrences of actions A,
we often write that they are caused in either case, as follows.

At ⇐ At

(19.4)¬At ⇐ ¬At

That is, if A occurs at time t , there is a cause for this, and if, on the other hand, A does
not occur at time t , there is a cause for that. Similarly, we typically say that initial facts
about fluents F are caused.

F0 ⇐ F0

(19.5)¬F0 ⇐ ¬F0

So, although everything in a model must be caused, it is convenient to take the view
that some causes are exogenous to our description, and we can simply stipulate their
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existence, by writing rules such as those in (19.4) and (19.5). Moreover, this is only the
most extreme version of the general case. After all, the nonmonotonic logic described
here is causal only in a limited sense: causal rules allow a distinction between being
true and having a cause. Causal theories do not grapple with the question of what a
cause may be, and do not support direct reasoning about what causes what. Fortu-
nately, many questions related to reasoning about actions require only that we be able
to determine what are the causally possible histories (of the world being described),
and for this purpose it seems enough to be able to describe the conditions under which
facts are caused.

This strategic emphasis on the distinction between what is caused and what is
(merely) true can be understood to follow Geffner [14, 15], whose work was influ-
enced by Pearl [35]. (Pearl’s ideas on causality have been extensively developed since
then. See, for instance, [36].) In the reasoning about action community, this line of
work was motivated primarily by the ramification problem—the problem of represent-
ing and reasoning about indirect effects of actions. For some time there were attempts
to describe relationships like those described by (19.3) through the use of “state con-
straints”: formulas of classical logic such as

(19.6)(up(left)t �≡ up(right)t ) ⊃ spilledt .

It seems that the crucial shortcoming of a formula like (19.6), for the purpose of rea-
soning about ramifications, is that it simply does not say enough about what can (and
cannot) cause what. Indeed, it is equivalent to its contrapositive

¬spilledt ⊃ (up(left)t ≡ up(right)t ).

In the last 15 years, there have been many reasoning about action proposals incorpo-
rating more explicitly causal notions. The nonmonotonic causal logic described in this
chapter was introduced in [30]. The most relevant prior work appears in [28, 29, 44].
A much fuller account of causal theories was published in 2004 [18], although a num-
ber of results presented in this chapter do not appear there. Causal theories have been
studied, applied and extended in [24, 25, 17, 31, 45, 22, 27, 47, 2–4, 6, 7, 11, 20, 1, 5,
10, 21, 46, 13, 9, 42].

An implementation of causal theories—the Causal Calculator (CCALC)—is
publicly-available, and many of the above-cited papers describe applications of it.
The key to this implementation is an easy reduction from (a subclass of) causal theo-
ries to classical propositional logic, by a method introduced in [30], closely related to
Clark’s completion [8] for logic programs (discussed in Chapter 7). Thus, automated
reasoning about causal theories can be carried out via standard satisfiability solvers.
(The initial version of CCALC was due primarily to Norm McCain, and is described
in his PhD thesis [32]. Since then it has been maintained and developed by Vladimir
Lifschitz and his students at the University of Texas at Austin.)

Subsequent sections of this chapter are organized as follows.

• Section 19.1 defines causal theories (more adequately), considers a few exam-
ples, and remarks on several easy mathematical properties.

• Section 19.2 presents a “strong equivalence” result, which justifies a general
replacement property, despite the nonmonotonicity of the logic.
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• Section 19.3 specifies the reduction to classical propositional logic that makes
automated reasoning about causal theories convenient.

• Section 19.4 demonstrates further expressive possibilities of causal theories,
such as nondeterminism and things that change by themselves.

• Section 19.5 briefly describes the high-level action language C+ that is based
on causal theories.

• Section 19.6 characterizes the close mathematical relationship between causal
theories and Reiter’s default logic, and notes the remarkable fact that inertia
rules essentially like (19.1) appear already in Reiter’s 1980 paper.

• Section 19.7 presents Lifschitz’s reformulation of causal theories in higher-order
classical logic, somewhat in the manner of circumscription.

• Section 19.8 presents the modal nonmonotonic logic UCL that includes causal
theories as a special case.

