
ELSEVIER Theoretical Computer Science 170 (1996) 209-244

Theoretical
Computer Science

Graph theoretical structures in logic programs and
default theories

Yannis Dimopoulos al*, Albert0 Torres b

a Max-Planck-Institut fir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany
b Stanford University, Computer Science Department, Stanford, CA 943052140, USA

Received August 1994; revised September 1995

Communicated by G. Levi

Abstract

In this paper we present a graph representation of logic programs and default theories. We
show that many of the semantics proposed for logic programs with negation can be expressed
in terms of notions emerging from graph theory, establishing in this way a link between the
fields. Namely the stable models, the partial stable models, and the well-founded semantics
correspond respectively to the kernels, semikemels and the initial acyclic part of an associated
graph. This link allows us to consider both theoretical (existence, uniqueness) and computational
problems (tractability, algorithms, approximations) from a more abstract and rather combinatorial
point of view. It also provides a clear and intuitive understanding about how conflicts between
rules are resolved within the different semantics. Furthermore, we extend the basic framework
developed for logic programs to the case of Default Logic by introducing the notions of partial,

deterministic and well-founded extensions for default theories. These semantics capture different
ways of reasoning with a default theory.

1. Introduction

Humans often use patterns of reasoning that enable them to draw conclusions under

incomplete information. These conclusions are retractable since new information can

invalidate them. Much research in Nonmonotonic Reasoning has concentrated on cap-

turing these patterns of reasoning in various formal representations. One of the most

prominent nomnonotonic reasoning formalizations is Default Logic. On the other hand,

recent developments in Logic Programming and deductive databases have shown that

negation as failure is strongly related to various nonmonotonic formalisms, and in

particular to default logic ([5]). Thus logic programs with negation provide us with a

framework for nonmonotonic reasoning.

* Corresponding author. E-mail: yannis@mpi-sb.mpg.de

0304-3975/96/$15.00 @ 1996-Elsevier Science B.V. All rights reserved

PZZ SO304-3975(96)00004-7

210 Y. Dimopoulos, A. Torres I Theoretical Computer Science 170 (1996) 209-244

Some recent work has dealt with the relation between some nomnonotonic for-

malisms and graph-theoretic constructs. Torres shows in [41] that the stable models

of logic programs correspond to the kernels of an associated graph. This result is ex-

tended in [43], where it is proved that the maximal semikernels of the same graph

correspond to partial stable models, For disjunction-free default theories, Dimopoulos

and Magirou show in [13] that extensions correspond to kernels in a related graph.

In this paper, we further extend the aforementioned results with the introduction of a

unified semantic and graph-theoretic framework for logic programs and default theories.

We introduce the class of negative logic programs and a simple graph representation,

the rule graph. We show that some of the most important proposals for defining the

semantics of logic programs can be defined in terms of graph-theoretic structures in

the rule graph. Stable models [21] correspond to kernels, partial stable models [33,39]

to semikernels and the well-founded partial model [45] to a special semikernel called

the initial acyclic part. While for negative logic programs the translation to graphs

is purely syntactic, in the case of general logic programs the translation uses, in a

limited way, the semantics of the program. We use the logic programming notion of

support, which we extend to disjunction-free default theories, to show that the above

equivalences remain valid in the case of disjunction-free default theories. Finally, we

extend the above mentioned semantics to the full case of the propositional default logic,

by introducing the notions of the partial, deterministic and well-founded extensions of

a default theory.

Aside from the theoretical interest of the above results, we believe the practical

contribution of this paper is twofold. On the one hand, known properties of graph ker-

nels and semikernels can improve our understanding of logic programming and default

logic. Graphs give us an intuitive representation of the interactions between the rules

and the different ways they can be resolved. Furthermore they allow us to approach

the formalizations in a way that ignores the logical meaning and concentrates on their

structural properties. It will become evident later in this paper that this is particu-

larly useful when we try to investigate complexity issues or tackle problems like the

existence of semantics (stable models, extensions) and the development of algorithms.

On the other hand, the unified graph model gives us a clear intuitive understanding

about the translation of the semantical constructs of logic programs into the domain

of default logic. The graph structures defined for logic programs remain meaningful in

default logic. The proposed semantics for logic programs can be naturally transferred

to default logic, and allow us to resolve various shortcomings of the initial semantics

of default logic.

The rest of this paper is organized as follows. In Section 2, we introduce the fun-

damental concepts and results from logic programming, default logic and graph theory

that we use in the rest of the paper. In Section 3, we introduce the restricted class of

negative logic programs and prove the basic results of our graph model. In Section 4,

we extend the results of the previous sections to the class of general logic programs. In

Section 5, we explore some of the complexity and algorithmic implications of the graph

model. In Section 6, we show how the semantical and graph-theoretical constructs can

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 211

be transferred to the case of default logic. Finally, in Section 7, we summarize the

main contributions of this work.

2. Preliminaries

In this section we introduce the basic terminology and notation for logic programs,

default theories and directed graphs used throughout this paper. We also summarize

some of the fundamental results used in later sections.

The semantics presented in this section is along the lines of the hypothetical seman-

tics for logic programs (see e.g. [23,20,27,42]).

2.1. Logic programs and hypotheses

A program P is a set of first order rules of the form

UI A U2 A . ’ . A a,, +- yl A y2 A . . . A y,,,

where n > 1, m > 0, every Ui is an atom, and every yi is a literal. The literals in the

body of a rule are called subgoals. The above form of logic program differs from the

standard since it allows conjunctions in the head of rules instead of single atoms. We

choose to permit conjunctions to make a clearer connection with the default theories

introduced in Section 6. Nevertheless, the above rule form should be seen solely as a

shorthand for the set of rules

@I +- yl A y2 A . . . A y,,,

~2+-y1Ay2A...Aym

@-II + y1 A y2 A . . . A y,,,

A rule with no subgoals is considered identical to the conjunction in its head. All

variables are implicitly universally quantified. A datalog program is a program with

no occurrences of function symbols. In this paper we refer exclusively to datalog

programs.

If r is a rule then head(r) denotes the set of atoms in the head of r, and body(r)
denotes the set of literals in its body. If R is a set of rules then body(R) = UrER body(r)

and head(R) = lJrER head(r).
Let P be a logic program. We denote by S?(P) the Herbrand base of P and by PiMt

the Herbrand instantiation of P, that is, the ground program obtained by replacing the

variables in P by terms in its Herbrand universe in all possible ways. An assumption
is a ground negative literal in -Z(P), and a hypothesis is a set of assumptions. If A

is a set of literals then ~/1 is the set of literals corresponding to the negation of the

elements in A.

212 Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244

A hypothesis A enables a rule r if all negative subgoals in r are contained in A, that

is, (body(r) - A) C X’(P). The set of rules in a program P enabled by a hypothesis

A is denoted by enabled(A,P).

2.2. Supports and attacks

We denote by PA the ground program resulting from deleting all assumptions in a

given hypothesis A from the body of rules in Pinsr, and Pi the program resulting from

deleting all rules with negative subgoals from PA. Since Pi is a ground Horn program

for any A, deduction can be limited to forward application of the rules without loss of

expressive power ’ .

Definition 2.1. A hypothesis A is a support for an atom LY in a program P (denoted

byA~,cr)2ifP~~a.IfO~3?(P),wewriteA~@ifforalla~Owehave

A ?+ CC. We denote by A’ the set of atoms supported by a hypothesis A. Furthermore,

a support A is minimal for CY (denoted by A “A’ cz) if no subset of A supports LX.

Example 2.2. Consider the following program PI:

p +- ‘4 A 1t
qt-pA7t
r+-Tp
r +- lr
t+s

(74, +, up} supports p, and there are only two minimal supports for r: {up} and

{-v}. Moreover, t has no support in PI even though there is a rule with t in its head.

Intuitively, a hypothesis supports an atom if the latter can be proved by applying

the rules “forward’, assuming true all the negative atoms in the former. Notice that

support is then a monotonic operator. Notice also that a minimal support corresponds

to the leaves of a proof tree and therefore is finite. All conclusions supported by

an assumption A are entailed by A UP. However, the reciprocal of this statement is

not true. For instance, in PI above, the hypothesis {lr} does not support p while

Pi U I--> k P.

Definition 2.3. A hypothesis A attacks another hypothesis A’ in a program P (denoted

by A z A’) if A A j3 for some -p E A’. A hypothesis A minimally attacks another

hypothesis A’ in a program P (denoted by A “2’ A’) if it is a minimal hypothesis

1 For simplicity we assume that the only atoms of the language of P are those that correspond to literals

that occur in P.
2 Notation: We omit the superscript P from the above notation as well as others introduced later when it is

clear from the context. A min superscript over a binary relation always indicates the minimality of the left

operand (with respect to set inclusion).

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 213

such that A A fl for some -fl E A’. 3 A hypothesis A is self-consistent in a program

P if it does not attack itself.

In the example above, {lt, up} 5 {-p, 74). The hypothesis {up, -t} is self-

consistent but {-p, 74, lt} is not since {up, 74, +} 2 {q, p}.
The notion of an unfounded assumption defined next, was introduced in [45].

Definition 2.4. An assumption -fi is unfounded with respect to a hypothesis A if for

every A’ such that A’ H p we have A -+ A’. We denote by %!p(A) the set of all

unfounded assumptions w.r.t. A in program P.

2.3. Logic program semantics

A (Herbrand) interpretation I for a program P is a subset of Z(P)U-X(P) such

that I f7 TI = 0. We denote by I+ and I- respectively I fl X(P) and In -T%(P). We

also denote by ? the set Z(P) - (I+ U TI-). We say that CL E X’(P) is dejned in I if

cx E I+ U II- and undejined if c1 E f. An interpretation I is total if S(P) = I+ U TI-,
otherwise it is partial. An atom a is true in I if a E I, false if ~CI E I. An interpretation

I is a partial model for a program P if P U I is consistent. A model is a total partial

model. Finally, the set of rules enabled by an interpretation I is given by the definition

enabled(I,P) = enabled(I-,P). We now define the semantical constructs explored in

this paper:

Definition 2.5. Let P be a program and A be a self-consistent hypothesis. The sup-
ported interpretation of A is IA = A U A”. We say that an interpretation is supported
if it is the supported interpretation of some self-consistent hypothesis A. We say that

an interpretation I is well-founded if I is supported and I- C_ ?&(I-). A well-founded

interpretation I is complete if I- = %(I-).

For example, in PI of Example 2.2 the interpretation I = {p, 14, Tt} is well-

founded but not complete since {lq, 7t) = I- C %!p,(I-) = (14, v, -t}. The set

{p, 14, TS, Tt} is a complete well-founded interpretation.

