
Handbook of Knowledge Representation
Edited by F. van Harmelen, V. Lifschitz and B. Porter
© 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S1574-6526(07)03018-0

709

Chapter 18

Temporal Action Logics

Patrick Doherty and Jonas Kvarnström

18.1 Introduction

The study of frameworks and formalisms for reasoning about action and change [67,
58, 61, 65, 70, 3, 57] has been central to the knowledge representation field almost
from the inception of Artificial Intelligence as a general field of research [52, 56].

The phrase “Temporal Action Logics” represents a class of logics for reasoning
about action and change that evolved from Sandewall’s book on Features and Fluents
[61] and owes much to this ambitious project. There are essentially three major parts
to Sandewall’s work. He first developed a narrative-based logical framework for speci-
fying agent behavior in terms of action scenarios. The logical framework is state-based
and uses explicit time structures. He then developed a formal framework for assessing
the correctness (soundness and completeness) of logics for reasoning about action and
change relative to a set of well-defined intended conclusions, where reasoning prob-
lems were classified according to their ontological or epistemological characteristics.
Finally, he proposed a number of logics defined semantically in terms of definitions
of preferential entailment1 and assessed their correctness using his assessment frame-
work.

Several of these logics were intended to correspond directly to existing logics of
action and change proposed by others at the time, while the rest were new and were
intended to characterize broad classes of reasoning problems which subsumed some of
the existing approaches. Each of these definitions of preferential entailment were then
analyzed using the assessment framework, giving upper and lower bounds in terms
of the classes of reasoning problems for which they produced exactly the intended
conclusions. Much insight was gained both in terms of advantages and limitations
of previously proposed logics of action and change and in how one might go about
proposing new logics of action and change in a principled manner with formal assess-
ments included.

1Preferential entailment reduces the set of classical models of a theory by only retaining those models
that are minimal according to a given preference relation, a strict partial order over logical interpretations
[66].

710 18. Temporal Action Logics

The starting point for Temporal Action Logics was one of the definitions of pref-
erential entailment in Sandewall’s book called PMON (Pointwise Minimization of
Occlusion with Nochange premises). It was one of the few preferential entailment
methods that were assessed correct for the K–IA class of action scenario descrip-
tions, where K is an epistemological characteristic stating approximately that explicit,
correct and accurate knowledge is provided (with no requirements on complete knowl-
edge in the initial state and no restrictions on knowledge about other states), and IA
is an ontological characteristic stating approximately that discrete integer time is used
together with plain inertia (without ramification constraints, delayed effects, or other
complicating factors).

Thus, PMON solved the frame problem relative to an explicit statement of assump-
tions (K–IA) under which it could be assessed correct. The nature of the definition of
preferential entailment was somewhat related to explanation closure [64, 19], although
a partitioning of action scenario theories was used where only parts of the theory were
minimized and other parts used as filters on the preferred model set for the theory.
Though ramifications and qualifications to actions were not allowed inK–IA, the class
is in fact quite broad, permitting the use of conditional effects, non-deterministic ef-
fects, incomplete specification of states and the timing of actions, actions with duration
and specification of dynamics within action durations.

18.1.1 PMON and TAL

While the original PMON was characterized semantically in terms of a preferential
entailment method, Doherty later developed an equivalent syntactic characterization
in classical 2nd-order logic (also called PMON), using a circumscription axiom to for-
malize the PMON definition of preferential entailment [7, 14]. In these papers, he also
showed that the 2nd-order circumscription axiom was equivalent to a 1st-order point-
wise circumscription axiom, enabling the use of standard first-order theorem proving
techniques to reason about PMON action narratives. In extended versions of PMON
which led to TAL, it has also been shown that quantifier elimination techniques or
predicate completion techniques (Definition 7.3.6 in Chapter 7 of this Handbook) can
be used to reduce TAL circumscribed theories to logically equivalent 1st-order theo-
ries under certain assumptions.

Doherty’s PMON logic used two languages for representing and reasoning about
narratives. The surface language L(SD), Language for Scenario Descriptions, pro-
vided a convenient high-level notation for describing narratives, and could be de-
scribed as a set of macros easily translated into a base language L(FL), which was
initially a many-sorted first-order language and was later altered to be an order-sorted2

first-order language. The L(SD) language was later renamed to L(ND), Language for
Narrative Descriptions.

The logic was further extended and generalized in several steps in order to deal
with such issues as the ramification and qualification problems, use of concurrent
actions, use of structured object-oriented action theories, and use as a specification
formalism for TALplanner. Each extension generally implied adding new macros to
L(ND), adding additional predicates to L(FL), extending the translation definition to

2Essentially, an order-sorted language allows the use of sub-sorts; for example, CAR and BICYCLE may
be sub-sorts of the VEHICLE sort.

P. Doherty, J. Kvarnström 711

L(FL) and providing slight modifications to the circumscription policies used. It is
important to observe that all extensions proposed have been made in a manner which
preserves the property of reducibility of the 2nd-order circumscription theory to a 1st-
order theory. This is essential for practical reasons.

A number of the main extensions to PMON which led to the TAL family of logics
include:

• PMON-RC [25], which provides a solution to the ramification problem for a
broad, but as yet unassessed class of action scenarios. The main idea is the addi-
tion of a new statement type for causal constraints, where changes taking place
in the world can automatically trigger new changes at the same time or at a
specified delay from the original change. The solution is very fine-grained in
the sense that one can easily encode dependencies between individual objects in
the domain, work with both boolean and non-boolean fluents and represent both
Markovian and non-Markovian dependencies [21]. PMON-RC also correctly
handles chains of side effects.

• TAL 1.0 (PMON+) [8], which is an extended version of the original PMON
logic incorporating the changes made in PMON-RC together with other useful
extensions. This logic was originally called PMON+, but was later renamed
TAL 1.0 and provided the first stable kernel for the TAL family of logics.

• TAL-C [35], which uses fluent dependency constraints (an extended form of
causal constraints) as a basis for representing concurrent actions. A number of
phenomena related to action concurrency such as interference between one ac-
tion’s effects and another’s execution, bounds on concurrency, and conflicting,
synergistic, and cumulative effects of concurrent actions are supported.

• TAL 2.0 [10], which provides a basic stable kernel of TAL. It is essentially
TAL-C with some useful extensions and includes a tutorial on TAL and how it
is used.

• TAL-Q [11, 42], which introduces the idea of combining an encoding of de-
fault values for features using persistence statements together with dependency
constraints for representing qualifications to actions.

TAL 2.0 (TAL-C), extended with additions from TAL-Q, has been used as the basis
for much of the recent work with Temporal Action Logics and will be described in
some detail in this chapter. In the remainder of the chapter, we will use “TAL” as a
term to denote the latest stable kernel of this family of logics.

18.1.2 Previous Work

There has been a great deal of previous work in the development of the material de-
scribed in this chapter. We briefly summarize this work chronologically.

The root node fromwhich TAL originated is the Features and Fluents (F&F) mono-
graph [61]. Later developments with F&F are summarized in Sandewall [63]. Do-
herty [7] provides a syntactic characterization of PMON using pointwise circumscrip-
tion and shows how a particular class of narratives can be characterized as first-order
theories. Doherty [6] contains a detailed account of PMON circumscription theories

712 18. Temporal Action Logics

and provides additional characterizations of PMON in terms of predicate circumscrip-
tion and predicate completion, where syntactic transformations are defined on narra-
tives to provide a definition of the Occlude predicate. Doherty and Łukaszewicz [14]
provide syntactic characterizations of 7 out of the 9 definitions of preferential en-
tailment considered in F&F, using different forms of circumscription. Doherty and
Peppas [18] incorporate the use of primary and secondary fluents in PMON to model
a subclass of indirect effects of actions. A framework is also introduced for compar-
ing linear time logics such as PMON with branching time logics such as the situation
calculus. Karlsson [29] considers how to formally characterize different modal truth
criteria used in planning algorithms such as TWEAK and NONLIN using PMON.
Karlsson [31, 30] extends this work. Doherty [8] provides a detailed description of
TAL 1.0 used as a basis for early implementations of TAL. Doherty, Łukaszewicz and
Szałas [16, 17] develop a quantifier elimination algorithm which constructively gener-
ates logically equivalent 1st-order formulas for a certain class of 2nd-order formulas.
The intent with the work was to study the possibility of reducing other logics for ac-
tion and change characterized in terms of circumscription theories, thus making them
amenable to classical theorem proving techniques. Gustafsson and Doherty [25] ex-
tend TAL to deal with ramifications of actions by introducing causal constraints, which
have later been subsumed by the use of dependency constraints in TAL-C. In addition,
they show how to represent delayed effects of actions in TAL. Doherty, Łukaszewicz
and Szałas [19] consider the relation between the automatic generation of a defini-
tion for the Occlude predicate using circumscription and quantifier elimination, with
the manual generation of Explanation Closure axioms considered in Schubert [64].
Karlsson [32] investigates a number of weaknesses in situation calculus and provides
an alternative semantics grounded in intuitions derived from work with TAL. Bjäre-
land and Karlsson [5] investigates the use of regression operators as a means of doing
inference in TAL related formalisms. Bjäreland [4] provides a detailed presentation
of the approach in [5] and other approaches using tractable temporal logics. Karls-
son, Gustafsson and Doherty [9, 36] examine the use of delayed effects of actions
and various problems of interference which arise with their introduction. Doherty and
Kvarnström [11] present an initial solution to simple forms of qualification to actions.
Kvarnström and Doherty [42] provide a more detailed solution to the qualification
problem described in this chapter. Karlsson and Gustafsson [35] consider the problem
of modeling concurrent actions in TAL and the variety of interactions that may ensue
between actions executing concurrently. Gustafsson [23] provides a detailed study of
extensions to TAL involving dependency constraints, concurrency, and delayed effects
of actions. Karlsson [33] studies the possibility of introducing narratives as 1st-class
objects in the object language of a logic whose semantics is related to that of TAL.
Doherty, Łukaszewicz and Madalińska-Bugaj [15] study the relation between TAL
and belief update. Karlsson [34] provides detailed accounts of narratives as 1st-class
citizens in action logic, concurrent actions and additional extensions to TAL. Gustafs-
son [24] provides a detailed description of many of the extensions to TAL up to 2001.
Gustafsson and Kvarnström [26, 27] provide a novel means of structuring large TAL
narratives based on the use of intuitions from object-oriented programming.

Doherty and Kvarnström [12] present a new forward chaining planner which
uses TAL as a semantic framework for its development. In Kvarnström and Doherty
[43], an early detailed account of TALplanner is provided. Kvarnström, Doherty and

P. Doherty, J. Kvarnström 713

Haslum [44] provide an extension to TALplanner which integrates concurrent actions
and resources. Doherty and Kvarnström [13] provide a concise overview of TALplan-
ner. Kvarnström andMagnusson [45] provide a description of some of the control rules
used in TALplanner in the Third International Planning Competition (IPC-2002), and
the reasoning underlying these rules. Kvarnström [40] discusses application of domain
analysis techniques to control rules in TALplanner. Kvarnström [41] provides the most
recent and most detailed description of TALplanner.

The thesis work of both Karlsson [34] and Gustafsson [24] provide excellent refer-
ences to much of the later extensions to TAL. The thesis work of Kvarnström [41] pro-
vides an excellent description of TALplanner. A software system VITAL [39] for rea-
soning about action and change using TAL is available for download and on-line use.

18.1.3 Chapter Structure

In Section 18.2, the main concepts and ideas used in the development of TAL are
presented. In Section 18.3, action narratives used in TAL are defined and a complex
scenario, the Russian Airplane Hijack (RAH) scenario, is presented. This will be used
throughout the chapter to explain the different features provided by TAL. Section 18.4
considers the relation between the high level macro language L(ND) used to specify
action narratives and the base logical language L(FL) which it is translated to. In Sec-
tion 18.5, we provide a formal description of the languageL(ND), and in Section 18.6,
we provide a formal definition of the base logical language L(FL). In Section 18.7, the
circumscription policy used to specify the definition of preferential entailment used in
TAL is presented. In addition, we show how the resulting 2nd-order circumscription
theories which characterize action narratives can be reduced to logically equivalent
1st-order theories under certain conditions. Section 18.8 proposes a solution to the
ramification problem which is used in TAL. The RAH scenario is modified to incorpo-
rate this solution. Section 18.9 proposes a solution to the qualification problem which
is used in TAL. The RAH scenario is again modified to incorporate this solution. Sec-
tion 18.10 provides further examples of the expressivity of TAL actions. Section 18.11
presents an extension to TAL which models the use of concurrent actions where com-
plex types of interaction between such actions may occur. Section 18.12 presents an
application of TAL to planning where it is shown how TAL can be used as a semantic
framework in the development and implementation of TALplanner, an award winning
automated planner. In Section 18.13, we conclude.

18.2 Basic Concepts

When using TAL, we assume there is an agent interested in reasoning about a specific
world. This world might be formally defined, or it might be the “real world”, in which
case the agent can only reason about a formally defined abstraction of the real world.
In either case, it is assumed that the world is dynamic, in the sense that the various
properties or features of the world can change over time. Conceptually, any feature
has a fluent function associated with it representing the stream of values associated
with the feature at each state or temporal entity used in the formalism.

The TAL framework also permits the use of multiple value domains, which can be
used for modeling different types of objects that might occur in the world which is

714 18. Temporal Action Logics

being modeled. For example, the well-known blocks world contains blocks that can
be stacked on top of each other. The blocks world can then be modeled using a value
domain for blocks, containing values such as A, B and C, together with parameterized
boolean-valued features representing relations such as on(block1, block2), which holds
iff block1 is on top of block2, and clear(block), which holds iff there is no block on top
of block. Of course, values can also be used to represent properties of objects rather
than the objects themselves. For example, if the color of each block should be modeled,
then this could be done using a value domain for colors containing values such as red,
green and blue, together with a color-valued (non-boolean) feature color(block). In
summary, instantiated parameterized features take specific values (boolean or non-
boolean) at specific times. In this manner, both relations and properties are capable of
being represented.

Time itself can be viewed differently depending on the nature of the world being
reasoned about and the reasoning abilities of the agent. TAL offers a modular means of
choosing the temporal structure to be used. Currently, TAL uses linear time structures,
as opposed to branching time structures. Research within the TAL framework has been
focused on discrete non-negative integer time structures, and such a structure will be
used throughout this chapter, though most concepts should carry over directly or with
little modification to a real-valued time structure using ideas from [59, 60, 65].

The development of the world over a (possibly infinite) period of discrete time
can be viewed in two different ways. Fig. 18.1 shows what would happen in a simple
blocks world scenario where block A is initially on top of B, which is on the table, and
where one unstacks A from B, places it on the table, picks up B, and finally stacks this
block on top of A. The information about this scenario can be viewed as a sequence
of states, where each state provides a value to all features (or “state variables”) for
a single common timepoint, or as a set of fluents, where each fluent is a function of
time which specifies the development of a single feature. We sometimes use the terms
“feature” and “fluent” interchangeably to refer to either a specific property of the world
or the function specifying its value over time.

Consequently, a logical model in TAL is a sequence of states indexed by time,
where each state contains a value for each feature in the vocabulary at the timepoint

Figure 18.1: Viewing a development as fluents or states.

P. Doherty, J. Kvarnström 715

associated with the state. In the logical language, the assertion that a feature has a
value at a specific time is denoted as [τ] f (ω̄) =̂ω in the macro language L(ND) and
Holds(τ, f (ω̄), ω) in the logical language L(FL), where τ is a temporal expression,
f (ω̄) is a parameterized feature and ω is a value from the feature’s value domain.

Since there is an agent, there is usually also a set of actions that the agent can
perform. Such actions can only be performed when the requisite preconditions are
satisfied. Performing an action changes the state of the world according to a set of
given rules. Such rules are not necessarily deterministic. For example, the action of
tossing a coin can be modeled within the TAL framework, and there will be two possi-
ble result states. TAL offers a highly expressive language for specifying actions where
non-deterministic, context-dependent, concurrent and durational actions are express-
ible, among other types of actions.

