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Abstract 

In this paper we present a graph representation of logic programs and default theories. We 
show that many of the semantics proposed for logic programs with negation can be expressed 
in terms of notions emerging from graph theory, establishing in this way a link between the 
fields. Namely the stable models, the partial stable models, and the well-founded semantics 
correspond respectively to the kernels, semikemels and the initial acyclic part of an associated 
graph. This link allows us to consider both theoretical (existence, uniqueness) and computational 
problems (tractability, algorithms, approximations) from a more abstract and rather combinatorial 
point of view. It also provides a clear and intuitive understanding about how conflicts between 
rules are resolved within the different semantics. Furthermore, we extend the basic framework 
developed for logic programs to the case of Default Logic by introducing the notions of partial, 

deterministic and well-founded extensions for default theories. These semantics capture different 
ways of reasoning with a default theory. 

1. Introduction 

Humans often use patterns of reasoning that enable them to draw conclusions under 

incomplete information. These conclusions are retractable since new information can 

invalidate them. Much research in Nonmonotonic Reasoning has concentrated on cap- 

turing these patterns of reasoning in various formal representations. One of the most 

prominent nomnonotonic reasoning formalizations is Default Logic. On the other hand, 

recent developments in Logic Programming and deductive databases have shown that 

negation as failure is strongly related to various nonmonotonic formalisms, and in 

particular to default logic ([5]). Thus logic programs with negation provide us with a 

framework for nonmonotonic reasoning. 
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Some recent work has dealt with the relation between some nomnonotonic for- 

malisms and graph-theoretic constructs. Torres shows in [41] that the stable models 

of logic programs correspond to the kernels of an associated graph. This result is ex- 

tended in [43], where it is proved that the maximal semikernels of the same graph 

correspond to partial stable models, For disjunction-free default theories, Dimopoulos 

and Magirou show in [13] that extensions correspond to kernels in a related graph. 

In this paper, we further extend the aforementioned results with the introduction of a 

unified semantic and graph-theoretic framework for logic programs and default theories. 

We introduce the class of negative logic programs and a simple graph representation, 

the rule graph. We show that some of the most important proposals for defining the 

semantics of logic programs can be defined in terms of graph-theoretic structures in 

the rule graph. Stable models [21] correspond to kernels, partial stable models [33,39] 

to semikernels and the well-founded partial model [45] to a special semikernel called 

the initial acyclic part. While for negative logic programs the translation to graphs 

is purely syntactic, in the case of general logic programs the translation uses, in a 

limited way, the semantics of the program. We use the logic programming notion of 

support, which we extend to disjunction-free default theories, to show that the above 

equivalences remain valid in the case of disjunction-free default theories. Finally, we 

extend the above mentioned semantics to the full case of the propositional default logic, 

by introducing the notions of the partial, deterministic and well-founded extensions of 

a default theory. 

Aside from the theoretical interest of the above results, we believe the practical 

contribution of this paper is twofold. On the one hand, known properties of graph ker- 

nels and semikernels can improve our understanding of logic programming and default 

logic. Graphs give us an intuitive representation of the interactions between the rules 

and the different ways they can be resolved. Furthermore they allow us to approach 

the formalizations in a way that ignores the logical meaning and concentrates on their 

structural properties. It will become evident later in this paper that this is particu- 

larly useful when we try to investigate complexity issues or tackle problems like the 

existence of semantics (stable models, extensions) and the development of algorithms. 

On the other hand, the unified graph model gives us a clear intuitive understanding 

about the translation of the semantical constructs of logic programs into the domain 

of default logic. The graph structures defined for logic programs remain meaningful in 

default logic. The proposed semantics for logic programs can be naturally transferred 

to default logic, and allow us to resolve various shortcomings of the initial semantics 

of default logic. 

The rest of this paper is organized as follows. In Section 2, we introduce the fun- 

damental concepts and results from logic programming, default logic and graph theory 

that we use in the rest of the paper. In Section 3, we introduce the restricted class of 

negative logic programs and prove the basic results of our graph model. In Section 4, 

we extend the results of the previous sections to the class of general logic programs. In 

Section 5, we explore some of the complexity and algorithmic implications of the graph 

model. In Section 6, we show how the semantical and graph-theoretical constructs can 
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be transferred to the case of default logic. Finally, in Section 7, we summarize the 

main contributions of this work. 

2. Preliminaries 

In this section we introduce the basic terminology and notation for logic programs, 

default theories and directed graphs used throughout this paper. We also summarize 

some of the fundamental results used in later sections. 

The semantics presented in this section is along the lines of the hypothetical seman- 

tics for logic programs (see e.g. [23,20,27,42]). 

2.1. Logic programs and hypotheses 

A program P is a set of first order rules of the form 

UI A U2 A . ’ . A a,, +- yl A y2 A . . . A y,,, 

where n > 1, m > 0, every Ui is an atom, and every yi is a literal. The literals in the 

body of a rule are called subgoals. The above form of logic program differs from the 

standard since it allows conjunctions in the head of rules instead of single atoms. We 

choose to permit conjunctions to make a clearer connection with the default theories 

introduced in Section 6. Nevertheless, the above rule form should be seen solely as a 

shorthand for the set of rules 

@I +- yl A y2 A . . . A y,,, 

~2+-y1Ay2A...Aym 

@-II + y1 A y2 A . . . A y,,, 

A rule with no subgoals is considered identical to the conjunction in its head. All 

variables are implicitly universally quantified. A datalog program is a program with 

no occurrences of function symbols. In this paper we refer exclusively to datalog 

programs. 

If r is a rule then head(r) denotes the set of atoms in the head of r, and body(r) 
denotes the set of literals in its body. If R is a set of rules then body(R) = UrER body(r) 

and head(R) = lJrER head(r). 
Let P be a logic program. We denote by S?(P) the Herbrand base of P and by PiMt 

the Herbrand instantiation of P, that is, the ground program obtained by replacing the 

variables in P by terms in its Herbrand universe in all possible ways. An assumption 
is a ground negative literal in -Z(P), and a hypothesis is a set of assumptions. If A 

is a set of literals then ~/1 is the set of literals corresponding to the negation of the 

elements in A. 
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A hypothesis A enables a rule r if all negative subgoals in r are contained in A, that 

is, (body(r) - A) C X’(P). The set of rules in a program P enabled by a hypothesis 

A is denoted by enabled(A,P). 

2.2. Supports and attacks 

We denote by PA the ground program resulting from deleting all assumptions in a 

given hypothesis A from the body of rules in Pinsr, and Pi the program resulting from 

deleting all rules with negative subgoals from PA. Since Pi is a ground Horn program 

for any A, deduction can be limited to forward application of the rules without loss of 

expressive power ’ . 

Definition 2.1. A hypothesis A is a support for an atom LY in a program P (denoted 

byA~,cr)2ifP~~a.IfO~3?(P),wewriteA~@ifforalla~Owehave 

A ?+ CC. We denote by A’ the set of atoms supported by a hypothesis A. Furthermore, 

a support A is minimal for CY (denoted by A “A’ cz) if no subset of A supports LX. 

Example 2.2. Consider the following program PI: 

p +- ‘4 A 1t 
qt-pA7t 
r+-Tp 
r +- lr 
t+s 

(74, +, up} supports p, and there are only two minimal supports for r: {up} and 

{-v}. Moreover, t has no support in PI even though there is a rule with t in its head. 

Intuitively, a hypothesis supports an atom if the latter can be proved by applying 

the rules “forward’, assuming true all the negative atoms in the former. Notice that 

support is then a monotonic operator. Notice also that a minimal support corresponds 

to the leaves of a proof tree and therefore is finite. All conclusions supported by 

an assumption A are entailed by A UP. However, the reciprocal of this statement is 

not true. For instance, in PI above, the hypothesis {lr} does not support p while 

Pi U I--> k P. 

Definition 2.3. A hypothesis A attacks another hypothesis A’ in a program P (denoted 

by A z A’) if A A j3 for some -p E A’. A hypothesis A minimally attacks another 

hypothesis A’ in a program P (denoted by A “2’ A’) if it is a minimal hypothesis 

1 For simplicity we assume that the only atoms of the language of P are those that correspond to literals 

that occur in P. 
2 Notation: We omit the superscript P from the above notation as well as others introduced later when it is 

clear from the context. A min superscript over a binary relation always indicates the minimality of the left 

operand (with respect to set inclusion). 
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such that A A fl for some -fl E A’. 3 A hypothesis A is self-consistent in a program 

P if it does not attack itself. 

In the example above, {lt, up} 5 {-p, 74). The hypothesis {up, -t} is self- 

consistent but {-p, 74, lt} is not since {up, 74, +} 2 {q, p}. 
The notion of an unfounded assumption defined next, was introduced in [45]. 

Definition 2.4. An assumption -fi is unfounded with respect to a hypothesis A if for 

every A’ such that A’ H p we have A -+ A’. We denote by %!p(A) the set of all 

unfounded assumptions w.r.t. A in program P. 

2.3. Logic program semantics 

A (Herbrand) interpretation I for a program P is a subset of Z(P)U-X(P) such 

that I f7 TI = 0. We denote by I+ and I- respectively I fl X(P) and In -T%(P). We 

also denote by ? the set Z(P) - (I+ U TI-). We say that CL E X’(P) is dejned in I if 

cx E I+ U II- and undejined if c1 E f. An interpretation I is total if S(P) = I+ U TI-, 
otherwise it is partial. An atom a is true in I if a E I, false if ~CI E I. An interpretation 

I is a partial model for a program P if P U I is consistent. A model is a total partial 

model. Finally, the set of rules enabled by an interpretation I is given by the definition 

enabled(I,P) = enabled(I-,P). We now define the semantical constructs explored in 

this paper: 

Definition 2.5. Let P be a program and A be a self-consistent hypothesis. The sup- 
ported interpretation of A is IA = A U A”. We say that an interpretation is supported 
if it is the supported interpretation of some self-consistent hypothesis A. We say that 

an interpretation I is well-founded if I is supported and I- C_ ?&(I-). A well-founded 

interpretation I is complete if I- = %(I-). 

