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Chapter 15

Reasoning about Knowledge and Belief

Yoram Moses

15.1 Introduction

An agent operating in a complex environment can benefit from adapting its behavior
to the situation at hand. The agent’s choice of actions at any point in time can, how-
ever, be based only on its local knowledge and beliefs. When many agents are present,
the success of one’s agent’s actions will typically depend on the actions of the other
agents. These, in turn, are based on the other agents’ own knowledge and beliefs. It
follows that to operate effectively in a setting containing other agents, an agent must,
in addition to its knowledge about the physical features of the outside world, consider
its knowledge about other agent’s knowledge. This line of reasoning can be extended
to justify the need for using deeper levels of knowledge, of course. Moreover, the task
of obtaining relevant knowledge and that of affecting the knowledge of other agents,
become important goals in many applications. This crucial connection between knowl-
edge and action is what makes knowledge and belief two of the most frequently used
notions in everyday discourse. It also suggests that rigorous frameworks for reason-
ing about knowledge and belief can be of value when analyzing scenarios involving
multiple agents.

Philosophers have been concerned with epistemology, the study of knowledge, for
thousands of years, going back to the great Chinese, Greek, and Indian thinkers. The
focus of much of their analysis was on fundamental questions about the nature of
knowledge: What can be known? When does someone know something? How does
knowledge relate to truth and to belief? Rigorous logical treatment of knowledge and
belief go back to the work of von Wright in the 1950’s. It gained substantial grounding
in Hintikka’s seminal book Knowledge and Belief in 1962 [28], which based modal
logics of knowledge on Kripke’s possible-worlds semantic modeling of modal log-
ics [30]. Hintikka’s work was followed by a wave of research in the 1960’s on logics
for knowledge and belief and their proper axiomatizations, with a focus on the rela-
tionship between knowledge and belief [15, 31].

In the second half of the Twentieth century, researchers in different fields of sci-
ence recognized the need to understand the role that knowledge and belief play in
multi-agent systems and multi-agent interaction. In 1969, David K. Lewis published
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the book Conventions, which contained the first explicit definition of common knowl-
edge among a set of agents (or individuals). Extensions of this work in the context
of linguistics and the philosophy of language were made by Schiffer and by Clark
and Marshall [9]. In game theory, Schelling [40] and Harsanyi [25–27] recognized
the role that uncertainty plays in the analysis of games in the 1960’s, and a model
for knowledge and common knowledge in games was first presented by Aumann in
1976 [1]. In artificial intelligence, McCarthy argued for modeling agents’ knowledge
and beliefs as essential components of an agent in the mid-1970’s. This ultimately
gave rise to the BDI Belief, Desire and Intentions model of agent-hood [39] discussed
in Chapter 24. The role of explicit, knowledge-based analyses of distributed proto-
cols and distributed systems was initiated by Halpern and Moses in 1984 [17], while
Goldwasser, Micali and Rackoff introduced tools for reasoning about cryptographical
protocols that provide zero knowledge [16] in 1985. Since the 1980’s, a large body of
literature consisting of many books and hundreds if not thousands of conference and
journal papers have been written continuing and extending these lines of research.

Surveying the state of the art is well beyond the scope of this chapter. Instead, this
chapter aims at providing a somewhat biased introduction to the topic of reasoning
about knowledge and belief, based in large part on the book Reasoning about Knowl-
edge [12], where the reader is advised to seek further detail and additional references
to the literature. Half of this chapter is devoted to introducing basic concepts, and
the other half focuses on illustrating how the runs and systems framework can be set
up to model multi-agent applications of interest. This involves properly matching the
agents’ behaviors or strategies, modeled by protocols, with a careful definition of the
environment in which the agents operate, which is in turn modeled using the notion of
a context.

15.2 The Possible Worlds Model

15.2.1 A Language for Knowledge and Belief

Before attempting to model knowledge and belief, we need to observe that these terms
are used in many different senses in natural language. Thus, we may talk about know-
ing a language, knowing a profession, or knowing how to perform a particular task.
We may believe in a higher power, or in a person. One may consider knowing what the
time is, or knowing what sequence of numbers will open a safe. While all of these are
perfectly reasonable uses of the terms in question and are worthy of investigation in
their own right, we will focus on knowledge and belief in the truth of facts. Thus, we
will be interested in expressing and modeling statements such as that “agent i believes
that it is midnight”, or that “Alice knows that the key is hidden under the rug”. We
will also be interested in statements such as “Alice knows that Bob does not know that
Alice knows that Bob spilled the beans”, of an agent’s knowledge about other agents’
knowledge, as well as issues having to do with what a group of agents knows.

LetΦ be a set of primitive propositions, standing for the basic facts that we wish to
reason about in a given application of interest. The particulars of Φ typically depend
on the application considered, and do not affect the general framework for reason-
ing about knowledge. We will therefore omit explicit mention of Φ if no confusion
arises. Denote by [n] = {1, . . . , n} a set of agents. The language LK

n = LK
n (Φ) for
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knowledge among the agents in [n] is defined to be the smallest set of formulas that
contains Φ and is closed under the standard Boolean connectives ∧ and ¬ (all other
connectives of propositional logic can be expressed using ∧ and ¬), and under modal
operators Ki , for every i ∈ [n].1 Thus, every proposition p ∈ Φ is a formula of LK

n

and, inductively, if i ∈ [n]while ϕ and ψ are formulas of LK
n , then¬ϕ, ϕ∧ψ andKiϕ

are formulas of LK
n . We also use standard abbreviations from propositional logic, such

as ϕ∨ψ for ¬(¬ϕ∧¬ψ), ϕ ⇒ ψ for ¬ϕ∨ψ , and ϕ ⇔ ψ for (ϕ ⇒ ψ)∧ (ψ ⇒ ϕ).
It is also convenient to use the notation true as shorthand for the tautologically true
formula p ∨ ¬p and false as shorthand for ¬true. We read Kiϕ as “agent i knows
ϕ”. Thus, if p stands for “The lock on Bob’s office door is broken”, and we iden-
tify Alice with agent 1 and Bob with 2, then K1p ∧ K1¬K2p will state that Alice
knows that the lock is broken, and that she also knows that Bob does not know this.
By further nesting of knowledge and Boolean operators it is possible to express more
complex statements involving agents’ knowledge about other agents knowledge (or
lack thereof), etc. in LK

n . Indeed, these can quite quickly express statements that ap-
pear to be fairly tricky. Consider the formula K1K2K1p ∧ ¬K2K1¬K2K1p, stating
that Alice knows that Bob knows that Alice knows p, and Bob does not know that
Alice knows that Bob does not know that Alice knows p. Even such a short formula
may require the listener to pause before its meaning is understood. We thus need a
clear framework for interpreting such statements in a precise way.

Most rigorous approaches to modeling knowledge and belief capture these notions
in terms of possible-worlds semantics. The idea here is that an agent in a given sce-
nario is typically not omniscient regarding all aspects of the current state of the world.
Rather, it considers many possibilities for the true state of the world. If, say, a given
door is locked in all of the worlds that the agent considers possible, then the agent may
be said to know (or believe) that the door is locked. More generally, agent i will know
a fact ϕ if ϕ holds in all of the worlds that i considers possible. Conversely, ϕ is not
known by i if i considers possible at least one world in which ϕ does not hold. Notice
that knowledge is defined in terms of (a more primitive notion of) possibility. Clearly,
the set of worlds an agent considers possible will generally be different in distinct
states of the world. In particular, this set changes over time, as the state of the world
changes, and as the agent learns new facts and perhaps forgets others. Following Hin-
tikka, we model knowledge in terms of a Kripke structure M = (S, π,K1, . . . ,Kn),
where S is a set of states of the world, π : Φ → 2S specifies for each primitive propo-
sition the set of states at which the proposition holds, and Ki ⊆ S × S is a binary
relation on the states of the world where, intuitively, (s, t) ∈ Ki means that when
the actual state of the world is s, agent i considers the world represented by t to be
possible. Formulas of LK

n are considered true or false at a world (M, s) consisting
of a state s in a structure M . We denote by (M, s) |= ϕ the fact that a formula ϕ is
true, or satisfied at a world (M, s). The satisfaction relation |= is formally defined by
induction on the structure of ϕ.

1A similar language,LB
n , can be defined for reasoning about belief if we substitute the modal knowledge

operators Ki by analogous belief operators Bi , for all i ∈ [n]. We will speak in terms of knowledge and
make explicit mention of belief when this is warranted.
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Primitive propositions p ∈ Φ form the base of the induction, and their truth is
determined according to the assignment π :

(M, s) |= p (for a primitive proposition p ∈ Φ) iff s ∈ π(p).