Definition 2.6. Let P be a program and let I be a supported interpretation. We say

that I is a:

Stable model: ([21]) if I is total.

Partial stable model: ([39]) if I is a maximal well-founded interpretation.

Deterministic (partial) model: ([39]) if I is a complete well-founded interpretation and

it is contained in every partial stable model.

Well-founded (partial) model: ([45]) if I is the minimal deterministic model.

3 Notice that for two minimal attacks A’ and A” on a hypothesis A, A’ 5 A” may hold, if A’ “LP A on a

literal ~a and A” “!kP A on a literal -8.

214 Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244

The well-founded model coincides with the unique minimal complete well-founded

interpretation.

For instance, Pi above has one stable model ((1~ q, r, ls, lt}), two partial stable

models ({‘P, q, r, ls, lt} and {p, 14, V, -t}), and only one deterministic model, its

well-founded model ({ls, it}).

We now show that partial stable models and stable models are complete well-founded

interpretations and that stable models are nothing but total partial stable models. 4

Proposition 2.7. Let I be a partial stable model of P. Then I is a complete well-
founded interpretation.

Proof. If I were not a complete well-founded interpretation then Iq,(I-j would be a

well-founded interpretation strictly containing I. 0

Lemma 2.8. Let I be a stable model of P. Then I is a well-founded interpretation.

Proof. If -/I E I- and A ++ -a then A $ I-, because I- is self-consistent. Since

A U TI+ # 8 and I is supported, I- -+ A. Therefore, -/3 E %p(I-) and I- c %p(I-).
0

Proposition 2.9. Let I be a stable model of P, Then I is a complete well-founded
interpretation.

Proof. Consider any l/3 in @p(l-). j? $! I+ since otherwise I- H a and I- would

have to attack itself because l/3 E %&-). Since I is total, -/3 E I- and therefore

%p(l-) Cl-. Since 1 is a well-founded interpretation, I- = %ip(l-). q

Since every stable model is total, the above proposition implies the following corol-

lary.

Corollary 2.10. Let I be a stable model of P. Then P is a partial stable model.

Finally, notice that all of the above semantical constructs define the meaning of

a program depending exclusively on the support relation that the program defines.

Therefore, two programs that define the same support relation ought to be treated as

identical. This notion is captured by the following definition.

Definition 2.11. Two logic programs, P1 and P2, are support-equivalent if for every

hypothesis A, we have A 5 M if and only if A I% oz.

Notice that if two programs are support-equivalent then the stable models, partial

stable models, deterministic models and well-founded models are the same for both

programs.

4 The proof of this latter fact was originally given in [39].

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 215

2.4. Default theories

In [36] Default Logic was introduced in order to augment first-order logic with a

set of default assertions. In this paper we restrict ourselves to the case of propositional

Default Theories. A (propositional) default theory is a pair A = (D, W), where W is

a finite set of propositions and D is a finite set of default rules of the form d = a :

Mb 1 . . .Mb,/w, where a, bl , . . . , b,, w are arbitrary propositions. Proposition a is called

prerequisite of the rule d (denoted as Prer(d)), the set of propositions bl,. . . , b, justi-

fications (denoted as Just(d)) and the proposition w consequent (denoted as Cons(d)).

The default rules are roughly rules of inference stating the fact that if a is provable

and b, , . . . , b, are consistent, then w is also provable.

The key concept in Default Logic is that of an Extension of a default theory, which

is intuitively what can consistently be believed given (D, W).

Definition 2.12. A set of propositions E is an extension of a propositional default

theory A = (D, W) iff E = Ur,Ei, where Eo = W and Ei+i = Z’f%(Ei) U{w]a :

Mb i...Mb,/wED,aEEiandybj#Efor l<j<n}.

A default theory for which both W and the prerequisite, justifications and consequents

of the rules are conjunctions (sets) of literals is called conjunctive default theory (or

disjunction-free default theory). A theory which contains no prerequisites in its rules

is called prerequisite-free default theory.

2.5. Graphs and kernels

A directed graph or graph 5 is a pair (V, 8) where Y is a set and d is a subset

of Y x Y. Elements in V are called nodes and members of 6 are called edges. If

e = (vi, ~2) is an edge we say that e goes from vi to ~2. If 9 is a graph then Y(9)

denotes the set of nodes in 9 and 6(‘S) denotes the set of its edges. An edge (v,v’) E

d(B) is called symmetric if (v’, o) E b(B). A chord of a cycle y = nl,. . .nP, nl is an

edge (ni, nj) with j # i + 1 (mod p).
If 9 is a graph and v E Y(B) we define r;(v) = {v’](u,u’) E d(B)}, and T;(v) =

{v’I(u’,u) E a(s)}. Th ese definitions are extended to sets of nodes through the fol-

lowing equations: r$(I’) = lJvEY r;(v), and r;(V) = UoEr, r;(r). The subscript Q

will be dropped from the above notation whenever clear from the context.

Let 9 = (V, 8) be a graph, and 9’“’ a subset of 9’“. We denote by &7/V’ the set

6 n V’ x V’. The subgraph of 9 induced by Y’, denoted by Y/Y’, is the graph

(V-‘, 8/V).

Definition 2.13. Given a directed graph (V, a), and a subset V’ of Y, we say that

V is:

Independent: if there are no edges between elements of “Y-‘, i.e., if 8/V = 0.

’ In this paper the term graph refers exclusively to directed graphs.

216 Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244

Dominant (dominating): if for all v E V - 9’“’ there is a v’ E V’ such that (v’, V) E 8,

i.e., if Y - Y’ G r,+(V’).

Semidominant: if for all v E V - V’, such that (v, u’) E 8 with v’ E V’ then there is

a v” E V’ such that (v”, v) E Q, i.e., &(V’) G ri(V’).

Definition 2.14. Let 9 be a graph, and X a subset of Y(3). We say that X is a

kernel if it is independent and dominant. We also say that X is a semikernel if it is

independent and semidominant. 6

The following proposition follows trivially from the above definition:

Proposition 2.15. Let 9 be a graph. If AC’ is a kernel of 9 then X is a maximal
semikernel of 9.

Definition 2.16. A graph 3 is kernel-perfect if for every “.Y’ G V(3) the graph 93/V’

has a kernel.

Many sufficient properties for a graph to be kernel-perfect have been found. The

classical results are included in the following proposition: 7

Proposition 2.17. A graph G
properties:

1. 99 is acyclic. In this case
2. 9 contains no odd-length
3. 9 is symmetric.

is kernel-perfect if it satisfies any of the following

the kernel is unique (von Neumann).

cycle (Richardson).

4. 3 is transitive. In this case all kernels have the same cardinality (K&rig).

Now we introduce the notion of initial acyclic part of a graph and prove that it

exists and is unique for every graph.

Definition 2.18. Let B = (V,&) be a graph. We define the initial acyclic segment of

93 to be a set of independent nodes Y’ C Y such that it can be well-ordered in such

a way that for every v E V’ we have T-(v)C P({v’ E -Ir’lv’ < v}). The initial
acyclic part of a graph is its maximal initial acyclic segment.

Lemma 2.19. If 9Y is a set of initial acyclic segments of 9 then YaY = USES9 S
is an initial acyclic segment of Y.

Proof. For any S E 49, let <s be a well-order of S that complies with Definition

2.18. Let < 99 be any well-order of XY, and let S, = min <bY {S E 99 : s E S}

for any s E XY. We define < in 9Y such that s < s’ if and only if S, <YY $1 or

if S, = S,! and s <s, s’. It is easy to see that < is a well-order that complies with

Definition 2.18. 0

6 Often symmetric to our definitions are used for kernels and semikernels (see for example [3]).

7 For a more extensive review of the area see [4].

Y Dimopoulos, A. TorreslTheoretical Computer Science 170 (1996) 209-244 217

Proposition 2.20. Every graph has a unique initial acyclic part.

Proof. Notice that the empty set is an initial acyclic segment for every graph. It follows

from the previous lemma that the union of all initial acyclic segments is the unique

initial acyclic part. 0

Finally we show that every acyclic segment is a semikernel.

Proposition 2.21. If $9 is an initial acyclic segment of 3 then 99 is a semikernel
of 9.

Proof. It is an easy ordinal induction to prove that $9 is an independent set. To

prove semidominance, notice that if v E r-(39’) then there is a v’ E 99 such that

v E r+(v’). 0

3. Negative logic programs and rule graphs

In this section we introduce the restricted class of negative logic programs. We also

introduce the rule graph whose vertices correspond to rules and whose edges capture

the notion of attack. We show that kernels in this graph correspond to stable models

while semikernels correspond to well-founded interpretations.

Definition 3.1. A negative logic program is a logic program containing only rules of

the form

Lx1 ACQ A..’ A c1, + +i A 782 A . . . A -pm

where n 3 1, m 2 0, and every ai and every /Ii is a ground atom.

The following properties follow from the form of negative logic programs.

Proposition 3.2. Let P be a negative logic program. Then A L u if and only if A
enables a rule in P such that CI E head(r).

Proof. Since all rules in P have only negative subgoals, for any A, Pi contains only

one rule r’ with head(J) = head(r) and body(#) = 0 for every rule Y in P such

that body(r) E A. Therefore, Pi k CI if and only if there is a rule r in P such that

body(r) C A and a E head(r). q

Corollary 3.3. Let P be a negative logic program, Zf A m%p c1 then there is a rule r
in P such that A = body(r) and CI E head(r).

Corollary 3.4. Let P be a negative logic program. An assumption -/3 is unfounded

w.r. t. A if and only tf for every rule r in P such that fi E head(r), A A body(r).

218 Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244

Definition 3.5. Let P be a negative logic program. We say that P is reduced if, for

every two rules t-1 and t-2 in P:
1. If body(r1) = body(r2) then rl = t-2.
2. If head(r-1) n head(r2) # 0 and body(rl) G body(r2) then rt = r2.

The central property of reduced negative logic programs is that the bodies of rules

are exactly the minimal supports of atoms in the program.

Proposition 3.6. Let P be a reduced negative logic program. A “3’ tl if and only if
there is a rule r in P such that A = body(r) and a E head(r).

Proof. The “only if” part follows from Corollary 3.3. To prove the “if” part, consider

a rule r in P such that c1 E head(r) and A = body(r). Then A A CC Now, if A’ “A’ CI

and A’ & A, there is a rule r’ such that body(r’) = A’ c A = body(r), Condition 2 of

Definition 3.5 implies that A = A’. 0

Reduced negative logic programs can be seen as support-equivalent canonical forms

for negative logic programs. s The next theorem shows that a reduced negative logic

program can in fact be obtained by “reducing” a given negative logic program.