For example, in PI of Example 2.2 the interpretation I = {p, 14, Tt} is well- 

founded but not complete since {lq, 7t) = I- C %!p,(I-) = (14, v, -t}. The set 

{p, 14, TS, Tt} is a complete well-founded interpretation. 

Definition 2.6. Let P be a program and let I be a supported interpretation. We say 

that I is a: 

Stable model: ([21]) if I is total. 

Partial stable model: ([39]) if I is a maximal well-founded interpretation. 

Deterministic (partial) model: ([39]) if I is a complete well-founded interpretation and 

it is contained in every partial stable model. 

Well-founded (partial) model: ([45]) if I is the minimal deterministic model. 

3 Notice that for two minimal attacks A’ and A” on a hypothesis A, A’ 5 A” may hold, if A’ “LP A on a 

literal ~a and A” “!kP A on a literal -8. 
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The well-founded model coincides with the unique minimal complete well-founded 

interpretation. 

For instance, Pi above has one stable model ((1~ q, r, ls, lt}), two partial stable 

models ({‘P, q, r, ls, lt} and {p, 14, V, -t}), and only one deterministic model, its 

well-founded model ({ls, it}). 

We now show that partial stable models and stable models are complete well-founded 

interpretations and that stable models are nothing but total partial stable models. 4 

Proposition 2.7. Let I be a partial stable model of P. Then I is a complete well- 
founded interpretation. 

Proof. If I were not a complete well-founded interpretation then Iq,(I-j would be a 

well-founded interpretation strictly containing I. 0 

Lemma 2.8. Let I be a stable model of P. Then I is a well-founded interpretation. 

Proof. If -/I E I- and A ++ -a then A $ I-, because I- is self-consistent. Since 

A U TI+ # 8 and I is supported, I- -+ A. Therefore, -/3 E %p(I-) and I- c %p(I-). 
0 

Proposition 2.9. Let I be a stable model of P, Then I is a complete well-founded 
interpretation. 

Proof. Consider any l/3 in @p(l-). j? $! I+ since otherwise I- H a and I- would 

have to attack itself because l/3 E %&-). Since I is total, -/3 E I- and therefore 

%p(l-) Cl-. Since 1 is a well-founded interpretation, I- = %ip(l-). q 

Since every stable model is total, the above proposition implies the following corol- 

lary. 

Corollary 2.10. Let I be a stable model of P. Then P is a partial stable model. 

Finally, notice that all of the above semantical constructs define the meaning of 

a program depending exclusively on the support relation that the program defines. 

Therefore, two programs that define the same support relation ought to be treated as 

identical. This notion is captured by the following definition. 

Definition 2.11. Two logic programs, P1 and P2, are support-equivalent if for every 

hypothesis A, we have A 5 M if and only if A I% oz. 

Notice that if two programs are support-equivalent then the stable models, partial 

stable models, deterministic models and well-founded models are the same for both 

programs. 

4 The proof of this latter fact was originally given in [39]. 
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2.4. Default theories 

In [36] Default Logic was introduced in order to augment first-order logic with a 

set of default assertions. In this paper we restrict ourselves to the case of propositional 

Default Theories. A (propositional) default theory is a pair A = (D, W), where W is 

a finite set of propositions and D is a finite set of default rules of the form d = a : 

Mb 1 . . .Mb,/w, where a, bl , . . . , b,, w are arbitrary propositions. Proposition a is called 

prerequisite of the rule d (denoted as Prer(d)), the set of propositions bl,. . . , b, justi- 

fications (denoted as Just(d)) and the proposition w consequent (denoted as Cons(d)). 

The default rules are roughly rules of inference stating the fact that if a is provable 

and b, , . . . , b, are consistent, then w is also provable. 

The key concept in Default Logic is that of an Extension of a default theory, which 

is intuitively what can consistently be believed given (D, W). 

Definition 2.12. A set of propositions E is an extension of a propositional default 

theory A = (D, W) iff E = Ur,Ei, where Eo = W and Ei+i = Z’f%(Ei) U{w]a : 

Mb i...Mb,/wED,aEEiandybj#Efor l<j<n}. 

A default theory for which both W and the prerequisite, justifications and consequents 

of the rules are conjunctions (sets) of literals is called conjunctive default theory (or 

disjunction-free default theory). A theory which contains no prerequisites in its rules 

is called prerequisite-free default theory. 

2.5. Graphs and kernels 

A directed graph or graph 5 is a pair (V, 8) where Y is a set and d is a subset 

of Y x Y. Elements in V are called nodes and members of 6 are called edges. If 

e = (vi, ~2) is an edge we say that e goes from vi to ~2. If 9 is a graph then Y(9) 

denotes the set of nodes in 9 and 6(‘S) denotes the set of its edges. An edge (v,v’) E 

d(B) is called symmetric if (v’, o) E b(B). A chord of a cycle y = nl,. . .nP, nl is an 

edge (ni, nj) with j # i + 1 (mod p). 
If 9 is a graph and v E Y(B) we define r;(v) = {v’](u,u’) E d(B)}, and T;(v) = 

{v’I(u’,u) E a(s)}. Th ese definitions are extended to sets of nodes through the fol- 

lowing equations: r$( I’) = lJvEY r;(v), and r;(V) = UoEr, r;(r). The subscript Q 

will be dropped from the above notation whenever clear from the context. 

Let 9 = (V, 8) be a graph, and 9’“’ a subset of 9’“. We denote by &7/V’ the set 

6 n V’ x V’. The subgraph of 9 induced by Y’, denoted by Y/Y’, is the graph 

(V-‘, 8/V). 

Definition 2.13. Given a directed graph (V, a), and a subset V’ of Y, we say that 

V is: 

Independent: if there are no edges between elements of “Y-‘, i.e., if 8/V = 0. 

’ In this paper the term graph refers exclusively to directed graphs. 



216 Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 

Dominant (dominating): if for all v E V - 9’“’ there is a v’ E V’ such that (v’, V) E 8, 

i.e., if Y - Y’ G r,+(V’). 

Semidominant: if for all v E V - V’, such that (v, u’) E 8 with v’ E V’ then there is 

a v” E V’ such that (v”, v) E Q, i.e., &(V’) G ri(V’). 

Definition 2.14. Let 9 be a graph, and X a subset of Y(3). We say that X is a 

kernel if it is independent and dominant. We also say that X is a semikernel if it is 

independent and semidominant. 6 

The following proposition follows trivially from the above definition: 

Proposition 2.15. Let 9 be a graph. If AC’ is a kernel of 9 then X is a maximal 
semikernel of 9. 

Definition 2.16. A graph 3 is kernel-perfect if for every “.Y’ G V(3) the graph 93/V’ 

has a kernel. 

Many sufficient properties for a graph to be kernel-perfect have been found. The 

classical results are included in the following proposition: 7 

Proposition 2.17. A graph G 
properties: 

1. 99 is acyclic. In this case 
2. 9 contains no odd-length 
3. 9 is symmetric. 

is kernel-perfect if it satisfies any of the following 

the kernel is unique (von Neumann). 

cycle (Richardson). 

4. 3 is transitive. In this case all kernels have the same cardinality (K&rig). 

Now we introduce the notion of initial acyclic part of a graph and prove that it 

exists and is unique for every graph. 

Definition 2.18. Let B = (V,&) be a graph. We define the initial acyclic segment of 

93 to be a set of independent nodes Y’ C Y such that it can be well-ordered in such 

a way that for every v E V’ we have T-(v)C P({v’ E -Ir’lv’ < v}). The initial 
acyclic part of a graph is its maximal initial acyclic segment. 

Lemma 2.19. If 9Y is a set of initial acyclic segments of 9 then YaY = USES9 S 
is an initial acyclic segment of Y. 

Proof. For any S E 49, let <s be a well-order of S that complies with Definition 

2.18. Let < 99 be any well-order of XY, and let S, = min <bY {S E 99 : s E S} 

for any s E XY. We define < in 9Y such that s < s’ if and only if S, <YY $1 or 

if S, = S,! and s <s, s’. It is easy to see that < is a well-order that complies with 

Definition 2.18. 0 

6 Often symmetric to our definitions are used for kernels and semikernels (see for example [3]). 

7 For a more extensive review of the area see [4]. 
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Proposition 2.20. Every graph has a unique initial acyclic part. 

Proof. Notice that the empty set is an initial acyclic segment for every graph. It follows 

from the previous lemma that the union of all initial acyclic segments is the unique 

initial acyclic part. 0 

Finally we show that every acyclic segment is a semikernel. 

Proposition 2.21. If $9 is an initial acyclic segment of 3 then 99 is a semikernel 
of 9. 

Proof. It is an easy ordinal induction to prove that $9 is an independent set. To 

prove semidominance, notice that if v E r-(39’) then there is a v’ E 99 such that 

v E r+(v’). 0 

3. Negative logic programs and rule graphs 

In this section we introduce the restricted class of negative logic programs. We also 

introduce the rule graph whose vertices correspond to rules and whose edges capture 

the notion of attack. We show that kernels in this graph correspond to stable models 

while semikernels correspond to well-founded interpretations. 

Definition 3.1. A negative logic program is a logic program containing only rules of 

the form 

Lx1 ACQ A..’ A c1, + +i A 782 A . . . A -pm 

where n 3 1, m 2 0, and every ai and every /Ii is a ground atom. 

The following properties follow from the form of negative logic programs. 