Negations and conjunctions are handled in the standard way:

(M, s) |= ¬ψ iff (M, s) �|= ψ.

(M, s) |= ψ ∧ ψ � iff both (M, s) |= ψ and (M, s) |= ψ �.

Finally, the crucial clause handles formulas of the form ϕ = Kiψ . Here, the intu-
ition that knowledge corresponds to truth in all possible worlds is captured by:

(M, s) |= Kiψ iff (M, t) |= ψ for all t such that (s, t) ∈ Ki .

A formula ϕ is said to be valid in (the structure)M = (S, . . .) if (M, s) |= ϕ holds
for all s ∈ S. Moreover, ϕ is called valid if it is valid in all structuresM . We say that ϕ
is satisfiable if (M, s) |= ϕ holds for some M and s. It is not hard to verify that ϕ is
satisfiable exactly if ¬ϕ is not valid.

Observe that the set of LK
n formulas that are true at a state s in a structure M

depends on the Ki relations as well as on the assignment π . Two states can satisfy
the same primitive propositions as determined by the assignment π , and yet differ
considerably in the LK

n formulas that they satisfy.

Example 15.1. To illustrate these definitions, let us consider a very simple example,
involving two agents, named Alice and Bob. Initially, Alice has a coin and Bob is in
the other room. Alice tosses the coin to the floor. (Nothing is known about the bias or
fairness of the coin, except that it has two different faces.) Once Bob hears the coin
hit the floor, he enters the room and observes whether the coin shows Heads or Tails.
There are many ways to model this example using the possible-worlds framework we
have discussed. We now present one particular choice. We model the scenario by way
of a Kripke structureM = (S, π,KA,KB). The set Φ of primitive propositions inM
consists of three basic facts: Φ = {Toss,Heads, Tails}. Intuitively, Toss stands for the
fact that the coin has been tossed, Heads holds if the coin toss resulted in the coin land-
ing Heads, and Tails stands for the tossed coin having landed Tails. The model should
allow us to reason about what is true (and what is known) at each of the three stages
of this scenario: Initially, immediately after Alice tosses the coin, and finally after Bob
enters the room. To this end, we consider the set of states S = {s0, s1, t1, s2, t2}, where
s0 is the initial state, s1 and t1 are the intermediate states where the coin landed Heads
and Tails, respectively, while s2 and t2 are the final states that occur following s1 and t1,
respectively, once Bob has entered the room and he sees the tossed coin. The assign-
ment π specifies what states the primitive propositions are true in, and is based on
the above description. Consequently, π(Toss) = {s1, t1, s2, t2}, π(Heads) = {s1, s2},
and π(Tails) = {t1, t2}. Finally, we need to define the possibility relations KA and
KB over the states of S. Assuming that Alice can see the outcome of her coin toss
immediately, and can see if Bob is in the room, in all states of this example she knows
exactly what the actual state is. So KA = {(s, s) | s ∈ S}. Bob, in turn, knows the
actual state at the first and third stages, and is unable to distinguish between the states
at the second stage—after Alice tosses the coin but before he enters the room. Thus,
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Figure 15.1: Knowledge via possible worlds.

KB = {(s, s) | s ∈ S} ∪ {(s1, t1), (t1, s1)}. A visual illustration of the structure M is
given in Fig. 15.1, where the binary relations KA and KB are represented by directed
edges labeled by A and B, respectively.

With this model for the coin-toss scenario, we can now establish the truth of some
nontrivial statements in this model. One is

(M, s0) |= KA¬Toss ∧ KBKAKB(¬Heads ∧ ¬Tails),

capturing the fact that in the initial state s0 Alice knows that the coin has not been
tossed, and Bob knows that Alice knows that Bob knows the coin is currently showing
neither Heads nor Tails; or

(M, s1) |= Heads ∧ ¬KBHeads ∧ ¬KBTails ∧ KB(KAHeads ∨ KATails),

which establishes that at s1 the coin is showing Heads, Bob does not know this, but
Bob knows that Alice knows whether the coin shows Heads or Tails.

This example illustrates that explicitly constructing a model of knowledge even for
a scenario with a simple structure and very little uncertainty may be quite laborious. In
more interesting situations, the state space and the possibility relations quickly become
much more complex. Notice that a number of choices and simplifying assumptions are
built into modeling the scenario as we have done. One has to do with the granularity
of the modeling. Intuitively, the states chosen for S in the above example “sample”
the world at three distinct stages. Moreover, given the choice of primitive propositions
in this example, the language is restricted to expressing facts about the coin tossing
and its outcome (and knowledge about these). Thus, for example, while in all possible
worlds in this model, both Bob and Alice know whether or not they are in the same
room, we cannot express this without extending the set Φ of primitive propositions
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defined in the example. Finally, having a very small number of states in S automat-
ically implies that agents have strong knowledge about each other’s knowledge. We
shall return to this issue later on once we define common knowledge.

Observe that both possibility relationsKA andKB in the above example are equiv-
alence relations: Reflexive, symmetric and transitive. This is not a coincidence. In
many applications, it is natural to consider the knowledge of agent i at a state s as
being based of some concrete view vi(s) that the agent is assumed to have at s. Two
states s and t are then indistinguishable, so that (s, t) ∈ Ki , exactly if vi(s) = vi(t).
The view vi(s) in such applications is typically a function of the agent’s observations
so far. It may consist, for example, of her complete history, what she sees in front of
her, the state of her memory or the set of formulas in the agent’s database. Possibility
relations that are obtained in this fashion are automatically equivalence relations.

15.3 Properties of Knowledge

The possible-worlds approach to modeling knowledge and belief is quite popular and
attractive, and view-based definitions of knowledge are natural in many applications.
They turn out, however, to model the cognitive state of an idealized agent, as we shall
see by analyzing the properties of knowledge and belief under these definitions. We
capture the properties of knowledge by considering the valid formulas of LK

n .
Even before considering the definition of |= for the knowledge operators, our de-

finition inherits valid formulas from its propositional component, from the fact that
the Boolean operators ¬ and ∧ are treated as they are in propositional logic. We thus
obtain that

A0. All instances of propositional tautologies are valid,

which we think of as the Propositional Axiom, and the inference rule of Modus Po-
nens:

MP. If ϕ is valid and ϕ ⇒ ψ is valid, then ψ is valid.

Intuitively, the pair A0 and MP ensure that our logic is an extension of propositional
logic.

One central property that follows from the definition thatKiϕ holds if ϕ holds at all
worlds that i considers possible is that an agent knows all the logical consequences of
his knowledge. If an agent knows both ϕ and that ϕ impliesψ , then both ϕ and ϕ ⇒ ψ

are true at all worlds he considers possible. Thus ψ must be true at all worlds that the
agent considers possible, so he must also know ψ . It follows that the Distribution
Axiom

A1. (Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ ,

which states that knowledge is closed under implication, is valid. This is clearly a non-
trivial assumption, which does not always match our intuitions regarding knowledge
in everyday life.

Further evidence that our definition of knowledge assumes rather powerful agents
comes from the fact that agents know all tautologies. In fact, they are guaranteed to
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know all formulas that are valid in the structure. If ϕ is true at all the worlds of a
structureM , then ϕ must, in particular, be true at all the worlds that agent i considers
possible at every world (M, s). Thus, Kiϕ must also hold at all worlds of M . More
formally, we have the following Knowledge Generalization Rule:

G. For all structuresM , ifM |= ϕ thenM |= Kiϕ.

While this implies that if ϕ is valid then so is Kiϕ, this does not mean that the
formula ϕ ⇒ Kiϕ is valid. The formula ϕ is valid in M only if it holds at all worlds
in M . Indeed, it is quite common for a formula ϕ to hold, without Kiϕ being true. In
the example above, at state s1 the coin has landed Heads, but Bob does not know this.
Notice that the Generalization rule can be applied repeatedly, and yield, for example
(if repeated twice), that ifM |= ϕ thenM |= KiKjKiϕ.

The Distribution Axiom A1 and Generalization Rule G are forced by the possible-
worlds modeling. They are shared by every normal modal operator [29]. It turns out
that, in a precise sense, the logic K, consisting of axioms A0 and A1 and the rules MP
and G completely characterizes the set of valid formulas of LK

n .

Considering the valid LK
n formulas does not present “epistemic” properties for

the Ki operators beyond those implied by the logic K. Thus, for example, there is no
necessary connection between what is known and the facts that are true. This changes
once we restrict the class of structures in a useful way. Recall from our discussion after
Example 15.1 that if knowledge is derived in a view-based manner, then the possibility
relationsKi are equivalence relations. We now turn to consider the set of formulas that
are valid in this case. For the remainder of this section, we study validity with respect
to the class of structures with equivalence possibility relations.