Background knowledge associated with a reasoning domain can be modeled in a
number of ways in TAL. Observation statements represent observations made by an
agent. Domain Constraint statements represent facts true in all scenarios associated
with a particular reasoning domain. Dependency Constraint statements can be used to
represent causal theories or assertions which model intricate dependencies describing
how and when features change relative to each other.

All of these concepts are modeled in a narrative specified in the language L(ND).
L(ND) is a high-level extendable macro language which provides support to the
knowledge engineer when constructing narratives and permits specification of narra-
tives at a higher level of abstraction than logical statements. An extendable translation
function is provided which translates narratives specified in L(ND) into 1st- and 2nd-
order logical theories.

One of the fundamental problems in developing logics for reasoning about action
and change has been in finding both representational and computationally efficient
ways to encode the fact that there is a great deal of invariant structure in the world at
a particular level of abstraction in which agents often describe and reason about the
world. Even though the world is often dynamic and changing, from the perspective
of an agent functioning in the world, properties and relations among entities are more
often than not inert. On the other hand, there are often reasons for features in the
world to change or reasons that provide the possibility for change. Many of these
are obvious. For example, if an agent executes a physical action, the intent is usually
to change some aspect of the world to the agent’s advantage in completing a task.
Others are less obvious, for example the subtle ramifications and aftereffects of an
action. Developing theories of action and change is very much about identifying and
representing normative rules which capture invariant and non-invariant epistemic and
physical structure in environments in which agents are embedded and in which they
operate.

Many of the representational and computational problems associated with mod-
eling action and change have been given names, such as the frame, ramification and
qualification problems, while others have not. Many useful techniques for capturing
normative behavior have also been developed such as default reasoning. The principal
intuition used in the development of TAL to deal with many of these issues is very sim-
ple to state, but quite difficult to make operational in an efficient manner in a logical
formalism such as TAL.

716 18. Temporal Action Logics

In any TAL model, a time series is implicitly associated with any feature in the
vocabulary. Whether a feature may change value or not in a transition from one time-
point to another in the time series is specified by occluding or marking that feature as
being given the possibility of changing value relative to other constraints in the the-
ory. Policies for occluding features at timepoints are both contextually and temporally
dependent on a number of factors and done for a number of reasons. The definitions
of the frame, ramification and qualification problems specify some of these reasons.
For whatever reason this is done, to the greatest extent possible, this labeling process
should be achieved in a principled manner and remain more or less hidden from the
knowledge engineer via the use of macro mechanisms in the L(ND) language and the
translation into the base logical language L(FL).

At the level of L(ND), there are a number of ways to incrementally provide an
occlusion policy for a feature, some more explicit than others. At the L(FL) level, the
policies result in a set of labels for each feature represented as Occlude(τ, f (ω̄)). The
generation of such policies provide sufficient conditions for features being given the
possibility to change value in state transitions (from τ − 1 to τ). A circumscription
policy then provides the necessary conditions and a definition of the occlusion predi-
cate in the logical theory. An additional specification of whether and when a feature is
persistent, durational, or dynamic in nature is also provided. These statements provide
a means of filtering “bad” models out of the model set for a particular narrative, such
as models where persistent features change value without being occluded.

If one uses this technique in a principled manner and restricts the generation of
such policies to only include positive occurrences of the predicate Occlude in the the-
ory, then a reduction of the 2nd-order circumscription theory to a logically equivalent
1st-order theory is always guaranteed. It is in this manner we provide partial solutions
to the frame, ramification and qualification problems in the context of TAL.

18.3 TAL Narratives

A narrative in L(ND) can be said to consist of two parts: The narrative background
specification (NBS), which provides background information that is common to all
narratives for a particular domain, and the narrative specification (NS), which pro-
vides information specific to a particular instance of a reasoning problem. Most of
this information is represented as a set of labeled narrative statements in the surface
language L(ND).

Before providing a formal definition of the L(ND) language, we will introduce
most of the macros, formula types and statement classes using a rather complex ex-
ample scenario called the Russian Airplane Hijack (RAH) scenario, which in order
to be adequately represented in any logical formalism would require robust solutions
to the frame, ramification and qualification problems. We say robust because a com-
plete description of the RAH world requires the representation of concurrent actions,
incomplete specifications of states, ramification with chaining, the use of non-boolean
features, fine-grained dependencies among objects in different feature value domains,
actions with duration, two types of qualification (weak and strong) and the use of ex-
plicit time, in addition to other features.

The RAH narrative description will be used as a vehicle for considering different
facets of Temporal Action Logics and demonstrating how various aspects of a domain

P. Doherty, J. Kvarnström 717

can be modeled in TAL. This will be done in stages. In this section, we will represent
the narrative without the use of side effects and under the assumption that actions al-
ways succeed if their basic preconditions are satisfied. In other words, we will omit
solutions to the ramification and qualification problems.3 After having provided for-
mal specifications of the L(ND) and L(FL) languages (Sections 18.5 and 18.6), we
will once more return to the RAH scenario in order to consider how ramification con-
straints (Section 18.8) and qualification constraints (Section 18.9) can be modeled in
TAL.

18.3.1 The Russian Airplane Hijack Scenario

The Russian Airplane Hijack scenario4 can be described as follows.

Example 18.1 (Russian Airplane Hijack scenario). A Russian businessman, Boris,
travels a lot and is concerned about both his hair and safety. Consequently, when
traveling, he places both a comb and a gun in his pocket. A Bulgarian businessman,
Dimiter, is less concerned about his hair, but when traveling by air, has a tendency
to drink large amounts of vodka before boarding a flight to subdue his fear of flying.
A Swedish businessman, Erik, travels a lot, likes combing his hair, but is generally law
abiding.

One ramification of moving between locations is that objects in your pocket will
follow you from location to location. Similarly, a person on board a plane will follow
the plane as it flies between cities.

Generally, when boarding a plane, the only preconditions are that you are at the
gate and you have a ticket. However, if you try to board a plane carrying a gun in
your pocket, which will be the case for Boris, this should qualify the action. Also,
a condition that could sometimes qualify the boarding action is if you arrive at the
gate in a sufficiently inebriated condition, as will be the case for Dimiter. When the
boarding action is qualified, attempting to board should have no effect.

Boris, Erik and Dimiter already have their tickets. They start (concurrently) from
their respective homes, stop by the office, go to the airport, and try to board flight
SAS609 to Stockholm. Both Erik and Boris put combs in their pockets at home, and
Boris picks up a gun at the office, while Dimiter is already drunk at home and may or
may not already have a comb in his pocket. Who will successfully board the plane?
What are their final locations? What will be in their pockets after attempting to board
the plane and after the plane has arrived at its destination?

Let us assume that the scenario is encoded correctly in TAL and that we agree on
our commonsense intuitions regarding what solutions to the frame, ramification and
qualification problems would imply. Then the following inferences should be entailed
by the logical theory associated with the RAH scenario5:

3This will initially result in a scenario where it is assumed that any attempt to board a plane always
succeeds, regardless of whether a person carries a gun or is drunk. In addition, ramifications of action
effects will be included in action specifications rather than being specified separately.

4This scenario is an elaboration and concretization of a sketch for a scenario proposed by Vladimir
Lifschitz in on-line discussions in the Electronic Transactions on Artificial Intelligence (ETAI/ENAI), and
was previously published in [11, 42].

5Assume that Boris, Erik and Dimiter own the combs comb1, comb2 and comb3, respectively.

718 18. Temporal Action Logics

1. Erik will board the plane successfully, eventually ending up at his destination.

2. An indirect effect of flying is that a person ends up at the same location as
the airplane he is on. In addition, because items in pockets follow a person, a
transitive effect results where items in a person’s pocket are at the same location
as the plane which that person is on. Consequently, Erik’s comb, comb2, will
also end up at his destination.

3. Boris will get as far as the airport with a gun and comb1 in his pocket. He will
be unable to board the plane.

4. Dimiter will get as far as the airport, and may or may not be able to board
the plane. If he is able to board the plane, he will eventually end up at his
destination. Otherwise, he will remain at the airport. In any case, if he initially
carried a comb, it will end up in the same location.

18.3.2 Narrative Background Specification

A narrative background specification contains a collection of statements of the follow-
ing types:

• Persistence statements (labeled per6) allow each fluent to be specified as being
persistent (normally retaining its value from the previous timepoint), durational
(normally reverting to a default value), or dynamic (varying freely, subject to
other constraints involving this fluent).

• Domain constraint statements (labeled dom) characterize acausal information
which is always true in the world being modeled.

• Action type specifications (labeled acs) provide generic definitions of action
types.

• Dependency constraint statements (labeled dep) characterize causal and direc-
tional dependencies among features.

A narrative background specification also contains a vocabulary for the narrative. In
the following subsections, each of the statement types and the vocabulary specification
will be described in detail and correlates to the RAH scenario will be listed.

Vocabulary

The vocabulary of an L(ND) narrative defines the constant symbols, feature symbols,
action symbols, and other symbols that are available for use in narrative formulas.
Since narrative examples used in the literature have traditionally been quite simple,
the vocabulary has usually either been considered to be implicit in the remainder of
the narrative specification or has been described informally in the main text of the
article. Here, however, vocabularies will be described in terms of labeled narrative

6A number is often suffixed to each label, as in per3. These numbers are used to disambiguate references
in the text and have no semantic meaning.

P. Doherty, J. Kvarnström 719

declaration statements using a syntax borrowed from the software tools VITAL [39]
and TALplanner [41].

For the Russian Airplane Hijack scenario, we define a domain LOCATION for lo-
cations, and a domain THING containing everything that has a location. We also define
the subdomains RUNWAY for LOCATIONs that are runways, PLANE for THINGs that
are airplanes, PERSON for THINGs that are people, and PTHING for THINGs that peo-
ple can pick up.

domain LOCATION :elements { home1, home2, home3, office, airport, run609, run609b,
air }

domain THING :elements { gun, comb1, comb2, comb3, boris, dimiter, erik, sas609 }
domain RUNWAY :parent LOCATION :elements { run609, run609b }
domain PLANE :parent THING :elements { sas609 }
domain PERSON :parent THING :elements { boris, dimiter, erik }
domain PTHING :parent THING :elements { gun, comb1, comb2, comb3 }

We also use the boolean domain, which is present by default in all narratives and
behaves as if it had been specified in the following manner:

domain BOOLEAN :elements { true, false }

Note that the domain specification in L(ND) describes a type hierarchy. This will
translate into the order-sorted vocabulary in the base logic L(FL).

Finally, four fluents and four actions are used where the arguments to these are
typed relative to the domain specification above.

fluent loc(THING) :domain LOCATION
fluent inpocket(PERSON, PTHING) :domain BOOLEAN
fluent onplane(PLANE, PERSON) :domain BOOLEAN
fluent drunk(PERSON) :domain BOOLEAN

action pickup(PERSON, PTHING)
action travel(PERSON, LOCATION, LOCATION)
action board(PERSON, PLANE)
action fly(PLANE, RUNWAY, RUNWAY)

Persistence statements

Persistence statements are a novel feature of TAL and offer a very powerful and
fine-grained mechanism for specifying inertia and default value assumptions for indi-
vidual features when used together with the occlusion labeling mechanism mentioned
previously. The majority of existing formalisms for action and change build in an as-
sumption that a property or relation is either always assumed to be inert and subject to
nochange by default or to be dynamic and subject to change by default. Through the
use of persistence statements TAL permits the specification of contextually and tem-
porally dependent inertia assumptions and default value assumptions per feature and
down to the feature object level. This is an important feature of any action and change
formalism since the inertial granularity of physical and other objects differs greatly.
For example, a mountain will remain in place much longer than a ball on the ground
which under certain weather conditions is in fact not inert at all.

720 18. Temporal Action Logics

Persistence statements can be used to classify features as being persistent, dura-
tional, or dynamic. In fact, a specific instantiated feature or set of features may be
classified differently in the same scenario relative to context.

A feature declared as persistent at a timepoint is only allowed to change value
when an action or dependency constraint in the scenario explicitly allows it to change,
by labeling the feature at that timepoint as being occluded using a reassignment macro
(Section 18.5.2, subsection Formulas). Otherwise, it retains the same value it had at
the previous timepoint (the persistence assumption or inertia assumption). For exam-
ple, the persistence statement below declares that all instantiated features of the form
loc(thing) are inert at all timepoints:

per ∀t, thing [Per(t, loc(thing))]

The translation from L(ND) to L(FL) is performed using the Trans function defined
in Section 18.6.1. If the timeline is infinite in both directions, the following translation
could be used for the Per predicate, stating that unless a feature is occluded at τ , it
will retain its previous value.

Trans(Per(τ, f)) = ¬Occlude(τ, f) ⊃ Holds(τ, f, v) ≡ Holds(τ − 1, f, v)

However, TAL is generally used with a non-negative time structure, where this transla-
tion would lead to problems at the boundary where τ = 0, where τ − 1 does not exist.
Thus, the translation has to be changed to the following, where for τ = 0 there exists
no t such that τ = t + 1 and the antecedent of the implication will be false, which
correctly models the intuition that persistence should not affect the possible values of
a fluent at the beginning of time:

Trans(Per(τ, f)) = ∀t.τ = t + 1 ∧ ¬Occlude(t + 1, f) ⊃

∀v[Holds(t + 1, f, v) ≡ Holds(t, f, v)]

A feature declared as durational is associated with a default value, and can only take
on another value when an action, dependency constraint, or other constraint allows it to
(the default value assumption). At timepoints when no action or dependency constraint
explicitly allows it to take on another value, it will immediately revert back to its
default value. Through the use of durational features, TAL can encode simple types
of default rules and assumptions. For instance, one may model the presence of noise
using a durational fluent with default value false, capturing the intuition that there is no
noise unless an action is currently generating it. An action generating noise would then
use a suitable reassignment operator to exempt the noise fluent from its default value
assumption during the appropriate temporal interval. This is especially important in
the presence of concurrent actions, where an alternative solution that sets noise to true
at the beginning of the action and explicitly sets it to false at the end does not work
properly with partially overlapping actions, potentially generating the conclusions that
when one action ends, it cancels the noise generated by another action.

For example, the persistence statement below declares that the fluent noise should
have the default value false at all timepoints. Further examples will be given when
qualification is discussed (Section 18.9).

per ∀t [Dur(t, noise, false)]

P. Doherty, J. Kvarnström 721

The translation of a Dur declaration in L(ND) into L(FL) would be:

Trans(Dur(τ, f, ω)) = ¬Occlude(τ, f) ⊃ Holds(τ, f, ω)

Unless the feature is occluded at τ , it will take on its default value.
Finally, a TAL feature can also be dynamic if it is not declared to be persistent

or durational. Since no persistence or default value assumption is applied, dynamic
fluents can vary freely over time to satisfy observations and domain constraints.

Note that some earlier TAL logics (including PMON) used a fixed nochange axiom
instead of persistence statements, forcing all fluents to be persistent. Using persistence
statements provides a more flexible and fine-grained approach to controlling the de-
fault behavior of fluents and is currently the technique used in TAL to specify inertia
and default value assumptions.

Intuitively, the features used in the Russian Airplane Hijack scenario describe
properties that do not change unless something changes them. These features are all
declared to be persistent. The declarations for the RAH scenario are as follows:

per1 ∀t, thing [Per(t, loc(thing))]
per2 ∀t, person, pthing [Per(t, inpocket(person, pthing))]
per3 ∀t, person [Per(t, drunk(person))]
per4 ∀t, plane, person [Per(t, onplane(plane, person))]

Domain constraints

Domain constraints represent knowledge about logical feature dependencies which
are not specific to a particular reasoning problem instance but which are known to
hold in every possible scenario taking place within a domain. An even stronger as-
sumption often made in other formalisms is that these are formulas true in all states
(universally quantified over all timepoints, situations or states) and behave much as a
classical logical formula would behave in a standard theory. In domain constraints, as
well as other TAL formulas, the fact that a feature f takes on a particular value ω is
denoted by the elementary fluent formula f =̂ω. For the boolean domain, the formula
f =̂ true (f =̂ false) can be abbreviated as f (¬f). Elementary fluent formulas can
be combined using boolean connectives and quantification over values to form fluent
formulas. The fixed fluent formula [τ] φ states that the fluent formula φ holds at the
timepoint τ .