Proposition 3.2. Let P be a negative logic program. Then A L u if and only if A 
enables a rule in P such that CI E head(r). 

Proof. Since all rules in P have only negative subgoals, for any A, Pi contains only 

one rule r’ with head(J) = head(r) and body(#) = 0 for every rule Y in P such 

that body(r) E A. Therefore, Pi k CI if and only if there is a rule r in P such that 

body(r) C A and a E head(r). q 

Corollary 3.3. Let P be a negative logic program, Zf A m%p c1 then there is a rule r 
in P such that A = body(r) and CI E head(r). 

Corollary 3.4. Let P be a negative logic program. An assumption -/3 is unfounded 

w.r. t. A if and only tf for every rule r in P such that fi E head(r), A A body(r). 
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Definition 3.5. Let P be a negative logic program. We say that P is reduced if, for 

every two rules t-1 and t-2 in P: 
1. If body(r1) = body(r2) then rl = t-2. 
2. If head(r-1) n head(r2) # 0 and body(rl) G body(r2) then rt = r2. 

The central property of reduced negative logic programs is that the bodies of rules 

are exactly the minimal supports of atoms in the program. 

Proposition 3.6. Let P be a reduced negative logic program. A “3’ tl if and only if 
there is a rule r in P such that A = body(r) and a E head(r). 

Proof. The “only if” part follows from Corollary 3.3. To prove the “if” part, consider 

a rule r in P such that c1 E head(r) and A = body(r). Then A A CC Now, if A’ “A’ CI 

and A’ & A, there is a rule r’ such that body(r’) = A’ c A = body(r), Condition 2 of 

Definition 3.5 implies that A = A’. 0 

Reduced negative logic programs can be seen as support-equivalent canonical forms 

for negative logic programs. s The next theorem shows that a reduced negative logic 

program can in fact be obtained by “reducing” a given negative logic program. 

Theorem 3.7. Let P be a negative logic program. There is a reduced program P’ 
such that P’ is support equivalent to P. Moreover, given P, P’ can be computed in 
polynomial time. 

Proof. Given a negative logic program P we can build a reduced negative logic pro- 

gram by using the following procedure: 

(1) foreachrinp 
if 3 E P (body(r’) = body(r)) then 

remove r from P 
add head(r) to head 

end if 
end for 

(2) for each r in P 
for each a in head(r) 

if 3r’ E P (U E head A body(r’) c body(r) then 
if head(r) - {a} # 0 then 

remove CI from head(r) 
else 

remove r from P 
end if 

end if 
end for 

end for 

* We generalize this result to general logic programs in Section 4 
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Loop (1) collapses rules with the same body, and therefore P satisfies Condition 1 of 

Definition 3.5 after the loop exit. Loop (2) removes redundant atoms and rules, and 

therefore the resulting P satisfies Condition 2 of Definition 3.5. The above program 

can obviously be implemented in polynomial time. 0 

We now introduce a graph theoretical representation for reduced negative logic pro- 

grams. 

Definition 3.8. Let P be a reduced negative logic program. The rule graph of P (de- 

noted by SW’(P)) is the directed graph (V,&), where V = {T[Y E P} and d = 

{hr2)IheaC1) n 7W@2) # 0}.9 

In the following we introduce the main results of this section, linking the semantics 

introduced in the previous section to the graph theoretical structures of kernels and 

semikernels in the rule graph. 

Theorem 3.9. Let P be a reduced negative logic program. Zf Z is a well-founded 
interpretation of P then enabled(Z,P) is a semikernel of 93(P). 

Proof. Since I- is self-consistent, enabled(Z,P) is an independent set. Now, if there 

is an edge (r,r’) in W%(P) with r’ E enabZed(Z,P) then body(r) is a minimal support 

of an atom c( such that lc( E body(r’). Since -UX E I-, lc( is unfounded w.r.t. I- and 

I- -+ body(r). Therefore, there is a rule r” in enabZed(Z,P) such that body(r”) -+ 
body(r) and then (r”,r) is an edge in B%(P). q 

Theorem 3.10. Let P be a reduced negative logic program. Zf K is a semikernel of 
F%?%(P) then Zbo&(K) is a well-founded interpretation of P. 

Proof. First we prove that body(K) is self-consistent. If body(K) is not self-consistent 

then there is a rule r in enabZed(body(K),P) such that a E head(r) and la E body(K). 
Therefore, there is an edge from r to some rule in K. Since K is a semikernel then 

there is a rule r’ E K such that there is an edge (r’,r) in 9W(P). But this means 

that body(#) is a minimal attack of an assumption -#I in body(r) & body(K). Since 

-/I E body(K), there is an r” E K such that -/I E body(r”). Thus, there is an edge 

from r’ to r”, but this edge would contradict the supposition that K is independent. 

Now we have to prove that body(K) 2 @!p(body(K)). Let -fi E body(K) and A “A’ 
p. Thenthere is a rule r in P such that body(r) = A. Therefore, there is an edge from 

r to some rule in K, but since K is a semikernel there is an edge from some other 

rule r’ in K to r. Then body(r’) “2’ A and body(K) 5 A. Therefore ~fi is unfounded 

w.r.t. body(K). 0 

9 Notice that I = {(q, r2)lbody(rl) “JY body(q)}. 
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Theorem 3.10 is not the full reciprocal of Theorem 3.9 since there are well-founded 

interpretations that are not of the form Ibody( where K is a semikernel of %?g(P). A 

well-founded interpretation can contain other assumptions that are either not explicitly 

used in the program or are heads of rules invalidated by the assumptions in the bodies 

of the rules of a semikemel. We now combine theorems 3.9 and 3.10 through the 

introduction of addition sets. lo 

Definition 3.11. Let P be a program and d a hypothesis. A subset Y of %p(d) - A 

is an addition set for A in P if (A U Zf = A’. 

Lemma 3.12. Let Z be any interpretation of P. Then the following statements are 

true: 
1. (I-)’ = body(enabled(Z, P))‘. 
2. @p(Z-) = @p(body(enabled(Z, P))). 

Proof. Proposition 1 is trivial, since the only assumptions in I- that can be used to 

apply rules are in enabled(Z, P). Proposition 2 follows from Proposition 1. q 

Theorem 3.13. An interpretation Z for a reduced negative program P is well-founded 
if and only if there is a semikernel K in SW(P) such that Z = Zbody(K) U T where T 
is an addition set for body(K) in P. 

Proof. We first prove the “if” part. Let K be semikemel of S?%(P) and Y an addi- 

tion set for body(K) in P. By Theorem 3.10, we have that Z&,&(K) is a well-founded 

interpretation. Now Z = Z&+(K) U r is supported since the assumptions in r do 

not support any new atom. And since r c %!ip(body(K)) = %!p(body(K) U Z”), Z is 

well-founded. 

To prove the “only if” part, consider any well-founded interpretation I. Since Z 

is supported, Z=Z- U (I-)‘=body(enabZed(Z,P)) U T U (I-)‘. By Lemma 3.12, 

Z = body(enabZed(Z,P)) u 2” U body(enabled(Z,P))‘. By Theorem 3.9 we know that 

enabled(Z,P) is a semikemel of SW(P). To prove that r = I- - body(enabled(Z,P)) 
is an addition set for body(enabled(Z,P)) in P we notice that since Z is well-founded 

we have that r C %‘p(Z-) - body(enabZed(Z,P)). By Lemma 3.12 we have %p(Z-) = 

%p(body(enabZed(Z, P))), so T & %!p(body(enabZed(Z, P))) - body(enabZed(Z, P)). By 

Lemma 3.12 we also have that (Z-)’ = body(enabZed(Z,P))‘. Therefore r is an 

addition set for body(enabZed(Z, P)). q 

Corollary 3.14. Let P be a reduced negative logic program. An interpretation Z for 
P is a partial stable model of P tf and only tf there is a maximal semikernel K in 
%??(P) such that Z = Zb&(K) u T where T = %,p(body(K))- body(K) is the maximal 

addition set for body(K) in P. 

lo In [41,43] a different approach is used. We discuss this approach in Section 4. 
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Stable models impose stronger restrictions on the rules they enable. While rules 

enabled by a well-founded interpretation need to counterattack only rules that at- 

tack them, the rules enabled by the stable models need to attack every other 

rule. The next theorem formally states the link between stable models and 

kernels. 

Theorem 3.15. An interpretation I for a reduced negative program P is a stable 
model of P if and only if there is a kernel K in %%!2(P) such that I = Ib&(K) U r 

where T = %!p(body(K)) - body(K) is the maximal addition set for body(K) in P. 

Proof. To prove the “if” part, notice that since K is a kernel then it is also a maximal 

semikernel, so Z is a partial stable model. Furthermore, since K is a kernel, then every 

atom is either in the head of an enabled rule (hence it is supported by body(K)) 
or all its rules are made invalid by body(K) (hence it is unfounded w.r.t. body(K)). 
Therefore I is total. 

To prove the “only if” part, let Z = I- U (I-)’ be a stable model and define 

K = enabZed(I,P). Then Z is a partial stable model and by the previous corollary 

we know that K is a maximal semikernel. We must prove that K is a kernel. Since 

K is independent, if K is not a kernel then there is a rule r E P - K such that 

r # Z&@0 The fact r $ ZLyCP)( K means that for all the literals -b E body(r), 1 

b # enabZed(I,P)‘=I+. On the other hand there must be a literal lrn E body(r) such 

that Trn 6 I-, because otherwise Y E enabled(I,P), hence r E K. Therefore m is 

undefined, a contradiction since Z is total. 0 

The next theorem demonstrates the fact that within well-founded models stronger 

restrictions are imposed on the way the interactions between the rules are resolved. In 

particular, well-founded models enable only rules that satisfy a non-circularity condition 

in the way they interact. 