19.1 Fundamentals

We first define a slight extension of usual (Boolean) propositional logic, convenient
when formulas are used to talk about states of a system. Then we define the syntax and
semantics of causal theories, make some observations, and consider a few examples,
including a more precise account of the soup-bowl example already discussed.

19.1.1 Finite Domain Propositional Logic

A (finite-domain) signature is a set σ of symbols, called constants, with each con-
stant c associated with a nonempty finite set Dom(c) of symbols, called the domain
of c. An atom of signature σ is an expression of the form

c = v

(“the value of c is v”) where c ∈ σ and v ∈ Dom(c). A formula of σ is a propositional
combination of atoms.

To distinguish formulas of usual propositional logic from those defined here, we
call them “classical”.

An interpretation of σ is a function mapping each element of σ to an element
of its domain. An interpretation I satisfies an atom c = v (symbolically, I |= c = v)
if I (c) = v. The satisfaction relation is extended from atoms to arbitrary formulas
according to the usual truth tables for the propositional connectives.

Also as usual, a model of a set Γ of formulas is an interpretation that satisfies all
formulas in Γ . If Γ has a model, it is said to be consistent, or satisfiable. If every
model of Γ satisfies a formula F , then we say that Γ entails F and write Γ |= F .
Formulas, or sets of formulas, are equivalent if they have the same models.

A Boolean constant is one whose domain is the set {t, f} of truth values. A Boolean
signature is one whose constants are all Boolean. If c is a Boolean constant, we some-
times write c as shorthand for the atom c = t. When the syntax and semantics defined
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above are restricted to Boolean signatures and to formulas that do not contain f, they
turn into the usual syntax and semantics of classical propositional formulas. Even
when the signature is not Boolean, there are easy reductions from finite domain propo-
sitional logic to classical propositional logic. (For more on this, see [18].)

19.1.2 Causal Theories

Syntax

A causal rule (of signature σ ) is an expression of the form

(19.7)φ ⇐ ψ

where φ and ψ are formulas (of σ ). We call φ the head of the rule, and ψ the body.
The intuitive reading of (19.7) is “φ is caused if ψ”.

A causal theory (of σ ) is a set of causal rules (of σ ).

Semantics

Consider any causal theory T and interpretation I (of σ ). We define

T I = {φ | φ ⇐ ψ ∈ T , I |= φ}.

Intuitively, T I describes what is caused in a world like I , according to T .
An interpretation I is a model of a causal theory T if I is the only model of T I .

Observation 1. For any causal theory T and interpretation I , I is a model of T iff,
for all formulas φ,

I |= φ iff T I |= φ.

This observation corresponds precisely to the informal characterization we began
with—the models of a causal theory T are the interpretations for which what is true is
exactly what is caused (according to T ).

Observation 2. If I is a model of a causal theory T , then I |= ψ ⊃ φ for every
φ ⇐ ψ ∈ T .

Examples. Take

σ = {p}, Dom(p) = {1, 2, 3}, T1 = {p = 1 ⇐ p = 1}.

There are three interpretations (of σ ), as follows: I1(p) = 1, I2(p) = 2, I3(p) = 3.

Notice that T I1
1 = {p = 1}. Clearly I1 |= T

I1
1 , while I2 �|= T

I1
1 and I3 �|= T

I1
1 , which

shows that I1 is a model of T1. On the other hand, T
I2
1 = T

I3
1 = ∅. So I2 is not the

unique model of T I2
1 , nor is I3 the unique model of T

I3
1 . Consequently, neither I2 nor

I3 is a model of T1.

Consider the causal theory T2 obtained by adding the causal rule p = 2 ⇐ p = 2
to T1. One easily verifies that both I1 and I2 are models of T2, which shows that causal
theories are indeed nonmonotonic: adding a rule to T1 produced a new model.
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Now let us reconsider the soup-bowl domain, discussed somewhat informally in
the introductory remarks. Take the Boolean signature

σ = {upL0, upR0, sp0, upL1, upR1, sp1, liftL0, liftR0}.