Theorem 3.7. Let P be a negative logic program. There is a reduced program P’
such that P’ is support equivalent to P. Moreover, given P, P’ can be computed in
polynomial time.

Proof. Given a negative logic program P we can build a reduced negative logic pro-

gram by using the following procedure:

(1) foreachrinp
if 3 E P (body(r’) = body(r)) then

remove r from P
add head(r) to head

end if
end for

(2) for each r in P
for each a in head(r)

if 3r’ E P (U E head A body(r’) c body(r) then
if head(r) - {a} # 0 then

remove CI from head(r)
else

remove r from P
end if

end if
end for

end for

* We generalize this result to general logic programs in Section 4

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 219

Loop (1) collapses rules with the same body, and therefore P satisfies Condition 1 of

Definition 3.5 after the loop exit. Loop (2) removes redundant atoms and rules, and

therefore the resulting P satisfies Condition 2 of Definition 3.5. The above program

can obviously be implemented in polynomial time. 0

We now introduce a graph theoretical representation for reduced negative logic pro-

grams.

Definition 3.8. Let P be a reduced negative logic program. The rule graph of P (de-

noted by SW’(P)) is the directed graph (V,&), where V = {T[Y E P} and d =

{hr2)IheaC1) n 7W@2) # 0}.9

In the following we introduce the main results of this section, linking the semantics

introduced in the previous section to the graph theoretical structures of kernels and

semikernels in the rule graph.

Theorem 3.9. Let P be a reduced negative logic program. Zf Z is a well-founded
interpretation of P then enabled(Z,P) is a semikernel of 93(P).

Proof. Since I- is self-consistent, enabled(Z,P) is an independent set. Now, if there

is an edge (r,r’) in W%(P) with r’ E enabZed(Z,P) then body(r) is a minimal support

of an atom c(such that lc(E body(r’). Since -UX E I-, lc(is unfounded w.r.t. I- and

I- -+ body(r). Therefore, there is a rule r” in enabZed(Z,P) such that body(r”) -+
body(r) and then (r”,r) is an edge in B%(P). q

Theorem 3.10. Let P be a reduced negative logic program. Zf K is a semikernel of
F%?%(P) then Zbo&(K) is a well-founded interpretation of P.

Proof. First we prove that body(K) is self-consistent. If body(K) is not self-consistent

then there is a rule r in enabZed(body(K),P) such that a E head(r) and la E body(K).
Therefore, there is an edge from r to some rule in K. Since K is a semikernel then

there is a rule r’ E K such that there is an edge (r’,r) in 9W(P). But this means

that body(#) is a minimal attack of an assumption -#I in body(r) & body(K). Since

-/I E body(K), there is an r” E K such that -/I E body(r”). Thus, there is an edge

from r’ to r”, but this edge would contradict the supposition that K is independent.

Now we have to prove that body(K) 2 @!p(body(K)). Let -fi E body(K) and A “A’
p. Thenthere is a rule r in P such that body(r) = A. Therefore, there is an edge from

r to some rule in K, but since K is a semikernel there is an edge from some other

rule r’ in K to r. Then body(r’) “2’ A and body(K) 5 A. Therefore ~fi is unfounded

w.r.t. body(K). 0

9 Notice that I = {(q, r2)lbody(rl) “JY body(q)}.

220 Y. Dimopoulos, A. Torres I Theoretical Computer Science 170 (1996) 209-244

Theorem 3.10 is not the full reciprocal of Theorem 3.9 since there are well-founded

interpretations that are not of the form Ibody(where K is a semikernel of %?g(P). A

well-founded interpretation can contain other assumptions that are either not explicitly

used in the program or are heads of rules invalidated by the assumptions in the bodies

of the rules of a semikemel. We now combine theorems 3.9 and 3.10 through the

introduction of addition sets. lo

Definition 3.11. Let P be a program and d a hypothesis. A subset Y of %p(d) - A

is an addition set for A in P if (A U Zf = A’.

Lemma 3.12. Let Z be any interpretation of P. Then the following statements are

true:
1. (I-)’ = body(enabled(Z, P))‘.
2. @p(Z-) = @p(body(enabled(Z, P))).

Proof. Proposition 1 is trivial, since the only assumptions in I- that can be used to

apply rules are in enabled(Z, P). Proposition 2 follows from Proposition 1. q

Theorem 3.13. An interpretation Z for a reduced negative program P is well-founded
if and only if there is a semikernel K in SW(P) such that Z = Zbody(K) U T where T
is an addition set for body(K) in P.

Proof. We first prove the “if” part. Let K be semikemel of S?%(P) and Y an addi-

tion set for body(K) in P. By Theorem 3.10, we have that Z&,&(K) is a well-founded

interpretation. Now Z = Z&+(K) U r is supported since the assumptions in r do

not support any new atom. And since r c %!ip(body(K)) = %!p(body(K) U Z”), Z is

well-founded.

To prove the “only if” part, consider any well-founded interpretation I. Since Z

is supported, Z=Z- U (I-)‘=body(enabZed(Z,P)) U T U (I-)‘. By Lemma 3.12,

Z = body(enabZed(Z,P)) u 2” U body(enabled(Z,P))‘. By Theorem 3.9 we know that

enabled(Z,P) is a semikemel of SW(P). To prove that r = I- - body(enabled(Z,P))
is an addition set for body(enabled(Z,P)) in P we notice that since Z is well-founded

we have that r C %‘p(Z-) - body(enabZed(Z,P)). By Lemma 3.12 we have %p(Z-) =

%p(body(enabZed(Z, P))), so T & %!p(body(enabZed(Z, P))) - body(enabZed(Z, P)). By

Lemma 3.12 we also have that (Z-)’ = body(enabZed(Z,P))‘. Therefore r is an

addition set for body(enabZed(Z, P)). q

Corollary 3.14. Let P be a reduced negative logic program. An interpretation Z for
P is a partial stable model of P tf and only tf there is a maximal semikernel K in
%??(P) such that Z = Zb&(K) u T where T = %,p(body(K))- body(K) is the maximal

addition set for body(K) in P.

lo In [41,43] a different approach is used. We discuss this approach in Section 4.

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 221

Stable models impose stronger restrictions on the rules they enable. While rules

enabled by a well-founded interpretation need to counterattack only rules that at-

tack them, the rules enabled by the stable models need to attack every other

rule. The next theorem formally states the link between stable models and

kernels.

Theorem 3.15. An interpretation I for a reduced negative program P is a stable
model of P if and only if there is a kernel K in %%!2(P) such that I = Ib&(K) U r

where T = %!p(body(K)) - body(K) is the maximal addition set for body(K) in P.

Proof. To prove the “if” part, notice that since K is a kernel then it is also a maximal

semikernel, so Z is a partial stable model. Furthermore, since K is a kernel, then every

atom is either in the head of an enabled rule (hence it is supported by body(K))
or all its rules are made invalid by body(K) (hence it is unfounded w.r.t. body(K)).
Therefore I is total.

To prove the “only if” part, let Z = I- U (I-)’ be a stable model and define

K = enabZed(I,P). Then Z is a partial stable model and by the previous corollary

we know that K is a maximal semikernel. We must prove that K is a kernel. Since

K is independent, if K is not a kernel then there is a rule r E P - K such that

r # Z&@0 The fact r $ ZLyCP)(K means that for all the literals -b E body(r), 1

b # enabZed(I,P)‘=I+. On the other hand there must be a literal lrn E body(r) such

that Trn 6 I-, because otherwise Y E enabled(I,P), hence r E K. Therefore m is

undefined, a contradiction since Z is total. 0

The next theorem demonstrates the fact that within well-founded models stronger

restrictions are imposed on the way the interactions between the rules are resolved. In

particular, well-founded models enable only rules that satisfy a non-circularity condition

in the way they interact.

Theorem 3.16. Let P be a reduced negative logic program. The interpretation I is
the well-founded model of P if and only if I = IbOdY U r where IP is the initial
acyclic part of SW(P) and T = %p(body(IP)) - body(IP) is the maximal addition
set for body(IP) in P.

Proof. To prove that if Z = Zb&(lp) U r then Z is the minimal complete well-founded

interpretation of P, we first show that r is an addition set for Zb&(lp). Since IP is

maximal then Y’r E P, if body(r) C T U body(IP) = @ip(body(ZP)) U body(IP), then

Y E IP and body(r) C body(IP). Hence, (@p(body(IP)) U body(IP))’ = body(ZP)’
and r is an addition set for Zb+([p). Since the initial acyclic part is a semikemel, it

follows from theorem 3.13 that Z is a well-founded interpretation. Additionally, since

r G I, Z is complete. It remains to show that Z is the minimal such set. First observe

that every literal of r must be included in Z for Z to be complete. Additionally we can

prove inductively on the well-order for ZP that if some literal p E body(ZP) is omitted

222 Y. Dimopoulos, A. TorreslTheoretical Computer Science 170 (1996) 209-244

then I is not complete. Hence, I is the minimal complete well-founded interpretation

of P, i.e. a well-founded model of P.

Let I now be the the well-founded model of P. Let Ii = {-blj9 r E P, b E head(r)}.

Since I is a complete well-founded interpretation then Ii GI-. Let RI = {TIT E
P, body(r) &II} = emzbled(ll, P). Then head(R1) CI, and Rl is an initial acyclic seg-

ment for S%‘(P). Let I2 = {lbl’dr, b E head(r), 31~ E body(r), p E head@1 I}. Then

I2 & qp(I) and hence I2 C I-. Let R2 = {r lr E P, body(r) C Zl U 12) = enabled(ll U

12,P). Then again head(R2) c I and R1 U R2 is an initial acyclic segment for .%!Y(P).

Iterating this way over the ordinals we define I’ = 1~
dZX = &&(U#R,) ” (%U,&) -

body(u, R,)). By lemma 3.12, %p(U,&) = ~~(body(enabled(U,Z)), which means

@P(U,L) = @!p(b44J,&)). Hence I’ = JodycU R,j U (~dNdJ,Rd) -
01

b44_J, Ret)).
Note that I’ C I and that U, R, is an initial acyclic segment for B%(P). Furthermore,

U, R, is the maximal initial acyclic segment since for any rule r E P-(U, R,) there is a

literal lb E body(r) such that b E head(with Y’ E P- (U, R,). Hence, U, R, is the
initial acyclic part of 939(P). Then IJ, R, is a semikernel, hence I’ is a well-founded

interpretation provided that r = %p(body(U, R,)) - body(u, R,) is an addition set for
body(u, R,). Note that r U body(u, R,) = @‘p(body(lJ, R,)) U body(U, R,). Assume

that a E (+2~(body(U, R,)) u body(u, R,))‘. Then there is a rule r E P such that

a E head(r) and for every lb E body(r), lb E @p(body(u, R,)) U body(lJ, R,). ‘Then

we can prove that Y E U, R,, hence (2” U body(u, R,))’ = (body(lJ, R,)‘, that is,

Y is an addition set. Hence I’ is a well-founded interpretation. Furthermore, notice

that I’ is a total well-founded interpretation. Since I’ C I and Z is the minimal total

well-founded interpretation, I = I’. Since IJ, R, is the initial acyclic part of B%(P),

I= &,~+(IP) u (~db4GP)) - bdWP)). 0

We recapitulate the results presented in this section by means of the following

example.