For the Russian Airplane Hijack scenario we will define three domain constraints:
No PTHING can be carried by two PERSONs at the same time, no PERSON can be on
board two PLANEs at the same time, and any PTHING in a PERSON’s pocket must be
at the same location as that PERSON.

dom1 ∀t, pthing, person1, person2 [person1 �= person2 ∧ [t] inpocket(person1, pthing)⊃
[t] ¬inpocket(person2, pthing)]

dom2 ∀t, person, plane1, plane2
[plane1 �= plane2 ∧ [t] onplane(plane1, person) ⊃ [t] ¬onplane(plane2, person)]

dom3 ∀t, person, pthing [[t] inpocket(person, pthing) ⊃
[t] loc(pthing) =̂ value(t, loc(person))]

Action types

Actions can be invoked by the agent in order to change some properties in the world.
If person picks up a thing pthing in the Russian Airplane Hijack scenario, then this

722 18. Temporal Action Logics

should cause inpocket(person, pthing) to become true, for example. But since the
inpocket feature is persistent, simply stating the fact that inpocket(person, pthing) will
be true at the end of the action invocation is not sufficient. Instead, it is necessary to use
a reassignment macro to explicitly release this feature from the persistence assumption
at the specific point in time where it should change values from false to true.

There are three different reassignment macros: X, R and I . They can all be used
with a temporal interval, for example, R((τ, τ �] α), or a single timepoint, for example
I ([τ] α). Each of these operators has the effect of releasing the features occurring
in α from the persistence and default value assumptions during the given interval or
at the given timepoint. However, the operators differ in whether they place further
constraints on the values of these features, and if so, at what time.

The X operator is used for occlusion. Its purpose is simply to allow the value of
the features in the formula α to vary at a timepoint or during an interval, and therefore
it does not further constrain the features occurring in α. Intuitively, the X operator
occludes (hides) any changes in a feature value from the persistence or default value
constraints generated by the persistence statements in the narrative.

The R operator is used for reassignment, and ensures that α will hold at the final
timepoint in the interval. During the rest of the interval, the features occurring in α are
allowed to vary freely, unaffected by the persistence or default value assumption (but
still subject to other constraints that may also be present in the narrative).

The I operator is used for interval reassignment and ensures that α will hold during
the entire interval. Note that if α is a disjunctive formula, features occurring in α may
still vary during the interval as long as the formula remains satisfied throughout the
interval.

An action type specification uses reassignment macros to define what will happen
if and when a particular action is invoked. Note that it does not state that an action
does occur. This is specified in the narrative specification using action occurrence
statements.

In many existing action formalisms, actions do not have duration and are essen-
tially single step. If actions with duration are introduced, it is often the case that during
the duration nothing can happen or be specified to happen. TAL offers highly expres-
sive action types. They can be single-step or durational, inert during the duration or
highly dynamic. Additional constraints specifying what goes on during the execution
of an action can easily be included in the action specification.

In the Russian Airplane Hijack scenario, four actions were declared in the nar-
rative background specification. Here, those actions will be defined without taking
qualifications into account and without making use of ramification constraints to spec-
ify side effects, resulting in a narrative where guns do not qualify the boarding action
and where the fact that people inside an airplane move when the airplane moves must
be expressed explicitly in the action definition. These action definitions will later be
modified in Section 18.8.

acs1 [t1, t2]fly(plane, runway1, runway2) � ([t1] loc(plane) =̂ runway1 ⊃
I ((t1, t2) loc(plane) =̂ air) ∧ R([t2] loc(plane) =̂ runway2) ∧
∀person[[t1] onplane(plane, person) ⊃
I ((t1, t2) loc(person) =̂ air) ∧ R([t2] loc(person) =̂ runway2) ∧
∀pthing[[t1] inpocket(person, pthing) ⊃
I ((t1, t2) loc(pthing) =̂ air) ∧ R([t2] loc(pthing) =̂ runway2)]])

P. Doherty, J. Kvarnström 723

acs2 [t1, t2]pickup(person, pthing) � [t1] loc(person) =̂ value(t1, loc(pthing)) ⊃
R((t1, t2] inpocket(person, pthing))

acs3 [t1, t2]travel(person, loc1, loc2) � [t1] loc(person) =̂ loc1 ⊃
R([t2] loc(person) =̂ loc2) ∧
∀pthing[[t1] inpocket(person, pthing) ⊃ R([t2] loc(pthing) =̂ loc2)]

acs4 [t1, t2]board(person, plane) � [t1] loc(person) =̂ airport ⊃
R([t2] loc(person) =̂ value(t2, loc(plane)) ∧ onplane(plane, person))

For reasons of representational efficiency, it is quite clear from observing these action
specifications that a solution to the ramification problem is really necessary.

18.3.3 Narrative Specification

In the narrative specification, observation statements (labeled obs) represent obser-
vations of feature values at specific timepoints while action occurrence statements
(labeled occ) specify which instances of the generic action types occur and during
which time intervals.

Observation statements

Observation statements are intended to describe specific facts that have been observed
to hold in the world, permitting complete or incomplete specifications of the initial
state or any other state in the world development corresponding to a narrative. They
provide information about a particular reasoning problem instance within a domain,
and are therefore part of the narrative specification.7

For this scenario, we define the initial locations of all THINGs, as well as who is
drunk in the initial state. On the other hand, we do not observe which things are in
whose pockets.

obs1 [0] loc(boris) =̂ home1 ∧ loc(gun) =̂ office ∧ loc(comb1) =̂ home1 ∧ ¬drunk(boris)

obs2 [0] loc(erik) =̂ home2 ∧ loc(comb2) =̂ home2 ∧ ¬drunk(erik)

obs3 [0] loc(dimiter) =̂ home3 ∧ loc(comb3) =̂ home3 ∧ drunk(dimiter)

obs4 [0] loc(sas609) =̂ run609

Action occurrence statements

Action occurrence statements specify which actions actually do take place in a nar-
rative. Like observations, they are part of the narrative specification—the instance-
specific part of the narrative.

For the Russian Airplane Hijack scenario, the following action occurrences are also
required. The exact timepoints used below were not specified in the RAH scenario, but
have been chosen arbitrarily. Alternatively, exact timepoints could have been avoided
by using non-numerical temporal constants. Note, however, that many of the actions
are concurrent, sometimes with partially overlapping intervals.

7In some earlier versions of TAL, an explicit Observe predicate was introduced in the base logical
languageL(FL) to which observation statements are translated. Distinguishing sensor-generated facts about
the world from other facts is useful when interfacing such logics to robotic systems. One might choose to
view observation statements as perception statements, although this is not done in the current version of
TAL.

724 18. Temporal Action Logics

occ1 [1,2] pickup(boris, comb1) occ8 [7,9] travel(erik, office, airport)
occ2 [1,2] pickup(erik, comb2) occ9 [8,10] travel(boris, office, airport)
occ3 [2,4] travel(dimiter, home3, office) occ10 [9,10] board(dimiter, sas609)
occ4 [3,5] travel(boris, home1, office) occ11 [10,11] board(boris, sas609)
occ5 [4,6] travel(erik, home2, office) occ12 [11,12] board(erik, sas609)
occ6 [6,7] pickup(boris, gun) occ13 [13,16] fly(sas609, run609, run609b)
occ7 [5,7] travel(dimiter, office, airport)

Note that this action scenario has been simplified for expository purposes. A num-
ber of additional extensions to the scenarios would in fact make it more realistic. For
example, one could add more realistic timing actions, perhaps by explicitly modeling
distances between locations and dividing by expected speed. In addition, upon intro-
ducing truly concurrent actions, one must be aware that there may be different types
of interactions and these would have to be dealt with in an appropriate manner. TAL
allows such extensions and we refer the interested reader to Section 18.11 where a
summary of concurrent actions in TAL is provided.

18.4 The Relation Between the TAL Languages L(ND) and
L(FL)

In order to reason about a particular narrative, it is first mechanically translated into the
base languageL(FL), an order-sorted classical first-order language with equality using
a linear discrete time structure (Fig. 18.2). A circumscription policy is applied to the
resulting theory, foundational axioms are added, and quantifier elimination techniques
are used to reduce the resulting second order theory to first order logic. This is possible
only under certain assumptions pertaining to the use of the Occlude predicate and the
nature of the temporal structure used.

Figure 18.2: The relation between L(ND) and L(FL).

P. Doherty, J. Kvarnström 725

In Section 18.5, we will present the TAL surface language L(ND). In Section 18.6,
we will present the TAL base language L(FL), and in Section 18.7, we will consider
the circumscription policy used in TAL and reducibility results.

18.5 The TAL Surface Language L(ND)

This section defines the surface language L(ND). The translation to the first-order
language L(FL) is presented in Section 18.6.1. In the following, the overline is used
as an abbreviation for a sequence, when the contents of the sequence is obvious. For
example, f (x̄, ȳ) means f (x1, . . . , xn, y1, . . . , ym).

18.5.1 Sorts, Terms and Variables

Definition 18.1 (Basic sorts). There are a number of sorts for values Vi , including the
boolean sort B with the constants {true, false}. TAL is order-sorted, and a sort may be
specified to be a subsort of another sort. The sort V is a supersort of all value sorts.
There are a number of sorts for features Fi , each one associated with a value sort

dom(Fi) = Vj for some j . The sort F is a supersort of all fluent sorts.
There is also a sort for actions � and a temporal sort T .

The sort T is often assumed to be interpreted and semantic attachment is used in
implementations, but it can be axiomatized in various ways, For example, in first-order
logic, it can be axiomatized as a subset of Presburger arithmetic [38] (natural numbers
with addition), or in second-order logic as Peano arithmetic.

Definition 18.2 (Terms). A value term, often denoted by ω, is a variable v or a con-
stant v of sort Vi for some i, an expression value(τ, f) where τ is a temporal term and
f is a fluent term, or an expression g(ω1, . . . , ωn) where g :Vk1 × · · · × Vkn → Vi is
a value function symbol and each ωj is a value term of sort Vkj .
A temporal term, often denoted by τ , is a variable t or a constant 0, 1, 2, 3, . . . or

s1, t1, . . . , or an expression of the form τ1 + τ2, all of sort T .
A fluent term, often denoted by f , is a feature variable or an expression

f(ω1, . . . , ωn) where f :Vk1 × · · · × Vkn → Fi is a feature symbol and each ωj is
a value term of sort Vkj .
An action term Ψ is an expression A(ω1, . . . , ωn) where A :Vk1 × · · · × Vkn → �

is an action symbol and each ωj is a value term of sort Vkj .

Variables are typed and range over the values belonging to a specific sort. Although
the sort is sometimes specified explicitly in narratives, it is more common to simply
give the variable the same name as the sort but (like all variables) written in italics,
possibly with a prime and/or an index. For example, the variables plane, plane� and
plane3 would be of the sort PLANE. Similarly, variables named t or τ are normally
temporal variables, and variables named n are normally integer-valued variables.

The function value(τ, f) returns the value of the fluent f at the timepoint τ , where
[τ] f =̂ v iff value(τ, f) = v. The expression [τ] f =̂ g, where f and g are fluent
terms, is shorthand notation for [τ] f =̂ value(τ, g).

726 18. Temporal Action Logics

18.5.2 Formulas

Definition 18.3 (Temporal and value formulas). If τ and τ � are temporal terms, then
τ = τ �, τ < τ � and τ � τ � are temporal formulas. A value formula is of the form
ω = ω� where ω and ω� are value terms, or r(ω1, . . . , ωn) where r: Vk1 × · · · × Vkn is
a relation symbol and each ωj is a value term of sort Vkj .

We will sometimes write τ � τ � < τ �� to denote the conjunction τ � τ � ∧ τ � < τ ��,
and similarly for other combinations of the relation symbols � and <.

Definition 18.4 (Fluent formula). An elementary fluent formula, sometimes called an
isvalue expression, has the form f =̂ω where f is a fluent term of sort Fi and ω is
a value term of sort dom(Fi). A fluent formula is an elementary fluent formula or
a combination of fluent formulas formed with the standard logical connectives and
quantification over values.

The elementary fluent formula f =̂ true (f =̂ false) can be abbreviated f (¬f).

Definition 18.5 (Timed formulas). Let τ and τ � be temporal terms and α a fluent
formula. Then:

• [τ, τ �] α, (τ, τ �] α, [τ, τ �) α, (τ, τ �) α, [τ,∞) α, (τ,∞) α and [τ] α are fixed
fluent formulas,

• CT ([τ] α), CF ([τ] α) and C([τ] α) are fluent change formulas,

• R([τ, τ �] α), R((τ, τ �] α), R([τ, τ �) α), R((τ, τ �) α) and R([τ] α) are reassign-
ment formulas,

• I ([τ, τ �] α), I ((τ, τ �] α), I ([τ, τ �) α), I ((τ, τ �) α) and I ([τ] α) are interval
reassignment formulas, and

• X([τ, τ �] α), X((τ, τ �] α), X([τ, τ �) α), X((τ, τ �) α) and X([τ] α) are occlu-
sion formulas.

Fixed fluent formulas, fluent change formulas, reassignment formulas, interval reas-
signment formulas and occlusion formulas are called timed formulas.

Definition 18.6 (Static formula). A static formula is a temporal formula, a value for-
mula, a fixed fluent formula, a fluent change formula, true, false, or a combination
of static formulas formed using the standard logical connectives together with quan-
tification over values and time.

Note that the formulas true and false are not the same as the boolean values
true and false.

Definition 18.7 (Change formula). A change formula is a formula that is rewritable to
the formQv̄(α1 ∨ · · · ∨ αn) whereQv̄ is a sequence of quantifiers with variables, and
each αi is a conjunction of static, occlusion and reassignment formulas. The change

P. Doherty, J. Kvarnström 727

formula is called balanced iff the following two conditions hold. (a) Whenever a feature
f (ω̄) appears inside a reassignment or occlusion formula in one of the αi disjuncts,
it must also appear in all other αi’s inside a reassignment or occlusion formula with
exactly the same temporal argument. (b) Any existentially quantified variable v in the
formula, whenever appearing inside a reassignment or occlusion formula, only does
so in the position f =̂ v.

Definition 18.8 (Application formula). An application formula is any of the following:
(a) a balanced change formula; (b) Λ ⊃ Δ, where � is a static formula and Δ is a
balanced change formula; or (c) a combination of elements of types (a) and (b) formed
with conjunction and universal quantification over values and time.

Application formulas will be used in dependency constraints and action type spec-
ifications. The structural constraints on balanced change formulas and application
formulas guarantee the proper generation of the occlusion predicate in the transla-
tion from L(ND) to L(FL). Restricting the structure of these formulas will guarantee
first-order reducibility of the circumscription policy applied to the narrative.

Definition 18.9 (Occurrence formula). An occurrence formula has the form [τ, τ �] Ψ ,
where τ and τ � are temporal terms and Ψ is an action term.

Definition 18.10 (Persistence formula). A persistence formula is an expression of the
form Per(τ, f) where τ is a temporal term and f is a fluent term, an expression of
the form Dur(τ, f, ω) where τ is a temporal term, f is a fluent term and ω is a value
term, or a combination of persistence formulas formed with conjunction and universal
quantification over values or time.

18.5.3 Statements

Definition 18.11 (Narrative statements). The following types of narrative statements
are available in the current version of TAL.
An action type specification or action schema (labeled acs) has the form

[t, t �] Ψ � φ, where t and t � are temporal variables, Ψ is an action term and φ is
an application formula.
A dependency constraint (labeled dep) consists of an application formula.
A domain constraint (labeled dom) consists of a static formula.
A persistence statement (labeled per) consists of a persistence formula.
An observation statement (labeled obs) consists of a static formula.
An action occurrence statement (labeled occ) consists of an occurrence formula

[τ, τ �] Ψ where τ and τ � are ground temporal terms and Ψ is a ground action term.