Theorem 3.16. Let P be a reduced negative logic program. The interpretation I is 
the well-founded model of P if and only if I = IbOdY U r where IP is the initial 
acyclic part of SW(P) and T = %p(body(IP)) - body(IP) is the maximal addition 
set for body(IP) in P. 

Proof. To prove that if Z = Zb&(lp) U r then Z is the minimal complete well-founded 

interpretation of P, we first show that r is an addition set for Zb&(lp). Since IP is 

maximal then Y’r E P, if body(r) C T U body(IP) = @ip(body(ZP)) U body(IP), then 

Y E IP and body(r) C body(IP). Hence, (@p(body(IP)) U body(IP))’ = body(ZP)’ 
and r is an addition set for Zb+([p). Since the initial acyclic part is a semikemel, it 

follows from theorem 3.13 that Z is a well-founded interpretation. Additionally, since 

r G I, Z is complete. It remains to show that Z is the minimal such set. First observe 

that every literal of r must be included in Z for Z to be complete. Additionally we can 

prove inductively on the well-order for ZP that if some literal p E body(ZP) is omitted 
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then I is not complete. Hence, I is the minimal complete well-founded interpretation 

of P, i.e. a well-founded model of P. 

Let I now be the the well-founded model of P. Let Ii = {-blj9 r E P, b E head(r)}. 

Since I is a complete well-founded interpretation then Ii GI-. Let RI = {TIT E 
P, body(r) &II} = emzbled(ll, P). Then head(R1) CI, and Rl is an initial acyclic seg- 

ment for S%‘(P). Let I2 = {lbl’dr, b E head(r), 31~ E body(r), p E head@1 I}. Then 

I2 & qp(I) and hence I2 C I-. Let R2 = {r lr E P, body(r) C Zl U 12) = enabled(ll U 

12,P). Then again head(R2) c I and R1 U R2 is an initial acyclic segment for .%!Y(P). 

Iterating this way over the ordinals we define I’ = 1~ 
dZX = &&(U#R,) ” (%U,&) - 

body(u, R,)). By lemma 3.12, %p(U,&) = ~~(body(enabled(U,Z)), which means 

@P(U,L) = @!p(b44J,&)). Hence I’ = JodycU R,j U (~dNdJ,Rd) - 
01 

b44_J, Ret )). 
Note that I’ C I and that U, R, is an initial acyclic segment for B%(P). Furthermore, 

U, R, is the maximal initial acyclic segment since for any rule r E P-(U, R,) there is a 

literal lb E body(r) such that b E head( with Y’ E P- (U, R,). Hence, U, R, is the 
initial acyclic part of 939(P). Then IJ, R, is a semikernel, hence I’ is a well-founded 

interpretation provided that r = %p(body(U, R,)) - body(u, R,) is an addition set for 
body(u, R,). Note that r U body(u, R,) = @‘p(body(lJ, R,)) U body(U, R,). Assume 

that a E (+2~(body(U, R,)) u body(u, R,))‘. Then there is a rule r E P such that 

a E head(r) and for every lb E body(r), lb E @p(body(u, R,)) U body(lJ, R,). ‘Then 

we can prove that Y E U, R,, hence ( 2” U body(u, R,))’ = (body(lJ, R,)‘, that is, 

Y is an addition set. Hence I’ is a well-founded interpretation. Furthermore, notice 

that I’ is a total well-founded interpretation. Since I’ C I and Z is the minimal total 

well-founded interpretation, I = I’. Since IJ, R, is the initial acyclic part of B%(P), 

I= &,~+(IP) u (~db4GP)) - bdWP)). 0 

We recapitulate the results presented in this section by means of the following 

example. 

Example 3.17. Let P2 be the following negative logic program: 

p,s + 7q,7y (rl) 

4 +- TP,Tr C-2) 
s + 7s (r3) 
t i- Tr G-4) 
u +- d G-5) 

The rule graph of P2, A%?(P2), is depicted in Fig. 1. The semikernels of this graph 

are S1 = {rl}, S2 = {rz}, & = {rd}, 84 = {rl,r4}, S5 = {r2,r4} (the last two are 

maximal). The first three semikernels correspond to the well-founded interpretations 

Zl = (74, v, p, s, t}, 12 = {up, lr, q, t}, 13 = {v, t}, respectively. None of these well- 

founded interpretations is complete. The corresponding complete well-founded models 

are I4 = (74, v, p,s, t, w}, I5 = (1p, v, q, t, TU}, I, = {lr, t, 1~). The first two of 
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Fig. 1. Rule graph for P2 (.%Y(Pz)) 

these complete well-founded models correspond to the maximal semikernels S4 and S, 

respectively and therefore are partial stable models. Since S4 is a kernel for B?%(P) 

then 14 is also a stable model. Finally the initial acyclic part of 99(P) is the set Ss, 

hence the well-founded model of P is the set 16 = {v-, t, -m}. 

4. The case of general logic programs 

In this section, we extend the results for negative logic programs we have developed 

so far, to the case of general logic programs. We show that for every general logic 

program there is a support-equivalent reduced negative logic program. We also show 

that the rule graph of the corresponding negative program represents the support relation 

of the original program. 

Definition 4.1. The negative equivalent of a given logic program P is the negative 

logic program P- containing exactly every rule r where body(r) is a minimal support 

of some atom in P, and head(r) = {albody “2’ a}. 

Proposition 4.2. Let P be a logic program. Then P- is reduced and support-equivalent 
to P. 

Proof. Since no two different rules having the same body in the transformed program 

fulfills Condition 1 of Definition 3.5. Now, if cc E head(rl)rlhead(rz), it is not possible 

that body(rl) c body(r2) because otherwise body(r2) would not be a minimal support 

of K Therefore P- is reduced. 

The fact that P- is support-equivalent to P follows directly from Proposition 3.6. 

0 
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Proposition 4.3. If P is a datalog program, then P- is jinite. 

Proof. Since P is a datalog program, then 2(P) is finite. But P- can not contain 

more than 2%cp) rules. 17 

We now introduce the minimal attack graph of a logic program and show that it 

corresponds to the rule graph of its negative equivalent. 

Definition 4.4. The minimal attack graph of a program P, denoted by Asz?‘S(P), is 

the directed graph (V,b), where V = (dl3ad “3’ M} and d = {(dl,d2)ldl “%‘42}. 

Proposition 4.5. Let P be a logic program. The graph Ad%(P) is isomorphic to 
the graph SY(P-). 

Proof. Consider the function that maps every minimal support in P into the rule with 

the same body in P-. It follows trivially from the above definition that this function 

is an isomorphism. 0 

Combining the above proposition with the results in Section 3 we have the following 

corollary. 

Corollary 4.6. Let P be a program, and let I be an interpretation for P. The following 
propositions are true: 
1. I is a well-founded interpretation of P if and only if there is a semikernel K in 

J.~!JzZ’$(P) such that I = I&,&,(K) U T where T is an addition set for body(K) in 
P. 

2. I is a partial stable model of P if and only if there is a maximal semikernel K 

in &?‘8Y(P) such that I = IbOdy U T where T = %lp(body(K)) - body(K) is a 
maximal addition set for body(K) in P. 

3. I is a stable model of P if and only if there is a kernel K in &&9(P) such that 
I = I&@(K) U r where T = %p(body(K)) - body(K) is a maximal addition set 

for body(K) in P. 
4. I is the well-founded model of P if and only if I = IbOdY U T where IP is the 

initial acyclic part of A’&‘%(P) and T = %!p(body(IP)) - body(IP) is a maximal 
addition set for body(IP) in P. 

It is well known that stable models do not exist for every program. Using the 

results of Proposition 2.17 we can identify classes of programs for which the ex- 

istence of a stable model is guaranteed by some property of its minimal attack 

graph. 

Definition 4.7. A program P is support-stratljied if A&59(P) is acyclic. 

A consequence of the classical result by von Neumann is the following. 
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Proposition 4.8. Every support-stratijied program has a unique stable model. 

Theorem 4.9. Every locally stratified program is support-stratijied 

Proof. Notice that if -/3 belongs to a minimal support of tl in P, there is a proof of CI 

that uses a rule with -j3 in its body. It follows that 01 depends on l/3. Therefore, if the 

dependency relation has no cycles the minimal support relation can not have cycles. 

0 

Example 4.10. Support-stratification is in fact a strict extension of local stratification. 

This fact is shown in the following example: 

Notice that even though p depends on its negation, this dependency will never be used 

to prove p because r cannot be proved (there is no support for Y). 

By Proposition 2.17 we also obtain the following results. 

Proposition 4.11. Let P be a logic program. If A’&%(P) is symmetric then P has 
at least one stable model. 

Definition 4.12. A program P is odd-cycle free if every cycle in Jae&CCJ(P) is of even 

length. 

Proposition 4.13. Every odd-cycle free program has at least one stable model, 

The class of odd-cycle free program, even though slightly more general, roughly 

corresponds to the class of call-consistent programs which are known to have at least 

one stable model [28,37]. More general classes of kernel-perfect graphs have been 

found in the last years (see [4]). By applying the results in [19, 181 (for further results 

refer to [l&24]) we obtain the next two propositions. 

Proposition 4.14. If every odd cycle of the graph A’&‘%(P) of a logic program P, 

has at least two symmetric edges, then P has at least one stable model. 

Proposition 4.15. If every odd cycle of the graph A!&‘%(P) of a logic program P, 
has two chords whose heads are consecutive nodes of the cycle, then P has at least 
one stable model. 

It is important to note that both propositions concern kernel-perfect graphs, that is, 

not only &‘&g(P) itself, but also every subgraph of A’&%(P) has at least one stable 
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model. The next theorem refers to the case of random graphs. *’ The notation D(n, p) 
denotes a directed graph on n nodes with edge probability p. 