Example 3.17. Let P2 be the following negative logic program:

p,s + 7q,7y (rl)

4 +- TP,Tr C-2)
s + 7s (r3)
t i- Tr G-4)
u +- d G-5)

The rule graph of P2, A%?(P2), is depicted in Fig. 1. The semikernels of this graph

are S1 = {rl}, S2 = {rz}, & = {rd}, 84 = {rl,r4}, S5 = {r2,r4} (the last two are

maximal). The first three semikernels correspond to the well-founded interpretations

Zl = (74, v, p, s, t}, 12 = {up, lr, q, t}, 13 = {v, t}, respectively. None of these well-

founded interpretations is complete. The corresponding complete well-founded models

are I4 = (74, v, p,s, t, w}, I5 = (1p, v, q, t, TU}, I, = {lr, t, 1~). The first two of

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 223

Fig. 1. Rule graph for P2 (.%Y(Pz))

these complete well-founded models correspond to the maximal semikernels S4 and S,

respectively and therefore are partial stable models. Since S4 is a kernel for B?%(P)

then 14 is also a stable model. Finally the initial acyclic part of 99(P) is the set Ss,

hence the well-founded model of P is the set 16 = {v-, t, -m}.

4. The case of general logic programs

In this section, we extend the results for negative logic programs we have developed

so far, to the case of general logic programs. We show that for every general logic

program there is a support-equivalent reduced negative logic program. We also show

that the rule graph of the corresponding negative program represents the support relation

of the original program.

Definition 4.1. The negative equivalent of a given logic program P is the negative

logic program P- containing exactly every rule r where body(r) is a minimal support

of some atom in P, and head(r) = {albody “2’ a}.

Proposition 4.2. Let P be a logic program. Then P- is reduced and support-equivalent
to P.

Proof. Since no two different rules having the same body in the transformed program

fulfills Condition 1 of Definition 3.5. Now, if cc E head(rl)rlhead(rz), it is not possible

that body(rl) c body(r2) because otherwise body(r2) would not be a minimal support

of K Therefore P- is reduced.

The fact that P- is support-equivalent to P follows directly from Proposition 3.6.

0

224 Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244

Proposition 4.3. If P is a datalog program, then P- is jinite.

Proof. Since P is a datalog program, then 2(P) is finite. But P- can not contain

more than 2%cp) rules. 17

We now introduce the minimal attack graph of a logic program and show that it

corresponds to the rule graph of its negative equivalent.

Definition 4.4. The minimal attack graph of a program P, denoted by Asz?‘S(P), is

the directed graph (V,b), where V = (dl3ad “3’ M} and d = {(dl,d2)ldl “%‘42}.

Proposition 4.5. Let P be a logic program. The graph Ad%(P) is isomorphic to
the graph SY(P-).

Proof. Consider the function that maps every minimal support in P into the rule with

the same body in P-. It follows trivially from the above definition that this function

is an isomorphism. 0

Combining the above proposition with the results in Section 3 we have the following

corollary.

Corollary 4.6. Let P be a program, and let I be an interpretation for P. The following
propositions are true:
1. I is a well-founded interpretation of P if and only if there is a semikernel K in

J.~!JzZ’$(P) such that I = I&,&,(K) U T where T is an addition set for body(K) in
P.

2. I is a partial stable model of P if and only if there is a maximal semikernel K

in &?‘8Y(P) such that I = IbOdy U T where T = %lp(body(K)) - body(K) is a
maximal addition set for body(K) in P.

3. I is a stable model of P if and only if there is a kernel K in &&9(P) such that
I = I&@(K) U r where T = %p(body(K)) - body(K) is a maximal addition set

for body(K) in P.
4. I is the well-founded model of P if and only if I = IbOdY U T where IP is the

initial acyclic part of A’&‘%(P) and T = %!p(body(IP)) - body(IP) is a maximal
addition set for body(IP) in P.

It is well known that stable models do not exist for every program. Using the

results of Proposition 2.17 we can identify classes of programs for which the ex-

istence of a stable model is guaranteed by some property of its minimal attack

graph.

Definition 4.7. A program P is support-stratljied if A&59(P) is acyclic.

A consequence of the classical result by von Neumann is the following.

Y. Dimopoulos, A. TorreslTheoretical Computer Science 170 (1996) 209-244 225

Proposition 4.8. Every support-stratijied program has a unique stable model.

Theorem 4.9. Every locally stratified program is support-stratijied

Proof. Notice that if -/3 belongs to a minimal support of tl in P, there is a proof of CI

that uses a rule with -j3 in its body. It follows that 01 depends on l/3. Therefore, if the

dependency relation has no cycles the minimal support relation can not have cycles.

0

Example 4.10. Support-stratification is in fact a strict extension of local stratification.

This fact is shown in the following example:

Notice that even though p depends on its negation, this dependency will never be used

to prove p because r cannot be proved (there is no support for Y).

By Proposition 2.17 we also obtain the following results.

Proposition 4.11. Let P be a logic program. If A’&%(P) is symmetric then P has
at least one stable model.

Definition 4.12. A program P is odd-cycle free if every cycle in Jae&CCJ(P) is of even

length.

Proposition 4.13. Every odd-cycle free program has at least one stable model,

The class of odd-cycle free program, even though slightly more general, roughly

corresponds to the class of call-consistent programs which are known to have at least

one stable model [28,37]. More general classes of kernel-perfect graphs have been

found in the last years (see [4]). By applying the results in [19, 181 (for further results

refer to [l&24]) we obtain the next two propositions.

Proposition 4.14. If every odd cycle of the graph A’&‘%(P) of a logic program P,

has at least two symmetric edges, then P has at least one stable model.

Proposition 4.15. If every odd cycle of the graph A!&‘%(P) of a logic program P,
has two chords whose heads are consecutive nodes of the cycle, then P has at least
one stable model.

It is important to note that both propositions concern kernel-perfect graphs, that is,

not only &‘&g(P) itself, but also every subgraph of A’&%(P) has at least one stable

226 Y. Dimopoulos, A. TorresITheoretical Computer Science 170 (1996) 209-244

model. The next theorem refers to the case of random graphs. *’ The notation D(n, p)
denotes a directed graph on n nodes with edge probability p.

Theorem 4.16 (Femadez de 1aVega [161). Let p be fixed, 0 < p < 1. The probability

that the random directed graph D(n, p) possesses a kernel tends to 1 as n ---t co.

Finally, notice that the translation of a general logic program P into a graph is not

purely syntactic. This is because P is translated into a negative logic program P-
first, and this translation uses the notion of minimal support which is a semantic one.

Nevertheless, the use of the semantics is limited since the notion of minimal support is

common to all the semantics studied in this paper. Hence, while some semantic notion

is used in the translation, this notion is independent of any particular semantics.

On the other hand, when transforming a logic program P to a negative one P-, we
may end up with a program P- that is exponentially larger than the original P.

In [ll], by applying the results of [13], another method for translating a normal

logic program into a directed graph is presented. The translation is purely syntactic

and the size of the graph is polynomial in the size of the logic program. We briefly

introduce this method in the following.

Let P be a general logic program. We define the complete rule graph of P to be the

graph Gp = (N,E) where the set of nodes is N = R U L, with R = {ri jri a rule of P}
and L = {ai] for each atom ai that OCCUTS in P}, whilst the set of edges is E = {(ri,rj)(
-p E body(rj) and p E head(U {(ai,ri)(ai E body(rj)} U {(ri,aj)(aj = head(
(see [l 11, [12] for details).

We can prove that every stable model of P corresponds to a kernel of Gp. Namely,

if A4 is a stable model for a program P, then there is a kernel K for the rule graph

Gp such that for every p E M+ (M+ denotes the set of positive literals in a set of

literals M) there is a node ri in K such that head = p. However the converse is

not true. This is because of possible circular support between the rules. It turns out that

the models of the program’s completion are in direct correspondence with the kernels

of the program’s complete rule graph.

5. Complexity and algorithms

The intractability of most of the nonmonotonic formalisms, even in very simple cases,

is one of the central problems research in the field needs to tackle. In this section

we show how graph theory can contribute in obtaining new complexity results and

algorithms, determining cases where reasoning is tractable, and defining new notions

of approximation.

To start with, recall that the problem of determining whether a negative logic pro-

gram possesses stable models is NP-complete (see e.g. [13]). l2 On the other hand

‘I Related results cao be found in [40].
I2 The complexity results in [29] regarding autoepistemic logic also imply this result.

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 221

semikernels, or equivalently well-founded interpretations and partial stable models, al-

ways exist. For example every graph has a trivial semikemel which is the empty

set. Hence one may expect better computational behavior in the case of semikemels.

Furthermore since the existence of semikemels is guaranteed we need to formulate a

slightly different decision problem.

Decision problem: Instance: Let G = (N,E) be a directed graph.

Question: Is there a nontrivial semikemel (SK # 0) for G?

The next theorem states that this problem is intractable.

Theorem 5.1. Determining whether a graph has a nontrivial semikernel is NP-
complete.

Proof. The proof is by reduction from 3-SAT. Given a formula in CNF C = {Cl, C,,

. . .) Cn}, Ci = Gil V Ci2 V Ci3 we construct a graph G = (N,E), shown in Fig. 2,

as follows: For every literal xi (and its negation) we put a node ni (ni respectively)

in the set N. We refer to this set of nodes as L. For every clause Ci in C put a

node ci in N (we call this set of nodes S), as well as a node AUX and a cycle

Fig. 2. NP-completeness of the semikemel problem.

228 Y. Dimopoulos, A. Tomes/ Theoretical Computer Science 170 (1996) 209-244

of length 3 involving a distinguished node A. The set E consists of the following

edges:

(1) There exists a bidirectional edge between the nodes which correspond to comple-

mentary literals,

(2) For every literal xi occurring in clause Cj there is an edge (ni,ci),

(3) From every ci E S there is an edge (ci,Aux),
(4) There exists the edge (Aux,A), as well as an edge (A,ni) from A to every node

Izi E L.