All of these statement types have been provided with intuitive meanings in Sec-
tion 18.3 except dependency constraints, which will be used to model side effects of
actions (Section 18.8) and qualifications to actions (Section 18.9).

728 18. Temporal Action Logics

18.6 The TAL Base Language L(FL)

This section defines the current base language L(FL) used in TAL. The translation
from L(ND), which has already been described, to the first-order language L(FL)
is presented in Section 18.6.1. The base language L(FL) is an order-sorted classical
first-order language with equality. We assume familiarity with standard ways to de-
fine vocabulary and variable types in sorted logics. Additionally, a temporal structure
must be chosen for the temporal sort T . This would include a domain such as the nat-
ural numbers or integers and associated operators. It was mentioned previously that a
number of choices as to temporal structure could be made.
L(FL) currently uses the following predicates where T is the temporal sort, F is a

supersort of all fluent sorts and V is a supersort of all value sorts.

• Holds: T × F × V—The Holds predicate expresses what value a feature has at
each timepoint, and is used in the translation of fixed fluent formulas; for ex-
ample, the formula [0] loc(boris) =̂ home1 ∧ loc(gun) =̂ office can be translated
into Holds(0, loc(boris), home1) ∧ Holds(0, loc(gun), office).

• Occlude: T × F—The Occlude predicate expresses the fact that a persistent or
durational feature is exempt from its persistence or default value assumption,
respectively, at a given timepoint. It is used in the translation of the R, I and X
operators, which are intended to change the values of features.

• Occurs: T ×T ×�—The Occurs predicate expresses that a certain action occurs
during a certain time interval, and is used in the translation of action occurrence
statements and action type specifications.

18.6.1 Translation from L(ND) to L(FL)

The following translation function is used to translate L(ND) formulas into L(FL).

Definition 18.12 (Trans Translation function). Trans is called the expansion transfor-
mation, and is defined as follows. All variables occurring only on the right-hand side
are assumed to be fresh variables.

The formulas true and false need no translation:

Trans(true)=true

Trans(false)=false

Basic macros are translated into L(FL) predicates:

Trans([τ] f (ω̄))=Holds(τ, f (ω̄), true)

Trans([τ] f (ω̄) =̂ω)=Holds(τ, f (ω̄), ω)

Trans(X([τ] f (ω̄)))=Occlude(τ, f (ω̄))

Trans(X([τ] f (ω̄) =̂ω))=Occlude(τ, f (ω̄))

Trans([τ, τ �] Ψ)=Occurs(τ, τ �, Ψ), where Ψ is an action term

In some versions of TAL, the L(ND) functions Per and Dur are also translated into
L(FL) predicates. Here, they are translated directly into constraints on fluent values

P. Doherty, J. Kvarnström 729

and occlusion.

Trans(Per(τ, f))= ∀t.τ = t + 1 ∧ ¬Occlude(t + 1, f) ⊃

∀v[Holds(t + 1, f, v) ≡ Holds(t, f, v)]

Trans(Dur(τ, f, ω))=¬Occlude(τ, f) ⊃ Holds(τ, f, ω)

Top-level connectives and quantifiers are left unchanged:

Trans(¬α)= ¬Trans(α)

Trans(αCβ)= Trans(α)CTrans(β), where C ∈ {∧,∨,⊃,≡}

Trans(Qv[α])=Qv[Trans(α)], where Q ∈ {∀, ∃}

Action type specifications use� to denote the definition of an action. For this version
of TAL, it is simply translated into an implication.

Trans([τ, τ �] Ψ � φ) = Trans([τ, τ �] Ψ) ⊃ Trans(φ)

Fixed fluent formulas can contain nested connectives and quantifiers, which are trans-
ferred outside the scope of the temporal context [τ].

Trans([τ] Qv[α])=Qv[Trans([τ] α)], where Q ∈ {∀, ∃}

Trans([τ] ¬α)= ¬Trans([τ] α)

Trans([τ] αCβ)= Trans([τ] α)CTrans([τ] β),

where C ∈ {∧,∨,⊃,≡}

Nested connectives and quantifiers can also occur within occlusion formulas. How-
ever, the translation of these formulas has to be modified somewhat to take into account
the fact that any occlusion formula should occlude all fluents occurring within the
scope of the occlusion operator: Even a disjunctive formula such as X([τ] α ∨ β)

should occlude all fluents in α and all fluents in β and is therefore not equivalent to
X([τ] α) ∨ X([τ] β) but to X([τ] α) ∧ X([τ] β). The translation procedure takes
this into account by removing negations inside theX operator, translating connectives
occurring inside X into conjunctions, and converting all quantifiers inside X into uni-
versal quantification.

Trans(X([τ] ¬α))= Trans(X([τ] α))

Trans(X([τ] αCβ))= Trans(X([τ] α) ∧X([τ] β)),

where C ∈ {∧,∨,⊃,≡}

Trans(X([τ]Qv[α]))=∀v[Trans(X([τ]α))], where Q ∈ {∀, ∃}

Fixed fluent formulas can contain infinite temporal intervals. This is a shorthand no-
tation; infinity is not part of the temporal sort and disappears in the translation.

Trans([τ,∞) α)= ∀t[τ � t ⊃ Trans([t]α)]

Trans((τ,∞) α)= ∀t[τ < t ⊃ Trans([t]α)]

Finite temporal intervals are permitted both in fixed fluent formulas and in the occlu-
sion operator. Only one form of interval is shown; the extension to allow open, closed

730 18. Temporal Action Logics

and semi-closed intervals is trivial.

Trans([τ, τ �] α)= ∀t[τ � t � τ � ⊃ Trans([t]α)]

Trans(X((τ, τ �] α))= ∀t[τ < t � τ � ⊃ Trans(X([t]α))]

The R and I operators are defined as follows. Again, one form of interval is shown.

Trans(R((τ, τ �] α))= Trans(X((τ, τ �], α)) ∧ Trans([τ �]α)

Trans(R([τ] α))= Trans(X([τ] α)) ∧ Trans([τ] α)

Trans(I ((τ, τ �]α))= Trans(X((τ, τ �] α)) ∧ Trans((τ, τ �] α)

Trans(I ([τ] α))= Trans(X([τ] α)) ∧ Trans([τ] α)

Finally, the CT “changes to true” operator is defined as follows, with the operators
CF (changes to false) and C (changes) added for symmetry.

Trans(CT ([τ] α))= ∀t[τ = t + 1 ⊃ Trans([t] ¬α)] ∧ Trans([τ] α)

Trans(CF ([τ] α))= ∀t[τ = t + 1 ⊃ Trans([t] α)] ∧ Trans([τ] ¬α)

Trans(C([τ] α))= Trans(CT ([τ] α) ∨ CF ([τ] α))

Example 18.2 (Narrative translation). The following is a translation of several of the
L(ND) statements in the Russian Airplane Hijack scenario intoL(FL). For brevity, the
translation is limited to one statement of each statement class; the remaining formulas
are translated in a similar manner.

per1 ∀t, thing, t � [t = t � + 1 ∧ ¬Occlude(t � + 1, loc(thing)) ⊃
∀v[Holds(t � + 1, loc(thing), v) ≡ Holds(t �, loc(thing), v)]]

dom1 ∀t, pthing, person1, person2 [¬(person1 = person2) ∧
Holds(t, inpocket(person1, pthing), true) ⊃
¬Holds(t, inpocket(person2, pthing), true)]

acs2 ∀t1, t2, person, pthing [Occurs(t1, t2, pickup(person, pthing)) ⊃
(Holds(t1, loc(person), value(t1, loc(pthing))) ⊃
Holds(t2, inpocket(person, pthing), true) ∧
∀t [t1 < t ∧ t � t2 ⊃ Occlude(t, inpocket(person, pthing))])]

obs1 Holds(0, loc(boris), home1) ∧ Holds(0, loc(gun), office) ∧
Holds(0, loc(comb1), home1) ∧ ¬Holds(0, drunk(boris), true)

occ1 Occurs(1, 2, pickup(boris, comb1))

18.7 Circumscription and TAL

The commonsense intuition one would like to capture and formally model in TAL
is the fact that at a particular level of abstraction, relations between and properties of
objects generally have reasons for changing and if not, we can assume, unless observed
otherwise, that these are the only possible changes we need to be concerned about
when reasoning about the specific environment around us and knowledge associated
with that environment. So far, we have shown how one can encode in a principled
manner sufficient reasons for the possibility of change by using a combination of the
Occlude predicate and automatic translations from the surface language L(ND) to the
base language L(FL). When specifying narratives in TAL, all sufficient reasons for
the possibility of change are specified using the reassignment macros R, I and X in

P. Doherty, J. Kvarnström 731

dependency constraints and action type definitions. When translated, these statements
result in constraints on the Occlude predicate. Unfortunately, what has been achieved
so far under-constrains our notion of normative change, for we would also like to state
that these are the only, or necessary, reasons for possible change.

In order to add this additional constraint to our action theories, we will appeal to
the use of circumscription (Section 6.4 in Chapter 6 of this Handbook; [54, 55]) with
an additional twist. Rather than applying a circumscription policy to the whole action
theory, the theory will be partitioned and we will apply circumscription selectively
to different partitions. Although this technique, which we call filtered circumscrip-
tion [14], is now commonly used in other action theories [65, 48], in the context of
action and change, it was first proposed in Sandewall [60]. Here, it was called fil-
tered preferential entailment and was used as a basis for several of the definitions of
preferential entailment in [61].

The basic idea will be to first circumscribe the predicate Occlude in that part of
the action theory containing action occurrence statements and dependency constraint
statements. This will result in a set of preferred or minimal models for the action the-
ory providing a definition of all timepoints and features where it is possible for them to
change value based on the constraints in the theory. Of course, these models will also
contain spurious change since we have only provided sufficient and necessary condi-
tions for the definition of Occlude. To rule out spurious change, we will then filter the
resulting circumscriptive sub-theory with that part of the theory containing persistence
statements. Persistence statements specify when features should not change value, as-
suming a predefined definition of Occlude which circumscription provides. In this
manner, any model containing feature change not mandated by the implicit occlusion
policy in the action theory will be excluded as a model of the action theory. For ex-
ample, the Yale Shooting Problem [28] involves loading a gun, waiting, and shooting.
Since waiting occludes no fluents, interpretations where the gun becomes unloaded
while waiting are filtered out, yielding the intended conclusion that the gun remains
loaded at the start of the shooting action. A separate circumscription policy will be
used for that part of the action theory containing action occurrence statements, where
the predicate Occurs will be circumscribed. Finally, all partitions will be conjoined.

Due to the structural syntactic constraints built into statement definitions inL(ND),
we can show that the two circumscribed sub-theories which are 2nd-order due to the
use of circumscription, can be reduced to logically equivalent first-order theories. In
fact, since only positive occurrences of the predicates Occlude and Occurs occur in
the two circumscribed partitions of the action theory, respectively, a standard syntac-
tic transformation on formulas may be used to generate the necessary conditions for
both predicates. This in fact is a form of predicate completion, and it is related to
Definition 7.3.6 in Chapter 7 of this Handbook.

The formal definition of the circumscription policy used in TAL will use the fol-
lowing terminology:

• Let N denote the collection of narrative statements contained in a narrative in
L(ND), and letNper,Nobs,Nocc,Nacs,Ndom, andNdep denote the sets of persis-
tence statements, observation statements, action occurrence statements, action
type specifications, domain constraint statements, and dependency constraint
statements in N , respectively.

732 18. Temporal Action Logics

• Let Γ denote the translation of N into L(FL) using the Trans translation
function, and let Γper, Γobs, Γocc, Γacs, Γdom, and Γdep denote the persistence
formulas, observation formulas, action occurrence formulas, action type specifi-
cations, domain constraint formulas, and dependency constraint formulas in Γ ,
respectively.

• Let Γfnd denote the set of foundational axioms in L(FL), containing unique
names axioms, unique values axioms, etc.

• Let Γtime denote the axiomatization of the particular temporal structure used in
TAL.

In the following, we assume familiarity with circumscription [54, 55] and common
notation used to denote circumscription policies [47]. Let

Γ = Γper ∧ Γobs ∧ Γdom ∧ Γocc ∧ Γdep ∧ Γacs

be the translation of an action narrative in L(ND) into a first-order theory in L(FL)
as described previously. Based on the discussion above, we use circumscription to
minimize Occurs in Γocc and Occlude in Γdep ∧ Γacs as follows:

Γ1 = Γper ∧ Γobs ∧ Γdom ∧ CIRC[Γocc;Occurs] ∧

CIRC[Γdep ∧ Γacs;Occlude]

In addition, let

Γ2 = Γfnd ∧ Γtime

For any narrative N in TAL, a preferred narrative theory in the base logic L(FL) is
defined as

ΔN = Γ2 ∧ Γ1

We say that a formula α in the base logic L(FL) is preferentially entailed by the nar-
rative N whose translation into L(FL) is Γ iff

ΔN |= α

Observe that there are several equivalent formalizations of ΔN due to the following
general property of circumscription (p. 311, [47]): for any sentence B not containing
P , Z (where P is minimized and Z is varied),

(18.1)CIRC[Γ (P,Z) ∧ B;P ;Z] ≡ CIRC[Γ (P,Z);P ;Z] ∧ B

and the observation that

CIRC[Γocc;Occurs] ∧ CIRC[Γdep ∧ Γacs;Occlude]

≡ CIRC[Γocc ∧ Γdep ∧ Γacs;Occurs,Occlude]

From this, it follows that ΔN is equivalent to

Δ� = Γ2 ∧ Γper ∧ Γobs ∧ Γdom ∧ CIRC[Γocc ∧ Γdep ∧ Γacs;Occurs,Occlude]

P. Doherty, J. Kvarnström 733

and since Γ2 ∧ Γobs ∧ Γdom does not contain Occurs or Occlude, this is equivalent to

Δ� = Γper ∧ CIRC[Γ2 ∧ Γobs ∧ Γdom ∧ Γocc ∧ Γdep ∧ Γacs;Occurs,Occlude]

Note that it is important that Γper is outside the circumscriptive theory due to the fact
that it contains occurrences of the predicate Occlude. Consequently, filtered circum-
scription is fundamental to the approach used in TAL.

As it stands, ΔN is in fact, a second-order theory due to the fact that Γ1 contains
two second-order circumscription formulas, CIRC[Γocc;Occurs] and CIRC[Γdep ∧
Γacs;Occlude]. Due to structural syntactic constraints in the narrative N in L(ND)
which are carried over to its translation Γ in L(FL), it can be shown that both
CIRC[Γocc;Occurs] and CIRC[Γdep ∧Γacs;Occlude] are reducible to logically equiv-
alent first-order formulas. We now show this. First some preliminaries.

An occurrence of a predicate symbol in a formula is positive if it is in the range
of an even number of negations (this is assuming that the connectives ⊃ and ≡ have
been eliminated and replaced by other connectives in some equivalent normal form).
A formulaA(P) is positive (relative to P) if all occurrences of P inA(P) are positive.

Based on Definitions 18.7 and 18.8 for change and application formulas in L(ND)
and the definition of the translation function Trans from L(ND) into L(FL), it is
straightforward to show that the predicate Occurs can only appear positively in Γocc

and that the predicate Occlude can only appear positively in Γdep ∧ Γacs. The fol-
lowing proposition can then be applied to show that both CIRC[Γocc;Occurs] and
CIRC[Γdep ∧ Γacs;Occlude] are reducible to logically equivalent first-order formu-
las [17]:

Proposition 18.1. (See p. 316, [47].) If A(P,Z) is positive relative to P , then the
circumscription CIRC[A(P,Z);P ;Z] is equivalent to

A(P,Z) ∧ ¬∃x, z[P(x) ∧ A(λy(P (y) ∧ x �= y), z)]

In fact, it can be shown that predicate completion can be applied to Γocc and
Γdep ∧Γacs, respectively. The following proposition will be of use. Let x̄ be a tuple of
variables, and F(x̄) be a formula with all parameters explicitly shown.