When possibility is an equivalence relation, each relation Ki is, in particular, re-
flexive. This means that, at every world (M, s), the current world is always one of the
possible worlds. (In other worlds, since (s, s) ∈ Ki , the world (M, s) is considered
“possible” at (M, s).) From the definition of when (M, s) |= Kiϕ holds it follows
that if an agent knows a fact, then it is true. More formally, the so-called Knowledge
Axiom:

A2. Kiϕ ⇒ ϕ

is valid. The Knowledge Axiom A2 is often considered to be the central property
distinguishing knowledge from belief. The intuition behind this is that while it possible
to have false beliefs, known facts are necessarily true.

Two additional properties of knowledge that hold in this class of structures state
that an agent has strong abilities to introspect into his own knowledge. An agent knows
precisely which are the facts that he knows and which facts he does not know. These
are captured by the Positive Introspection Axiom A3 and the Negative Introspection
Axiom A4 given by:

A3. Kiϕ ⇒ KiKiϕ, and

A4. ¬Kiϕ ⇒ Ki¬Kiϕ.

The Positive Introspection Axiom states that, if i knows ϕ then i knows that he
knows ϕ, while the Negative Introspection Axiom states the converse: When i does not
know ϕ, he knows that he does not know ϕ. Thus, while an agent may have only partial
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knowledge about what is true in the world, these axioms guarantee that he has perfect
knowledge about his own knowledge. In the philosophy literature, A3 is considered
more acceptable as a property of knowledge and belief than A4. Both are determined
to hold in structures in which the possibility relations are equivalence relations.

The collection of properties that we have considered so far—the Distribution Ax-
iom, the Knowledge Axiom, the Positive and Negative Introspection Axioms, and the
Knowledge Generalization Rule—has been studied in some depth in the literature.
They are often called the S5 properties.

The axioms and rules discussed above are often viewed as an axiom system, with
MP and G interpreted as rules of inference. Axiom systems provide a means for prov-
ing formulas. Given a set Γ of axioms, Γ � ϕ (or just “� ϕ” if Γ is clear from context)
stands for “ϕ is provable (from Γ )”. In this context, MP is interpreted as saying that
if � ϕ and � ϕ ⇒ ψ (so that both ϕ and ϕ ⇒ ψ are provable), then we can conclude
� ψ (so ψ can be considered provable). The rule G then states that from � ϕ we can
conclude � Kiϕ.

The axiom system consisting of axioms A0 and A1 and the rules MP and G is
called the modal logic K, and it is satisfied by any normal modal operator [29]. The full
suite of axioms and rules above: A0–A4 together with the rules MP and G, constitute
the logical system S5, while removing A4 yields the logical system S4. From the
validity properties cited above, it is possible to show that every formula ofLK

n provable
in K is valid in every Kripke structure M = (S, π,K1, . . . ,Kn), while every formula
provable in S5 is valid in every structure in which all of the possibility relationsKi are
equivalence relations. That these axiom systems truly capture the set of valid formulas
follows from the fact that the converse is also true: For either class of structures, every
valid fact is provable from the corresponding axiom system.

In settings involving belief, rather than knowledge, the Knowledge Axiom A2 is
typically dropped, often replaced by the axiom:

A2�. ¬Ki false.

If the possibility relations in a Kripke structure M are serial, meaning that for every
s ∈ S and i ∈ [n] there exists a state t ∈ S such that (s, t) ∈ Ki , then axiom A2� is
valid inM . If we replace A2 by A2� in S5, we obtain the logic known as KD45.

15.4 The Knowledge of Groups

Formulas of LK
n that contain several epistemic operators can often be thought of as

describing states of knowledge of groups of agents. Thus, for example, Kip ∧ ¬Kjp

describes a situation in which i and j have asymmetric knowledge about the truth
of p. In the case of belief, the formula BiBjp∧¬Bjp describes a situation in which i
has a misconception about j ’s beliefs. A state of knowledge that appears quite often in
speech and in the analysis of multi-agent systems is captured by theLK

n formulaK1ϕ∧
· · ·∧ Knϕ. This corresponds to everyone knowing ϕ. It is convenient to abbreviate this
LK
n formula by Eϕ, as this allows us to compactly write facts such as Eϕ ∧ ¬EEϕ

in which “everyone knowing” is nested. It is not hard to see that Eϕ and EEϕ are not
equivalent. As a counterexample consider a formula ψ stating that a given team has
won the world cup finals. If each of the agents learns of the outcome independently,
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say by hearing about it on the radio or reading a newspaper, then Eψ clearly holds,
but EEψ need not. More generally, let us define E1ϕ = Eϕ and inductively define
Ek+1ϕ = E(Ekϕ) for k � 1. It can be shown that Ek+1ϕ and Ekϕ are not, in general,
equivalent. For every level k there is a world (M, s) and formula ϕ such that (M, s) |=
Ekϕ ∧ ¬Ek+1ϕ (see [17]).2

15.4.1 Common Knowledge

While Eϕ is expressible in LK
n , there are other natural states of group knowledge that

are not. Perhaps the most important of these is common knowledge, which corresponds
to everyone knowing a fact, everyone knowing that everyone knows it, etc. Let us
denote by Cϕ the fact that ϕ is common knowledge. Intuitively, we think of Cϕ as
satisfying

Cϕ ≡ Eϕ ∧ E2ϕ ∧ · · · ∧ Ekϕ ∧ · · · .

The right-hand side of this equivalence is an infinite conjunction. It is not an LK
n

formula, because all LK
n formulas are finite. Fortunately, there are various ways

to define common knowledge formally. Practically all of them coincide when in-
terpreted using Kripke structures. One is the following. Given a Kripke structure
M = (S, π,K1, . . . ,Kn), define let E =

�
i∈[n]Ki . Thus, E is a binary relation over S

consisting of every pair (s, t) such that (s, t) ∈ Ki for some i. It is easy to verify that

(M, s) |= Eψ iff (M, t) |= ψ for all t such that (s, t) ∈ E .

It is straightforward to verify that E satisfies

Eϕ ≡
�

i∈[n]

Kiϕ.

Even when all of the Ki possibility relations are equivalence relations, their union
E =

�
i∈[n]Ki is not. The E operator will not, in general satisfy analogues of the

Introspection Axioms A3 and A4.
We now define the binary relation C, which will correspond to common knowl-

edge, to be the transitive closure of E . Thus, (s, t) ∈ C if there is a sequence
s = s0, s1, . . . , sk = t such that (si , si+1) ∈ E holds for all 0 � i � k − 1. No-
tice that both E and C are completely determined by the Ki relations of a structureM .
We extend LK

n by closing off under the common knowledge operator C (so that in the
inductive definition of formulas, if ϕ is a formula then so is Cϕ). Common knowledge
is then formally defined by

(M, s) |= Cψ iff (M, t) |= ψ for all t such that (s, t) ∈ C.

2It is often convenient to think of E as a state of knowledge of the group of all agents. Indeed, there are
cases where a fact can be known to all members of a given setG of agents, but not to the rest. For example,
we may be interested in whether all students of a given class know that the exam date has been changed.
Within a larger framework, it might not be of interest to ensure that, say, everyone in the university knows
this. When analyzing such scenarios, it is customary to use operators such as EG, which stand for everyone
in G knows. Similar restriction to groups of agents will be applicable to other states of knowledge that we
discuss below.
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This definition of common knowledge is essentially equivalent to the infinite conjunc-
tion of Ekϕ mentioned above. Indeed, if (M, s) |= Cϕ holds then (M, s) |= Ekϕ

holds for all k � 1. The converse is also true: If (M, s) |= Ekϕ holds for all k � 1,
then (M, s) |= Cϕ. It is often convenient to think of common knowledge by viewing
the Kripke structure as a graph (as is done in Fig. 15.1). The definition of C and E im-
mediately implies that (s, t) ∈ C exactly if there is a directed path (possibly consisting
of edges fromKi’s of different agents) from s to t . In the special but commonly occur-
ring case in which theKi’s are equivalence relations, C is also an equivalence relation,
and its equivalence classes are precisely the connected components of the graph ofM .
A fact ϕ is then common knowledge at s exactly if it holds at all states in the connected
component of s in the graph defined byM .

