
Cellular Genetic Programming Algorithm
Applied to Classification Task

Alexandra Takac

Institute of Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava, Slovakia
takaca@ii.fmph.uniba.sk

Abstract. The focus of this paper is the application of the genetic programming
framework in the problem of knowledge discovery in databases, more precisely
in the task of classification. Genetic programming possesses certain advantages
that make it suitable for application in data mining, such as robustness of
algorithm or its convenient structure for rule generation to name a few. This
study concentrates on one type of parallel genetic algorithms – cellular
(diffusion) model. Emphasis is placed on the improvement of efficiency and
scalability of the data mining algorithm, which could be achieved by integrating
the algorithm with databases and employing a cellular framework. Cellular
model of genetic programming that exploits SQL queries is implemented and
applied to the classification task. Achieved results are presented and compared
with other machine learning algorithms.

Keywords: genetic programming, cellular genetic algorithms, data mining,
classification, evolutionary algorithms, knowledge discovery in databases,
machine learning

1 Introduction

This study examines Genetic Programming (further only GP) and the possibilities of
applying it to the classification task. GP is relatively new, domain-independent,
stochastic method inspired by evolution. Although in the absence of a strong
theoretical background, this method has made significant success in different
application areas, such as, optimisation problem. Striking thing about Genetic
Algorithms (GA) and various parallel models is the richness of this form of
computation, where small changes in the algorithm often result in surprising kinds of
emergent behaviour [28]. Here we will combine GP algorithm with the cellular
parallel model of genetic algorithms, which is also referred to as “diffusion” or “fine-
grained” genetic algorithm.

Second area of our interest will be machine learning and data mining problems.
Algorithms for Data Mining (DM) and Knowledge Discovery in Databases (KDD)
can reveal rules, relations between certain data or other interesting information, which
does not have to be obvious at first, but can be very useful in many areas, such as:

mailto:takaca@ii.fmph.uniba.sk

medicine, economics or marketing. This task is however difficult to solve for the
number of reasons, even though there are several different commonly used
techniques. One of the challenges is huge amount of data to be processed. Until now,
it has not been found a method, which would be proven to be the best for DM and
KDD. Applications of learning algorithms in the knowledge discovery in databases,
for example, are promising and relevant area of research. It is both interesting in
business circles, offering new possibilities and benefits in real-world applications, and
in the scientific field, helping us understand better mechanisms of our own methods
of knowledge acquisition.

Comparing to the standard genetic algorithms, GP has the characteristics which are
beneficial for application in DM, such as convenient structure for rule generation. The
given framework is suitable for parallelization of DM algorithm, which can improve
the efficiency of computation. On the other hand, like all genetic algorithms it offers
wide range of variations and modifications of algorithm that may also lead to
improved overall performance of the application. We will examine application of the
cellular GP framework to the classification task. Emphasis will be placed on the
improvement of efficiency and scalability of the algorithm, achieved by integration
with databases and employing the cellular framework. Furthermore, implemented
classification algorithm will be tested on the real-world datasets for machine learning,
and the results will be compared with available results of other learning algorithms.

2 Genetic Programming (GP)

Genetic algorithms use the concept of an individual, which encodes a potential
solution to a specific problem (for instance, the classification rule), and a set of
individuals constitute a population. Every individual can be a potential solution of the
algorithm. Algorithm runs for limited number of epochs, where the first epoch begins
with initial randomly created population. Genetic operators (crossover, mutation and
selection to name the basic ones) are applied to the individuals from the population in
order to create the population of the next epoch. The genetic algorithm finishes either
when the maximum number of epochs is reached, or when the satisfactory solution is
found1. Genetic operator – selection is applied to the population to designate the
individuals that will enter the “reproductive” process (which includes the operations
of crossover and/or mutation). Fitness function is used to evaluate the quality and
“goodness” of each solution, so that better ones have more chances to enter the
reproductive process than poorer solutions, and leads to the emergence of the best
solution to the given problem (“survival of the fittest”). In GP, individuals are
represented as parse trees, where mutation and crossover operators are defined on the
tree structures.

Mutation is performed by choosing a random node in the tree to be mutated. Sub-
tree in the chosen node is deleted and a new one is created (“grown”) randomly in the
chosen mutation point.