Lemma 5.2. In graph G every nontrivial semikernel (if one exists) is a kernel.

Proof. Let SK be a semikernel of G, SK # 0. Assume that SK contains a nonempty

set of nodes A4 CS. Then the node Aux does not belong to SK, and A can not be-

long to SK as well (note that A is one of the nodes in the odd cycle). Since every

node in A4 receives an edge from some node in L, the set T-(M) must be covered.

Assume that some of the nodes in L belong to SK and cover them. But all of these

nodes receive an edge from A, and A cannot be covered by SK. Hence no semik-

emel can contain a node from S. Assume now that there is a semikernel SK # 0
such that Aux $ SK. Since A cannot be covered, none of the nodes of L can belong

to SK. Since none of the nodes in S can belong to SK as well then SK is empty.

Hence, every nontrivial semikernel must contain Aux. Therefore, for every semiker-

nel SK, S E T+(SK) must hold. For this to happen a subset of the nodes of L that

covers all nodes in S must be in SK. It is easy to see that such a semikernel is

kernel.

Hence in G every nontrivial semikernel is a kernel. 0

Observe that every nontrivial semikernel (if one exists) implies a satisfying truth

assignment to the literals of the clauses, and vice versa. Hence every polynomial al-

gorithm for this decision problem would also solve the 3-SAT problem in polynomial

time. 0

Proposition 5.3. The decision problem whether a negative logic program has a well-
founded interpretation (or a partial stable model) direrent from the empty set is
NP-complete.

Proof (sketch). Let G = (N,E) be a graph. We can construct an associated negative

logic program PG as follows: for every ni E N add to PG the atom pi and the rule

ri. Pi + 1P1,1P2,..., -pm, where for every 1 <j<m, (nj,n;) E E holds.

Let I be a well-founded interpretation for P. Define K = {nilbody E I-}. We

will show that K is a semikernel for Gp. Since I is self-consistent K is an independent

set. We now show that K is semidominant. Let nj E r-(ni), ni E K. Then Tpj E

body(ri), hence lpj E I-. By I- 2 %(I-) we have that there is a rule nk E K such

that (nk,ni) E E.

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 229

Let now K be a semikernel for Gp and define I = I- U (I-)“, where I- =

{7pj(lpj E body(ni), ni E K). Since K is independent I is self-consistent. We prove

now that I- s %!(I-). Let lpj E I-. Then either there is no rule with pj in its head

or for every such rule rj, it holds that rj E r+(K) which means that Tpj E %!(I-). C!

We show next how an algorithm that computes kernels, can also be used for com-

puting semikernels.

Definition 5.4. A graph G’ = (N’,E’) is the semikernel equivalent of a graph G =

(N,E), if N’ = N U {n’(n E N}, and E’ = E U {(n,n’),(n’,n)Jn E N,n’ E N’ - N} U

{(ni,ni)lni EN, n$ EN’, and nj E &(ni)}.

Theorem 5.5. Zf G’ is the semikernel equivalent to G, then, if K is a kernel for G’,
K - N’ is a semikernel for G. Conversely, every semikernel in G induces a kernel in
G’.

Proof. Let K be a kernel for G’. The nodes of K -N’ are independent and for every

node nj such that nj E &(ni) and ni E K - N’, since (n$ni) E E, there must be a

node nk E K - N’ such that (nk,nj) E E. Hence K - N’ is a semikernel for G.

Let K be a semikemel for G. Then see that K U {njn E N’ - N,n $! T+(K)} is a

kernel for G’. q

In view of the above theorem, every algorithm that computes the kernels of a graph G

is also capable of computing the semikemels of G if it is supplied with the semikemel

equivalent of G.

In the following we briefly present some other results obtained using the graph the-

oretic transformation of logic programs. l3 Clearly in the case of graphs without cycles

the computation of the unique kernel, which coincides with the maximal semikemel, is

trivial. The kernel in this case captures, what most researchers agree to be, the meaning

of the associated logic program.

In cases of graphs with cycles there are two possibilities. The first is that the graph

is odd-cycle free, and a kernel always exists. In this case we can perform the tie-

breaking procedure introduced in [3 l] and compute nondeterministically in polynomial

time a kernel of the graph. Furthermore, as shown in [14], there is a polynomial

delay algorithm l4 which enumerates a set of kernels for this class of graphs, called

“standard’ kernels. Unfortunately this procedure is not complete, that is, there may

be kernels that can not be detected by the procedure. Nevertheless it may serve as

a sound but incomplete reasoning method for logic programs without odd cycles. It

is also shown in [14] that determining whether there are other kernels for such a

I3 For a survey of complexity results regarding logic programs refer to [30, IO].

I4 We say that an algorithm for generating configurations is polynomial delay [25] if there is only a poly-

nomial delay between any two configurations generated. Such algorithms may behave exponentially because
of the exponentially many different configurations, but this is obviously unavoidable.

230 Y: Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244

graph, different from those found by this procedure, is NR-complete. Finally skeptical

reasoning with these graphs (i.e. whether a node is contained in every kernel) was also

proved to be intractable in [131.

In the case of graphs with odd cycles there is still a possibility to maintain the above

computational features at the cost of incompleteness. Suppose that the task is to com-

pute the kernels of a graph. First remove from the graph at hand the edges (or nodes)

causing the odd cycles. Compute the “standard” kernels for the new odd-cycle free

graph with polynomial delay. Determine which of these kernels are kernels for the

original graph. The overall complexity is bounded by the size of the graph and the

number of “standard” kernels in the odd-cycle free graph. The procedure is sound but

incomplete.

We also note that if the graph is symmetric, then a set K is a kernel iff K is

a maximal independent set (MIS) for the undirected graph obtained after removing

the direction from the edges in the original graph. Every graph has at least one MIS

which can be computed in polynomial time. Furthermore there are polynomial delay

procedures that compute all the MIS of a graph (see [44], [25]).

Given the intractability of computing kernels and semikemels in the general case,

another possibility is to look for approximations to these problems. The major obstacle

is that it is not easy to find a measure for the approximation. Some recent attempts

include the approximate entailment of [9] referring to default logic and circumscription,

which extends their previous work in [8] regarding classical logic. The graph-theoretic

representation offers yet another possibility. Namely, by approximations we mean the

efficient and (in cases where this is necessary) nondeterministic computation of sub-
sets of the maximal semikernels of the graphs, which are, themselves, semikemels.

According to this view, given a graph G, a semikemel Si is a better approximation

than a semikemel &, if & & Si, where Si, S2 G S and S is a maximal semikemel for G.

6. The case of default theories

Since Reiter’s original definition of default logic, several researchers have given dif-

ferent definitions especially to the notion of the extension, I5 as well as to the notion of

the default rule (e.g. [22]). Most of these proposals intent to rebut some of the original

default logic shortcomings (e.g. the nonexistence of extensions, difficulties in express-

ing disjunctive information, etc.). On the other hand, the various semantics for logic

programs have been applied to default logic and other nonmonotonic formalisms. An

early attempt in this direction is described in [34] where the well-founded semantics is

defined for default and autoepistemic theories, based on a three-valued reconstruction of

these formalisms. More recently well-founded semantics for the same formalisms has

been proposed in [1,2] based on an ordering for the sets of interpretations around which

the Gelfond-Lifschitz operator oscillates. In [32] another reformulation of default logic

I5 See [17] for a general framework where several invarianta of default logic are examined.

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 231

is presented that satisfies some criteria defined by the authors and is along the lines of

stable models for extended logic programs. In [35] the stationary extensions are pre-

sented, an extension of the stationary semantics for logic programs. The approaches in

[26,6] are closely related to the framework developed in this section. Finally, in a recent

book [30], several definitions of the notion of the extension are given. In Section 6.2

we compare some of these approaches with the framework we present in the following.

6.1. Default logic semantics

In this section we present a framework for reasoning with propositional default

theories. It is not our intention to give a completely new semantics but rather to

generalize the semantic for logic programs studied in the previous sections. In contrast

to most of the approaches to default logic mentioned above, we give several quasi-
inductive definitions of the notion of extension. These notions capture different methods

(or modes) of reasoning with default logic and link the graph theoretic results presented

earlier to the case of conjunctive default theories.

Throughout this section we refer exclusively to seminormal propositional default

theories, except if otherwise stated. In a seminormal default theory every default is of

the form A : MBAC/C, where BAC is consistent. Furthermore, the basic theory refers to

the case of conjunctive default theories where W, the prerequisite, the justification and

the consequent of the rules are conjunctions (sets) of literals. We drop this restriction

later, and generalize the notions to the general case of propositional default theories. A

conjunctive theory that contains defaults of the form a : Mb, A. . . r\Mb,/w, where each

bi is a consistent conjunction, is a seminormal theory if for every default w C biU. . .Ub,
holds.

Let A = (D, W) be a conjunctive default theory. Any literal from the language of

A can be considered as an assumption. A set of assumptions is called a hypothesis.
Intuitively a hypothesis is a set of literals assumed consistent with the semantics of the

theory. A hypothesis may contain both a literal and its negation. We denote by DH,
where H is a hypothesis, the set of defaults obtained by deleting from the set Just(di)
of every rule di E D, the justifications in H, and then deleting every rule dj E D, such

that Just(dj) # 8.

A hypothesis H supports a literal a in A (denoted by H A LX) if there is a sequence

of defaults d I,. . . , dk E DH such that Prer(di) C Th($~ Cons(dj) U IV), 1 < i Q k, and

c(E Th(Cons(dl) U . . . UCons(dk) U W).

A hypothesis H attacks another hypothesis H’ in a theory A (denoted by H .% H’)

if H /+ p for some lfi E H’. A hypothesis is self-consistent if it does not attack itself.

An assumption p is unfounded with respect to a hypothesis H if for every H’ such that

H’ H /? we have H -+ H’. We denote by @d(H) the set of all unfounded assumptions

w.r.t. H in a theory A. We say that a set of propositions E is supported if there is a

hypothesis H that supports every proposition in E. If E is the deductive closure of a

set of propositions supported in A by a hypothesis H such that TH = @A(H), and H
is self-consistent, then E is a partial extension for A.

232 Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244

It is important to notice the relation between partial extensions and the semantics of

logic programs. If P is a logic program we denote by n-(P) the default theory (D, W)

where W = 0 and D contains a rule al A + ’ . A a,, : Mlbl,. . . MTbk/c for every rule

c t ai ,..., a,,,lbi ,... 1 k m P. The next theorem demonstrates that there is a direct b ’

correspondence between the partial extensions of n(P) and the complete well-founded

interpretations of P.