Proposition 18.2. (See p. 309, [47].) If F(x̄) does not contain P , then the circum-
scription CIRC[∀ x̄(F (x̄) ⊃ P(x̄));P] is equivalent to ∀ x̄(F (x̄) ≡ P(x̄)).

This proposition generalizes to conjunctions of formulas of the form ∀x̄F (x̄) ⊃
P(x̄). Using a number of syntactic transformations [8, 10], it can be shown that

(18.2)Γocc =

n�

i=1

∀ x̄(Fi(x̄) ⊃ Occurs(x̄))

where n is the number of Occurs formulas in Γocc. By the generalization of Proposi-
tion 18.2 and (18.2), it follows that

(18.3)CIRC[Γocc;Occurs] = ∀ x̄

��
n�

i=1

Fi(x̄)

�

≡ Occurs(x̄)

�

734 18. Temporal Action Logics

In addition it can be shown [8, 10] that

Γdep ∧ Γacs

(18.4)

=

�
n�

i=1

Bi ∧

k�

j=1

Cj ∧ ∀ x̄

��
n�

i=1

Fi(x̄) ∨

k�

j=1

Gj(x̄)

�

⊃ Occlude(x̄)

��

where Bi and Ci contain no occurrences of the Occlude predicate.
By (18.1), it follows that,

CIRC[Γdep ∧ Γacs;Occlude]

=

n�

i=1

Bi ∧

k�

j=1

Cj ∧

(18.5)CIRC

�

∀ x̄

��
n�

i=1

Fi(x̄) ∨

k�

j=1

Gj(x̄)

�

⊃ Occlude(x̄)

�

;Occlude

�

By the generalization of Proposition 18.2 and (18.5), it follows that

CIRC[Γdep ∧ Γacs;Occlude]

(18.6)=

n�

i=1

Bi ∧

k�

j=1

Cj ∧ ∀ x̄

��
n�

i=1

Fi(x̄) ∨

k�

j=1

Gj(x̄)

�

≡ Occlude(x̄)

�

Consequently, one can reduce Γ1 in ΔN to a logically equivalent first-order formula.
Under the assumption that Γ2 in ΔN is also first-order (the temporal structure has a
first-order axiomatization), for any narrative N , its translation into a preferred narra-
tive in L(FL), ΔN , is a first-order theory.

Example 18.3 (Circumscription of the RAH scenario). Though the circumscription
of the Occlude predicate can be translated into a single first order formula, we have
instead chosen for expository purposes to generate a separate formula for each ground
fluent in the narrative, where the conjunction of these formulas is entailed by the orig-
inal 2nd-order circumscription axiom. Here, we show a subset of these formulas for
the Russian Airplane Hijack scenario.

First, the following are the necessary and sufficient conditions for loc(boris) to be
occluded at any given point in time. For example, if boris is at home at time 3, which
is a precondition for the action occurrence [3,5] travel(boris, home1, office), then his
location will be occluded at time 5, when the final effects of the travel action take
place.

∀t [Occlude(t, loc(boris)) ≡ t = 5 ∧ Holds(3, loc(boris), home1)∨
t = 10 ∧ Holds(8, loc(boris), office) ∨ t = 11 ∧ Holds(10, loc(boris), airport)∨
14 � t ∧ t � 15∧
Holds(13, loc(sas609), run609) ∧ Holds(13, onplane(sas609, boris), true)∨
t = 16 ∧ Holds(13, loc(sas609), run609)∧
Holds(13, onplane(sas609, boris), true)]

P. Doherty, J. Kvarnström 735

The conditions for occlusion of loc(dimiter) are quite similar, but differ in certain time-
points given that boris and dimiter do not travel at the same time.

∀t [Occlude(t, loc(dimiter)) ≡ t = 4 ∧ Holds(2, loc(dimiter), home3)∨
t = 7 ∧ Holds(5, loc(dimiter), office) ∨ t = 10∧
Holds(9, loc(dimiter), airport)∨
14 � t ∧ t � 15 ∧ Holds(13, loc(sas609), run609)∧
Holds(13, onplane(sas609, dimiter), true)∨
t = 16 ∧ Holds(13, loc(sas609), run609)∧
Holds(13, onplane(sas609, dimiter), true)]

The fluent inpocket(boris,gun) may be occluded at time 7 if boris is at the required lo-
cation when attempting to pick it up, but inpocket(dimiter,gun) can never be occluded.

∀t [Occlude(t, inpocket(boris, gun)) ≡ t = 7 ∧ Holds(6, loc(boris), loc(gun))]
∀t [Occlude(t, inpocket(dimiter, gun)) ≡ false]

18.8 Representing Ramifications in TAL

The ramification problem [46, 20, 37, 48, 51, 21, 62, 25, 68] states that it is unreason-
able to explicitly specify all the effects of an action in an action specification itself.
One would rather prefer to state the direct effects of actions in the action specifica-
tion and then use deductive machinery to derive the indirect effects of actions using
the direct effects of actions together with general knowledge of directional dependen-
cies among features specified in some background theory. The feature dependencies
specified do not necessarily have to be based solely on notions of physical or other
causality, but often are. A solution to the ramification problem is important from the
representational perspective, where one strives for incremental, modular and intuitive
characterizations of action and change. When one thinks of actions at a certain level
of abstraction, one normally thinks of actions in terms of their direct effects and one
would like to represent actions as such. On the other hand, causality plays an important
role in any type of reasoning about action and change, therefore modular and incre-
mental theories of causal and other dependencies among features is equally important
to represent as is the interaction between actions and causal theories.

Some earlier approaches to solving the ramification problem made use of pure
domain constraints (essentially logical implication) in order to infer side effects of ac-
tions. For the Russian Airplane Hijack scenario, for example, one might specify that
everyone onboard an airplane is always in the same physical location as the airplane.
Should one fly the airplane to another location, a direct effect would constrain the air-
plane to be in the new location, and the locations of everyone onboard would have
to change location to the airplane’s new location in order to still satisfy the domain
constraint. This type of solution is non-directional, which may sometimes be of ad-
vantage but may also lead to unexpected or unintended results. For example, in some
representations, invoking an action that moves a single person would also cause the
airplane and everyone else onboard to move.

The key insight in providing a good solution to the ramification problem is that
of finding appropriate and representationally efficient ways of encoding directionality
in dependencies among features which cause change in addition to allowing longer

736 18. Temporal Action Logics

chains of directional feature change. Logical implication, for example, is one way to
encode a dependency constraint among features, but it under-constrains the direction-
ality of a dependency due to the fact that the contrapositive to an implication formula
is logically equivalent to that formula. Another important point to keep in mind is the
way in which dependencies are triggered. This is highly contextual and though it is
often the case that change triggers change, it is also the case that state triggers change.
Both types of context and combinations of both should be expressible in action theo-
ries.

The TAL solution to the ramification problem involves the use of dependency con-
straints, which were formally specified in Definition 18.11. In this definition, the sim-
ilarity between action type specifications and dependency constraints may be noted.
Whereas an action type specification is an application formula conditionalized by the
occurrence of an action ([t, t �] Ψ where Ψ is an action term) and then a precondition
once that action is invoked, a dependency constraint consists of an application formula
without such an action occurrence precondition. In a sense, while actions must be ex-
plicitly invoked, dependency constraints are constantly active. In both cases, there is
an explicit directionality of feature change implicit in the representation. Technically,
this is achieved by noting that features are occluded via assignment operators on the
right hand side of implications, whereas they are not on the left hand side. This to-
gether with the minimization policy for occlusion and persistence statements permits
the encoding of directionality of change in a fine-grained manner.

This solution to the ramification problem can be directly applied to the Russian
Airplane Hijack scenario. Recall that the definition of the travel and fly actions in-
cluded formulas explicitly causing anything a person was carrying to move to the
same destination (Section 18.3.2). Clearly it would be better if such a formula could
be factored out and modeled as a side effect of a person moving between two locations
in any manner, rather than having to be specified for every action that causes a person
to move. This can be represented using the following feature dependency constraint,
stating that if the fact that person is at loc becomes true (changes to true)—in other
words, if the person has just moved to loc—then anything the person carries in his
pockets will also move to the same location. The use of explicit reassignment with
the R operator ensures that such changes are permitted despite the general persistence
assumption for the loc fluent.

dep1 ∀t, person, pthing, loc [[t] inpocket(person, pthing) ∧ CT ([t] loc(person) =̂ loc) ⊃
R([t] loc(pthing) =̂ loc)]

With this change, the travel action can be simplified as follows:

acs3 [t1, t2]travel(person, loc1, loc2) � [t1] loc(person) =̂ loc1 ⊃
R([t2] loc(person) =̂ loc2)

The fly action can be simplified in a similar manner. Before showing the new defin-
ition of this action though, we will consider one more indirect effect: people on board
an airplane move when the airplane moves.

dep2 ∀t, plane, person, loc [[t] onplane(plane, person) ∧ CT ([t] loc(plane) =̂ loc) ⊃
R([t] loc(person) =̂ loc)]

P. Doherty, J. Kvarnström 737

Note that the context for the dependency constraint in dep2 has both a triggering
condition (CT) and a standard state condition. This is useful for encoding chaining of
indirect effects.

Though this is quite similar to the previous indirect effect, it serves to illustrate
an important property of fluent dependency constraints: It is possible to trigger not
only a single indirect effect but a chain of indirect effects, which can be utilized to
further modularize the specification of a narrative. In this particular scenario, causing
an airplane to move will cause all people on board the airplane to move, which in turn
will cause anything they are carrying to move, allowing the fly action to be modeled as
follows:

acs1 [t1, t2]fly(plane, runway1, runway2) � [t1] loc(plane) =̂ runway1 ⊃
I ((t1, t2) loc(plane) =̂ air) ∧ R([t2] loc(plane) =̂ runway2)

18.9 Representing Qualifications in TAL

The qualification problem [67, 46, 20, 49, 51, 65, 11, 42, 69] was identified by
McCarthy [53, 54] while developing systems for representing general commonsense
knowledge. McCarthy showed a way to deal with the representational problem by
using circumscription. In his own words,

The “qualification problem” immediately arose in representing general commonsense
knowledge. It seemed that in order to fully represent the conditions for the successful perfor-
mance of an action, an impractical and implausible number of qualifications would have to be
included in sentences expressing them. [54]

A solution to the qualification problem would involve a normative representation of
an action which would model the fact that an action can be invoked unless something
prevents it from being invoked, where that something is assumed by default not to exist
unless explicitly represented in an action theory. Additionally, when qualifications to
actions are learned, the representation should permit an incremental and elaboration
tolerant means of adding such qualifications to the action theory.

We have now modeled most of the Russian Airplane Hijack scenario in TAL, but
we have not provided a means for modeling qualifications to actions in a represen-
tationally efficient, incremental and elaboration tolerant manner. Some examples of
qualifications to actions in the RAH scenario would be: someone who carries a gun
cannot board a plane, or someone who is drunk may or may not be able to board a
plane. In fact, it may be the case that there are qualifications to qualifications. For
example, security personnel should be able to board a plane with a gun.

There are already a number of solutions to various aspects of the qualification
problem in the literature, some of which would be applicable in TAL. However, many
of these solutions are dependent on the assumption of highly constrained action types,
where (for example) actions must correspond to simple state transition with a precon-
dition state and an effect state with no description of what happens in the duration
of an action. As we have shown, actions in TAL go far beyond this limited form of
representation. We would like to provide a solution that retains at least the following
features of TAL:

• Any state, including the initial state, can be completely or incompletely specified
using observations and domain constraints.

738 18. Temporal Action Logics

• Actions can be context-dependent and non-deterministic. They can have dura-
tion and internal state, and the duration may be different for different executions
of the action. There may be concurrent actions with partially overlapping exe-
cution intervals.

• There can be dynamic processes continuously taking place independently of any
actions that may occur.

• Domain constraints can be used for specifying logical dependencies between
fluents generally true in every state or across states. They may vary over time.

• Actions can have side effects, which may be delayed and may affect the world at
multiple points in time. They may in turn trigger other delayed or non-delayed
side effects.

We would also like to retain the first-order reducibility of the circumscription axiom
in any solution to the qualification problem in TAL. In order to do this, the follow-
ing restrictions and assumptions will apply. First, we will be satisfied with a solution
where invoking a qualified action either has no effect or has some well-defined effect.
Secondly, we will restrict the solution to the off-line planning and prediction problems
and not claim a complete solution for the post-diction problem, which would require
being able to conclude that an action was qualified because its successful execution
would have contradicted an observation of some feature value after that action was
invoked.

18.9.1 Enabling Fluents

To handle the qualification problem, we use a solution based on defaults where each
action type in a narrative is associated with an enabling fluent, a boolean durational
fluent with default value true and with the same number and type of arguments as
the action type. This fluent will be used in the precondition of the action and will
usually be named by prefixing “poss-” to the name of the action. For example, the
boarding action in the RAH scenario will be associated with an enabling fluent poss-
board(person, plane). We also add a persistence statement for this fluent stating that
it is a durational fluent. Recall that a durational feature retains its default value unless
an additional constraint specifies that there is an exception to that value at a particular
point or points in time. acs4 is then modified as follows:

per5 ∀t, person, plane [Dur(t, poss-board(person, plane), true)]
acs4� [t1, t2] board(person, plane) �

[t1] poss-board(person, plane) ∧ loc(person) =̂ airport ⊃
R([t2] loc(person) =̂ value(t2, loc(plane)) ∧ onplane(plane, person))

The other action types are modified in a similar way. Note that the existing precondi-
tion that loc(person) =̂ airport remains in the action definition and will not be moved
to the definition of poss-board. This is a modeling issue, where some conditions are
identified as “ordinary” preconditions whereas others are identified as qualifications
which are moved outside the action type specification. A similar modeling issue al-
ready arose in the case of ramifications, where some effects are considered “ordinary”

P. Doherty, J. Kvarnström 739

action effects whereas others are considered to be indirect effects modeled using de-
pendency constraints.

Now, suppose that board(person, plane) is executed between timepoints t1 and t2.
If poss-board (person, plane) is false at t1 for some reason, the action is qualified, or
disabled. On the other hand, if the fluent is true at t1, the action is enabled. Of course,
it can still be the case that the action has no effects, if other parts of its precondition
are false.

To generalize this, a context-independent action that should have no effect at all
when qualified can be defined using a simple action definition of the form8

acsm [t1, t2] action� [t1] poss-action∧α ⊃ R([t2] β)

where α is the precondition and β specifies the direct effects of the action (context-
dependent actions are defined analogously). However, we also wanted to be able to
define actions that do have some effects when they are qualified. This can be done
by defining a context-dependent action that defines what happens when the enabling
fluent is false:

acsn [t1, t2] action� ([t1] poss-action∧α1 ⊃ R([t2] β1)) ∧
([t1] ¬ poss-action∧α2 ⊃ R([t2] β2))

For example, suppose that whenever anyone tries to board a plane but the action is
qualified, they should try to find new transportation. In order to model this, we would
add a new persistent fluent find-new-transportation(PERSON) : BOOLEAN and modify
the boarding action from Section 18.3.2 as follows:

acs4�� [t1, t2] board(person, plane) �

([t1] poss-board(person, plane) ∧ loc(person) =̂ airport ⊃
R([t2] loc(person) =̂ value(t2, loc(plane)) ∧ onplane(plane, person))) ∧

([t1] ¬poss-board(person, plane) ∧ loc(person) =̂ airport ⊃
R([t2] find-new-transportation(person)))

In this alternative scenario, if anyone is at the airport and tries to board a plane, and
the action is qualified, they will have a goal of finding new transportation. If they are
at the airport but the action is not qualified, they will board the plane. If they are not
at the airport, none of the preconditions will be true, and invoking the action will have
no effect. Note that it may very well be the case that they can not board for a more
serious reason such as carrying a gun. This is a case where the original qualification
might have to be qualified.