Then following causal theory T represents the soup-bowl domain, with constants ab-
breviated: upL0 for up(left)0, sp1 for spilled1, liftL0 for lift(left)0, and so forth.

upL0 ⇐ upL0 upL1 ⇐ upL1 ∧ upL0

¬upL0 ⇐ ¬upL0 ¬upL1 ⇐ ¬upL1 ∧ ¬upL0 liftL0 ⇐ liftL0

upR0 ⇐ upR0 upR1 ⇐ upR1 ∧ upR0 ¬liftL0 ⇐ ¬liftL0

¬upR0 ⇐ ¬upR0 ¬upR1 ⇐ ¬upR1 ∧ ¬upR0 liftR0 ⇐ liftR0

sp0 ⇐ sp0 sp1 ⇐ sp1 ∧ sp0 ¬liftR0 ⇐ ¬liftR0

(19.8)¬sp0 ⇐ ¬sp0 ¬sp1 ⇐ ¬sp1 ∧ ¬sp0

upL1 ⇐ liftL0 sp0 ⇐ upL0 �≡ upR0

(19.9)upR1 ⇐ liftR0 sp1 ⇐ upL1 �≡ upR1

Most of the causal rules in T are of the “standard” kinds already discussed: the
first column of (19.8) says that facts about the initial time are exogenous, the second
column of (19.8) says that fluents upL, upR, sp are inertial, and the third column says
that causes of occurrence and nonoccurrence of the actions liftL, liftR are exogenous.
The “interesting” rules appear in (19.9): the two on the left describe the direct effects
of lifting the left and right handles of the bowl, and the other two say that, at both
times 0 and 1, if only one side of the bowl is up, then there is a cause for the soup’s
being spilled.

Without much difficulty, one can verify that the models of this formalization are as
previously described. For instance, consider the interpretation in which both sides are
initially down, the soup is initially unspilled, the left handle is lifted at time 0, and at
time 1 the left side is up, the right side is not, and the soup is spilled. That is, take

I = {¬upL0,¬upR0,¬sp0, liftL0,¬liftR0, upL1,¬upR1, sp1}.

Then

T I = {¬upL0,¬upR0,¬sp0, liftL0,¬liftR0, upL1,¬upR1, sp1},

and so I is a model of T . (That is, I is the unique model of T I .) By comparison,
consider the interpretation

I = {¬upL0,¬upR0,¬sp0, liftL0,¬liftR0, upL1, upR1,¬sp1}.

Then

T I = {¬upL0,¬upR0,¬sp0, liftL0,¬liftR0, upL1,¬sp1},

and so this interpretation I is not a model of T , since it is not the unique model of T I .
(Intuitively, there is no explanation for the right side’s being up at time 1.)
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Constraints

A causal rule with head ⊥ is called a constraint. A constraint

(19.10)⊥ ⇐ φ

can be understood to say that ¬φ must be the case, but without asserting the existence
of a cause for ¬φ. Constraints behave monotonically. That is, adding (19.10) to a
causal theory simply rules out those models that satisfy φ.

Definitional extensions and defaults

It is straightforward to add a new Boolean constant d to the signature σ and define it
using a formula φ of the original signature: simply add the rule

(19.11)d ≡ φ ⇐ �.

Indeed, let T be a causal theory (of σ ), with Td the causal theory (of σ ∪{d}) obtained
by adding (19.11) to T . For any interpretation I of σ , let Id be the interpretation
of σ ∪ {d} such that (i) Id(c) = I (c), for all c ∈ σ , and (ii) Id(d) = t iff I |= φ. Then,
I is a model of T iff Id is a model of Td . Moreover, every model of Td has the form Id ,
for some interpretation I of σ .

More generally, we can add to σ a new constant d with Dom(d) = {v1, . . . , vn}

and define d using formulas φ2, . . . , φn of σ , no two of which are jointly satisfiable,
by adding the following causal rules.