Theorem 6.1. Let P be a logic program. Then E = HUH ’ is a complete well-founded

interpretation of P ifs ~Yz(H’~‘)) is a partial extension of n-(P).

Proof (sketch). Let E = H U H’ be a complete well-founded interpretation of P.

We will show that Th(H’) is a partial extension of m(P). First note that H t.5 CI for
@(P)

some atom a iff H “g’ c(. Hence, H z H’ iff H -+ H’. Consequently, lb E %!p(H)
iff b E ah(p)(H). Since H is complete for P, H = @‘p(H) and therefore -H =

@ti(p)(H). Moreover, H is self-consistent. Finally, H’ contains the maximal set of
h-(P)

atoms supported in P by H, hence the same holds for n-(P). Therefore, Th(H ++) is a

partial extension of m(P).
Assume now that E’ is a partial extension for tr(P) supported by a hypothesis H.

Let E be the set of atoms in E’. Since tr(P) is a conjunctive theory, E’ = I%(E). Then
17(P)

E contains all the atoms supported by H in tr(P), hence E = H H . Note that for every

atom CI, H “s’ CI iff H A CI. Hence, b E @(r(p)(H) iff Tb E @p(H). Therefore, since

1H = %@(p)(H) holds for n(P), H = @p(H) holds for P. Finally, since E is the max-

imal set of atoms supported by H in tr(P) and H is self-consistent wrt m(P), it follows
D(P)

that HUE = H U H ++ = H U H’ is a complete well-founded interpretation of P. q

The next theorem provides a proof-theoretic definition for the partial extensions in

the vein of [36].

Theorem 6.2. A set of propositions E is a partial extension for a propositional semi-
normal conjunctive default theory A = (D, W) isf E = UEO Ei for a sequence of sets
Ei such that

Eo = W and

Vi,i > 0, Ei=Th(Ei_l)U(wJa:Mbl,...,Mb,/w,aEEi_l,andfor every bi,

Tbi #E and Tbi E BE},

whereI BE = {pi p is a literal, p # W and for every sequence of defaults

dl,. . . , d, E D, such that p icons, and for every di in the sequence, Prer(di) c
UjiiCons(dj) U W, the condition 3q EJust(di) such that yq E E holds }.

I6 The full notation is BE d but we drop d when we refer to exactly one theory.

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 233

Proof (sketch). We first show that if E is a partial extension supported by a hypothesis

H, then there is a sequence of defaults satisfying the conditions of the theorem, leading

to E. First we prove that @A(H) = BE. If b E !&A(H) then either there is no sequence

of defaults that proves b, or for every such sequence there is a proposition pi E Just (di)

for some di in the sequence, such that Tpi E E. Then see that b E BE. Similarly if

b $Z @A(H) then b #BE. Hence *d(H) = BE.

For every q E E there is a sequence of defaults dl, . . . , dk that proves q, such

that Prer(di) C l_$zt COns(dj), 1 <i<k, and for every p E Just (di) of every di in

the sequence, p E H holds. Since @b(H) = BE and 42~(H) = -H then up E BE.

Moreover, for every p E Just (di) of every di in the sequence up $ E holds, because

otherwise H is not self-consistent. Hence every q E E satisfies the conditions of the

theorem. On the other hand if q # E then q is not supported by H. This means

that for every sequence of rules proving q (if any) there is pi E Just (di) for some

di in the sequence, such that pi # H and since BE = TH, lpi # BE, and we are

done.

We show now that if E is a set satisfying the conditions of the theorem then it

is a partial extension. First see that E is supported by the set ABE. We prove that

4?L*(lBE) = BE. Assume that b E %!d(lB~). Then either there is no sequence of

defaults that proves b, or every such sequence is blocked by ABE. Then b E BE.

Conversely if b E BE then again, every sequence of defaults proving b (if one ex-

ists) is blocked by some c E E, or in other words, there is an attack on b by a set

of literals in lBE which is the union of the justifications of the rules that prove b.

Hence b E %A(TBE), and %~(-BE) = BE. Moreover, E is the maximal set of propo-

sitions supported by -BE. Assume now that TBE is not self-consistent. Then there

exists a literal b such that b E -BE and Tb E E. Then Tb E BE and Tb E E. The

first condition, yb E BE, means that for every sequence of defaults that prove -b

there is a literal m in the justification of some default of the sequence such -rn E

E. On the other hand, -b E E, means that there exists a sequence of defaults that

prove -b, such that for every justification p in the sequence up @ E holds. This

contradicts the first condition and therefore E is self-consistent. Hence, E is a partial

extension. 0

Roughly speaking, a rule can be applied only if every rule which provides the nega-

tion of a justification of the rule is blocked by the activated rules. The consistency of

the justifications with the partial extension is necessary in order to avoid inconsistent

extensions. Consider, for example, the theory W = 8 and D = {: MB/B,MlB/lB}.

If we do not require the consistency of the assumptions with the extensions, then

the inconsistent set E = {B, lB,. . .} is a partial extension, since BE =

{B,lB,...}.

We define the semantics of the default theory to be its maximal partial extensions.

As in the case of logic programs, for every conjunctive default theory there is

a transformation, that preserves partial extensions, to a conjunctive prerequisite-free

default theory.

234 Y. Dimopoulos, A. TorresITheoretical Computer Science 170 (1996) 209-244

Theorem 6.3. Let A = (D, W) be a conjunctive default theory and A- = (D-, W)
be the prerequisite free conjunctive default theory that contains for every minimal
support of a literal u ECons(r), r E D, a rule r’ E D- with Cons(#) = {m} and
Just(r’) a minimal support of a. Then E is a partial extension for A txE is a partial
extension for A-.

Proof (sketch). Let E be a partial extension of A = (D, W). We show that E is

also an extension for A- = (D-, W), and furthermore BE,J = BE,d-. We first show

the second equality. Assume that for some literal p, p E BE,A holds. There are two

reasons for this to happen. First there is no sequence of defaults dl, . . . , d, E D, such

that p E Cons(d,), and for every di in the sequence, Prer(di) G UjI: Cons(dj) U W.
See that in this case there is no support for P and there will be no rule in D- with

head p hence p E BE,A-. The second possibility is that for every such sequence of

defaults, there exists a q E E, lq E Just(di) for some rule d; in the sequence. But then

every rule in A- concluding p will also contain such a proposition, hence p E BE,A- .
Similar arguments can be constructed for the opposite direction, hence BE,A = BE,A-.

Now assume that b E EA. Then there is a minimal sequence of defaults dl, . . . , d, E

D, which can lead to the derivation of b from W and if p E Just (dl) U . . . U Just (d,)
then --p E BE,A. But then there will be a rule dk E D-, Just (dk) = Just (dl) U

, . . U Just (d,,), with b E Cons (dk). Since B E,A = BE,d- , b E Ed- also holds. If b $ Ed,
then for every sequence of rules (if one exists) that proves b, there is p E Just(di)
for some di in the sequence, such that yp &r B E,A. This means that b 61 Ed- as well.

Hence if E is an extension of A = (D, W) then E is an extension of A- = (D-, W).
We now show the opposite direction. Assume that E is an extension for the theory

A-. First, using similar to the above given arguments, we can prove again that BE,A =
BE,A- . If b E Ed- for some literal b, then this means that there is a sequence of defaults

in A, dl,..., dk E D such that b ECons(dk) and for every p E Just(dl)U.. . UJust(dk),

lp E BE,A. Furthermore, if q EPrer(di) for some di in the sequence, then q icons,
j < i or q E W. Hence b E EA as well. Finally assume that b $! Ed-. This means

either that there is no rule in D- with b as its consequent or for every such rule there

is a proposition the negation of which does not belong to BE,d-. Then, b $2 Ed holds

as well. 0

Notice that during the translation we may need to distribute the literals of the justi-

fication over several M operators, in order to avoid inconsistent justifications. Consider

for example

W=(A) and D=
A:MB A:MTBAC BAC:MD
-,

B

The associated prerequisite free theory is

W=(A) and D’=
:A4B :MTBAC :MB,MTB,MCAD
~

B’ C ’ D

Y. Dimopoulos, A. Torresl Theoretical Computer Science I70 (1996) 209-244 235

In a way similar to logic programs, we define now the rule graph of a prerequisite-

free conjunctive default theory.

Definition 6.4. Let A be a prerequisite-free conjunctive default theory. The rule graph
of A, denoted by W%(A), is the directed graph (Y, a), where V = {r : Y E A} and

8 = {(Q,Y,) : if b E Cons(~) and lb E Just(r,)}.

In [13], it has been proved that the Reiter extensions of a prerequisite-free con-

junctive default theory correspond to the kernels of the theory’s rule graph. The next

two theorems refer to the relation between the partial extensions of a theory and the

semikernels of its associated rule graph.

Theorem 6.5. Let A be a prerequisite-free conjunctive default theory and W%(A) =
(T,b) its rule graph. If E is a partial extension of A, then for the set S = {r : r E
V, Just(r) 2 ABE}, S = S1 U 5’2 holds, where S1 is a semikernel of %?%(A), and S, is
the initial acyclic part for the graph WB(A)/(,!$ u P(Sl)).

Proof (sketch). Let E be a partial extension for the prerequisite-free conjunctive de-

fault theory A. We will show that for S = {r : Just(r) G ABE}, S = SI U S2 holds,

for Si, S, as described above. Since any of the sets Si, S2 can be empty and Si U S2
is always a semikernel, it suffices to show that S is a semikemel for WB(A), and

the initial acyclic part of &Y(A)/(S U T+(S)) is empty. If a node ri E S receives an

incoming edge from some other node rj in %%(A), this means that there is a literal

in Just(ri) the negation of which is in the consequents of rj. But since the negation

of the literal belongs to Bs this means that there must be some node rk E S, for

which (rk,Tj) E & holds. Hence S dominates all the nodes which belong to T-(S).

Moreover, since E is consistent, S is an independent set. On the other hand since for

every rule m $ S U T+(S) there is always a proposition p E Just(m), p $ ABE, node

m receives edges from some nodes in 9?Y(A)/(S U T+(S)). Hence the initial acyclic

part of .429(A)/(S U T+(S)) is empty. 0

Theorem 6.6. Let A = (D, W) be a prerequisite-free conjunctive default theory,
&59(A) its rule graph, K a semikernel of @3(P), and IP the initial acyclic part
of 9%(A) - (K U I+(K)). Then E = Th({p : p E Cons(di) and for the as-
sociated with di node ni E &Y?(A), ni E K U IP holds}), is a partial extension
for A.