1 Other end criteria can be used as well, only the basic ones are mentioned in the text.

Fig. 1. Mutation of a tree

Crossover – Two candidate trees must be selected first for the crossover to be
applied. Similarly to mutation, one random node is chosen in each parent. Then the
sub-trees in the chosen nodes are recombined, i.e. exchanged between two parents in
the corresponding places.

Fig. 2. Crossover on trees

Selection operator in GP does not differ from the one in genetic algorithms. This
operator should ensure that the fitter individual in the population will have higher
probability of entering the reproductive process. This means that the probability of
selecting one individual for the reproduction is based on his evaluation, i.e. fitness
function. One manner of implementing this function can be Roulette Wheel procedure
(for more details about genetic algorithms and operators see [3] and [4], also [23]).

3 Cellular Framework

In cellular model of genetic algorithms each individual has spatial location and
defined its (small) neighbourhood. An individual interacts only with its
neighbourhood. Designed after cellular automata, this model is also composed of
individuals in a regular spatial lattice, toroidal multidimensional net, where all the
individuals have the same number of neighbours in the net. There are more
possibilities for defining the neighbourhood, some of them that are common in 2-
dimensional lattice, are 4-neighbourhood (von Neumann) and 8-neighbourhood
(Moore). In the experiment, we will use the Moore model of the neighbourhood. Due
to the definition of the neighbourhood, selection operator is significantly simplified

with no need to rank individuals in the population and applying Roulette Wheel
procedure (see previous section of this paper).

Programme (pseudo) code for cellular model of GP (GA):

for every cell i do parallel
 generate_random_individual(ci);
 evaluate(ci);
end for
while not LastGeneration do
 for every cell i do parallel
 Probability:=random;
 if (Probability<PrCrossover) then
 cj:=fittest_neighbour(ci);
 x:=crossover(ci, cj);
 ci:=best_fitness(x,y);
 else if (Probability<PrMutation+PrCrossover) then
 ci:=mutation(ci);
 else
 ci:=copy(ci);
 end if
 end for
end while

Obviously, cellular model brings us new definition of selection operator, while
mutation and crossover operators stay unchanged. On the other hand, genetic
programming applies the standard genetic algorithm approach to the selection
operator, and modifies “reproductive” operators. Therefore, combining GP and
cellular model, we obtain a new hybrid of the GA, having the new qualities from the
both frameworks.

Cellular and island models belong to the parallel genetic algorithms. The first
model is inspired by the cellular automata and the behaviour of the biological
processes in the nature, which are parallel. At the first look, what seems to be a small
change of an selection operator, brings us interesting results and algorithm
behaviour2. Although island model might be more suitable for parallel
implementation, because of the smaller communication demands, I found the cellular
model interesting and less examined parallel genetic approach, and decided to
compare and implement it. Future research could compare the results of these two
approaches in parallel genetic algorithms on the GP and the classification task.

Cellular automata framework for GP applied on the problem of classification can
be found in the paper [10], which inspired this work as well. The authors of [10]
claim that advantages of this model are handling well large populations, fast
convergence leading to lower number of iterations and reduced execution time. This
approach also avoids the problem of premature convergence of algorithm that occurs

2 See results of research at http://www.ii.fmph.uniba.sk/~takaca/thesis/ where classical GA/GP

approach to selection operator is compared with cellular approach, and where cellular model
achieved significantly better results than the standard one

http://www.ii.fmph.uniba.sk/~takaca/thesis/

in some GP applications. In the cellular model of GP created information drifts and
spreads in the population space. Discovered information of the fit individual slowly
diffuses through the whole population, giving enough time to other individuals to
develop their own different schemes. Diversity of the population is also preserved,
because of the non-greedy search performed.

4 Classification Problem

Many companies collect vast amounts of data, however they fail to extract necessary
information to support managerial decision-making. Knowledge discovery in
databases comes to attention in the early nineties with the growing need to analyze
data and turn it to the useful information. For example, in evaluating loan
applications, by improving ability to predict bad loans, the company can substantially
reduce its loan losses. In medical area, we could predict the probability of presence of
the heart disease in a new patient by learning from historical data. Or in the industry
field, reducing fabrication flaws of certain product can be achieved by processing the
large quantity of data collected during the fabrication process.