(19.12)

d = v1 ⇐ d = v1
d = v2 ⇐ φ2

...

d = vn ⇐ φn

Indeed, let T be a causal theory (of σ ), with Td the causal theory (of σ ∪ {d}) obtained
by adding the rules (19.12) to T . For any interpretation I of σ , let Id be the interpreta-
tion of σ ∪ {d} such that (i) Id(c) = I (c), for all c ∈ σ , and (ii) for all i ∈ {2, . . . , n},
Id(d) = vi iff I |= φi . Then, I is a model of T iff Id is a model of Td . Moreover, every
model of Td has the form Id , for some interpretation I of σ .

Notice that this latter technique can also be understood as a way of giving new
constant d a default value which is overridden just in case one of φ2, . . . , φn is true.

19.2 Strong Equivalence

Equivalence of causal theories is defined in the usual way—as having the same
models—but since the logic is nonmonotonic, equivalence does not yield a replace-
ment property. That is, it is not generally safe to replace a subset of the rules of a
causal theory with an equivalent set of rules. For example, assume that the signature
is Boolean, with two constants, p and q. Let S be the causal theory with rules

p ⇐ q,

q ⇐ p
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and let T be the causal theory with rules

p ⇐ p,

q ⇐ q.

Causal theories S and T are equivalent, for each the unique model is {p, q}. Now, let
R consist of the single rule

¬p ⇐ ¬p.

Notice that S ∪ R still has only the model {p, q}, while T ∪ R has a second model,
{¬p, q}. Thus, in the context of S ∪ R it is not safe to replace S with T , even though
S and T are equivalent.

Of course it is clear that we can always safely replace a rule φ ⇐ ψ with a rule
φ� ⇐ ψ � if φ is equivalent to φ� and ψ is equivalent to ψ �. But we can do better.

The crucial notion is “strong equivalence”, introduced (for logic programming)
in [23]. (See Chapter 7.) We say causal theories S and T are strongly equivalent if, for
every causal theory R, S ∪ R is equivalent to T ∪ R.

It is clear that strong equivalence yields the replacement property we want. If S
and T are strongly equivalent, we can safely replace S with T no matter the context:
doing so will not affect the set of models. But the definition is inconvenient to check,
since it requires reasoning about all possible contexts S ∪ R. For convenience, we
want a rather different characterization of strong equivalence.

An SE-model of causal theory T is a pair (I, J ) of interpretations such that

• I |= T I , and

• J |= T I .

Strong Equivalence Theorem. (See [46].) Causal theories are strongly equivalent
iff their SE-models are the same.

While deciding equivalence of causal theories is aΠP
2 -complete problem, deciding

strong equivalence is co-NP-complete.

19.3 Completion

A causal theory is definite if

• the head of every rule is either an atom or ⊥, and

• no atom occurs in the head of infinitely many rules.

We say an atom c = v is trivial if Dom(c) = {v}. If a causal theory is definite, its
completion consists of the following formulas.

• For each constraint ⊥ ⇐ φ, include the formula ¬φ.

• For each nontrivial atom A of the signature, include the formula

A ≡ (φ1 ∨ · · · ∨ φn)
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where φ1, . . . , φn are the bodies of the rules with head A. (If n = 0, the right-
hand side is ⊥.)

Completion Theorem. (See [30, 18].) If a causal theory is definite, its models are
exactly the models of its completion.

Assume that the signature has three atoms, p0, p1, and a0, with Dom(p0) =

Dom(p1) = {1, 2, 3} and Dom(a0) = {t, f}. Consider the following (definite) causal
theory.

(19.13)

p0 = 0 ⇐ p0 = 0
p0 = 1 ⇐ p0 = 1 a0 ⇐ a0
p0 = 2 ⇐ p0 = 2 a0 = f ⇐ ¬a0

p1 = 0 ⇐ p1 = 0 ∧ p0 = 0 p1 = 1⇐ p0 = 0 ∧ a0
p1 = 1 ⇐ p1 = 1 ∧ p0 = 1 p1 = 2⇐ p0 = 1 ∧ a0
p1 = 2 ⇐ p1 = 2 ∧ p0 = 2 p1 = 0⇐ p0 = 2 ∧ a0

Its completion is as follows.