The notion of common knowledge appears to have been discussed informally in
the sociology literature on the nature of consensus as early as 1967 [41]. It was given
a formal definition, using the term shared awareness, by Friedell [13]. The name com-
mon knowledge was coined by the Philosopher by David K. Lewis in 1969 [32], who
identified it as an inherent property of conventions. Later work in Game Theory [1],
Linguistics [9] and Computer Science [17] showed the relevance of common knowl-
edge to central issues in each of these fields. McCarthy suggested having a logic of
knowledge in which common knowledge is represented by an agent he termed the
Fool and common knowledge is then taken to be what “any fool” knows. Given our
definition above, the possibility relation corresponding to the Fool’s knowledge would
be C. We remark that if the Ki possibility relations in M are equivalence relations,
then so is the relation C defined based on them. Thus, in settings in which knowledge
satisfies the properties of S5, the common knowledge operator satisfies S5 as well. In
particular, the Generalization Rule G now becomes

IfM |= ϕ thenM |= Cϕ.

Let us return to our example concerning Alice and Bob and the precious coin,
depicted in Fig. 15.1. Since the Ki relations in the example are equivalence relations,
so is C. The equivalence classes of C in this simple example are given by:

C =
�
{s0}, {s1, t1}, {s2}, {t2}

�
.

Thus, in the states s0, s2 and t2, the actual state is the only possibility according to C,
and hence, in the corresponding worlds (M, s0), (M, s2) and (M, t2), all true formulas
are common knowledge. In both states of the C-equivalence class {s1, t1}, Alice knows
the outcome of the coin, and so C(KAHeads∨KATails) holds at both. Similarly, since
Bob does not know the outcome in either of the states, C(¬KBHeads ∧ ¬KBTails)

holds at both states. Notice that the common knowledge about Alice knowing the
outcome of the toss after the first stage in this example is built into the model. If
the scenario were changed slightly to one in which Bob does not know that Alice
has tossed the coin before he enters Alice’s room in the second stage (states s2 and
t2)—for example, suppose that Bob were to consider s0 possible in both s1 and t1—
then both agents would know the same about the propositional facts Toss, Heads and
Tails at s1 and t1 as in the original example, but then there would be much weaker
common knowledge regarding these facts at the two states. Since S is small in this
example, and the connected components are even smaller, the amount of common
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knowledge here is considerable. Observe that in a given Kripke structureM = (S, . . .)

only states in S can ever be reachable from (or in the same connected component
as) a given state. Hence, it is common knowledge at all states of the model that no
state outside of S is possible. E.g., if cars in all states of S cars are either Red or
Green, it will be common knowledge that all cars are Red or Green (provided that Φ
contains appropriate propositions that correspond to colors of cars). Moreover, Kripke
structures with a small number of states typically model situations in which there is a
great deal of common knowledge. It follows that modeling a situation in which agents
have considerable uncertainty regarding each others’ knowledge normally requires a
fairly large set of states S to represent the agents’ ignorance. In fact, even when there
are only two agents and Φ consists of a single proposition, representing a sufficient
degree of mutual ignorance (lack of knowledge about each other’s knowledge) may
require a Kripke structure of unbounded, even infinite, size.

Common knowledge is often thought to be such a strong state of knowledge, that
people wonder whether it can be attained in practice. After all, achieving a small num-
ber of levels of knowledge about knowledge amongmore than one agent already seems
quite complex. Intuitively, one might expect that to attain infinitely many levels of
interactive knowledge would require an infinite interchange of messages, or a simi-
lar unreal feat. This intuition is, however, misguided. Under reasonable assumptions,
common knowledge occurs quite frequently. A typical scenario in which common
knowledge arises in a natural way is a setting in which some fact ϕ is “public”, so
that whenever ϕ holds, all agents know that it does. Such, for example, is the situation
arising when two people shake hands. Inherent in the act of shaking hands is the fact
that both parties know that they are shaking hands. In every world either agent consid-
ers possible, the handshake is taking place. It follows by induction that a handshake
takes place in every world that is connected to the current one, and the agents thus
have common knowledge of the handshake. A similar situation arises when someone
makes a public announcement in a lecture hall, or when a couple shares a candlelight
dinner. The intuition that “public” facts are common knowledge is formally captured
by the Induction Rule for common knowledge, which is stated as:

Ind. IfM |= ϕ ⇒ Eϕ then M |= ϕ ⇒ Cϕ.

In practice, facts become common knowledge by becoming public in the sense of the
induction rule. In many cases, in order to prove that ψ is common knowledge we find
a stronger fact ϕ (so thatM |= ϕ ⇒ ψ) to which the Induction Rule can be applied.

Another important property of common knowledge is captured by the Fixedpoint
Axiom for common knowledge, which is in a way a converse of the Induction Rule,
since it states that when a fact ϕ is common knowledge, then everyone knows ϕ and,
moreover, everyone knows that ϕ is common knowledge:

CK. Cϕ ⇒ Eϕ ∧ ECϕ.

The Fixedpoint Axiom captures an aspect of common knowledge that relates it to
conventions and agreements: Whatever is common knowledge is automatically known
by all to be common knowledge. At least at an intuitive level, this is a property we
expect from conventions and agreements.
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15.4.2 Distributed Knowledge

At the other end of the spectrum from common knowledge is distributed knowledge,
which roughly corresponds to the knowledge that results from combining the knowl-
edge of all agents, and considering them as one “super agent”. If Alan knows the first
six numbers in an eight-number sequence that won last week’s lottery, and Beth knows
the last three numbers in the sequence, then together Alan and Bet can be said to have
distributed knowledge of the winning sequence. Despite the fact that neither Alan nor
Beth knows the winning sequence by themselves.

We denote distributed knowledge by a modal operator D, and define

(M, s) |= Dψ iff (M, t) |= ψ for all t such that (s, t) ∈
�

i

Ki .

Intuitively,
�

i Ki corresponds to combining the agents’ knowledge because, for every
state s ∈ S, each state that is known at s by at least one agent to be impossible,
is also considered impossible according to the intersection. Thus, we can think of
distributed knowledge as representing the knowledge that an agent with access to all
agent’s information would have.

The definition of satisfaction for Distributed knowledge has the same structure as
that for Ki , but with respect to the possibility relation D =

�
i Ki . It follows that

D is a normal modal operator, so that it satisfies Axiom A1 and the Generalization
Rule G.Moreover, if allKi’s are equivalence relations, then their intersection is also an
equivalence relation. In this case, distributed knowledge satisfies all of the properties
of S5. An axiom connecting knowledge and distributed knowledge is:

Ad. |= Kiϕ ⇒ Dϕ.

Using axioms Ad and A1 we can show, for example, that |= (Kiϕ ∧ Kjψ) ⇒
D(ϕ ∧ ψ). This is one property that we would expect the combined knowledge of
the agents to satisfy. In particular, it can be used to establish that Alan and Beth know
the winning sequence of lottery numbers in the example discussed above.

In actual applications, we are sometimes interested in states of knowledge of a
subset of the agents. Thus, for example, if in our Alice and Bob example there was
a third agent Chris that was in the second room with Bob and stayed there when
Bob moved into Alice’s room, then the outcome of the coin toss would be common
knowledge to the subset consisting of Alice and Bob only. Depending on how we
would modify the example in this case, the fact Toss that the coin has been tossed
could be common knowledge among all three agents or just among Alice and Bob. In
an analogous fashion, in particular, applications wemay be interested in the knowledge
distributed among a particular subset of the agents, and not only in the distributed
knowledge for the set of all agents. To accommodate such finer distinctions concerning
distributed knowledge and common knowledge, it is possible to subscript the C andD
operators by a group G ⊆ [n]. The definitions for CG and DG are then modified
by restricting attention to the possibility relations of the agents participating in G.
The logical language obtained by closing LK

n off with all operators CG and DG for

common and distributed knowledge is denoted by LCD
n .
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15.5 Runs and Systems

When reasoning about knowledge, one is often interested in modeling a dynamic sit-
uation, in which the world evolves, and with it the state of knowledge of the agents
changes. In this section we consider a natural way to model these.

We think of every agent at any given instant as being in a well-defined local state.
The precise structure and contents of this local state typically depends on the applica-
tion. The local state in our setting captures all of the information that is available to the
agent when it determines its next action. A global state corresponds to a snapshot of
the state of the world frozen at an instant. Formally, it is modeled by an (n + 1)-tuple
of the form (se, s1, . . . , sn), where si is i’s local state, for 1 � i � n. The additional
state se is called the local state of the environment, and it accounts for all else that is
relevant to the analysis, possibly keeping track of aspects of the world that are not part
of any agent’s local state. These may include, for example, messages in transit in a
communication network, the state of entities that are not being modeled as agents in
a given application (perhaps a traffic light), or even temporary properties of an agent
that the agent might not be aware of. Intuitively, an agent’s local state captures exactly
what is visible to the agent at the current point. The agent is able to distinguish two
points exactly if its local state in one is different from its local state in the other. Thus,
we may think of a mailbox as belonging to (or even being part of) an agent in a given
application. But if the agent accesses the contents of the mailbox only by perform-
ing an explicit read operation, then the contents of the mailbox at any given time are
modeled as part of the environment state, and the local state may contain the result of
actual reads the agent has performed. One final use of the environment state in many
applications is for keeping track of various aspects of the history of the run. If different
actions may lead to the same global states, or if an agent’s state does not keep track of
the actions the agent has performed, it is often convenient to add this information as
part of the environment’s state.