Regardless of whether a qualified action has an effect or not, its enabling fluent
is a durational fluent with default value true. Therefore, the fluent will normally be
true, and the action will normally be enabled. In the remainder of this section, we will
examine some of the ways in which we can disable an action using strong and weak
qualification.

8Note that due to the regularity of the solution, such extensions could be implicit in an action macro, thus
avoiding unneeded clutter in the representation and delegating representation responsibility to the system
rather than the knowledge engineer.

740 18. Temporal Action Logics

18.9.2 Strong Qualification

When there is sufficient information to conclude that an action will definitely not suc-
ceed, it is strongly qualified. This can be modeled by forcing its enabling fluent to be
false at the timepoint at which the action is invoked.

For example, suppose that when a person has a gun in his pocket, it should be
impossible for that person to board a plane. Then, whenever inpocket(person, gun)
holds, poss-board(person) necessarily becomes false. This can be represented using a
dependency constraint:

dep3 ∀t, person, plane [[t] inpocket(person, gun) ⊃ I ([t] ¬poss-board(person, plane))]

At any timepoint t when a person has a gun in his pocket, we use the I macro both
to occlude poss-board(person, plane) for all airplanes, thereby releasing it from the
default value axiom, and to make it false. This implies that as long as a person has
a gun in his pocket, poss-board will be false for that person on all airplanes. If the
gun is later removed from the pocket, this dependency constraint will no longer be
triggered. At that time, assuming no other qualifications affect the enabling fluent, it
will automatically revert to its default value, true.

18.9.3 Weak Qualification

Although strong qualification can often be useful, we may sometimes have enough
information to determine that an action may fail, even though we cannot conclusively
prove that it will. We call this weak qualification.

For example, we may want to model the fact that when a person is drunk, he may or
may not be able to board an airplane, depending on whether airport security discovers
this or not. We may not be able to determine within our model of the RAH scenario
whether airport security does discover that any given person is drunk. In this case,
whenever drunk(person) holds, we must release poss-board from the default value
assumption, which would otherwise have forced poss-board to be true:

dep4 ∀t, person [[t] drunk(person) ⊃ ∀plane [X([t] poss-board(person, plane))]]

At any timepoint t when a person is drunk, we occlude poss-board(person, plane) for
all airplanes, but since we do not state anything about the value of the enabling fluent,
it is allowed to be either true or false.

Although being able to state that an action may fail is useful in its own
right, it is naturally also possible to restrict the set of models further by adding
more statements to the scenario which could make it possible to infer whether
poss-board(dimiter, sas609) is true or false at some or all timepoints. For example,
we may know that people boarding sas609 are always checked more carefully, so that
it is impossible for anyone who is drunk to be on board that airplane, which could
be expressed using an additional domain constraint. In the context of postdiction,
observation statements could be used in a similar manner. For example, adding the
observation statement obs5 [13] onplane(sas609, boris) to the narrative would allow
us to infer that Boris did in fact board the plane and that poss-board(boris, sas609)
was in fact true. He would then end up at his intended destination. If instead we added

P. Doherty, J. Kvarnström 741

the observation statement obs6 [13] ¬onplane(sas609, boris), we could infer that he
was unable to board the plane and he did not end up at his destination.

It should be noted that this approach to modeling qualification has similarities to
a standard default solution to the qualification problem, but with some subtle dif-
ferences. For example, it permits more control of the enabling precondition, even
allowing it to change during the execution of an action. More importantly, it involves
no changes to the minimization policy already used in TAL to deal with the frame
and ramification problems, consequently the circumscription theory is still first-order
reducible.

18.9.4 Qualification: Not Only For Actions

As we have shown, this approach to qualification is based on general concepts such
as durational features and fluent dependency constraints, instead of introducing new
predicates, entailment relations or circumscription policies specifically designed for
dealing with the qualification problem. This is appealing not only because we avoid
introducing new complexity into the logic, but also because reusing these more general
concepts adds to the flexibility of the approach. In fact, exactly the same approach can
be used for specifying qualifications to any rule or constraint. Most notably, one can
provide qualifications for ramification constraints, thereby introducing defeasible side
effects—or one can even qualify qualification constraints themselves.

As an example, when we initially considered the boarding action, the “natural”
preconditions were that one had to be at the airport; this is the precondition encoded in
the definition of board (acs4). Later, we found another condition that should qualify
the action: No one should be able to board a plane carrying a gun. Now, however, we
may discover that this qualification does not always hold: Airport security should be
able to board a plane carrying a gun.

Assuming that there is a fluent is-security(person) : BOOLEAN, this exception to
the general qualification rule could of course be modeled by changing the dependency
constraint dep3 in the following way:

dep3� ∀t, person, plane [[t] inpocket(person, gun) ∧ ¬is-security(person) ⊃
I ([t] ¬poss-board(person, plane))]

However, we may later discover additional conditions under which it should be possi-
ble for a person to board a plane with a gun, and we do not want to modify dep3 each
time. Instead, the qualification itself should be qualified. This can easily be done us-
ing the same approach as for actions. A new enabling fluent guns-forbidden(PERSON,
PLANE) : BOOLEAN is added for the qualification constraint, and dep3 is modified as
follows:

dep3�� ∀t, person, plane [[t] inpocket(person, gun) ∧ guns-forbidden(person, plane) ⊃
I ([t] ¬poss-board(person, plane))]

Now, we can qualify the qualification dep3 simply by making guns-forbidden false for
some person and airplane. In order to do this, we add a new dependency constraint:

dep5 ∀t, person, plane [[t] is-security(person) ⊃
I ([t] ¬guns-forbidden(person, plane))]

742 18. Temporal Action Logics

18.9.5 Ramifications as Qualifications

A problem related to the qualification problem occurs in formalisms where ramifica-
tion constraints and qualification constraints are expressed as domain constraints [20,
49]. Assume, for example, that we are reasoning about the blocks world, and that we
have the following domain constraint (expressed using TAL syntax), stating that no
two blocks can be on top of the same block:

dom ∀t, x, y, z [[t] on(x, z) ∧ on(y, z) ⊃ x = y]

Now, suppose that the direct effect of the action put(A,C) is on(A,C), and the action
is executed in a state where on(B,C) is true. Then, we cannot determine syntactically
whether the domain constraint should be interpreted as a ramification constraint (since
no two blocks can be on top of C, B must be removed) or as a qualification constraint
(since no two blocks can be on top of C, the action should fail).

In TAL, however, all indirect effects of an action must be expressed as directed
dependency constraints. Therefore, this problem simply does not arise. For example,
if a ramification constraint is required, the following dependency constraint can be
used:

dep ∀t, x, y, z [[t] on(x, z)∧CT ([t + 1] on(y, z))∧ x �= y ⊃ R([t + 1] ¬on(x, z))]

If x is on z, and we then place y on z, then an indirect effect is that x is removed
from z. On the other hand, if a qualification constraint is required, an enabling flu-
ent poss-put(BLOCK, BLOCK) can be used and the following qualification condition
would then be added:

dep ∀t, x, y, z [[t] on(x, z) ∧ x �= y ⊃ I ([t] ¬poss-put(y, z))]

Clearly, the problem of determining whether a constraint should be implicitly in-
terpreted as a qualification or a ramification does not arise in this approach. One could
criticize such a solution as over-constraining the action theory model, but then again,
use of domain constraints could equally well be criticized for under-constraining the
model.

A description of the TAL representation of the Russian Airplane Hijack scenario
is now complete and the general methods used to resolve the frame, ramification and
qualification problems have been described. The partial translations into L(FL) were
done using VITAL [39], a research tool that can be used to study problems involving
action and change within TAL and generate visualizations of action scenarios and
preferred entailments.

18.10 Action Expressivity in TAL

For the sake of brevity, narratives used as examples in the literature are generally
modeled at a rather high level of abstraction. This is especially true when a narrative
is used for the purpose of demonstrating the properties of a solution to a specific
problem; for example, the Russian Airplane Hijack scenario was explicitly designed
for the demonstration of qualification constraints. This, however, should not be taken

P. Doherty, J. Kvarnström 743

to mean that this is the only level of abstraction possible in TAL. We briefly illustrate
this point by adding more realistic timing to several action types in the RAH scenario
and by introducing effects at inner timepoints during the execution of the fly action.

As shown in previous examples, the timing of an action occurrence has often been
completely specified in the corresponding action occurrence statement:

occ [1, 2] pickup(boris, comb1)

In many cases, the duration of the action is better specified in the action itself. An
action specification can contain arbitrary constraints on its parameters, which can be
used to constrain the time required for boarding as well as the amount of time required
when boarding fails:

acs [t1, t2] board(person, plane) �

([t1] poss-board(person, plane) ∧ loc(person) =̂ airport ⊃
R([t2] loc(person) =̂ value(t2, loc(plane)) ∧ onplane(plane, person) ∧
t2 = t1 + 100)) ∧

([t1] ¬(poss-board(person, plane) ∧ loc(person) =̂ airport) ⊃
t2 = t1 + 10)

This also illustrates the use of contextually dependent effects, where the exact out-
come of the action is determined by the state of the world when it is invoked (though
non-deterministic and incompletely specified effects are also possible). An arbitrary
number of conditions (mutually exclusive or not) can be used to specify the effects of
an action.

The timing in the action occurrence statements is then relaxed by introducing a
number of temporal constants. Here, boris begins picking up comb1 at time 1. He
does not know when he will finish, but at the next timepoint (boris1+1), he will begin
traveling to the office.

occ [1, boris1] pickup(boris, comb1)
occ [boris1 + 1, boris2] travel(boris, home1, office)
occ . . .

Of course, action durations do not have to be defined using a constant. If distances
between locations are modeled using a dist fluent, one can specify the duration of a fly
action as follows:

acs [t1, t2] fly(plane, runway1, runway2) �

[t1] loc(plane) =̂ runway1 ⊃
I ((t1 + 200, t2) loc(plane) =̂ air) ∧ R([t2] loc(plane) =̂ runway2) ∧
t2 = t1 + 200+ dist(runway1, runway2)/200

Here, flying between two locations takes an initial 200 timepoints for taxiing, plus time
proportional to the distance between the two locations. This more accurate model of
the fly action can be further extended by modeling the remaining distance at any given
time when the plane is in the air, by conjoining the following formula to the effects
given above:

∀t [t1 + 200 < t ∧ t � t2 ⊃ I ([t] remaining-distance(plane) =̂
dist(runway1, runway2) · (t − t1 − 200)/(t2 − t1 − 200))]

744 18. Temporal Action Logics

At any timepoint within the interval (t1 + 200, t2], the remaining distance is assigned
a new value. Further elaborations to effects and timing can be added as required by the
task to which the model will be applied.

18.11 Concurrent Actions in TAL

Much work in reasoning about action and change has been done under the (some-
times implicit) assumption that there is a single agent performing sequences of
non-overlapping actions. The use of explicit metric time in TAL clearly enables the
specification of narratives where action execution intervals are partly or completely
overlapping, whether those actions are performed by a single agent or by multiple
cooperating or adversarial agents. Similarly, the fact that actions can have non-unit
duration and that one can specify in detail what happens during the execution interval
enables richer domain models where a larger class of phenomena related to concur-
rency can be modeled. However, a complete treatment of concurrency also requires
the ability to model interactions between concurrent effects of multiple actions. Such
interactions can be synergistic, where two actions must be executed concurrently in
order to achieve the desired effect. For example, moving a table requires lifting both
sides of the table simultaneously in order to avoid the undesired side effects of every-
thing on the table sliding off onto the floor. Interactions may also be accumulative,
as when a number of agents are placing packages in a vehicle for transportation, or
harmful, where one action provides the desired effect unless certain other actions are
executed concurrently.

In each of these cases, the composite effect of executing several actions is not
equivalent to the logical conjunction of the individual effects. For example, lifting the
left side of the table causes the table to tilt, as does lifting the right side of the table,
but lifting both sides at once cancels this effect. Though this could in theory be han-
dled by modeling all possible interactions within each action definition, this would
clearly be an extremely non-modular solution and would suffer from a combinator-
ial explosion in the number of conditional effects required in each action definition.
This is especially true when dealing with actions with duration, where the number of
combinations is determined not only by the number of actions but also by the number
of ways two or more actions can overlap in time. The use of ramification constraints
also complicates the issue by introducing interactions between actions and chains of
(potentially delayed) ramification effects.

For these reasons, a more principled and indirect solution was proposed by Karls-
son and Gustafsson [35], where actions do not directly change the state of the world
but instead produce a set of influences. Fluent dependency constraints can then be used
to model how the world is affected by a combination of influences.

18.11.1 Independent Concurrent Actions

The use of independent concurrent actions involving disjoint sets of features is un-
problematic in TAL. This is illustrated in the following narrative, describing a world
with two types of actions (LightFire and PourWater), and a number of agents (bill and
bob) and other objects (wood1 and wood2). All variables appearing free are implicitly
universally quantified.

P. Doherty, J. Kvarnström 745

acs1 [s, t] LightFire(a,wood) ⊃ ([s] dry(wood) ⊃ R((s, t] fire(wood)))
acs2 [s, t] PourWater(a,wood) ⊃ R((s, t] ¬dry(wood) ∧ ¬fire(wood))
obs1 [0] dry(wood1) ∧ ¬fire(wood1) ∧ wood(wood1)

obs2 [0] dry(wood2) ∧ ¬fire(wood2) ∧ wood(wood2)

occ1 [2, 7] LightFire(bill,wood1)
occ2 [2, 7] LightFire(bob,wood2)
occ3 [9, 12] PourWater(bob,wood1)

The first action law states that if an agent a lights a fire using a piece of wood, and
the wood is dry, then the wood will be on fire. The second action law states that if
somebody pours water on an object, then the object will no longer be dry, and will
cease being on fire. There are two pieces of wood (wood1 and wood2) which are
initially dry and not burning. Two fires are lit by bill and bob during the temporal
interval [2, 7], and then bob pours water on bill’s fire at [9, 12]. Since no concurrency
is involved, the expected effects will take place: Both pieces of wood will be on fire at
7, and wood1 will no longer be burning at 12.

18.11.2 Interacting Concurrent Actions

Now consider the case where actions affecting the same fluents occur concurrently.
For example, suppose bob pours water on wood1 while bill is still lighting the fire.
Intuitively, the wood should not be on fire at 7. We formalize this in TAL by modifying
occ3.

occ3 [3, 5] PourWater(bob,wood1)

From the modified narrative one can still infer that wood1 is on fire at time 7, because
the effects of LightFire(bill, wood1) are only determined by whether the piece of wood
is dry at time 2, whereas in reality the effects of any action may also be altered by
the direct and indirect effects of other concurrent actions. A slight modification of the
narrative above illustrates another problem. Assume that occ3 is replaced with the
following:

occ3 [3, 7] PourWater(bob,wood1)

Now, the lighting and pouring actions end at the same time. From acs1 and occ1

one can infer the effect [7] fire(wood1) and from acs2 and occ3 one can infer
[7] ¬fire(wood1). Both effects are asserted to be direct and indefeasible. Thus, the
narrative becomes inconsistent. The conclusion one would like to obtain is again that
the wood is not on fire.

18.11.3 Laws of Interaction

Karlsson and Gustafsson [35] considers two solutions to these problems.
In the first solution, action laws are extended to allow references to other action

occurrences and the effects of LightFire are made conditional on the fact that there
is no interfering PourWater action. As noted in the introduction, this solution makes
action descriptions less modular and there may be a combinatorial explosion in the
number of conditional effects for each action. Other problems include the fact that

746 18. Temporal Action Logics

a concurrent action might only interfere with part of an action’s effects, leading to
further complexity in action laws.