p0 = 0 ≡ p0 = 0 a0 ≡ a0
p0 = 1 ≡ p0 = 1 a0 = f ≡ ¬a0
p0 = 2 ≡ p0 = 2
p1 = 0 ≡ (p1 = 0 ∧ p0 = 0) ∨ (p0 = 2 ∧ a0)

p1 = 1 ≡ (p1 = 1 ∧ p0 = 1) ∨ (p0 = 0 ∧ a0)

p1 = 2 ≡ (p1 = 2 ∧ p0 = 2) ∨ (p0 = 1 ∧ a0)

All but three of these formulas are tautological. Those three together can be simplified
as follows.

p0 = 0 ⊃ (p1 = 0 ∧ ¬a0) ∨ (p1 = 1 ∧ a0)

p0 = 1 ⊃ (p1 = 1 ∧ ¬a0) ∨ (p1 = 2 ∧ a0)

p0 = 2 ⊃ (p1 = 2 ∧ ¬a0) ∨ (p1 = 0 ∧ a0)

The Completion Theoremwould not be correct if we did not restrict the completion
process to nontrivial atoms. Consider, for instance, the causal theory with no rules
whose signature σ has only one constant c, with Dom(c) = {0}. This causal theory
has one model—the only interpretation of σ . But if the definition of completion did
not exclude trivial atoms, then the completion of this theory would be c = 0 ≡ ⊥,
which is unsatisfiable.

The Completion Theorem implies that the satisfiability problem for definite causal
theories belongs to class NP. In fact, it is NP-complete. Indeed, given any formula φ
of Boolean signature σ , the causal theory {⊥ ⇐ ¬φ} ∪ {c = v ⇐ c = v | c ∈ σ, v ∈

{t, f}} is definite and has the same models as φ.
As mentioned previously, the Causal Calculator uses completion to automate rea-

soning about definite causal theories via standard satisfiability solvers for proposi-
tional logic. In relation to this, there are two complications to consider: (i) the comple-
tion formulas are not in clausal form, and (ii) the completion formulas are not Boolean.
Both these obstacles can be efficiently overcome, as long as we are willing to modify
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and extend the signature, with the result that all models of the resulting set of clauses
correspond to models of the definite causal theory, and vice versa. (For more detail,
see [18].)

19.4 Expressiveness

We have already seen an example involving conditional (direct) effects of actions
(19.13), and have discussed at some length an example with indirect effects of actions
and interacting effects of concurrent actions (19.8), (19.9). We have mentioned other
possibilities, such as nondeterminism, implied action preconditions, and things that
change by themselves. A few examples follow. Many additional examples, of these
and other kinds, can be found in the cited papers on causal theories, including some
developing the theme of “elaboration tolerance”, which is crucial to the long-term
success of approaches to reasoning about action, but beyond the scope of this chapter.

19.4.1 Nondeterminism: Coin Tossing

The nondeterminism of coin tossing is easily represented. Let the signature consist
of three constants—coin0, coin1, toss0—where the first two constants have domain
{heads, tails} and the third constant is Boolean. Let T be as follows.

coin0 = v ⇐ coin0 = v

toss0 ⇐ toss0

¬toss0 ⇐ ¬toss0

coin1 = v ⇐ coin1 = v ∧ coin0 = v

coin1 = v ⇐ coin1 = v ∧ toss0

(Each line above in which v appears represents two causal rules, one for each appropri-
ate value of the metavariable v.) As discussed previously, the first line expresses that
causes for initial facts are exogenous; the next two that causes for action occurrences
(and nonoccurrences) are exogenous; the fourth that the value of coin is inertial. The
two rules represented by the fifth line rather resemble the inertia rules, except that they
say: if the coin is heads after toss, then there is a cause for this, and, on the other hand,
if the coin is tails after toss, then there is a cause for that. One easily verifies that T
has six models. In two of them, the coin is not tossed and so remains either heads or
tails. In the other four, the coin is initially heads or tails, and after being tossed it is
again either heads or tails.