The evolution of a world over time produces a history, which in our terminology
will be called a run. Formally, a run r is a function assigning every time instant t a
global state r(t). If r(t) = (se, s1, . . . , sn) then we denote by ri(t) the local state si ,
for i = e, 1, . . . , n. It is often convenient to identify time with the natural numbers,
in which case the run is identified with the sequence r(0), r(1), . . . . We typically rea-
son about knowledge in a setting in which many different histories are possible, at
least at the outset. The structure that represents these possibilities is called a system,
and it is identified with a set R of possible runs. A possible world is now represented
by a point (r,m) consisting of a run r at a time m. Viewed appropriately, a system
induces a Kripke structure, and we can consider formulas as being true or false at a
point (r,m) with respect to a system R. Given a set Φ of primitive propositions, we
add an interpretation π that determines the truth of the propositions at every point
in R. It is convenient to define π to be a function π : G × Φ → {true, false}, where
G contains the global states in R. Once π is added, we can define the truth of all
propositional formulas at points of a system in the standard way. We next define a
notion of indistinguishability among points that induces possibility relations Ki for
every agent i. We say that (r,m) and (r �,m�) are indistinguishable to agent i, de-
noted (r,m) ∼i (r �,m�), if ri(m) = r �

i (m
�). In words, an agent cannot distinguish

among points exactly if it has the same local state in both. Observe that ∼i is an



634 15. Reasoning about Knowledge and Belief

equivalence relation. A pair I = (R, π), which we call an interpreted system, now
induces a Kripke structure MI whose possibility relations are equivalence classes.
Consequently, we can write (I, r,m) |= ϕ and say that ϕ ∈ LK

n (Φ) holds at (r,m)

in (interpreted) system I = (R, π), if ϕ holds at (r,m) in the induced Kripke struc-
tureMI .

We now consider how Alice and Bob’s coin-tossing example would be modeled
as a system. The local states of each agent can be described by three observable para-
meters: (i) The current time (0, 1, 2), (ii) the room (ρ1 or ρ2) that the agent is in, and
(iii) if the agent is in the first room ρ1, and the coin has been tossed, then what face of
the coin is showing. Alice would have five local states a0 = (0, ρ1), a

1h = (1, ρ1,H),
a1t = (1, ρ1, T ), a

2h = (2, ρ1,H) and a2t = (2, ρ1, T ), while Bob would have four
local states b0 = (0, ρ2), b

1 = (1, ρ2), b
2h = (2, ρ1,H), and b2t = (2, ρ1, T ). The

environment state can be chosen in different ways. Indeed, in this particular example
all of the relevant information is already captured in the local states of the agents;
it is therefore possible to consider the environment state as being identically λ. In
order to fit an extension of this modeling in Section 15.7.1 we will instead choose
the environment’s state to record the current time at each state. If we consider Al-
ice as agent 1 and Bob as agent 2, then each of the states in Fig. 15.1 corresponds
to a global state. Specifically, s0 = (a0, b0, 0), s1 = (a1h, b1, 1), t1 = (a1t , b1, 1),
s2 = (a2h, b2h, 2) and t2 = (a2t , b2t , 2). The set of global states in the example is thus
G = {s0, s1, t1, s2, t2}. The interpretation π for Φ = {Toss,Heads, Tails} is the one
defined in the original example and depicted in Fig. 15.1.

The system consists of two runs R = {r, r �}, where r(0) = s0, r(1) = s1, and
r(2) = s2, while r

�(0) = s0, r
�(1) = t1, and r

�(2) = t2. With respect to the interpreted
system I = (R, π) the truth of epistemic formulas is now well-defined and works as
expected. It is instructive to observe that the state s0 which served to specify a world
in the original Kripke structure is represented in I by two different points: (r, 0) and
(r �, 0). It is straightforward to verify that the exact same formulas of LK

n (Φ) hold at
(I, r, 0) and (I, r �, 0). As expected, these are the same formulas that are satisfied at
(M, s0) in the original example. What distinguishes these two points is the fact that
they appear in different runs (histories). Indeed, the coin lands Heads in the future of
(r, 0) and lands Tails in that of (r �, 0). In the next section we enrich the language with
temporal operators. Once we do this, the sets of formulas satisfied at the two points no
longer coincide.

The runs and systems modeling of knowledge allows considerable control over the
manner in which knowledge evolves over time. By varying the way in which events
change the agents’ local states, we can obtain different flavors of knowledge. Thus, for
example, suppose that local states consist of a sequence of all events that the agent has
observed so far. In this case, agents would have perfect recall and would not forget
their past knowledge. Conversely, if information is removed from an agent’s local
state, then the agent can “forget” facts that it knows. This reflects the natural property
that the evolution of knowledge depends on memory and how it is utilized. There are
cases in which, during the design of a solution to a problem in a distributed setting, it
is convenient to start out assuming that agents have perfect recall. An analysis in terms
of knowledge is often simpler to perform in such a setting. Once a basic solution is
obtained, it is typically possible to try to optimize the solution by reducing the size and
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contents of the local states, while maintaining the correctness of the solution. Such a
scheme can be found in [7, 24, 37, 38, 35].

15.6 Adding Time

In many applications, it is natural to model time as ranging over the natural numbers
(or a prefix of the natural numbers). In this case, a run is a sequence of global states.
As shown in Chapter 12 linear-time temporal operators can thus readily be added to
the language, and the satisfaction relation |= can be defined for temporal operators
in the standard way. For example, suppose that we add the operators O (standing for
at the next time instant), � (standing for forever in the future) and ♦ (standing for
eventually) to the language. We denote the resulting language by LKT

n . Then we can
define

(I, r,m) |= Oϕ iff (I, r,m + 1) |= ϕ,

and

(I, r,m) |= �ϕ iff (I, r,m�) |= ϕ for all m� � m.

The ♦ operator is treated as the dual of �, so that ♦ϕ is considered as shorthand for
¬�¬ϕ. Additional operators, such as Until and past operators can be added in a similar
fashion.

In the Alice and Bob example we would now have, for example:

(I, r, 0) |= OHeads ∧ KBO(Heads ∨ Tails) ∧ KB�(Tails ⇒ KATails).

Once temporal operators are added to the logical language, we can express the
fact that things will be known at times other than the present, and we can also express
knowledge about temporal facts. Knowledge and time are complementary notions and,
to a large extent, are orthogonal to each other. Indeed, temporal operators allow us to
reason along the time axis within a run, while knowledge operators allow reasoning
across runs (as well as, sometimes, within the run if local states repeat).

It is natural to seek an axiom system for the runs and systems model in terms
of the temporal-epistemic language LKT

n . Clearly, knowledge satisfies S5, because it
is determined based on possibility relations that are equivalence relations. Similarly,
the temporal operators satisfy the axioms of standard linear-time temporal logic [34].
More interesting is the interaction between knowledge and time. For example, consider
the formula

(15.1)Kiϕ ⇒ OKiϕ,

which states that if agent i currently knows ϕ, then i will still know ϕ at the next state.
This property can not be expected to hold for arbitrary formulas. For example, consider
the proposition time = 3 where π(time = 3) = {(r,m): m = 3}. If Ki(time = 3)
holds at a given point, it would fail to hold one time step later, since time = 3 would
not hold at time 4. We say that a formula ψ is stable with respect to an interpreted
system I if I |= ψ ⇒ �ψ . Stable formulas are ones that, once true, are guaranteed
to remain true forever. The argument showing that property (15.1) is not valid made
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use of the nonstable formula time = 3. Is the property valid for stable formulas?
Recall that an agent that does not have perfect recall may forget that it knew certain
facts. It turns out that property (15.1) holds in systems in which the formula ϕ is
stable, and agent i has perfect recall. We now make this claim more precise. Agent
i’s local state sequence at a point (r,m) is the sequence of local states obtained from
[ri(0), ri(1), . . . , ri(m)] once we remove immediate repetition of states. Intuitively,
if the agent’s state does not change from one time instant to the next, then the agent
cannot observe that time has passed. Consequently, according to agent i’s subjective
point of view, at two points in which the agent has the same local state sequence, it
has had the same local history. We say that i has perfect recall in the system R if at all
points of R, whenever ri(m) = r �

i (m
�) the agent i has the same local state sequence

at (r,m) and at (r �,m�). It is not hard to prove that Kiϕ ⇒ OKiϕ is valid for stable
formulas ϕ in systems in which i has perfect recall.