Theorem 4.16 (Femadez de 1aVega [ 161). Let p be fixed, 0 < p < 1. The probability 

that the random directed graph D(n, p) possesses a kernel tends to 1 as n ---t co. 

Finally, notice that the translation of a general logic program P into a graph is not 

purely syntactic. This is because P is translated into a negative logic program P- 
first, and this translation uses the notion of minimal support which is a semantic one. 

Nevertheless, the use of the semantics is limited since the notion of minimal support is 

common to all the semantics studied in this paper. Hence, while some semantic notion 

is used in the translation, this notion is independent of any particular semantics. 

On the other hand, when transforming a logic program P to a negative one P-, we 
may end up with a program P- that is exponentially larger than the original P. 

In [ll], by applying the results of [13], another method for translating a normal 

logic program into a directed graph is presented. The translation is purely syntactic 

and the size of the graph is polynomial in the size of the logic program. We briefly 

introduce this method in the following. 

Let P be a general logic program. We define the complete rule graph of P to be the 

graph Gp = (N,E) where the set of nodes is N = R U L, with R = {ri jri a rule of P} 
and L = {ai] for each atom ai that OCCUTS in P}, whilst the set of edges is E = {(ri,rj)( 
-p E body(rj) and p E head( U {(ai,ri)(ai E body(rj)} U {(ri,aj)(aj = head( 
(see [l 11, [12] for details). 

We can prove that every stable model of P corresponds to a kernel of Gp. Namely, 

if A4 is a stable model for a program P, then there is a kernel K for the rule graph 

Gp such that for every p E M+ ( M+ denotes the set of positive literals in a set of 

literals M) there is a node ri in K such that head = p. However the converse is 

not true. This is because of possible circular support between the rules. It turns out that 

the models of the program’s completion are in direct correspondence with the kernels 

of the program’s complete rule graph. 

5. Complexity and algorithms 

The intractability of most of the nonmonotonic formalisms, even in very simple cases, 

is one of the central problems research in the field needs to tackle. In this section 

we show how graph theory can contribute in obtaining new complexity results and 

algorithms, determining cases where reasoning is tractable, and defining new notions 

of approximation. 

To start with, recall that the problem of determining whether a negative logic pro- 

gram possesses stable models is NP-complete (see e.g. [13]). l2 On the other hand 

‘I Related results cao be found in [40]. 
I2 The complexity results in [29] regarding autoepistemic logic also imply this result. 
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semikernels, or equivalently well-founded interpretations and partial stable models, al- 

ways exist. For example every graph has a trivial semikemel which is the empty 

set. Hence one may expect better computational behavior in the case of semikemels. 

Furthermore since the existence of semikemels is guaranteed we need to formulate a 

slightly different decision problem. 

Decision problem: Instance: Let G = (N,E) be a directed graph. 

Question: Is there a nontrivial semikemel (SK # 0) for G? 

The next theorem states that this problem is intractable. 

Theorem 5.1. Determining whether a graph has a nontrivial semikernel is NP- 
complete. 

Proof. The proof is by reduction from 3-SAT. Given a formula in CNF C = {Cl, C,, 

. . . ) Cn}, Ci = Gil V Ci2 V Ci3 we construct a graph G = (N,E), shown in Fig. 2, 

as follows: For every literal xi (and its negation) we put a node ni (ni respectively) 

in the set N. We refer to this set of nodes as L. For every clause Ci in C put a 

node ci in N (we call this set of nodes S), as well as a node AUX and a cycle 

Fig. 2. NP-completeness of the semikemel problem. 
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of length 3 involving a distinguished node A. The set E consists of the following 

edges: 

(1) There exists a bidirectional edge between the nodes which correspond to comple- 

mentary literals, 

(2) For every literal xi occurring in clause Cj there is an edge (ni,ci), 

(3) From every ci E S there is an edge (ci,Aux), 
(4) There exists the edge (Aux,A), as well as an edge (A,ni) from A to every node 

Izi E L. 

Lemma 5.2. In graph G every nontrivial semikernel (if one exists) is a kernel. 

Proof. Let SK be a semikernel of G, SK # 0. Assume that SK contains a nonempty 

set of nodes A4 CS. Then the node Aux does not belong to SK, and A can not be- 

long to SK as well (note that A is one of the nodes in the odd cycle). Since every 

node in A4 receives an edge from some node in L, the set T-(M) must be covered. 

Assume that some of the nodes in L belong to SK and cover them. But all of these 

nodes receive an edge from A, and A cannot be covered by SK. Hence no semik- 

emel can contain a node from S. Assume now that there is a semikernel SK # 0 
such that Aux $ SK. Since A cannot be covered, none of the nodes of L can belong 

to SK. Since none of the nodes in S can belong to SK as well then SK is empty. 

Hence, every nontrivial semikernel must contain Aux. Therefore, for every semiker- 

nel SK, S E T+(SK) must hold. For this to happen a subset of the nodes of L that 

covers all nodes in S must be in SK. It is easy to see that such a semikernel is 

kernel. 

Hence in G every nontrivial semikernel is a kernel. 0 

Observe that every nontrivial semikernel (if one exists) implies a satisfying truth 

assignment to the literals of the clauses, and vice versa. Hence every polynomial al- 

gorithm for this decision problem would also solve the 3-SAT problem in polynomial 

time. 0 

Proposition 5.3. The decision problem whether a negative logic program has a well- 
founded interpretation (or a partial stable model) direrent from the empty set is 
NP-complete. 

Proof (sketch). Let G = (N,E) be a graph. We can construct an associated negative 

logic program PG as follows: for every ni E N add to PG the atom pi and the rule 

ri. Pi + 1P1,1P2,..., -pm, where for every 1 <j<m, (nj,n;) E E holds. 

Let I be a well-founded interpretation for P. Define K = {nilbody E I-}. We 

will show that K is a semikernel for Gp. Since I is self-consistent K is an independent 

set. We now show that K is semidominant. Let nj E r-(ni), ni E K. Then Tpj E 

body(ri), hence lpj E I-. By I- 2 %(I-) we have that there is a rule nk E K such 

that (nk,ni) E E. 
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Let now K be a semikernel for Gp and define I = I- U (I-)“, where I- = 

{7pj(lpj E body(ni), ni E K). Since K is independent I is self-consistent. We prove 

now that I- s %!(I-). Let lpj E I-. Then either there is no rule with pj in its head 

or for every such rule rj, it holds that rj E r+(K) which means that Tpj E %!(I-). C! 

We show next how an algorithm that computes kernels, can also be used for com- 

puting semikernels. 

Definition 5.4. A graph G’ = (N’,E’) is the semikernel equivalent of a graph G = 

(N,E), if N’ = N U {n’(n E N}, and E’ = E U {(n,n’),(n’,n)Jn E N,n’ E N’ - N} U 

{(ni,ni)lni EN, n$ EN’, and nj E &(ni)}. 

Theorem 5.5. Zf G’ is the semikernel equivalent to G, then, if K is a kernel for G’, 
K - N’ is a semikernel for G. Conversely, every semikernel in G induces a kernel in 
G’. 

Proof. Let K be a kernel for G’. The nodes of K -N’ are independent and for every 

node nj such that nj E &(ni) and ni E K - N’, since (n$ni) E E, there must be a 

node nk E K - N’ such that (nk,nj) E E. Hence K - N’ is a semikernel for G. 

Let K be a semikemel for G. Then see that K U {njn E N’ - N,n $! T+(K)} is a 

kernel for G’. q 

In view of the above theorem, every algorithm that computes the kernels of a graph G 

is also capable of computing the semikemels of G if it is supplied with the semikemel 

equivalent of G. 

In the following we briefly present some other results obtained using the graph the- 

oretic transformation of logic programs. l3 Clearly in the case of graphs without cycles 

the computation of the unique kernel, which coincides with the maximal semikemel, is 

trivial. The kernel in this case captures, what most researchers agree to be, the meaning 

of the associated logic program. 

In cases of graphs with cycles there are two possibilities. The first is that the graph 

is odd-cycle free, and a kernel always exists. In this case we can perform the tie- 

breaking procedure introduced in [3 l] and compute nondeterministically in polynomial 

time a kernel of the graph. Furthermore, as shown in [14], there is a polynomial 

delay algorithm l4 which enumerates a set of kernels for this class of graphs, called 

“standard’ kernels. Unfortunately this procedure is not complete, that is, there may 

be kernels that can not be detected by the procedure. Nevertheless it may serve as 

a sound but incomplete reasoning method for logic programs without odd cycles. It 

is also shown in [14] that determining whether there are other kernels for such a 

I3 For a survey of complexity results regarding logic programs refer to [30, IO]. 

I4 We say that an algorithm for generating configurations is polynomial delay [25] if there is only a poly- 

nomial delay between any two configurations generated. Such algorithms may behave exponentially because 
of the exponentially many different configurations, but this is obviously unavoidable. 
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graph, different from those found by this procedure, is NR-complete. Finally skeptical 

reasoning with these graphs (i.e. whether a node is contained in every kernel) was also 

proved to be intractable in [ 131. 

In the case of graphs with odd cycles there is still a possibility to maintain the above 

computational features at the cost of incompleteness. Suppose that the task is to com- 

pute the kernels of a graph. First remove from the graph at hand the edges (or nodes) 

causing the odd cycles. Compute the “standard” kernels for the new odd-cycle free 

graph with polynomial delay. Determine which of these kernels are kernels for the 

original graph. The overall complexity is bounded by the size of the graph and the 

number of “standard” kernels in the odd-cycle free graph. The procedure is sound but 

incomplete. 