Proof. (sketch). The partial extension E is generated by the set of defaults D’, such

that for every di E D’, its associated node ni belongs to KU IP. Define BE = {p : $ d E
D such that p E Cons(d) or Vr E D such that p E Cons(d), for the associated with

d node n, n E I’+(K) U I+(IP) holds }. Then, for every p E just(di) and di E D’,
up E BE holds. Furthermore, for every p E just(di) and di E D’, up @ E holds,

because otherwise K U IP is not a semikemel. [7

236 Y. Dimopoulos, A. TorreslTheoretical Computer Science 170 (1996) 209-244

Fig. 3. The rule graph of theory A’.

Example 6.7. Consider the theory A of Example 6.13. We first convert the theory into

one without prerequisites, obtaining in this way the theory A’ = (D’, W), where

D’ =
1

:MB :MTB :MC/\TB IME/\-Gn-C :MFATE :MGATF

7’7’ C ’ I E ‘F’G ’

The rule graph of this theory is depicted in Fig. 3.

The graph has two (maximal) semikernels Kr = {YZ,Q,Y~} and KZ = {rl} which

correspond to the two maximal partial extensions. The first is a kernel, hence, the

associated partial extension is also a (Reiter) extension.

Theorem 6.2 allows us to extend the definition of the partial extensions to the general

case of default theories, in a straightforward manner.

Definition 6.8. We define a set E to be a partial extension for a default theory A =

(D, W) iff E = Uj?$Ei for a sequence of sets Ei such that

Eo = W and

Vi, i > 0, Ei = Th(Ei_1) U {W[U : Mb1 . . .Mb,/w,a E Ei_1 and for every biy

1 <i <n, bi = A bij where bij is disjunction of literals,

bi is consistent with E and lb, E BE},

where BE = {pi if for every sequence of defaults dl, . . . , d, E D, n 2 0, such that

Th(W U (JJEl Cons(dj)) I- p, and for every default di in the sequence Prer(di) C Th(WU

$~Prer(dj)), th e condition 3q E Just (di) such that lq E E holds }. 0

The notion of partial extension captures a credulous form of reasoning with de-

fault theories. However, there are cases where skeptical reasoning is more appropriate.

Skepticism in default reasoning can be captured by the deterministic and well-founded

extensions, which are notions developed earlier for logic programs.

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 231

Definition 6.9. Let A be a default theory and let E be a set of propositions. We say

that E is a

Deterministic (partial) extension: if E is a partial extension contained in every

maximal partial extension.

Well-founded (partial) extension: if E is a minimal deterministic extension.

For the case of well-founded extensions the next theorem introduces a quasi-inductive

characterization, for general propositional theories.

Theorem 6.10. A set E is a well-founded extension for a default theory A = (D, W)
ifs E = Uz, Ei for a sequence of sets Ei such that

EO = W and

Vi, i > 0, Ei = Th(Ei_1) U {wla : Mb, . . .Mb,/w,a E Ei-1

and for every bi, 1 <i <n, bi = A bij where

bij is a disjunction of literals, bi is consistent with E and ‘bij E BE,},

where BE, = { p(zf f or every sequence of defaults dl,. . . , d, E D such that Th(W U

L&l Co4dj)) t- PY and for every default di in the sequence Prer(di) C Th(W U

UiziPrer(dj)), th e condition 3q ~Just(di) such that lq E Th(Ei_1) holds }.

Proof (sketch). First see that the set E defined above is a deterministic extension. Fur-

thermore any smaller set is not a partial extension, hence E is the minimal deterministic

model.

On the other hand the well-founded model can be expressed as a sequence of sets

Eo,El,... as defined above. 0

Notice the occurrence of E in the definition of E itself. This is necessary for the

general case of theories, but in the case of seminormal theories the consistency check

of the justification with the well founded extension is redundant. For instance, consider

the theory W = {A} and D = {A : MD/B,A : MF/TB}. If we omit the consistency

check of the justifications wrt E then we get WFEl = {B, TB,. . .}, while with the

consistency check we obtain WFE2 = {A}. Thus, in the case of seminormal defaults,

the definition is constructive and deterministic. As a consequence the well-founded

extension of a theory is unique.

Example 6.11. Let A = (D, W), where

W=(A) and

D=
A:MTKAB A:M~CATB B:MCATD C:MDATF

B ’ 42 ’ CATD ’ -F ’

CZMFAEAG C:~I~~EA~G C:MEA~GAH C:M7H

EAG ’ TEATG ’ H

238 Y. Dimopoulos, A. Torres I Theoretical Computer Science 170 (1996) 209-244

Theory A has two maximal partial extensions (which are also Reiter extensions)

namely, El = {A, B, C, TD, E, G, ‘H} and EZ = {A, B, C, lD, TE, TG, -H}. The
deterministic extensions are DE1 = {A, B, C, 1D}, DE2 = {A, B, C, lD, 7H). The
well-founded extension of A is the set DE,.

4.2. Comparison with other approaches

In this section we discuss the relation of our approach to some other formalizations

of default logic. This is done by means of a set of examples which show that our

semantics is different from all the main approaches to default logic. Detailed discussion

of the relation of the framework introduced here to the other formalisms will be the

subject of a subsequent paper.

We start by comparing our semantics to Reiter extensions. It is easy to show that

every Reiter extension is a maximal partial extension.

Theorem 6.12. Let A be a default theory and E a Reiter extension of A. Then E is
also a maximal partial extension for A.

Proof (sketch). Let GD(E, A) be the set of generating defaults of E. Then every jus-

tification of the defaults of GD(E, A) will be consistent with E.
Assume that bi belongs to the justifications of a rule ri E GD(E, A) and ybi +! BE.

Then there is a rule with lbi in its consequents that is applicable wrt to E. Since E is

closed under the rules of D, Tbi E E. But then E is not an extension. Hence for every

bi that belong to the justifications of some rule ri E GD(E, A), Tbi E BE must hold.

Finally for every default d in D - GD(E, A), there must be b E just(d) such that

lb E E, and therefore lb $ BE. Hence, according to Theorem 6.2, E is a partial

extension. It is easy to see that E is also a maximal partial extension. 0

However it is not the case that every (maximal) partial extension is a Reiter exten-

sion, as demonstrated by the following example.

Example 6.13. Let A = (D, W) be a default theory, where

W = {A} and D =
A:MB A:MTB A:MCATB
-,

B 7B ’ c ’

:MEATGAX :MFATE :MGATF

E ‘F’G >

Theory A has two maximal partial extension, namely El = Th({A, lB, C,F}) and

E2 = Th({A,B}). Notice that El is also a Reiter extension, while E2 is not, due to the

presence of the last three rules.

We now consider the semantics for default logic introduced in [30]. The weak exten-
sions are similar to Reiter extensions, except that instead of proving the prerequisites

of the rules, we can assume them to hold in the extension (similarly to autoepistemic

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 239

stable expansions). In fact, weak extensions are quite different from partial extensions.

Consider the following example.

Example 6.14 (Weak extensions, Marek and Truszczynski [30]). Let A be the the-

ory A = (D, W) with

W=0 and D=
C

:MD :MX :MTA :MTB
D,A,-,-

B c

While there is no weak extension (as well as Reiter extension) the partial extension of

A is E = 271((D)).

Partial extensions are different from minimal sets since partial extensions need to be

neither minimal nor closed under the defaults. Furthermore, a minimal set may become

closed by adding to it the negation of a justification. This operation is not allowed for

partial extensions.

Example 6.15 (minimal sets, Marek and Truszczynski [30]). Let

W=0 and D=

There is only one partial extension E = 7%((B)), but there are two minimal sets, E
and E’ = T’h({A}).

Now let

W = {A--+ B} and D = {!p!gF}.

The partial extension of this theory is E = Th({A + B}) and its minimal set (which

is also a weak extension) is E’ = Th({A, B}).

The last class of extensions introduced in [30], namely the partial extensions, are

defined for a default theory A and a well-ordering of D. The way the defaults of D
are applied is quite different from the way they are applied in our framework and lead

to different conclusions. l7 We note that Reiter extensions are partial extensions both

under our semantics and this of [30] (given a suitable ordering of the defaults).

Example 6.16 (partial extensions, Marek and Truszczynski [30]). Consider the the-

ory A = (D, W), with

W={AVBVC} and D=
:MX :MlA :MTB
A,B,C

This theory has one partial extension under our semantics, namely E = Th({A V B V

C}), and three partial extensions under the semantics of [30]. These extensions are

I7 As far as the applicability of defaults is concerned, this semantics is closer to the approaches of [7,38].

240 Y. Dimopoulos, A. Torresl Theoretical Computer Science I70 (1996) 209-244

EI = Th({A}), E2 = Th({B}) and E3 = Z’h({C}), and correspond to the different
orderings of the rules.

In [I, 21 the extension class semantics was introduced. A particular extension class

is defined to be the well-founded semantics of a default theory. Consider the following

example.

Example 6.17 (Extension classes, Baral and Subrahmanian [l, 21). Let

W=0 and D=
:MA :MlA :MB
A,lA,C

Then, E = { Th(C)} is a partial extension for this theory. However see that in the

extension class E’ = { Th({C}), Th({C, 7A, A}), fl}, C cannot be assigned the value

true because of the empty set. The other two partial extensions of (D, W), namely

E, = Th({A, C}) and El = Th({lA, C}) are singleton extension classes for the theory.

The difference between extension classes and partial extensions is also evident in the

case of well-founded extensions.

Example 6.18 (Well-founded extensions, Baral and Subrahmanian [11). Consider the

theory A = (D, W), with

W=(A) and D=
A : MyK,MB A : MX,M-B B : MC,MTD

B ’ -c ’

Then the well-founded extension under the semantics of [l] is E = Th({A}). The

only (maximal) partial extension of this theory, which coincides with the well-founded

extension under our semantics, is E’ = Th({A, B, C, ‘D}). Note that E is not a partial

extension of A. However, E’ is a singleton extension class of A.

Similarly, partial extensions are different from stationary extensions, introduced in

[35]. Consider again the theory of Example 6.17.

Example 6.19 (Stationary extensions, Przymusinska and Przymusinski [35]). Let

A = (D, W) with

W=0 and D=
:MlA :MA :MB
T,A,C

This theory has three partial extensions including E = {C} which is the well-founded

extension. However E is not a stationary extension of A. On the other hand, the empty

set is the least stationary extension, but it is not a partial extension.

In contrast to the above mentioned approaches which are mainly proof-theoretic,

in [34] a three-valued reconstruction of autoepistemic logic has been proposed. This

semantics can be easily extended to default logic. We compare the semantic notion of

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 241

three-valued belief interpretations to the partial extensions by means of the following

two examples.