Let us consider another natural property relating knowledge and time:

(15.2)KiOϕ ⇒ OKiϕ.

This formula states that if agent i knows that tomorrow ϕ will hold, then tomorrow
the agent will know ϕ. This reasonable property is not a valid axiom for the runs and
systems model, however. There are two factors that can render this formula false. One
is the fact, discussed in the previous section, that agents might be forgetful. Thus, i
may know something today, and no longer be aware tomorrow that this knowledge
existed. (This can, for example, result from the agent deleting some messages from
its mail file.) In particular, the agent can forget knowledge about what will be true at
the next time instant. The second factor that can foil this property involves the agent’s
awareness of the passage of time. The “next” operator O refers to a point in time that
is one time step into the future. There are systems in which agents are fully aware of
the passage of time, and ones in which agents need not have perfect knowledge of it.
A system is said to be synchronous if agents can always distinguish points at different
times. In such a system, if m �= m� then ri(m) �= r �

i (m
�) holds for all runs r and r � and

agents i. For the class of synchronous systems, in which agents have perfect recall, the
formula in (15.2) is indeed a valid axiom.

As these examples illustrate, the interaction between knowledge and time is subtle,
and it depends on the particular assumptions one makes about properties of the system
at hand. There has been extensive work on characterizing complete axiom systems for
classes of interpreted systems with various sets of properties (see, e.g., [23]).

15.6.1 Common Knowledge and Time

The fixedpoint axiom for common knowledge implies that |= Cϕ ⇒ ECϕ, which
intuitively means that common knowledge is inherently “public”: Everyone knows
what is common knowledge. Since knowledge satisfies the Knowledge Axiom, at any
given moment either nobody knows Cϕ or all agents do. An agent cannot come to
know Cϕ before Cϕ holds, and all agents do. Thus, the transition from ¬Cϕ to Cϕ

requires a simultaneous change in the local states of all (relevant) agents. It follows
that in systems where it is not possible to coordinate simultaneous transitions (or at
least to identify a simultaneous transition once it has occurred), it is impossible for
facts that are not commonly known to become common knowledge. In particular, no
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common knowledge can arise in asynchronous systems or when communication is not
reliable [17, 12, 5].

This raises a philosophical issue that has practical modeling implications. Recall
that we typically think of common knowledge as arising naturally from public or
shared events such as a handshake. But can we really say that the agents come to know
that they are shaking hands simultaneously? Apparently not. Indeed, it may very well
be the case that the tactile sensation of the handshake reaches one agent’s brain two
milliseconds before it reaches the second agent’s brain. And even if the sensations ar-
rive truly at the same instant, the agents cannot reasonably rule out the possibility that
they arrived at slightly different times. In fact, if time is modeled at a sufficiently fine
granularity then real systems do not allow for simultaneity, and hence also not for com-
mon knowledge. When we choose the model for a given problem, however, it often
makes sense to keep the model as simple as possible to faithfully model the situation
(but no simpler). In such a model, we may well find common knowledge arising. Thus,
for example, in the synchronous models mentioned earlier, where ri(m) = r �

i (m
�) can

hold only if m = m�, we immediately obtain that the current time is always common
knowledge, provided Φ is expressive enough to talk about the current time (e.g., has
propositions of the form time = m for m = 0, 1, . . .). Moreover, in synchronous sys-
tems in which messages are guaranteed to take exactly k time steps to be delivered,
when Alice receives a message from Bob, they share common knowledge that she
has received this message, provided that Bob remembers the message and its sending
time for at least k time units. The common knowledge paradox comes from the fact
that as the model becomes more detailed, transitions are no longer simultaneous, and
common knowledge vanishes [17, 12].

15.7 Knowledge-based Behaviors

15.7.1 Contexts and Protocols

As we have seen, each systems and runs model directly induces a Kripke structure and
consequently allows reasoning about knowledge and belief. But where do the systems
come from? In many applications, we wish to reason about knowledge in a given
setting in which the agents are following particular strategies, or programs. The system
corresponding to such a scenario consists of all possible runs (histories) that can arise.
Strategies, or programs, are not executed in a void. Rather, they are carried out within
a particular context. This context determines how Nature, or the environment, evolves
and interacts with the behavior of the agents. More formally, suppose that we fix sets
of local states Le,L1, . . . , Ln and local actions ACTe,ACT1, . . . ,ACTn for the agents
and the environment. A protocol for i = e, 1, . . . , n is a function Pi : Li → (2ACTi \
{{ }}) determining, possibly in a nondeterministic fashion, what action i performs as a
function of its local state. If Pi(�i) = A, then A is a nonempty set A of actions, and
the action performed by i when in state �i will be one of the members of A. If Pi(�i)

is a singleton for all �i ∈ Li , then Pi reduces to a function from states to actions, and
is thus a deterministic protocol.

Let G = Le × L1 × · · · × Ln. In order to reason about knowledge and belief,
we typically assume a fixed set Φ of primitive propositions, and an interpretation
π : G × Φ → {true, false}. A joint action is a tuple �a = (ae, a1, . . . , an) consisting
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of an action ai ∈ ACTi for i = e, 1, . . . , n. We will assume that at every point each of
the agents performs an action. The fact that in many applications we do not think of all
agents as moving at all times can be handled by assuming that the environment actions
can influence the scheduling of which agent actions are enabled and hence may in fact
affect the global state.

A context is a tuple γ = (G0, τ, Pe), where G0 ⊂ G is a set of initial global
states, τ is a transition function, mapping every global state g and joint action �a to a
global state g�. Intuitively, if τ(g, �a) = g� then the result of �a being performed in g

is that the global state becomes g�. Finally, Pe is a protocol (often nondeterministic)
for the environment. In many applications in which the environment’s protocol Pe is
nondeterministic, it is often natural to assume that the context also ensures certain
fairness of the actions performed by the environment over time. We shall soon discuss
how a fourth component can be added to the context to handle such cases.

We now turn to consider how protocols for the agents give rise to runs and systems.

Define a joint protocol to be a tuple �P = (P1, . . . , Pn) associating a protocol with
each one of the agents, but not with the environment. We say that a run r is a run

of �P in the context γ If r(0) ∈ G0, and at every point (r,m) there is a joint action �a
consisting of local actions ai ∈ Pi(ri(m)), for i = e, 1, . . . , n, such that τ(r(m), �a) =
r(m + 1). Intuitively, this means that the runs begins in a legal state according to γ ,
and it proceeds at every step in a legal fashion: there is a joint action that can be

generated by Pe and �P that can transform the global state into the successor, according

to the transition function τ . We can thus define the system R( �P , γ ) generated by �P

in γ to consist of the set of all runs of �P in γ . Moreover, assuming that we have a
fixed Φ and interpretation π in mind for G, the corresponding interpreted system is

I( �P , γ ) = (R( �P , γ ), π). Observe that in our framework contexts and joint protocols
play complementary roles. Taken together, they give rise to a single, well-defined,
interpreted system. This framework allows us to consider running a given protocol in
different contexts, and similarly allows us to compare different protocols being run in
the same system.

Let us briefly outline how Alice and Bob’s coin tossing example can be repre-
sented in the framework that we have just described. The local states and global
states are as described in Section 15.5, and the set of initial states is G0 = {s0}. Let
ACTe = {skip, land_heads, land_tails}, ACT1 = {skip, flip}, and ACT2 = {skip,move}.
The transition function is such that skip is the null action for all three entities, move

changes Bob’s location from room ρ2 to ρ1, flip is a toss of the coin by Alice, and
land_heads and land_tails are environment actions that determine what side the coin
will land on, in case the coin is flipped. To complete the description of the context γ
we need to determine the environment’s protocol Pe. We take it to perform skip at
times 1 and 2, while at time 0 it prescribes a nondeterministic choice from the set
{land_heads, land_tails}. Notice that the current time is a component in the local states
of the environment, as well as of those of Alice and Bob. Hence, protocols defined as
a function of the time (or round number) are in particular functions of the local states,

as required. The joint protocol �P = (P1, P2), where Alice’s protocol P1 performs
flip at time 0 and skip at times 1 and 2. Finally, Bob’s protocol P2 performs skip at
times 0 and 2, while performing move at time 1. It is straightforward to check that the
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interpreted system I from Section 15.5 is precisely I = I( �P , γ ) for the protocol and
context just described.