We also note that if the graph is symmetric, then a set K is a kernel iff K is 

a maximal independent set (MIS) for the undirected graph obtained after removing 

the direction from the edges in the original graph. Every graph has at least one MIS 

which can be computed in polynomial time. Furthermore there are polynomial delay 

procedures that compute all the MIS of a graph (see [44], [25]). 

Given the intractability of computing kernels and semikemels in the general case, 

another possibility is to look for approximations to these problems. The major obstacle 

is that it is not easy to find a measure for the approximation. Some recent attempts 

include the approximate entailment of [9] referring to default logic and circumscription, 

which extends their previous work in [8] regarding classical logic. The graph-theoretic 

representation offers yet another possibility. Namely, by approximations we mean the 

efficient and (in cases where this is necessary) nondeterministic computation of sub- 
sets of the maximal semikernels of the graphs, which are, themselves, semikemels. 

According to this view, given a graph G, a semikemel Si is a better approximation 

than a semikemel &, if & & Si, where Si, S2 G S and S is a maximal semikemel for G. 

6. The case of default theories 

Since Reiter’s original definition of default logic, several researchers have given dif- 

ferent definitions especially to the notion of the extension, I5 as well as to the notion of 

the default rule (e.g. [22]). Most of these proposals intent to rebut some of the original 

default logic shortcomings (e.g. the nonexistence of extensions, difficulties in express- 

ing disjunctive information, etc.). On the other hand, the various semantics for logic 

programs have been applied to default logic and other nonmonotonic formalisms. An 

early attempt in this direction is described in [34] where the well-founded semantics is 

defined for default and autoepistemic theories, based on a three-valued reconstruction of 

these formalisms. More recently well-founded semantics for the same formalisms has 

been proposed in [ 1,2] based on an ordering for the sets of interpretations around which 

the Gelfond-Lifschitz operator oscillates. In [32] another reformulation of default logic 

I5 See [17] for a general framework where several invarianta of default logic are examined. 



Y. Dimopoulos, A. Torresl Theoretical Computer Science 170 (1996) 209-244 231 

is presented that satisfies some criteria defined by the authors and is along the lines of 

stable models for extended logic programs. In [35] the stationary extensions are pre- 

sented, an extension of the stationary semantics for logic programs. The approaches in 

[26,6] are closely related to the framework developed in this section. Finally, in a recent 

book [30], several definitions of the notion of the extension are given. In Section 6.2 

we compare some of these approaches with the framework we present in the following. 

6.1. Default logic semantics 

In this section we present a framework for reasoning with propositional default 

theories. It is not our intention to give a completely new semantics but rather to 

generalize the semantic for logic programs studied in the previous sections. In contrast 

to most of the approaches to default logic mentioned above, we give several quasi- 
inductive definitions of the notion of extension. These notions capture different methods 

(or modes) of reasoning with default logic and link the graph theoretic results presented 

earlier to the case of conjunctive default theories. 

Throughout this section we refer exclusively to seminormal propositional default 

theories, except if otherwise stated. In a seminormal default theory every default is of 

the form A : MBAC/C, where BAC is consistent. Furthermore, the basic theory refers to 

the case of conjunctive default theories where W, the prerequisite, the justification and 

the consequent of the rules are conjunctions (sets) of literals. We drop this restriction 

later, and generalize the notions to the general case of propositional default theories. A 

conjunctive theory that contains defaults of the form a : Mb, A. . . r\Mb,/w, where each 

bi is a consistent conjunction, is a seminormal theory if for every default w C biU. . .Ub, 
holds. 

Let A = (D, W) be a conjunctive default theory. Any literal from the language of 

A can be considered as an assumption. A set of assumptions is called a hypothesis. 
Intuitively a hypothesis is a set of literals assumed consistent with the semantics of the 

theory. A hypothesis may contain both a literal and its negation. We denote by DH, 
where H is a hypothesis, the set of defaults obtained by deleting from the set Just(di) 
of every rule di E D, the justifications in H, and then deleting every rule dj E D, such 

that Just(dj) # 8. 

A hypothesis H supports a literal a in A (denoted by H A LX) if there is a sequence 

of defaults d I,. . . , dk E DH such that Prer(di) C Th($~ Cons(dj) U IV), 1 < i Q k, and 

c( E Th(Cons(dl) U . . . UCons(dk) U W). 

A hypothesis H attacks another hypothesis H’ in a theory A (denoted by H .% H’) 

if H /+ p for some lfi E H’. A hypothesis is self-consistent if it does not attack itself. 

An assumption p is unfounded with respect to a hypothesis H if for every H’ such that 

H’ H /? we have H -+ H’. We denote by @d(H) the set of all unfounded assumptions 

w.r.t. H in a theory A. We say that a set of propositions E is supported if there is a 

hypothesis H that supports every proposition in E. If E is the deductive closure of a 

set of propositions supported in A by a hypothesis H such that TH = @A(H), and H 
is self-consistent, then E is a partial extension for A. 
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It is important to notice the relation between partial extensions and the semantics of 

logic programs. If P is a logic program we denote by n-(P) the default theory (D, W) 

where W = 0 and D contains a rule al A + ’ . A a,, : Mlbl,. . . MTbk/c for every rule 

c t ai ,..., a,,,lbi ,... 1 k m P. The next theorem demonstrates that there is a direct b ’ 

correspondence between the partial extensions of n(P) and the complete well-founded 

interpretations of P. 

Theorem 6.1. Let P be a logic program. Then E = HUH ’ is a complete well-founded 

interpretation of P ifs ~Yz(H’~‘)) is a partial extension of n-(P). 

Proof (sketch). Let E = H U H’ be a complete well-founded interpretation of P. 

We will show that Th(H’) is a partial extension of m(P). First note that H t.5 CI for 
@(P) 

some atom a iff H “g’ c(. Hence, H z H’ iff H -+ H’. Consequently, lb E %!p(H) 
iff b E ah(p)(H). Since H is complete for P, H = @‘p(H) and therefore -H = 

@ti(p)(H). Moreover, H is self-consistent. Finally, H’ contains the maximal set of 
h-(P) 

atoms supported in P by H, hence the same holds for n-(P). Therefore, Th(H ++ ) is a 

partial extension of m(P). 
Assume now that E’ is a partial extension for tr(P) supported by a hypothesis H. 

Let E be the set of atoms in E’. Since tr(P) is a conjunctive theory, E’ = I%(E). Then 
17(P) 

E contains all the atoms supported by H in tr(P), hence E = H H . Note that for every 

atom CI, H “s’ CI iff H A CI. Hence, b E @(r(p)(H) iff Tb E @p(H). Therefore, since 

1H = %@(p)(H) holds for n(P), H = @p(H) holds for P. Finally, since E is the max- 

imal set of atoms supported by H in tr(P) and H is self-consistent wrt m(P), it follows 
D(P) 

that HUE = H U H ++ = H U H’ is a complete well-founded interpretation of P. q 

The next theorem provides a proof-theoretic definition for the partial extensions in 

the vein of [36]. 

Theorem 6.2. A set of propositions E is a partial extension for a propositional semi- 
normal conjunctive default theory A = (D, W) isf E = UEO Ei for a sequence of sets 
Ei such that 

Eo = W and 

Vi,i > 0, Ei=Th(Ei_l)U(wJa:Mbl,...,Mb,/w,aEEi_l,andfor every bi, 

Tbi #E and Tbi E BE}, 

whereI BE = {pi p is a literal, p # W and for every sequence of defaults 

dl,. . . , d, E D, such that p icons, and for every di in the sequence, Prer(di) c 
UjiiCons(dj) U W, the condition 3q EJust(di) such that yq E E holds }. 

I6 The full notation is BE d but we drop d when we refer to exactly one theory. 
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Proof (sketch). We first show that if E is a partial extension supported by a hypothesis 

H, then there is a sequence of defaults satisfying the conditions of the theorem, leading 

to E. First we prove that @A(H) = BE. If b E !&A(H) then either there is no sequence 

of defaults that proves b, or for every such sequence there is a proposition pi E Just (di) 

for some di in the sequence, such that Tpi E E. Then see that b E BE. Similarly if 

b $Z @A(H) then b #BE. Hence *d(H) = BE. 

For every q E E there is a sequence of defaults dl, . . . , dk that proves q, such 

that Prer(di) C l_$zt COns(dj), 1 <i<k, and for every p E Just (di) of every di in 

the sequence, p E H holds. Since @b(H) = BE and 42~(H) = -H then up E BE. 

Moreover, for every p E Just (di) of every di in the sequence up $ E holds, because 

otherwise H is not self-consistent. Hence every q E E satisfies the conditions of the 

theorem. On the other hand if q # E then q is not supported by H. This means 

that for every sequence of rules proving q (if any) there is pi E Just (di) for some 

di in the sequence, such that pi # H and since BE = TH, lpi # BE, and we are 

done. 

We show now that if E is a set satisfying the conditions of the theorem then it 

is a partial extension. First see that E is supported by the set ABE. We prove that 

4?L*(lBE) = BE. Assume that b E %!d(lB~). Then either there is no sequence of 

defaults that proves b, or every such sequence is blocked by ABE. Then b E BE. 

Conversely if b E BE then again, every sequence of defaults proving b (if one ex- 

ists) is blocked by some c E E, or in other words, there is an attack on b by a set 

of literals in lBE which is the union of the justifications of the rules that prove b. 

Hence b E %A(TBE), and %~(-BE) = BE. Moreover, E is the maximal set of propo- 

sitions supported by -BE. Assume now that TBE is not self-consistent. Then there 

exists a literal b such that b E -BE and Tb E E. Then Tb E BE and Tb E E. The 

first condition, yb E BE, means that for every sequence of defaults that prove -b 

there is a literal m in the justification of some default of the sequence such -rn E 

E. On the other hand, -b E E, means that there exists a sequence of defaults that 

prove -b, such that for every justification p in the sequence up @ E holds. This 

contradicts the first condition and therefore E is self-consistent. Hence, E is a partial 

extension. 0 

Roughly speaking, a rule can be applied only if every rule which provides the nega- 

tion of a justification of the rule is blocked by the activated rules. The consistency of 

the justifications with the partial extension is necessary in order to avoid inconsistent 

extensions. Consider, for example, the theory W = 8 and D = {: MB/B,MlB/lB}. 