19.4.2 Implied Action Preconditions: Moving an Object

There are k Boolean constants put(v)0, for v ∈ {1, . . . , k} (k > 1), along with two
additional constants, loc0, loc1, whose domains are {1, . . . , k}.

loc0 = v ⇐ loc0 = v

put(v)0 ⇐ put(v)0

¬put(v)0 ⇐ ¬put(v)0
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loc1 = v ⇐ loc1 = v ∧ loc0 = v

loc1 = v ⇐ put(v)0

(Here, v is a metavariable ranging over {1, . . . , k}, so the five lines above represent 5k
causal rules.) The first three lines express the exogeneity of initial facts and actions
in the standard way; the fourth line expresses inertia; the fifth says that putting the
object in location v causes it to be there. This causal theory has k(k + 1) models:
there are k possible initial locations of the block, and for each of these, there are
k + 1 possible continuations—either zero or one of the k put actions occurs, with the
appropriate outcome at time 1. Although concurrent actions are, in general, allowed
in causal theories, in this case the conflicting outcomes of the k put actions make it

impossible to execute two of them at once. It is not necessary to include the k(k−1)
2

causal rules that would be required to explicitly state these impossibilities. Instead,
they are implied by the description.

19.4.3 Things that Change by Themselves: Falling Dominos

We wish to describe the chain reaction of k dominos falling over one after the other,
after the first domino is tipped over at time 0. In this description, for simplicity, we will
stipulate that all dominos are initially up, and we will describe only the possibility of
the tip action occurring at time 0. So the signature consists of tip0 along with up(d)t
for d ∈ {1, . . . , k} and t ∈ {0, . . . , k}.

up(d)0 ⇐ � (1 � d � k)

tip0 ⇐ tip0
¬tip0 ⇐ ¬tip0
up(d)t+1 ⇐ up(d)t+1 ∧ up(d)t (1 � d � k, 0 � t � k − 1)

¬up(d)t+1 ⇐ ¬up(d)t+1 ∧ ¬up(d)t (1 � d � k, 0 � t � k − 1)

¬up(1)1 ⇐ tip0
¬up(d + 1)t+2 ⇐ ¬up(d)t+1 ∧ up(d)t (1 � d � k − 1, 0 � t � k − 2)

The first line says that initially all dominos are up; the second and third that the tip
action may or may not occur at time 0; the fourth and fifth lines posit inertia for the
dominos’ being up or down; and the sixth line describes the direct effect of the tip
action (executed at time 0). The seventh and last line is of particular interest. It says
that if domino d is up at time t and down at time t + 1, then there is a cause for
domino d + 1 to be down at time t + 2. Notice that this rule mentions three successive
time points, but no actions. Once the first domino is tipped, the others fall successively
with no further action taken. This causal theory has two models. In the first, the tip
action does not occur at time 0 and all dominos are up at all times. In the second, all
dominos are initially up, and at each time point i (1 � i � k) the ith domino has
fallen. (That is, in this model I , for all t ∈ {0, . . . , k} and d ∈ {1, . . . , k}, I |= up(d)t
iff d > t .)

19.4.4 Things that Tend to Change by Themselves: Pendulum

So far all examples have postulated commonsense inertia in the standard way: things
do not change unless made to. But we can easily take a more general view: some things
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will change unless made not to. For example, we can describe a pendulum that, if left
alone, will oscillate between being on the left and not being on the left. But if held,
the pendulum will not change position.

left0 ⇐ left0

¬left0 ⇐ ¬left0

holdt ⇐ holdt

¬holdt ⇐ ¬holdt

leftt+1 ⇐ leftt+1 ∧ ¬leftt

¬leftt+1 ⇐ ¬leftt+1 ∧ leftt

leftt+1 ⇐ holdt ∧ leftt

¬leftt+1 ⇐ holdt ∧ ¬leftt

The first four lines express the usual assumptions about exogeneity. The next two lines
express that the pendulum will tend to change position from one time to the next. That
is, if it changes position between times t and t +1, then there is a cause for its position
at time t + 1. The last two lines say that when the pendulum is held, it will not change
position. In all models of this causal theory, the pendulum changes position between
times t and t + 1 iff it is not held at time t .