The second solution is based on the assumption that interactions resulting from
concurrency are best modeled not on the level of actions but on the level of fea-
tures. Action laws encode the influences that an action has upon the environment
of the agent; in the fire example, [s, t] LightFire(a,wood) would have the effect
I ((s, t] fire∗(wood, true)) where fire∗(wood, true) is a fluent representing an influence
to make the feature fire(wood) true. This example follows the convention of repre-
senting the influences on an actual fluent f(ω̄) with f∗(ω̄, v), where v is a value in the
domain of f . Similarly, dependency constraints are modified to result in influences
rather than actual fluent changes. The actual effects that these influences have on the
environment are then specified in a special type of dependency laws called influence
laws. Applying this solution to the fire example yields the following narrative:

dom1 Per(fire(wood)) ∧ Dur(fire∗(wood, v), false)
dom2 Per(dry(wood)) ∧ Dur(dry∗(wood, v), false)
acs1 [s, t] LightFire(a,wood) ⊃ I ((s, t] fire∗(wood, true))
acs2 [s, t] PourWater(a,wood) ⊃ I ((s, t] dry∗(wood, false))
dep1 [s] ¬dry(wood) ⊃ I ([s] fire∗(wood, false))
inf1 [s, s + 3] fire∗(wood, true) ∧ ¬fire∗(wood, false) ⊃ R([s + 3] fire(wood))
inf2 [s] fire∗(wood, false) ⊃ R([s] ¬fire(wood))
inf3 [s, s + 3] dry∗(wood, true) ∧ ¬dry∗(wood, false) ⊃ R([s + 3] dry(wood))
inf4 [s] dry∗(wood, false) ⊃ R([s] ¬dry(wood))
obs1 [0] ¬fire(wood1) ∧ dry(wood1)

occ1 [2, 6] LightFire(bill,wood1)
occ2 [3, 5] PourWater(bob,wood1)

The action laws acs1 and acs2 and dependency law dep1 produce influences; for
example, dep1 states that the fact that the wood is not dry produces an influence
fire∗(wood, false) to extinguish the fire (if there is one). The effects of these influ-
ences, alone and in combination, are specified in infx ; for example, in order to affect
the feature fire(wood), the influence fire∗(wood, true) for starting the fire has to be
applied without interference from fire∗(wood, false) for an extended period of time.
In the preferred models of this narrative, wood1 will be wet at [4,∞), implying that
fire∗(wood1, false) will hold at [4,∞); consequently there is no interval [s, s + 3]
where fire∗(wood1, true) ∧ ¬fire∗(wood1, false), and fire(wood1) will never become
true.

The case when an effect of one action enables the effect of another action can also
be handled with conditional influence laws. For instance, the following influence law
states that opening a door requires initially keeping the latch open (the example is
originally due to Allen [1]):

inf1 [t] latch-open ∧ [t, t + 5] open∗(true) ⊃ R([t + 5] open)

Though not explicitly shown here, it is possible to use separate modular influence laws
to specify the result of arbitrary combinations of influences, including combinations
that lead to no effect at all. Influences can naturally also be combined with the TAL ap-
proach to ramification, both in the sense that ramifications may lead to influences and

P. Doherty, J. Kvarnström 747

in the sense that influences may cause chains of ramifications. One can also use influ-
ence laws to model resource conflicts, with either deterministic, non-deterministic or
prioritized outcomes when two agents attempt to use the same resource [35, 24]. This
results in a highly flexible and modular solution to many problems associated with
concurrency, regardless of whether that concurrency is due to actions, ramifications or
delayed effects.

18.12 An Application of TAL: TALplanner

The flexibility of TAL as a language for describing and modeling actions with con-
current effects, dependencies between fluents and other commonly occurring aspects
of dynamic domains also makes it eminently suitable for modeling planning domains.
This is especially true for planners that make extensive use of domain knowledge in
various forms. For this reason, TAL has been used as the semantic basis for a planner
called TALplanner [12, 13, 41], where TAL is used for modeling not only actions,
initial states and standard state-based goals but also a set of control formulas acting as
constraints on the set of valid plans. This latter use of logical formulas was initially
inspired by the planner TLPLAN [2].

One of the intended uses of TAL in TALplanner is as a specification language pro-
viding a declarative semantics for planning domains and plans. This is an important
difference from TLPLAN where only control formulas are based on the use of logic
and actions are instead modeled using an operational semantics. But unlike Green’s
approach [22], which involved not only representing planning domains in logic but
also generating plans using a resolution theorem prover, the declarative semantics of
TAL currently serves mainly as a specification for the proper behavior of the plan-
ning algorithm. The TALplanner implementation generates plans using a procedural
forward-chaining search method together with a search tree which is pruned with the
help of temporal control formulas.

Given that performance is of paramount importance in a planner, the full expres-
sivity of TAL is intended to be introduced into the planner implementation in stages;
the full power of the language, including non-deterministic actions, chains of ram-
ifications and arbitrary interactions between concurrent actions, must be approached
carefully. Having the specification of the proper semantics of such constructs available
from the beginning is useful even in the initial phase, providing a better view of what
extensions will be desired in the future, which sometimes affects the basic framework
of an implementation. Nonetheless, the language currently used for domain specifica-
tions in TALplanner is a subset of the full language for TAL described previously in
this chapter.

Planning domains and planning problems also require the specification of certain
types of information that were not originally supported in TAL or its predecessors.
This required a set of new additions to the language which will be described.

Thus, both extensions and limitations relative to TAL are in order. This falls neatly
within the TAL policy of providing macro languages adapted to specific tasks together
with a translation into a single unified first-order base language L(FL) with a well-
defined semantics and circumscription policy. While the details of the new macro
language L(ND)∗ are beyond the scope of this chapter (see Kvarnström [41] for a

748 18. Temporal Action Logics

Figure 18.3: The relation between TAL and TALplanner.

complete definition), most of the extensions are used in the example planning domain
discussed below.

Planning as narrative generation

TAL is based on the use of narratives, and automated planning can be viewed as a
form of narrative generation where an initial narrative, specifying an initial state as
well as various forms of domain knowledge, is incrementally extended by adding new
action occurrences—in other words, new steps in the plan. The intention, then, is to
generate a suitable set of action occurrences such that the desired goals are satisfied in
the resulting complete narrative.

Fig. 18.3 contains an extended version of the diagram previously shown in
Fig. 18.2. As seen in the top row of this figure, the input to TALplanner is a narra-
tive in the extended macro language L(ND)∗. This narrative is sometimes called a
goal narrative, emphasizing the fact that it specifies a planning problem instance, and
is usually denoted by N . The goal narrative consists of two parts: A domain descrip-
tion, defining among other things the operators that are available to the planner, and a
problem instance description, defining the initial state and the goal. TALplanner uses
this high-level description of a planning problem to search for a set of TAL action
occurrences (plan steps) that can be added to this narrative so that in the correspond-
ing logical model, a goal state is reached. If this succeeds, the output is a new TAL
narrative in L(ND)∗ where the appropriate set of TAL action occurrences has been
added. This narrative is sometimes called a plan narrative, emphasizing the fact that
it represents a solution to a planning problem. Both goal narratives and plan narratives
can be translated into L(FL) (the second row in the figure). As in pure TAL, a num-
ber of foundational axioms are required, and a standard TAL circumscription policy is
applied, yielding complete definitions of the Occlude and Occurs predicates (the third
row). Further details are available in Kvarnström [41].

P. Doherty, J. Kvarnström 749

Adding action occurrences to a standard TAL narrative is a non-monotonic oper-
ation, in the sense that conclusions entailed by the original narrative may have to be
retracted once a new action occurrence is added. However, at each step in the planning
process, one would also prefer to be able to determine whether a certain conclusion
will remain valid regardless of what new actions may be added to a plan. This is es-
pecially important in the context of temporal control formulas, where a candidate plan
should not necessarily be discarded for violating a control formula if this violation
might be “repaired” by adding new actions.

The key to solving this problem lies in the flexibility of the TAL solution to the
frame problem. By selecting a search space where new action occurrences are con-
strained not to begin before any of the actions already present in the plan—that is,
if there are actions beginning at times 0, 10 and 273, one cannot add a new action
beginning at 272—one can guarantee that along any branch of the forward-chaining
search tree, there is a monotonically increasing temporal horizon such that any new
effects introduced by future actions will take place strictly after this horizon.9 Then,
the standard definition of inertia can be altered to ensure that persistence is applied
up to and including this temporal horizon, while leaving fluents unconstrained at all
later timepoints. This is easily done by changing the TAL translation function while
retaining the same circumscription policy.

It should be noted that this approach is not equivalent to assuming a complete lack
of knowledge after the temporal horizon. On the contrary, any fluent constraints re-
sulting from action effects or (in a future implementation) domain constraints are still
equally valid after the temporal horizon; only the persistence assumption has been
relaxed at those timepoints where the complete set of effects is unknown. Thus, de-
pending on the effects that have been applied so far, it can still be possible to prove
that a control formula has been definitely violated after the temporal horizon, which is
essential for the performance of the concurrent version of TALplanner.

An example planning domain

We will now show some examples of the use of L(ND)∗ in modeling the timed version
of the ZenoTravel domain, originally used in the AIPS 2002 International Planning
Competition [45, 50]. Due to space limitations, the complete domain description will
not be provided. Nevertheless, the most pertinent aspects of the modeling language
will be presented in sufficient detail.

The ZenoTravel domain contains a number of aircraft that can fly people between
cities. There are five planning operators available: Persons may board and debark from
aircraft, and aircraft may fly, zoom (fly quickly, using more fuel), and refuel. There are
no restrictions on how many people an aircraft can carry. Flying and zooming are
equivalent except that zooming is generally faster and uses more fuel. Fig. 18.4 shows
a tiny example problem, with arrows pointing out goal locations.

Objects in a planning problem are modeled using standard TAL values, and state
variables are modeled using TAL fluents.

9Note that this does not rule out the generation of plans with concurrent actions and one version of
TALplanner does generate actions concurrently.

750 18. Temporal Action Logics

Figure 18.4: A ZenoTravel problem instance.

domain THING :elements {. . . }
domain AIRCRAFT :parent THING :elements {. . . }
domain PERSON :parent THING :elements {. . . }
domain CITY :elements {. . . }

feature at(THING, CITY), in(PERSON, AIRCRAFT) :domain BOOLEAN
feature fuel(AIRCRAFT) :domain INTEGER
. . .

Operators are modeled using a new form of operator statement, which uses a new syn-
tax with explicit preconditions, prevail conditions, durations and effects. As specified
by the competition organizers, the time required to board a plane is specified using
the boarding-time fluent, which is here multiplied by 1000 in order to provide higher
precision timing. Note also that the plane is required to remain at its location during
boarding. The time required to fly between two cities is proportional to the distance
and inversely proportional to the speed of the aircraft.10

operator board(person, aircraft, city) :at s
:duration value(t , 1000 * boarding-time) :as dur
:precond [s] at(person, city) ∧ at(aircraft, city)
:prevail [s+ 1, s+ dur]at(aircraft, city)
:effects [s+ 1]at(person, city) := false, [s+ dur]in(person, aircraft) := true

operator fly(aircraft, city1, city2) :at s
:duration value(t, 1000 * distance(city1, city2) / slow-speed(aircraft)) :as dur
:precond [s] at(aircraft, city1) ∧ city1 �= city2 ∧

[s] fuel(aircraft) � distance(city1, city2) * slow-burn(aircraft)
:effects [s+ 1] at(aircraft, city1) := false,

[s+ dur] at(aircraft, city2) := true,

[s+ dur] fuel(aircraft) := value(s, fuel(aircraft))− 1

10We appeal to the use of semantic attachment [71] techniques in the implementation of TAL and
TALplanner by liberal use and invocation of built in mathematical and other functions associated with
value domains for features.

P. Doherty, J. Kvarnström 751

Control formulas specify constraints that must be satisfied in the logical model
corresponding to a solution plan. In some respects, the central use of explicit con-
trol formulas is really what stands out from other automated planning paradigms.
Control formulas are intended to represent the high-level heuristics or commonsense
smarts that one usually assumes a human might use when faced with specific planning
problems in well-defined domains. Initially, a person may not have sufficient com-
petence about a domain. Consequently, the plans generated may not be the best and
will certainly take longer to generate. As a person acquires a feel for a domain, cer-
tain constraints are then applied when generating plans which in turn minimize the
search space. It is this intuition which is behind the use of control formulas as a do-
main dependent means of limiting the huge search space of action combinations one is
faced with when using a forward chaining planner. The technique is also incremental
in nature. Control formulas may be added incrementally as one learns more about the
domain in question thus improving the efficiency of the planner.

The following two control formulas used in the ZenoTravel domain state that pas-
sengers should only board an aircraft when they desire to be in another city, and that
they should only debark when they have reached their destination. Free variables are
assumed to be universally quantified.

control :name "only-board-when-necessary"
[t] ¬in(person, aircraft) ∧ [t + 1] in(person, aircraft) ⊃
∃city, city2 [[t] at(person, city) ∧ goal(at(person, city2)) ∧ city �= city2]

control :name "only-debark-when-in-goal-city"
[t] in(person, aircraft) ∧ [t + 1] ¬in(person, aircraft) ⊃
∃city [[t] at(aircraft, city) ∧ goal(at(person, city))]

In addition to these statements, which are valid in an entire planning domain, the
planner also needs a complete specification of the initial state (using TAL observation
statements) and a specification of the state-based goals that should be achieved. The
latter is specified using goal statements, consisting of TAL fluent formulas that must
hold in the final state resulting from executing a solution plan.

The following are possible goal and initial state statements for the example in
Fig. 18.4:

goal at(person1, city3) ∧ at(person2, city1) ∧ at(person3, city3) ∧ at(person5, city1)

obs ∀city [[0] at(person1, city) ≡ city = city0]
obs ∀city [[0] at(person2, city) ≡ city = city0]
obs ∀city [[0] at(plane1, city) ≡ city = city2]
obs [0] fuel(plane1) =̂ 5

The main statement types for goal and plan narratives have now been introduced.
A goal narrative is input to the forward-chaining TALplanner system and if possible,
a TAL plan narrative is generated by the planner which contains action occurrence
statements and timings for such statements which entail the goal and control state-
ments originally included in the goal narrative.

It was stated that the strategy used in TALplanner is not “planning as theorem-
proving”, but using TAL as a specification language for developing planners. Perhaps

752 18. Temporal Action Logics

a better way to describe TAL and its relation to TALplanner is not only as a speci-
fication framework, but as “theorem-proving as an aid to plan generation”. One can
clearly see from Fig. 18.3 that in the plan generation process, one can use TAL to
reason about partial plans being generated. In fact, during plan generation, a simple
form of inference is currently used to verify that control formulas are satisfied in the-
ories associated with partial plans. In the plan execution process, one can use TAL to
verify and monitor the plan execution process by querying the current state of a ro-
botic system with TAL formulas. This is a form of on-line model-checking similar to
the progression algorithms used in TALplanner and TLPLAN. TALplanner also uses
a limited form of resolution to reason about control formulas and operators during
the initial (preprocessing) phase of the planning process, inferring a set of facts that
must necessarily be true during the invocation of an operator and thereby improving
the performance of checking control formulas during the planning phase. The flexi-
ble framework described in this section offers great potential for leveraging the use of
logic with planning in a pragmatic and efficient manner.

18.13 Summary

This chapter provides a presentation of the latest stable version of TAL, a temporal
action logic for reasoning about action and change. In the article, we present the basic
narrative framework for specifying action scenarios using two languages L(ND) and
L(FL). A definition of the circumscription policy used for TAL is provided in addition
to proposals for partial solutions to the frame, ramification and qualification problems.
Solutions are obviously dependent on the nature of the application domains to which
they are applied. We say the solutions are partial because it is unclear whether such
solutions would hold up practically unless one had specifications of the environments
in which TAL would be used and a means of assessing whether the formalism would
cover the spectrum of reasoning problems associated with a particular domain. Such a
qualification would apply to any action and change formalism and assessments should
be done using either formal assessment frameworks such as that described in the in-
troduction to this chapter or empirical testing. TAL has been partially assessed for a
particular type of application domain but much remains to be done in terms of assess-
ing many of the newer extensions to TAL. That being said, TAL is one of the most
expressive logical formalisms for reasoning about action and change, the underlying
semantic framework is highly intuitive and TAL has been shown to correctly model
the majority of benchmark problems proposed in the action and change research com-
munity. In the chapter, we have also provided a description as to how one could deal
with the very complex problem of true concurrent actions and their interactions. We
have concluded with an application of TAL to an award winning automated planner,
TALplanner.