If we do not require the consistency of the assumptions with the extensions, then 

the inconsistent set E = {B, lB,. . .} is a partial extension, since BE = 

{B,lB,...}. 

We define the semantics of the default theory to be its maximal partial extensions. 

As in the case of logic programs, for every conjunctive default theory there is 

a transformation, that preserves partial extensions, to a conjunctive prerequisite-free 

default theory. 
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Theorem 6.3. Let A = (D, W) be a conjunctive default theory and A- = (D-, W) 
be the prerequisite free conjunctive default theory that contains for every minimal 
support of a literal u ECons(r), r E D, a rule r’ E D- with Cons(#) = {m} and 
Just(r’) a minimal support of a. Then E is a partial extension for A txE is a partial 
extension for A-. 

Proof (sketch). Let E be a partial extension of A = (D, W). We show that E is 

also an extension for A- = (D-, W), and furthermore BE,J = BE,d-. We first show 

the second equality. Assume that for some literal p, p E BE,A holds. There are two 

reasons for this to happen. First there is no sequence of defaults dl, . . . , d, E D, such 

that p E Cons(d,), and for every di in the sequence, Prer(di) G UjI: Cons(dj) U W. 
See that in this case there is no support for P and there will be no rule in D- with 

head p hence p E BE,A-. The second possibility is that for every such sequence of 

defaults, there exists a q E E, lq E Just(di) for some rule d; in the sequence. But then 

every rule in A- concluding p will also contain such a proposition, hence p E BE,A- . 
Similar arguments can be constructed for the opposite direction, hence BE,A = BE,A-. 

Now assume that b E EA. Then there is a minimal sequence of defaults dl, . . . , d, E 

D, which can lead to the derivation of b from W and if p E Just (dl ) U . . . U Just (d,) 
then --p E BE,A. But then there will be a rule dk E D-, Just (dk) = Just (dl) U 

, . . U Just (d,,), with b E Cons (dk). Since B E,A = BE,d- , b E Ed- also holds. If b $ Ed, 
then for every sequence of rules (if one exists) that proves b, there is p E Just(di) 
for some di in the sequence, such that yp &r B E,A. This means that b 61 Ed- as well. 

Hence if E is an extension of A = (D, W) then E is an extension of A- = (D-, W). 
We now show the opposite direction. Assume that E is an extension for the theory 

A-. First, using similar to the above given arguments, we can prove again that BE,A = 
BE,A- . If b E Ed- for some literal b, then this means that there is a sequence of defaults 

in A, dl,..., dk E D such that b ECons(dk) and for every p E Just(dl)U.. . UJust(dk), 

lp E BE,A. Furthermore, if q EPrer(di) for some di in the sequence, then q icons, 
j < i or q E W. Hence b E EA as well. Finally assume that b $! Ed-. This means 

either that there is no rule in D- with b as its consequent or for every such rule there 

is a proposition the negation of which does not belong to BE,d-. Then, b $2 Ed holds 

as well. 0 

Notice that during the translation we may need to distribute the literals of the justi- 

fication over several M operators, in order to avoid inconsistent justifications. Consider 

for example 

W=(A) and D= 
A:MB A:MTBAC BAC:MD 
-, 

B 

The associated prerequisite free theory is 

W=(A) and D’= 
:A4B :MTBAC :MB,MTB,MCAD 
~ 

B’ C ’ D 
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In a way similar to logic programs, we define now the rule graph of a prerequisite- 

free conjunctive default theory. 

Definition 6.4. Let A be a prerequisite-free conjunctive default theory. The rule graph 
of A, denoted by W%(A), is the directed graph (Y, a), where V = {r : Y E A} and 

8 = {(Q,Y,) : if b E Cons(~) and lb E Just(r,)}. 

In [13], it has been proved that the Reiter extensions of a prerequisite-free con- 

junctive default theory correspond to the kernels of the theory’s rule graph. The next 

two theorems refer to the relation between the partial extensions of a theory and the 

semikernels of its associated rule graph. 

Theorem 6.5. Let A be a prerequisite-free conjunctive default theory and W%(A) = 
(T,b) its rule graph. If E is a partial extension of A, then for the set S = {r : r E 
V, Just(r) 2 ABE}, S = S1 U 5’2 holds, where S1 is a semikernel of %?%(A), and S, is 
the initial acyclic part for the graph WB(A)/(,!$ u P(Sl)). 

Proof (sketch). Let E be a partial extension for the prerequisite-free conjunctive de- 

fault theory A. We will show that for S = {r : Just(r) G ABE}, S = SI U S2 holds, 

for Si, S, as described above. Since any of the sets Si, S2 can be empty and Si U S2 
is always a semikernel, it suffices to show that S is a semikemel for WB(A), and 

the initial acyclic part of &Y(A)/(S U T+(S)) is empty. If a node ri E S receives an 

incoming edge from some other node rj in %%(A), this means that there is a literal 

in Just(ri) the negation of which is in the consequents of rj. But since the negation 

of the literal belongs to Bs this means that there must be some node rk E S, for 

which (rk,Tj) E & holds. Hence S dominates all the nodes which belong to T-(S). 

Moreover, since E is consistent, S is an independent set. On the other hand since for 

every rule m $ S U T+(S) there is always a proposition p E Just(m), p $ ABE, node 

m receives edges from some nodes in 9?Y(A)/(S U T+(S)). Hence the initial acyclic 

part of .429(A)/(S U T+(S)) is empty. 0 

Theorem 6.6. Let A = (D, W) be a prerequisite-free conjunctive default theory, 
&59(A) its rule graph, K a semikernel of @3(P), and IP the initial acyclic part 
of 9%(A) - (K U I+(K)). Then E = Th({p : p E Cons(di) and for the as- 
sociated with di node ni E &Y?(A), ni E K U IP holds}), is a partial extension 
for A. 

Proof. (sketch). The partial extension E is generated by the set of defaults D’, such 

that for every di E D’, its associated node ni belongs to KU IP. Define BE = {p : $ d E 
D such that p E Cons(d) or Vr E D such that p E Cons(d), for the associated with 

d node n, n E I’+(K) U I+(IP) holds }. Then, for every p E just(di) and di E D’, 
up E BE holds. Furthermore, for every p E just(di) and di E D’, up @ E holds, 

because otherwise K U IP is not a semikemel. [7 
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Fig. 3. The rule graph of theory A’. 

Example 6.7. Consider the theory A of Example 6.13. We first convert the theory into 

one without prerequisites, obtaining in this way the theory A’ = (D’, W), where 

D’ = 
1 

:MB :MTB :MC/\TB IME/\-Gn-C :MFATE :MGATF 

7’7’ C ’ I E ‘F’G ’ 

The rule graph of this theory is depicted in Fig. 3. 

The graph has two (maximal) semikernels Kr = {YZ,Q,Y~} and KZ = {rl} which 

correspond to the two maximal partial extensions. The first is a kernel, hence, the 

associated partial extension is also a (Reiter) extension. 

Theorem 6.2 allows us to extend the definition of the partial extensions to the general 

case of default theories, in a straightforward manner. 

Definition 6.8. We define a set E to be a partial extension for a default theory A = 

(D, W) iff E = Uj?$Ei for a sequence of sets Ei such that 

Eo = W and 

Vi, i > 0, Ei = Th(Ei_1) U {W[U : Mb1 . . .Mb,/w,a E Ei_1 and for every biy 

1 <i <n, bi = A bij where bij is disjunction of literals, 

bi is consistent with E and lb, E BE}, 

where BE = {pi if for every sequence of defaults dl, . . . , d, E D, n 2 0, such that 

Th( W U (JJEl Cons(dj)) I- p, and for every default di in the sequence Prer(di) C Th( WU 

$~Prer(dj)), th e condition 3q E Just (di) such that lq E E holds }. 0 

The notion of partial extension captures a credulous form of reasoning with de- 

fault theories. However, there are cases where skeptical reasoning is more appropriate. 

Skepticism in default reasoning can be captured by the deterministic and well-founded 

extensions, which are notions developed earlier for logic programs. 
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Definition 6.9. Let A be a default theory and let E be a set of propositions. We say 

that E is a 

Deterministic (partial) extension: if E is a partial extension contained in every 

maximal partial extension. 

Well-founded (partial) extension: if E is a minimal deterministic extension. 

For the case of well-founded extensions the next theorem introduces a quasi-inductive 

characterization, for general propositional theories. 

Theorem 6.10. A set E is a well-founded extension for a default theory A = (D, W) 
ifs E = Uz, Ei for a sequence of sets Ei such that 

EO = W and 

Vi, i > 0, Ei = Th(Ei_1) U {wla : Mb, . . .Mb,/w,a E Ei-1 

and for every bi, 1 <i <n, bi = A bij where 

bij is a disjunction of literals, bi is consistent with E and ‘bij E BE,}, 

where BE, = { p( zf f or every sequence of defaults dl,. . . , d, E D such that Th( W U 

L&l Co4dj)) t- PY and for every default di in the sequence Prer(di) C Th( W U 

UiziPrer(dj)), th e condition 3q ~Just(di) such that lq E Th(Ei_1) holds }. 

Proof (sketch). First see that the set E defined above is a deterministic extension. Fur- 

thermore any smaller set is not a partial extension, hence E is the minimal deterministic 

model. 