Data mining is the search for relationships and global patterns “hidden” in the large
quantity of data in databases. These systems can find meaningful relationships that
might take years to find with conventional techniques. Data mining is an
interdisciplinary field that uses methods from several research areas (above all
machine learning, databases and statistics) to extract high-level knowledge from real-
world datasets. It is an essential part of the broader process: Knowledge Discovery in
Databases (KDD), which also includes several preprocessing methods for preparing
data for data mining as well as postprocessing methods in order to refine and improve
the discovered information.

Classification task is the one of the most studied in the area of data mining. The
objective of this task is to predict the value (the class) of a user-specified goal
attribute considering the values of the other attributes. In the other words, this process
finds the mutual properties among a set of elements in a dataset, and classifies them
into different classes, according to the classification rule (or procedure in some cases).

Desirable property of the discovered rule is its predicting power in assigning
(predicting) the class of the new elements, for example, evaluating new loan applicant
based on the data available about him. There are more methods used for testing of
predicting ability. Task is simple when the dataset is already divided into the training
and the test set. One technique commonly used for prediction testing when there is
only one dataset (to test and train the algorithm) is N-fold cross validation. This
method divides the dataset to N mutually exclusive sub-datasets of the same size. In
each step of total N steps of the algorithm, different sub-dataset is used for the testing,
and the rest of the sub-datasets for learning of the algorithm (i.e. for creating the
classification rule). In the learning part of the algorithm, the goal attribute values are
available, while in the testing part these values are used for evaluation of the
predicting ability of the rule. The goal of the classification process is to process the
training data first, then develop an accurate rule or a model for each class, based on

the values of predicting attributes, and after that to classify the future data. The
prediction quality is verified on the test data.

For the sake of better understanding of the classification rules, commonly used
representation is:

IF <some_conditions_are_satisfied> THEN <predicted_value_of_goal_attribute>

One simple illustration of possible classification rule could be:

IF (Job=”yes”) and (UnpaidLoan=”no”) THEN (Credit=”good”)

In this example predicting attributes are Job and UnpaidLoan, goal attribute is
Credit, predicting attributes values are {“yes”, “no”} and goal attribute value (class)
is “good”.

5 Motivation

There are several properties of GP and genetic algorithms in general, which make
them more convenient for application in DM comparing to the other techniques. One
of them is their robustness and ability to work on large and “noisy” datasets. While
most of the classification algorithms apply greedy search of the solution space, GP
performs global search, therefore coping well with attribute interaction problem.
Thanks to variety of possible modifications and parallel approaches to genetic
algorithms, scalability of these algorithms can be achieved. Together with robustness,
these characteristics are of great importance in DM. Moreover, these algorithms have
the high degree of autonomy that enables a discovery of knowledge previously
unknown by the user.

However, a drawback of genetic algorithms is the necessity of frequent evaluation
of individuals, i.e. possible solutions of the task, on the given dataset. If we have n
individuals and m epochs of the algorithm, the number of evaluations of individuals
will be n*m. If we consider that datasets in DM tend to have gigabytes and terabytes
of data, evaluation of individual against the dataset is the most time consuming
operation of the algorithm. We will try to address this problem by integrating our
algorithm with databases, utilizing Structured Query Language (SQL). Another way
to tackle the problem (which could be combined with previous) could be parallel
implementation.

GP and genetic algorithms possess characteristics that make them easily
parallelized. Parallel processing holds the key to extracting the maximum potential of
knowledge discovery in databases [19]. Possible parallel approaches in GP are
discussed in [14], [15] and [16].

Reason for selecting GP over genetic algorithms for applying to classification
problem is their flexibility and possibility of straightforward representation of high-
level rules. More diverse logical conditions (in the IF part) of the rule can be created
by tree representation in contrast to fixed-length strings used by standard genetic
algorithms. Manipulating and applying genetic operators on the functions we can
solve the problem of attribute interaction. For example, some trees that are created

straightforward with GP would be developed significantly harder by the standard
genetic algorithms.

The problem of the comprehensibility of the discovered rules could be addressed
by adjusting properly the fitness function. Beside the accuracy of the classification
rule on the dataset, the function should also take into the account a size of the tree,
penalizing the trees with the high number of nodes.