Acknowledgements

The TAL framework described in this chapter is very much a team effort and has con-
tinued with spurts and lags beginning in 1994. We acknowledge contributions by the
following members of the Knowledge Processing Lab at the Department of Computer

P. Doherty, J. Kvarnström 753

and Information Science, Linköping University: Marcus Bjäreland, Joakim Gustafs-
son, Lars Karlsson, Martin Magnusson, Andrzej Szałas and Witold Łukaszewicz.

The writing of this article and research included in it has been supported by funding
from the Wallenberg Foundation under the WITAS UAV Project, Swedish Research
Council grants (50405001, 50405002) and a Swedish National Aeronautics Research
grant (NFFP4-S4203).

Bibliography

[1] J. Allen. Temporal reasoning and planning. In Allen, Kautz, Pelavin, and Tenen-
berg, editors. Reasoning about Plans. Morgan Kaufmann, 1991.

[2] F. Bacchus and F. Kabanza. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence, 116 (1–2):123–191, 2000.

[3] C. Baral and M. Gelfond. Logic programming and reasoning about actions. In M.
Fisher, D.M. Gabbay, and L. Vila, editors. Handbook of Temporal Reasoning in
Artificial Intelligence. Elsevier Publications, 2005.

[4] M. Bjäreland. Two aspects of automating logics of action and change: Regression
and tractability. Master’s thesis, Linköping University, 1998. Thesis No 674. LiU-
Tek-Lic 1998:09.

[5] M. Bjäreland and L. Karlsson. Reasoning by regression: Pre- and postdiction
procedures for logics of action and change with nondeterminism. In Proceedings
of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97),
Nagoya, Japan, August 1997. Morgan Kaufmann, 1997.

[6] P. Doherty. Notes on PMON circumscription. Technical Report LITH-IDA-
94-43, Dept. of Computer and Information Science, Linköping University,
Linköping, Sweden, December 1994.

[7] P. Doherty. Reasoning about action and change using occlusion. In A.G. Cohn,
editor. Proceedings of the Eleventh European Conference on Artificial Intelli-
gence (ECAI-1994), Amsterdam, The Netherlands, 1994, pages 401–405. John
Wiley and Sons, Chichester, England, 1994.

[8] P. Doherty. PMON+: A fluent logic for action and change, formal specification,
version 1.0. Technical Report LITH-IDA-96-33, Department of Computer and
Information Science, Linköping University, Linköping, Sweden, December 1996.

[9] P. Doherty and J. Gustafsson. Delayed effects of actions = direct effects+ causal
rules. Linköping Electronic Articles in Computer and Information Science, 3,
1998.

[10] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnström. TAL: Temporal Action
Logics—language specification and tutorial. Electronic Transactions on Artificial
Intelligence, 2(3–4):273–306, September 1998.

[11] P. Doherty and J. Kvarnström. Tackling the qualification problem using fluent
dependency constraints: Preliminary report. In L. Khatib and R. Morris, editors.
Proceedings of the Fifth International Workshop on Temporal Representation and
Reasoning (TIME-1998), Los Alamitos, CA, USA, May 1998, pages 97–104.
IEEE Computer Society Press, 1998.

[12] P. Doherty and J. Kvarnström. TALplanner: An empirical investigation of a tem-
poral logic-based forward chaining planner. In C. Dixon and M. Fisher, editors.
Proceedings of the Sixth International Workshop on Temporal Representation and

754 18. Temporal Action Logics

Reasoning (TIME-1999), Orlando, Florida, USA, May 1999, pages 47–54. IEEE
Computer Society Press, 1999.

[13] P. Doherty and J. Kvarnström. TALplanner: A temporal logic-based planner. AI
Magazine, 22(3):95–102, 2001.

[14] P. Doherty and W. Łukaszewicz. Circumscribing features and fluents: A fluent
logic for reasoning about action and change. In D.M. Gabbay and H.J. Ohlbach,
editors. Proceedings of the First International Conference on Temporal Logic
(ICTL-1994), Lecture Notes in Artificial Intelligence, vol. 827, pages 82–100.
Springer-Verlag, London, 1994.

[15] P. Doherty, W. Łukaszewicz, and E. Madalińska-Bugaj. The PMA and relativiz-
ing change for action update. In Proceedings of the 6th International Conference
on Principles of Knowledge Representation and Reasoning (KR’98), 1998.

[16] P. Doherty, W. Łukaszewicz, and A. Szałas. Computing circumscription revisited:
Preliminary report. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI’95), vol. 2, pages 1502–1508, 1995.

[17] P. Doherty, W. Łukaszewicz, and A. Szałas. Computing circumscription revisited:
A reduction algorithm. Journal of Automated Reasoning, 18:297–336, 1997.

[18] P. Doherty and P. Peppas. A comparison between two approaches to ramification:
PMON(R) and �R0. In X. Yao, editor. Proceedings of the 8th Australian Joint
Conference on Artificial Intelligence, pages 267–274. World Scientific, 1995.

[19] P. Doherty, W. Łukaszewicz, and A. Szałas. Explaining explanation closure. In
Proceedings of the 9th International Symposium on Methodologies for Intelligent
Systems (ISMIS’96), 1996.

[20] M.L. Ginsberg and D.E. Smith. Reasoning about action II: The qualification prob-
lem. Artificial Intelligence, 35(3):311–342, 1988.

[21] E. Giunchiglia and V. Lifschitz. Dependent fluents. In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence (IJCAI-1995),
Montréal, Québec, Canada, pages 1964–1969. Morgan Kaufmann Publishers,
San Mateo, CA, USA, 1995.

[22] C. Green. Applications of theorem proving to problem solving. In Proceedings of
the First International Joint Conference on Artificial Intelligence (IJCAI-1969).
Morgan Kaufmann, 1969.

[23] J. Gustafsson. Extending temporal action logic for ramification and concur-
rency. Master’s thesis, Linköping University, 1998. Thesis No 719. LiU-Tek-Lic
1998:54.

[24] J. Gustafsson. Extending temporal action logic. PhD thesis, Linköping Studies in
Science and Technology, Dissertation No. 689, 2001.

[25] J. Gustafsson and P. Doherty. Embracing occlusion in specifying the indirect ef-
fects of actions. In L.C. Aiello, J. Doyle, and S.C. Shapiro, editors. Proceedings
of the Fifth International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR-1996), pages 87–98. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 1996.

[26] J. Gustafsson and J. Kvarnström. Elaboration tolerance through object-
orientation. In Proceedings of the Fifth Symposium on Logical Formalizations
of Commonsense Reasoning (Common Sense-2001), 2001.

[27] J. Gustafsson and J. Kvarnström. Elaboration tolerance through object-
orientation. Artificial Intelligence, 153:239–285, March 2004.

P. Doherty, J. Kvarnström 755

[28] S. Hanks and D.V. McDermott. Default reasoning, nonmonotonic logics, and
the frame problem. In Proceedings of the Fifth National Conference on Artifi-
cial Intelligence (AAAI-1986), Philadelphia, Pennsylvania, USA, August 1986,
pages 328–333. Morgan Kaufmann Publishers, Los Altos, CA, USA, 1986.

[29] L. Karlsson. Specification and synthesis of plans using the Features and Fluents
framework. Master’s thesis, Linköping University, 1995. Thesis No 469. LiU-
Tek-Lic 1995:01.

[30] L. Karlsson. Causal links planning and the systematic approach to action and
change. In Proceedings of the AAAI 96 Workshop on Reasoning about Actions,
Planning and Control: Bridging the Gap, Portland, OR, August 1996. AAAI
Press, 1996.

[31] L. Karlsson. Planning, truth criteria and the systematic approach to action and
change. In Proceedings of the 9th International Symposium on Methodologies
for Intelligent Systems (ISMIS’96), Lecture Notes for Artificial Intelligence.
Springer-Verlag, 1996.

[32] L. Karlsson. Reasoning with incomplete initial information and nondeterminism
in situation calculus. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI’97), 1997.

[33] L. Karlsson. Anything can happen: on narratives and hypothetical reasoning. In
Proceedings of the 6th International Conference on Principles of Knowledge
Representation and Reasoning (KR’98). Morgan Kaufmann, 1998.

[34] L. Karlsson. Actions, interactions and narratives. PhD thesis, Linköping Studies
in Science and Technology, Dissertation No. 593, 1999.

[35] L. Karlsson and J. Gustafsson. Reasoning about concurrent interaction. Journal
of Logic and Computation, 9(5):623–650, October 1999.

[36] L. Karlsson, J. Gustafsson, and P. Doherty. Delayed effects of actions. In H.
Prade, editor. Proceedings of the Thirteenth European Conference on Artificial
Intelligence (ECAI-1998), Brighton, UK, August 1998, pages 542–546. John Wi-
ley and Sons, Chichester, England, 1998.

[37] G.N. Kartha and V. Lifschitz. Actions with indirect effects. In Proceedings of
the International Conference on Knowledge Representation and Reasoning (KR),
pages 341–350. Morgan Kaufmann, 1994.

[38] M. Koubarakis. Complexity results for first-order theories of temporal con-
straints. In J. Doyle, E. Sandewall, and P. Torasso, editors. Proceedings of the
Fourth International Conference on Principles of Knowledge Representation and
Reasoning (KR-1994), pages 379–390. Morgan Kaufmann Publishers, San Fran-
cisco, CA, USA, 1994.

[39] J. Kvarnström. VITAL. An on-line system for reasoning about action and change
using TAL. 1997–2006.

[40] J. Kvarnström. Applying domain analysis techniques for domain-dependent con-
trol in TALplanner. InM. Ghallab, J. Hertzberg, and P. Traverso, editors. Proceed-
ings of the Sixth International Conference on Artificial Intelligence Planning and
Scheduling (AIPS-2002), Toulouse, France, April 2002, pages 101–110. AAAI
Press, Menlo Park, CA, USA, 2002.

[41] J. Kvarnström. TALplanner and other extensions to temporal action logic. PhD
thesis, Linköpings universitet, April 2005. Linköping Studies in Science and
Technology, Dissertation no. 937.

756 18. Temporal Action Logics

[42] J. Kvarnström and P. Doherty. Tackling the qualification problem using fluent
dependency constraints. Computational Intelligence, 16(2):169–209, May 2000.

[43] J. Kvarnström and P. Doherty. TALplanner: A temporal logic based forward
chaining planner. Annals of Mathematics and Artificial Intelligence, 30:119–169,
2000.

[44] J. Kvarnström, P. Doherty, and P. Haslum. Extending TALplanner with concur-
rency and resources. In W. Horn, editor. Proceedings of the Fourteenth European
Conference on Artificial Intelligence (ECAI-2000), Frontiers in Artificial Intel-
ligence and Applications. Berlin, Germany, August 2000, pages 501–505. IOS
Press, Amsterdam, The Netherlands, 2000.

[45] J. Kvarnström and M. Magnusson. TALplanner in the Third International Plan-
ning Competition: Extensions and control rules. Journal of Artificial Intelligence
Research, 20:343–377, December 2003.

[46] V. Lifschitz. Formal theories of action. In F.M. Brown, editor. The Frame Problem
in Artificial Intelligence: Proceedings of the 1987 Workshop, Lawrence, Kansas,
USA, April 1987, pages 35–58. Morgan Kaufmann Publishers, Los Altos, CA,
USA, 1987.

[47] V. Lifschitz. Circumscription. In D.M. Gabbay, C.J. Hogger, and J.A. Robin-
son, editors. Handbook of Artificial Intelligence and Logic Programming, vol. 3,
pages 297–352. Oxford University Press, 1991.

[48] F. Lin. Embracing causality in specifying the indirect effects of actions. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-1995), Montréal, Québec, Canada, August 1995. Morgan Kauf-
mann Publishers, San Francisco, CA, USA, 1995.

[49] F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Computa-
tion, 4(5):655–678, 1994.

[50] D. Long and M. Fox. The third international planning competition: Results and
analysis. Journal of Artificial Intelligence Research, 20:1–59, December 2003.

[51] N. McCain and H. Turner. A causal theory of ramifications and qualifications.
In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 1978–1984, 1995.

[52] J. McCarthy. Programs with common sense. In Proceedings of the Teddington
Conference on the Mechanization of Thought Processes, London, pages 75–91.
Her Majesty’s Stationary Office, 1959.

[53] J. McCarthy. Epistemological problems of artificial intelligence. In R. Reddy,
editor. Proceedings of the Fifth International Joint Conference on Artificial Intel-
ligence (IJCAI-1977), Cambridge, MA, USA, pages 1038–1044. William Kauf-
mann, 1977.

[54] J. McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial
Intelligence, 13(1–2):27–39, 1980. Reprinted in [56].

[55] J. McCarthy. Applications of circumscription to formalizing common sense
knowledge. Artificial Intelligence, 28(1):89–116, 1986. Reprinted in [56].

[56] J. McCarthy. Formalization of Common Sense, papers by John McCarthy edited
by Vladimir Lifschitz. Ablex, 1990.

[57] E.T. Mueller. Commonsense Reasoning. Morgan Kaufmann, 2006.
[58] R. Reiter. Knowledge in Action. MIT Press, 2001.

P. Doherty, J. Kvarnström 757

[59] E. Sandewall. Combining logic and differential equations for describing real-
world systems. In R.J. Brachman, H.J. Levesque, and R. Reiter, editors. Pro-
ceedings of the International Conference on Knowledge Representation and Rea-
soning (KR), pages 412–420. Morgan Kaufmann, 1989.

[60] E. Sandewall. Filter preferential entailment for the logic of action and change.
In N.S. Sridharan, editor. Proceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence (IJCAI-1989), San Francisco, August 1989.
Morgan Kaufmann Publishers, San Mateo, CA, USA, 1989.

[61] E. Sandewall. Features and Fluents: A Systematic Approach to the Representation
of Knowledge about Dynamical Systems, vol. 1. Oxford University Press, 1994.

[62] E. Sandewall. Assessments of ramification methods that use static constraints. In
Proceedings of the International Conference on Knowledge Representation and
Reasoning (KR), pages 99–110. Morgan Kaufmann, 1996.

[63] E. Sandewall. Cognitive robotics and its metatheory: Features and fluents revis-
ited. Electronic Transactions on Artificial Intelligence, 2(3–4), 1998.

[64] L.K. Schubert. Monotonic solution of the frame problem in situation calculus.
In H.E. Kyburg, R.P. Loui, and G.N. Carlson, editors. Knowledge Representation
and Defeasible Reasoning, pages 23–67. Kluwer, 1990.

[65] M. Shanahan. Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. The MIT Press, Cambridge, MA, USA, 1997.

[66] Y. Shoham. Nonmonotonic logics: Meaning and utility. In J.P. McDermott, editor.
Proceedings of the Tenth International Joint Conference on Artificial Intelligence
(IJCAI-1987), Milan, Italy, August 1987, pages 388–393. Morgan Kaufmann
Publishers, Los Altos, CA, USA, 1987.

[67] Y. Shoham. Reasoning about Action and Change. MIT Press, 1987.
[68] M. Thielscher. Ramification and causality. Artificial Intelligence, 89(1–2):317–

364, 1997.
[69] M. Thielscher. The qualification problem: A solution to the problem of anom-

alous models. Artificial Intelligence, 131(1–2):1–37, 2001.
[70] M. Thielscher. Reasoning Robots—The Art and Science of Programming Robotic

Agents. Springer, 2005.
[71] R.W. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning. Ar-

tificial Intelligence, 13(1–2), 1980.