On the other hand the well-founded model can be expressed as a sequence of sets 

Eo,El,... as defined above. 0 

Notice the occurrence of E in the definition of E itself. This is necessary for the 

general case of theories, but in the case of seminormal theories the consistency check 

of the justification with the well founded extension is redundant. For instance, consider 

the theory W = {A} and D = {A : MD/B,A : MF/TB}. If we omit the consistency 

check of the justifications wrt E then we get WFEl = {B, TB,. . .}, while with the 

consistency check we obtain WFE2 = {A}. Thus, in the case of seminormal defaults, 

the definition is constructive and deterministic. As a consequence the well-founded 

extension of a theory is unique. 

Example 6.11. Let A = (D, W), where 

W=(A) and 

D= 
A:MTKAB A:M~CATB B:MCATD C:MDATF 

B ’ 42 ’ CATD ’ -F ’ 

CZMFAEAG C:~I~~EA~G C:MEA~GAH C:M7H 

EAG ’ TEATG ’ H 
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Theory A has two maximal partial extensions (which are also Reiter extensions) 

namely, El = {A, B, C, TD, E, G, ‘H} and EZ = {A, B, C, lD, TE, TG, -H}. The 
deterministic extensions are DE1 = {A, B, C, 1D}, DE2 = {A, B, C, lD, 7H). The 
well-founded extension of A is the set DE,. 

4.2. Comparison with other approaches 

In this section we discuss the relation of our approach to some other formalizations 

of default logic. This is done by means of a set of examples which show that our 

semantics is different from all the main approaches to default logic. Detailed discussion 

of the relation of the framework introduced here to the other formalisms will be the 

subject of a subsequent paper. 

We start by comparing our semantics to Reiter extensions. It is easy to show that 

every Reiter extension is a maximal partial extension. 

Theorem 6.12. Let A be a default theory and E a Reiter extension of A. Then E is 
also a maximal partial extension for A. 

Proof (sketch). Let GD(E, A) be the set of generating defaults of E. Then every jus- 

tification of the defaults of GD(E, A) will be consistent with E. 
Assume that bi belongs to the justifications of a rule ri E GD(E, A) and ybi +! BE. 

Then there is a rule with lbi in its consequents that is applicable wrt to E. Since E is 

closed under the rules of D, Tbi E E. But then E is not an extension. Hence for every 

bi that belong to the justifications of some rule ri E GD(E, A), Tbi E BE must hold. 

Finally for every default d in D - GD(E, A), there must be b E just(d) such that 

lb E E, and therefore lb $ BE. Hence, according to Theorem 6.2, E is a partial 

extension. It is easy to see that E is also a maximal partial extension. 0 

However it is not the case that every (maximal) partial extension is a Reiter exten- 

sion, as demonstrated by the following example. 

Example 6.13. Let A = (D, W) be a default theory, where 

W = {A} and D = 
A:MB A:MTB A:MCATB 
-, 

B 7B ’ c ’ 

:MEATGAX :MFATE :MGATF 

E ‘F’G > 

Theory A has two maximal partial extension, namely El = Th({A, lB, C,F}) and 

E2 = Th({A,B}). Notice that El is also a Reiter extension, while E2 is not, due to the 

presence of the last three rules. 

We now consider the semantics for default logic introduced in [30]. The weak exten- 
sions are similar to Reiter extensions, except that instead of proving the prerequisites 

of the rules, we can assume them to hold in the extension (similarly to autoepistemic 
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stable expansions). In fact, weak extensions are quite different from partial extensions. 

Consider the following example. 

Example 6.14 (Weak extensions, Marek and Truszczynski [30]). Let A be the the- 

ory A = (D, W) with 

W=0 and D= 
C 

:MD :MX :MTA :MTB 
D,A,-,- 

B c 

While there is no weak extension (as well as Reiter extension) the partial extension of 

A is E = 271((D)). 

Partial extensions are different from minimal sets since partial extensions need to be 

neither minimal nor closed under the defaults. Furthermore, a minimal set may become 

closed by adding to it the negation of a justification. This operation is not allowed for 

partial extensions. 

Example 6.15 (minimal sets, Marek and Truszczynski [30]). Let 

W=0 and D= 

There is only one partial extension E = 7%((B)), but there are two minimal sets, E 
and E’ = T’h({A}). 

Now let 

W = {A--+ B} and D = {!p!gF}. 

The partial extension of this theory is E = Th({A + B}) and its minimal set (which 

is also a weak extension) is E’ = Th({A, B}). 

The last class of extensions introduced in [30], namely the partial extensions, are 

defined for a default theory A and a well-ordering of D. The way the defaults of D 
are applied is quite different from the way they are applied in our framework and lead 

to different conclusions. l7 We note that Reiter extensions are partial extensions both 

under our semantics and this of [30] (given a suitable ordering of the defaults). 

Example 6.16 (partial extensions, Marek and Truszczynski [30]). Consider the the- 

ory A = (D, W), with 

W={AVBVC} and D= 
:MX :MlA :MTB 
A,B,C 

This theory has one partial extension under our semantics, namely E = Th({A V B V 

C}), and three partial extensions under the semantics of [30]. These extensions are 

I7 As far as the applicability of defaults is concerned, this semantics is closer to the approaches of [7,38]. 
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EI = Th({A}), E2 = Th({B}) and E3 = Z’h( {C}), and correspond to the different 
orderings of the rules. 

In [I, 21 the extension class semantics was introduced. A particular extension class 

is defined to be the well-founded semantics of a default theory. Consider the following 

example. 

Example 6.17 (Extension classes, Baral and Subrahmanian [l, 21). Let 

W=0 and D= 
:MA :MlA :MB 
A,lA,C 

Then, E = { Th(C)} is a partial extension for this theory. However see that in the 

extension class E’ = { Th({C}), Th({C, 7A, A}), fl}, C cannot be assigned the value 

true because of the empty set. The other two partial extensions of (D, W), namely 

E, = Th({A, C}) and El = Th({lA, C}) are singleton extension classes for the theory. 

The difference between extension classes and partial extensions is also evident in the 

case of well-founded extensions. 

Example 6.18 ( Well-founded extensions, Baral and Subrahmanian [ 11). Consider the 

theory A = (D, W), with 

W=(A) and D= 
A : MyK,MB A : MX,M-B B : MC,MTD 

B ’ -c ’ 

Then the well-founded extension under the semantics of [l] is E = Th({A}). The 

only (maximal) partial extension of this theory, which coincides with the well-founded 

extension under our semantics, is E’ = Th({A, B, C, ‘D}). Note that E is not a partial 

extension of A. However, E’ is a singleton extension class of A. 

Similarly, partial extensions are different from stationary extensions, introduced in 

[35]. Consider again the theory of Example 6.17. 

Example 6.19 (Stationary extensions, Przymusinska and Przymusinski [35]). Let 

A = (D, W) with 

W=0 and D= 
:MlA :MA :MB 
T,A,C 

This theory has three partial extensions including E = {C} which is the well-founded 

extension. However E is not a stationary extension of A. On the other hand, the empty 

set is the least stationary extension, but it is not a partial extension. 

In contrast to the above mentioned approaches which are mainly proof-theoretic, 

in [34] a three-valued reconstruction of autoepistemic logic has been proposed. This 

semantics can be easily extended to default logic. We compare the semantic notion of 
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three-valued belief interpretations to the partial extensions by means of the following 

two examples. 

Example 6.20 (Three-valued belief interpretations, Przymusinski [34]). Let A = 
(D, W) be a theory where 

W=@ and D= 
C 

:MTA :MA 
A,T . 

Theory A has only one partial extension E = Th({B}). Translate A into the autoepis- 

temic theory TA = {A t lLA,B c TLTA}. Then, E, with E(LA) = E(L1A) = 

E(LB) = E(L4) = undefined, is a three-valued belief interpretation. However the 

associated with E set of propositions E’ = 0 is not a partial extension for A. 

Example 6.21 (Three-valued belief interpretations, Przymusinski [34]). Consider 

again the theory of Example 6.16, 

W={AVBVC} and D= 
:MX :MlA :MTB 
A,-,- 

B c 

This theory has one partial extension under our semantics, namely E = Th({AVBV C}) 
but no three-valued belief interpretation. 

7. Concluding remarks 

In this paper we were concerned with extending the links between three fields of 

research, namely logic programming, default logic and graph theory. 

Every normal logic program can be transformed into a graph. The stable, partial 

stable and well-founded semantics correspond to graph theoretic constructs, namely 

kernels, semikernels and the initial acyclic part, respectively. This graph representa- 

tion offers several advantages. First, various results from pure and algorithmic graph 

theory can be employed in the investigation of both the theoretical and computational 

properties of logic programs. New classes of programs that always have stable models 

were obtained, and new algorithms that use the graph representation in the computa- 

tions become possible. These methods compare favorably with other classical problem 

solving methods for logic programming (see [ 11,121 for details). Finally, the graph 

model gives a clear understanding of how interaction between rules can be resolved 

within different semantics. 

We also presented a reconstruction of default logic based on a straightforward gen- 

eralization of the semantics developed for logic programs. The problem of the non- 

existence of extensions was resolved in an intuitively appealing manner, whilst the 

deterministic and well-founded extensions provide a semantically strong background 
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for skeptical default reasoning. Not surprisingly, the graph structures defined for logic 

programs remain meaningful in the case of default theories. 

Several directions for further research exist. Better algorithms for solving the kernel 

and semikernel problem are yet to be developed. Future results of the graph theoretic 

research on these problems, will probably be useful for the field of nonmonotonic 

reasoning. Furthermore the relation of the graph model with the theory of games can 

provide a useful link between the latter and logic programming. Finally, the default 

logic approach introduced in this paper can be applied to different domains that require 

default reasoning capabilities (e.g. inheritance networks). 
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