We mentioned above the occasional need to add a fourth component to the context.
An example is a distributed computer system in which communication is reliable,
but there is no bound on message delivery times. Thus, every message that is sent is
guaranteed to reach its destination. The environment’s protocol at any given instant
may nondeterministically choose between delivering a message that is in transit or not
delivering it yet. But our assumption about the context is that the message may not
remain in transit until the end of time. When such issues need to be accounted for,
we add a fourth component Ψ to the context, where Ψ is an admissibility condition

specifying the set of “acceptable” runs. Now r is a run of �P in γ = (G0, τ, Pe, Ψ ) if r

is a run of �P in the larger context γ̂ = (G0, τ, Pe), and r satisfies Ψ . Thus, runs that
do not comply with Ψ do not arise in γ .

The admissibility condition Ψ in a context γ = (G0, τ, Pe, Ψ ) should be non-

exclusive, which means that for every protocol �P for the agents, every finite prefix of

a run of �P in γ̂ = (G0, τ, Pe) must be a prefix of a run of �P in γ = (G0, τ, Pe, Ψ ).
Roughly speaking, this ensures that Ψ captures aspects of the environment’s infinite
behavior, and does not influence the possible finite executions of protocols in the con-
text.

15.7.2 Knowledge-based Programs

The close connection between knowledge and action is a central motivation for rea-
soning about knowledge. In fact, there are many settings in which it is natural to think
of particular choices of actions or strategies as being triggered by an agent’s knowl-
edge. Thus, for example, an agent called Noah may start to build and ark if he knows
that a flood is soon to come; his neighbors, who may not be privy to such knowledge,
may instead prefer to herd their sheep and dismiss the looming danger. The essential
role that knowledge plays in determining the actions that agents perform often makes
knowledge into a goal in its own right: Indeed, a central goal of communication among
agents typically has to do with ensuring that particular agents obtain certain knowledge
(or beliefs). Conversely, many personal, financial, and political activities are required
to satisfy secrecy constraints, which in turn mean that certain agents do not obtain
particular knowledge. In some of these cases, it is useful to reason about actions at the
knowledge level. Suppose that Bob does not know that Alice knows where to meet
him for Dinner. His goal is then be simply to ensure that she comes to know where
to meet him for Dinner. Alice’s decision on where to go for Dinner may depend on
whether she knows where Bob reserved a table. In this particular example, it may not
matter to Bob whether he informs Alice by phone, by way of a messenger, or indeed
by other means. The mode of communication that he uses is merely one way of imple-
menting his goal, which is best thought of at the knowledge level. Assuming that Bob
will not rest until he is confident that Alice has obtained this piece of knowledge, Alice
may also wish to notify Bob once she has received his message. Again, the essential
property Alice would wish to ensure is conveniently stated as a formula of LK

2 —at the
knowledge level. As this brief example illustrates, parts of everyday activity involves
planning and acting to achieve goals that are best expressed at the knowledge level.
One convenient tool for reasoning at the knowledge level is provided by knowledge-
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based programs (kb programs, for short). We can think of a kb program for an agent i
as having the form

if κ1 then a1,

if κ2 then a2,

. . .

if κm then am,

where each knowledge test κj is a Boolean combination of formulas of the form Kiϕ,

where ϕ ∈ LK
n may contain nested occurrences of Kj operators. We assume that the

tests κ1, κ2, . . . , κm are mutually exclusive and exhaustive, so that exactly one will
evaluate to true whenever i performs an action. Denote this particular program by Pgi .
Suppose that Alice and Bob typically dine at the restaurantR2, but they had previously
agreed that on this particular day Bob would try to make a reservation at Chez Panis
(restaurant R1). Once Bob manages to reserve a table, his program (which he performs
repeatedly) may be:

if ¬KBKAReserved_at(R1) then phone Alice and tell her

The program that Alice follows at 8 pm may then be

if KAReserved_at(R1) then go to R1,

if ¬KAReserved_at(R1) then go to R2.

Knowledge-based programs are very similar in form to standard computer pro-
grams. The main difference is that actions in kb programs are determined based on the
actor’s knowledge, rather than on the values of her local variables or computer mem-
ory. If we fix an interpreted system I for evaluating the truth of knowledge tests, a kb
program such as Pgi induces a unique deterministic protocol for i. Indeed, for every

knowledge test κj in Pgi , there is a set L
κj
i (I) for i such that (I, r,m) |= κj exactly

if ri(m) ∈ L
κj
i (I). Denoting agent i’s current local state by �i , once I is fixed, the kb

program reduces to the following standard program PgIi :

if �i ∈ L
κ1
i (I) then a1,

if �i ∈ L
κ2
i (I) then a2,

. . .

if �i ∈ L
κm
i (I) then am.

We identify PgI with the protocol it induces. The question of what we should choose
as the system I here is somewhat delicate. As we have seen, it is natural to think of
a protocol or program as generating a well-defined system in a given context γ . This
system is the set of runs of the program. In the case of a kb program, however, we need
the system in order to figure out what the program that generates the system is! We
can avoid this vicious circularity by considering a kb program as a specification which
may or may not be implemented by a given standard program. Fix a context γ . A given

joint protocol �P generates a unique interpreted system I
�P = I( �P , γ ) in this context.

We can now say that �P implements Pg = (Pg1, . . . ,Pgn) in (γ ) if �P is equivalent to
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the program PgI
�P
. Intuitively, if �P implements Pg, then we are justified in viewing all

agents in �P as acting according to, or following, the knowledge-based program Pg.
Knowledge-based programs are indeed specifications, in the sense that some have

a unique implementation, some have many different implementations, and some will
have no implementation in a given context. We now consider an example in which a
natural knowledge-based program has two different implementations.

15.7.3 A Subtle kb Program

Consider a mobile robot controlling a rail cart that travels on a track with discrete
locations numbered 0, 1, 2, . . . . The cart starts out at location 0 and can move only
in the positive direction. The cart’s motion is determined by the environment, and the
robot can only control whether to stop the cart. Moreover, the robot has no memory,
and it has access only to an imperfect location sensor. For every location q � 0, it is
guaranteed that whenever the robot is at location q, the sensor-reading σ will be one
of {q − 1, q, q + 1}. The robot’s goal is to stop the cart at one of the locations 4, 5,
or 6. Stopping outside this region is not allowed. What should the robot’s program
be? Define a proposition goal that is true at all points at which the robot’s location is
q ∈ {4, 5, 6}. Intuitively, as long as the robot does not know that goal holds, it should
not halt. On the other hand, once the robot does know that goal holds, it should be
able to stop the cart in the goal region, as desired. Thus, Krgoal seems to be both a
necessary and a sufficient condition for stopping in the goal region.

More formally, we assume that the environment’s local state consists of the cur-
rent location (q), while the robot’s local state consists solely of the sensor reading (σ )
(recall that the robot cannot recall the past—it is assumed to be memoryless). The en-
vironment actions are ACTe = {stay,move} × {−1, 0, 1}, where the first component
determines whether or not the robot’s cart will be moved one position to the right on
the track, and the second component determines how the sensor reading σ is related
to the actual position q. The robot’s actions are ACTr = {skip, halt}, where the ac-
tion halt overrules the environment’s action, the cart stops at the current location, and
never moves again. The environment’s protocol Pe is as follows. At all times m not
of the form m = k100, the protocol prescribes a nondeterministic choice among the
actions of ACTe. At the few times m of the form m = k100, the choice is restricted
to {move} × {−1, 0, 1}—so that, if not halted, the robot moves one step to the right.
It is straightforward to define the transition function τ that matches this description,
thereby completing the definition of the context γr . We takeΦ = {goal}, and π assigns
goal the value true at r(m) = (q, σ ) exactly if q ∈ {4, 5, 6}.

Consider the knowledge-based program Rob

if Kr(goal) then halt.

Clearly,Rob guarantees that the robot will never halt the cart outside of the goal region.
But does it also guarantee that the robot always succeeds in halting in the goal region?
The answer is not clear cut.

The properties of the sensor in this context ensure that, for every protocol P
executed in γr we have I(P, γr ) |= (σ = 5) ⇒ Kr(goal). This suggests that the fol-
lowing standard program, denoted Robs ,

if σ = 5 then halt,
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should be an implementation of Rob in γr . It is not hard to check that this is indeed the
case. Unfortunately, this implementation of Rob does not guarantee that the robot halts
in the goal region. There are many runs of Robs in this context in which σ �= 5 holds
throughout the run, despite the fact that the robot crosses the goal region and exits
it. It follows that, in spite of its “obviousness”, the knowledge-based program Rob

does not guarantee that the robot will succeed in γr . It may appear that this situation
is unavoidable. However, there is a twist to the story. For consider now the program
Rob�

s :

if σ > 4 then halt.