19.5 High-Level Action Language C+

High-level action languages feature a concise, restricted syntax for describing the ef-
fects of actions, and often benefit from a relatively simple, well-understood semantics,
typically defined in terms of a transition system whose nodes are the possible states
and whose directed edges are labeled with the actions whose execution in the source
state can result in the target state. STRIPS [12] and ADL [37, 38] can be seen as the
first high-level action languages.

Language C+ [18] is a descendant of the action language � [16]. The semantics
of C+ is given by reduction to causal theories: for each action description D of C+

and each natural number n, there is a corresponding causal theory T (D, n). The states
of the transition system described by D are given by the models of T (D, 0), and the
possible transitions are given by the models of T (D, 1). The paths of length n in
the transition system correspond to the models of T (D, n). For instance, the causal
theory (19.13) is T (D, 1) for the following domain description D

inertial p

exogenous a

a causes p = 1 if p = 0

a causes p = 2 if p = 1

a causes p = 0 if p = 2

where p is designated a “simple fluent constant” with domain {0, 1, 2} and a a Boolean
“action constant”. Similarly, the causal theory (19.8), (19.9) for the soup bowl example
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corresponds to the domain description

inertial upL, upR, sp

exogenous liftL, liftR

liftL causes upL

liftR causes upR

caused sp if upL �≡ upR

where upL, upR and sp are Boolean “simple fluent constants” and liftL and liftR are
Boolean “action constants”. Here, as elsewhere, the high-level action language pro-
vides an especially nice syntax for representing action domains. Indeed, many of the
published applications of the Causal Calculator use C+, or its immediate predeces-
sor C [17], as the “input language”.

19.6 Relationship to Default Logic

A causal theory of a Boolean signature can be viewed as a default theory in the sense of
Reiter [41]. (The syntax and semantics of propositional default theories are reviewed
in Chapter 6.) Let us agree to identify a causal rule φ ⇐ ψ with the default

: ψ

φ
.

In the statement of the following theorem, we identify an interpretation I with the set
of formulas satisfied by I .

Default Logic Theorem. Let T be a causal theory of a Boolean signature. An inter-
pretation I is a model of T iff I is an extension of T in the sense of default logic.

This theorem shows that causal rules are essentially prerequisite-free defaults with
a single justification, so long as we are interested only in those extensions that cor-
respond to interpretations (that is to say, in the extensions that are consistent and
complete).

For instance, the causal theory

(19.14){p ⇐ q, q ⇐ q,¬q ⇐ ¬q}

corresponds to the default theory
�

: q

p
,
: q

q
,
: ¬q

¬q

�

,

which has two extensions: the set of all consequences of p, q, and the set of all con-
sequences of ¬q. The first extension is complete, and corresponds to the only model
of (19.14).

Remarkably, the causal rules (19.1) used in the solution to the frame problem that
has been adopted in causal theories were, in essence, proposed already in Reiter’s
original 1980 paper on default logic. But an account of how to successfully “use” such
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default rules to express commonsense inertia in reasoning about action did not appear
until [43, 44]. (This use of such default rules was derived from a similar application in
the setting of knowledge update [39, 40].) In this connection, it may be helpful to men-
tion the historically important “Yale Shooting” paper of Hanks and McDermott [19],
who argued that neither default logic nor circumscription were suitable formalisms for
reasoning about action. The Yale Shooting paper considered a rather different attempt
to solve the frame problem in default logic, and demonstrated that that attempt was
unsatisfactory. A brief account of this appears in [26]. For more detail, see [44].

19.7 Causal Theories in Higher-Order Classical Logic

Lifschitz [24] extended causal theories to the nonpropositional case using higher-order
classical logic to express the fixpoint condition on a model, much in the manner of
circumscription. His definition can be understood to provide a general method for
translating finite Boolean causal theories into classical propositional logic.

Begin with a signature of classical logic, with a finite subset of the nonlogical
constants designated “explainable”. A nonpropositional causal rule is an expression
of the form

φ ⇐ ψ

where φ and ψ are classical formulas. A nonpropositional causal theory is a finite set
of nonpropositional causal rules.