Example 6.20 (Three-valued belief interpretations, Przymusinski [34]). Let A =
(D, W) be a theory where

W=@ and D=
C

:MTA :MA
A,T .

Theory A has only one partial extension E = Th({B}). Translate A into the autoepis-

temic theory TA = {A t lLA,B c TLTA}. Then, E, with E(LA) = E(L1A) =

E(LB) = E(L4) = undefined, is a three-valued belief interpretation. However the

associated with E set of propositions E’ = 0 is not a partial extension for A.

Example 6.21 (Three-valued belief interpretations, Przymusinski [34]). Consider

again the theory of Example 6.16,

W={AVBVC} and D=
:MX :MlA :MTB
A,-,-

B c

This theory has one partial extension under our semantics, namely E = Th({AVBV C})
but no three-valued belief interpretation.

7. Concluding remarks

In this paper we were concerned with extending the links between three fields of

research, namely logic programming, default logic and graph theory.

Every normal logic program can be transformed into a graph. The stable, partial

stable and well-founded semantics correspond to graph theoretic constructs, namely

kernels, semikernels and the initial acyclic part, respectively. This graph representa-

tion offers several advantages. First, various results from pure and algorithmic graph

theory can be employed in the investigation of both the theoretical and computational

properties of logic programs. New classes of programs that always have stable models

were obtained, and new algorithms that use the graph representation in the computa-

tions become possible. These methods compare favorably with other classical problem

solving methods for logic programming (see [11,121 for details). Finally, the graph

model gives a clear understanding of how interaction between rules can be resolved

within different semantics.

We also presented a reconstruction of default logic based on a straightforward gen-

eralization of the semantics developed for logic programs. The problem of the non-

existence of extensions was resolved in an intuitively appealing manner, whilst the

deterministic and well-founded extensions provide a semantically strong background

242 Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244

for skeptical default reasoning. Not surprisingly, the graph structures defined for logic

programs remain meaningful in the case of default theories.

Several directions for further research exist. Better algorithms for solving the kernel

and semikernel problem are yet to be developed. Future results of the graph theoretic

research on these problems, will probably be useful for the field of nonmonotonic

reasoning. Furthermore the relation of the graph model with the theory of games can

provide a useful link between the latter and logic programming. Finally, the default

logic approach introduced in this paper can be applied to different domains that require

default reasoning capabilities (e.g. inheritance networks).

Acknowledgements

The authors thank Pierre Duchet, Antonis Kakas, Oscar Meza, Hans Jtirgen Ohlbach,

Christos Papadimitriou and Jeffrey Ullman for their useful comments and discussions.

References

[1] C. Baral and V.S. Subrahmanian, Dualities between alternative semantics for logic programs and

nomnonotonic reasoning (extended abstact) in: A. Nerode, W. Marek and V.S. Subrahmanian, eds.,

Logic Programming and Nonmonotonic Reasoning: Proc. 5th Internat. Workshop (MIT Press,

Washington DC, 1991).

[2] C. Baral and V.S. Subrahmanian, Stable and extensions class theory for logic programs and default

logics, .J. Automat. Reasoning 8 (1992) 345-366.
[3] C. Berge, Graphs and Hypergraphs (North Holland, Amsterdam 1973).

[4] C. Berge and P. Duchet, Recent problems an results about kernels in directed graphs, Discrete Math.
86 (1990) 27-31.

[5] N. Bidoit and C. Froidevaux, General logical databases and programs: default logic semantics and

stratification, Inform. and Comput. (1991) 15-24.

[6] A. Bondarenko, F. Toni and R. Kowalski, An assumption-based framework for non-monotonic reasoning,

in: L. Pereira and A. Nerode, eds, Proc. 2nd Znternat. Workshop on Logic Programming and
Nonmonotonic Reasoning (Lisbon, Portugal, 1993) (MIT Press, Cambridge, MA) 171-189.

[7] G. Brewka, Cumulative default logic: in defence of nomnonotonic inference rules, Artificial ZnteNigence
J 50 (1991) 183-205.

[S] M. Cadoli and M. Schaerf, Approximate entailment, in: Trends in AL Proc. 2nd Conf Italian
Association for Arttjicial Intelligence (1992) (Springer, Berlin) 68-77.

[9] M. Cadoli and M. Schaerf, Approximate inference in default logic and circumscription, in: Proc. 4th
Internat. Workshop on Nonmonotonic Reasoning (Plymouth, VT, 1992).

[lo] M. Cadoli and M. Schaerf, A survey of complexity results for non-monotonic logics, J. Logic
Programming 17 (1993) 127-160.

[11] Y. Dimopoulos, Classical methods in nonmonotonic reasoning. in: 2. Ras and M. Zemankova,

eds., Proc. Internat. Symp. on Methodologies for Intelligent Systems, Lecture Notes in Artificial

Interlligence, Vol. 869 (Springer, Berlin, 1994) 500-510.

[12] Y. Dimopoulos, On computing logic programs. Journal of Automated Reasoning, 1996. To appear.
[13] Y. Dimopoulos and V. Magirou, A graph theoretic approach to default logic, Inform. and Comput. 112

(2), (August 1994).

[14] Y. Dimopoulos, V. Magirou and C.H. Papadimitriou, On kernels, defaults and even graphs, Ann. Mathe.
Artificial Intelligence, to appear.

[15] P. Duchet, A sul%ient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1) (1987)

81-85.

Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 243

[161 W. Fcrnadez de la Vega, Kernels in random graphs, Discrete Math. 82 (1990) 2 13-2 17.
[17] C. Froidevaux and J. Mengin, A framework for default logics, in: D. Pearce and G. Wagner, eds., Proc.

European Workshop JELZA’92 (Berlin, 1992) Lecture Notes in Computer Science, Vol. 633 (Springer,

Berlin).

[18] H. Galeana-Sanchez and V. Neumann-Lam, On kernels and semikemels of digraphs, Discrete Math.
48 (1984) 67-76.

[19] H. Galeana-Sanchez, On the existence of kernels and h-kernels in directed graphs, Discrete Math. 110

(1992) 251-255.

[20] H. GelTner, Reasoning with Defaults: Causal and Conditional Theories (MIT Press, Cambridge, MA,

1992).

[21] M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: Proc. 5th Znternat.
Conf and Symp. on Logic Programming (MIT Press, Cambridge, MA, 1988).

[22] M. Gelfond, V. Lifschitz, H. Ptzymusinska and M. Truszczynski, Disjunctive defaults, in: .I. Allen,

R. Fikes and E. Sandewall, eds., Proc. 2nd Znternat. Conf on Principles of Knowledge Representation
and Reasoning (Morgan Kaufman, 1991) 23&237.

[23] H. GelTner and J. Pearl, A framework for reasoning with defaults, in: H. Kyburg, R. Loui and G. Carlson,

eds., Knowledge Representation and Defeasible Inference (Kluwer, Dordrecht, The Netherlands, 1990)

69-88.

[24] H. Galeana-Sanchez, On claw-free M-oriented critical kernel-imperfect digraphs. Journal of Graph
Theory, 21(l) (1996) 33-39.

[25] D. Johnson, C. H. Papadimitriou and M. Yamrakakis, On generating all maximal independent sets,

Inform. Process. Left. 27 (3) (1988) 119-123.

[26] A. Kakas, Default reasoning via negation as failure, in: G. Lakemeyer and B. Nebel, eds., ECAZ-92

Workshop on The Theoretical Foundations of Knowledge Representation and Reasoning, (1992).
[27] A.C. Kakas and P. Mancarella, Negation as stable hypotheses, in: A. Nerode, W. Marek, and V.S.

Subrahmanian, eds., Proc. 1st Znternat. Workshop on Logic Programming and Non-monotonic
Reasoning (1991) 275-288.

[28] K. Kunen, Signed data dependencies in logic program. J. Logic Programming 7 (1989) 231-145.

[29] A. Marek and M. Truszczynski, Autoepistemic logic, J. the ACM 38 (3) (1991) 588419.
[30] A. Marek and M. Truszczynski, Nonmonotonic Logic: Context-Dependent Reasoning (Springer, Berlin,

1993).

[31] C. Papadimitriou and M. Yannakakis, Tie-breaking semantics and structural totality, in: Proc. 11th
Symp. on Principles of Database Systems (1992) 1622.

[32] L. M. Pereira, .I. J. Alferes, and J. N. Aparicio, Default theory for well founded semantics with explicit

negation, in: D. Pearce and G. Wagner, eds., Logics in AZ: Proc. of the European Workshop JELZA’92
(Springer, Berlin, 1992) 339356.

[33] T. Przymusinski, Extended stable semantics for normal and disjunctive programs, in: Proc. 7th Znternat.
Conf on Logic Programming (MIT Press, Cambridge, MA, 1990).

[34] T.C. Przymusinski, Three-valued nomnonotonic formalisms and semantics of logic programs, ArtiJcial
Intelligence 49 (1991) 309-343.

[35] H. Przymusinska and T. Przymusinski, Stationary default extensions, in: Proc 4th Znternat. Workshop
on Nonmonotonic Reasoning (Plymouth, VT, 1992).

[36] R. Reiter, A logic for default reasoning, Artificial Intelligence J. 13 (1980) 81-132.
[37] T. Sato, Completed logic programs and their consistency, J. Logic Programming 9 (1990) 334.
[38] T. Schaub, On commitment and cumulativity in default logics, in: R. Kruse, ed., Proc. European Conf

on Symbolic and Quantitative Approaches to Uncertainty (Springer, Berlin, 1991) 304-309.

[39] D. Sacch and C. Zaniolo, Stable models and non-determinism in logic programs with negation, in: Proc.
9th Symp. on Principles of Database Systems (1990) 205-217.

[40] I. Tomescu, Almost all digraphs have a kernel, Discrete Math. 84 (1990) 181-192.
[41] A. Torres, Negation as failure to support, in: Proc. 2nd Workshop on Logic Programming and Non-

monotonic Reasoning (Lisbon, 1993) (MIT Press, Cambridge, MA).

[42] A. Torres, The Hypothetical Semantics of Logic Programs, Ph. D Thesis, Stanford University, February

1994.

[43] A. Torres, A nondeterministic well-founded semantics. Ann. of Math. and Artificial Intelligence 14
(1995) 37-73.

244 Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244

[44] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating all maximal

independent sets, SIAM J. Comput. 6 (3) (1977) 505-517.

[45] A. Van Gelder, K. A. Ross and J. S. Schlipf, Unfounded sets and well-founded semantics for general

logic programs, in: Proc. 7th Symp. on Principles of Database Systems (1988) 221-230.