Following this program, the robot will never stop before reaching position q = 4,
because σ > 4 is not satisfied when q < 4. Moreover, when following this program,
the robot is guaranteed to stop the cart if it ever reaches the position q = 6, since at
that point the sensor reading must satisfy σ ∈ {5, 6, 7}, so that the condition σ > 4
is true. Finally, the environment’s protocol in γr guarantees that, if the robot has not
halted the cart, then the cart will be at position 6 no later than time 6100 + 1.

The protocol described by Rob�
s is a standard implementation of the kb-program

Rob. Thus, Rob has two qualitatively different implementations, with one being guar-
anteed to reach the goal in every run, while the other is not. This justifies considering
knowledge-based programs as specifications that can be satisfied in different ways. We
remark that small changes in the assumptions of this example can change the outcome
of the analysis. In particular, if we change γr so that the robot has perfect recall, then
Robs is no longer an implementation of Rob, and the protocol described by Rob�

s is
the only implementation, and a good one at that.

Admittedly, our assumption about the environment’s protocol being forced to per-
form at least k move actions in every k100 steps was somewhat unnatural. It was
intended to capture the idea that if the robot does not perform a halt action, then it
will eventually move beyond any finite point. A somewhat cleaner, alternative way, to
capture this would have been to add an admissibility condition Ψ to the context, which
would admit only runs for which the following temporal formula holds at the initial
state: ϕ = (♦halt ∨ �♦move): A run is admissible if either the robot eventually halts,
or it is moved infinitely often.

In summary, the robot example shows a fairly natural scenario in which a knowl-
edge-based program can have more than one implementation. As we have mentioned,
there are kb programs that have no implementations, ones that have a single implemen-
tation, and ones that have many implementations. Fortunately, there are many cases in
which a knowledge-based program is guaranteed to have a unique implementation.
This happens, for example, in a context in which the agents have a global clock and
the knowledge tests in the program do not refer to the future (see [11]). Indeed in our
robot example, if the robot’s local state contains the round number in addition to the
sensor reading, then the only implementation of the knowledge-based program Rob is
the more efficient Rob�

s .
The definition of implementation for knowledge-based programs that we have pre-

sented is fairly strict, because the agent following such a program must be able to
evaluate all knowledge tests at all times. This is good for certain types of analyses and
may be overkill in certain applications. There are also variations on knowledge-based
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programs [8] that use a more liberal notion of implementation, in which the knowl-
edge tests are replaced by sound standard tests which, when true, guarantee that the
tested knowledge actually exist. A standard test “implementing” a knowledge test in
this case is allowed to fail when the agent does have the tested knowledge.

15.8 Beyond Square One

So far we have discussed the basic possible-worlds setting, considered the basic prop-
erties of knowledge and belief, and considered how the runs and systems (protocols
& contexts) framework can be used to capture the knowledge and belief aspects of
an application. There are hundreds of contributions to the literature that deal with the
analysis of properties of knowledge and belief, and the properties of their logics. Other
contributions apply reasoning about knowledge to particular domains such as distrib-
uted computing systems, multi-agent planning, philosophical puzzles, or game theory.
There are various approaches and formalisms for modeling knowledge, some similar
to our description, and others quite distinct from it. For example, in game theory the
accepted model for knowledge is influenced by the terminology of probability theory,
with the possibility relations typically being defined by associating with each agent (or
player) a partition on the states of the universe [1]. Cells of the partition are equiva-
lence classes, and the outcome is essentially an instance of the familiar S5-knowledge.

A more recent formalism for reasoning about knowledge is based on marrying
possible-worlds modeling for knowledge with Dynamic Logic [3, 2, 4]. Here the
idea is to explicitly model the effect that action have on the state of knowledge of
the agents. Thus, for example, a public announcement of ϕ by a trustworthy agent
causes ϕ to become common knowledge; hence, the state immediately following such
an announcement satisfies Cϕ.

The properties of knowledge as captured by the S5 axioms are not considered an
acceptable characterization of human knowledge. Clearly, the Propositional AxiomA0
which states that all tautologies are known to all agents assumes an idealized notion
of agent. Perhaps equally objectionable is the property captured by the Distribution
Axiom A1, which states that an agent’s knowledge is essentially closed under logical
deduction. These properties are generally termed logical omniscience. They are un-
reasonable not only for describing the knowledge of humans, but also when an agent’s
knowledge is meant to be accessible by some form of tractable computation. We re-
mark that the success obtained by using the formalism introduced in this chapter so
far in treating a variety of problems in different domains was possible mainly in cases
where logical omniscience was not the main issue to contend with. For example, in
a setting where Alice receives an acknowledgment from Bob that he has received a
particular message sent to him, there is no conceptual problem with using the formal
conclusion that she knows he has received the message.

There have been many attempts at defining weaker variants of knowledge that will
not suffer from logical omniscience. Some of these are syntactic, in which what is
known may be a list of formulas [22]. Others involve a syntactic element of awareness,
which gives rise to a distinction between implicit and explicit knowledge. Traditional
(possible-worlds based) knowledge is thought of as being implicit, and an agent that
implicitly knows ϕ and is also aware of ϕ, is considered as having explicit knowledge
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of ϕ [10]. In other approaches, the limitations on knowledge are either based on ex-
plicit resource bounds of the agents [36, 19], or are based on agents having access to
an explicit set of algorithms for computing knowledge [20]. In the latter case, Kiϕ

would hold at a given point if applying one of the algorithms at its disposal at that
point can establish that it does.

15.9 How to Reason about Knowledge and Belief

We have defined logics for the language LK
n of knowledge, and discussed axioms for

common knowledge, distributed knowledge, and time. All of these are modal logics,
and one might hope to be able to use general-purpose methods to reason about them.
In fact, however, there are many hurdles to doing so. First of all, even for the logics we
have considered for the basic language LK

n , deciding the satisfiability of formulas is
PSPACE-complete [18]. The complexity of logics of knowledge and time depends on
our assumptions about perfect recall, synchrony, and the properties of communication.
In [21] Halpern and Vardi consider ninety six logics. In all cases the complexity of the
satisfiability problem ranges between the intractable exponential time and the unde-
cidableΠ1

1 . Second, the properties of knowledge and its interaction with related modal
operators such as time are very sensitive to the features of the system in question, or
to those of the underlying context. They can differ significantly from one application
to another. We have seen how issues such as whether communication is synchronous
or asynchronous, and whether agents have perfect recall can affect the axioms. Other
structural properties of a given system can make a significant difference. For example,
in a given application ϕ might be local to agent i—so that ϕ ≡ Kiϕ is valid in the sys-
tem. In another, Eve might receive a copy of every message exchanged between Alice
and Bob. This imposes specific but sometimes crucial structure on the way knowledge
can evolve in the system. Because of the richness of systems and contexts, no single
set of axioms completely characterizes the properties of knowledge is a wide variety of
applications. Recall that in the standard runs and systems framework of Sections 15.5
and beyond knowledge satisfies the axioms of S5. Since in any given system additional
properties may hold, it follows that S5 provides properties that are sound in all such
systems, but it does not in general completely characterize knowledge in the system.
It follows that decision procedures for modal logics of, say, knowledge and time are
not likely to be helpful for reasoning about multi-agent systems in practice.

Much closer to the nature of reasoning we are interested in is the notion of model-
checking [6], which has proven very successful for reasoning about temporal prop-
erties of finite-state systems and is widely used in the hardware industry. As shown
in [22], the model-checking problem of model checking an LK

n formula ϕ with m

symbols at a point of a structure with K points is bounded above by mnK2. This
appears much more tractable than deciding satisfiability, but since K might be large,
this could still be a considerable challenge. In fact, as model-checking techniques and
optimizations improve, there is hope for variations on this theme. One of the best ap-
proaches for reasoning about knowledge in multi-agent systems appears to be the use
of special-purpose model-checkers designed for the task such as [14]. Another ap-
proach that is gaining in popularity has to do with adapting existing theorem provers
or model checkers such as PVS, SMV or MOCHA to the epistemic domain [33]. In
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most cases the classes of systems that can be treated is limited in some way—in the
number of states involved, or in the diversity of actions that can be applied. The MCK
tool has the unique feature that while the underlying context being modeled is finite
state, the agents’ local states can grow unbounded. The field of tools and case studies
is growing rapidly and will most likely yield practical results in the coming years.

15.9.1 Concluding Remark

This chapter presented some of the basic notions having to do with knowledge and
belief in multi-agent systems. Its main focus and use to the reader may be as a short
introduction to the task of modeling knowledge and belief in systems. There is a huge
body of work in the area that we did not have time to even hint at. We believe that
knowledge-based analyses of multi-agent systems, and reasoning about knowledge
and belief will find more and more applications in the coming years and decades, and
will continue to develop rapidly. For additional material beyond the cited references,
the reader may also consult [42, 43, 45–49].
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