The special case of nonpropositional causal theories in which all nonlogical con-
stants are explainable propositional constants coincides with the special case of the
previously defined (finite-domain propositional) causal theories in which all constants
are Boolean and causal theories are assumed to be finite.

In what follows, let N be a list of all explainable nonlogical constants. We say that
a list of nonlogical constants or variables is similar to N if it has the same length as N
and each of its members is of the same sort as the corresponding member ofN . We can
denote a formula (in which none, some, or all explainable nonlogical constants appear)
by φ(N). Then for any list M that is similar to N , we can write φ(M) to denote the
formula obtained by simultaneously replacing each occurrence of each member of N
by the corresponding member ofM .

Consider a nonpropositional causal theory T with rules

φ1(N, x1) ⇐ ψ1(N, x1)
...

φk(N, xk) ⇐ ψk(N, xk)

where xi is the list of all free variables for the ith causal rule. Let n be a list of new
variables that is similar to N . By T ∗(n) we denote the formula

�

1�i�k

∀xi(ψi(N, xi) ⊃ φi(n, xi)).

An interpretation is a model of T if it is a model of

(19.15)∀n(T ∗(n) ≡ n = N)
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where n = N stands for the conjunction of the equalities between members of n and
the corresponding members of N .

Where the definitions overlap syntactically, this definition of model of a causal
theory agrees with the definition given earlier.

Notice that for finite Boolean propositional causal theories the corresponding sen-
tence (19.15) is a quantified Boolean formula, from which quantifiers can be elim-
inated (with worst-case exponential increase in size). Thus this approach yields a
general translation of finite Boolean propositional causal theories into classical propo-
sitional logic.

The completion method from Section 19.3 can be extended to “definite” nonpropo-
sitional causal theories, so that a “first-order” causal theory T has the same models as
the corresponding completion (which is a classical first-order formula) [24].

19.8 A Logic of Universal Causation

UCL is a modal nonmonotonic logic obtained from standard S5 modal logic (see
Chapter 15) by imposing a simple fixpoint condition that reflects the “principle of
universal causation”—the requirement that everything true in a model have a cause.
In [45], UCL was defined not only in the (Boolean) propositional case, but also for
nonpropositional languages, and was shown to subsume the nonpropositional causal
theories described in the previous section. Here, we consider a different extension of
(Boolean) propositional UCL, introduced in [46], built from finite-domain proposi-
tional formulas.

The fundamental distinction in UCL—between propositions that have a cause and
propositions that (merely) obtain—is expressed by means of the modal operator C,
read as “caused”. For example, one can write

(19.16)ψ ⊃ Cφ

to say that φ is caused whenever ψ obtains. UCL formula (19.16) corresponds to the
causal rule φ ⇐ ψ . This claim is made precise in the UCL Theorem below.

UCL formulas are obtained by extending the recursive definition of a formula with
an additional case for the modal operator C, in the usual way for modal logic:

• If φ is a UCL formula, then so is Cφ.

A UCL theory is a set of UCL formulas.
An S5-structure is a pair (I, S) such that I is an interpretation and S is a set of

interpretations (all of the same signature) to which I belongs. Satisfaction of a UCL
formula by an S5-structure is defined by the standard recursions over the propositional
connectives, plus the following two conditions:

• if φ is an atom, (I, S) |= φ iff I |= φ,

• (I, S) |= Cφ iff for all J ∈ S, (J, S) |= φ.

For a UCL theory T , if (I, S) |= T , we say that (I, S) is an I -model of T , thus em-
phasizing the distinguished interpretation I .

We say that I is causal model of T if (I, {I }) is the unique I -model of T .
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UCL Theorem. For any causal theory T , the models of T are precisely the causal
models of the corresponding UCL theory

{ψ ⊃ Cφ : φ ⇐ ψ ∈ T }.

It is possible to characterize strong equivalence for UCL theories, much as was
done in Section 19.2 for causal theories. Interestingly, this requires a slight strength-
ening of S5. The SE-models of a UCL theory are a subset of the S5 models: those S5
models (I, S) such that (I, {I }) is also an S5 model [46].
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