6 Closure Problem

In the standard relational databases, we usually encounter two general types of
attributes that are used for DM: qualitative and numerical. Some DM algorithms work
only with qualitative attributes, so numerical values must be divided into categories.
GP can deal with any combination of types. However, the task is much simpler if only
one type is used. If we had, for example, only numerical data, then a GP individual
would encode numerical function, and the evaluation of the function (individual)
against one example from the dataset would return a numerical value. Considering the
classification task, we can select intervals for each class and the obtained numerical
value would determine the class to which example from the dataset should belong to.

One of the possibilities of combining two types of attributes in the DM algorithm is
actually by using so-called atomic representation of trees [8]. This representation can
be used with only one type of attributes as well. The idea is to use Boolean functions
for all inner nodes, while leaves are represented as functions that return Boolean
value:

Operator (Attribute, AttributeValue) (1)

 More details about this representation can be found in [8]. Moreover, in the next
experiment this representation is used and therefore will be described here in more
detail (it slightly differs from the one described in [8]). The advantage of atomic
representation is an uncomplicated solution of the closure problem and also
production of the rules that are more comprehensible to the user. On the other hand,
its drawback is that good quality of the attribute interaction is not being exploited.

Other option is using some kind of constrained syntax GP. In some datasets,
interaction between any combinations of attributes does not need to create meaningful
construction. Can we suppose that just evolutionary process will let survive only the
combinations that will make sense? Better solutions could be achieved by creating
domain-related semantics, defining which attributes can interact. However, this would
certainly require deeper understanding of a given dataset.

7 Fitness Function

Selection of the fitness function clearly depends on the type of the task and desired
characteristics of the discovered solution. In DM tasks, discovered knowledge should
have following characteristics: accuracy, comprehensibility and interestingness. First
of all, we will focus on accuracy.

In classification problem, our objective is simple: creation of one rule that will
classify one class3. The evaluation function can therefore simply represent the percent
of correctly classified elements from the dataset (in our case we are maximizing the
fitness function). Some datasets also have a cost matrix that defines different penalties
for the incorrect classification of different attributes (values). This cost can also be
included in the function if it is specified. Suppose that there are 2 classes (C and not
C) and the following cost matrix (see Table I).

Table I. Cost matrix for the classification task

Predicted Class
C Not C

C 0 Cost(C, not C) Actual
Class not C Cost(not C, C) 0

We will illustrate the classes C and not C on the dataset example of loan

applicants. Class C will represent: a good applicant for a loan, and the class not C will
symbolize a bad loan applicants. Dataset contains history data about the clients that in
the past applied for a loan, and were either granted a loan (class C) or not (class not
C).

From the Table I, Cost(not C, C) > Cost(C, not C) would mean that it is more
important to classify correctly elements that actually belong to class not C (i.e., bad
applications for a loan), then the elements that actually belong to class C.

By evaluating the discovered rule IF Condition THEN Class=C (i.e. we are
evaluating the Condition part) against the dataset, four numbers will be obtained
representing the following values: TP, FP, FN and TN. TP is the number of the Truly
Positive elements, i.e. number of elements satisfying Condition that actually belong to
the class C. FP is the number of the False Positive elements, i.e. the number of
elements satisfying Condition that actually do not belong to the class C. FN is the
number of the False Negative elements and TN is the number of the Truly Negative
elements.

Table II. Matrix of results of the rule evaluation against the dataset

Predicted Class
C Not C

C TP FN Actual
Class not C FP TN

To evaluate the results obtained by the discovered rule, we will use the cost

function CF (2):

3 There are other possibilities as well, like creating decisions trees by genetic programming [8],

or more rules for covering one class [11]

TNFPFNTP
CnotCCostFNCCnotCostFP

CF
+++
⋅+⋅

=
),(),(

(2)

We can suppose that Cost(x, y) ≥ 1, where x, y are from {C, not C}. Further, we
define Count(C), representing the number of elements from the dataset belonging to
class C, and Count(not C), representing the number of elements belonging to the class
not C. Clearly

FNTPCCount +=)(, and TNFPCnotCount +=)((3)

If a classification rule is the perfect classifier, its cost will be 0 (CFmin= 0). On the
other side, if all the examples are classified incorrectly, we will have TP = 0 and TN =
0, so

)()(
),()(),()(

max CnotCountCCount
CnotCCostCCountCCnotCostCnotCount

CF
+

⋅+⋅
=

(4)

Since we want to maximize the fitness function, which should favour the rules with
the lowest cost, we can obtain it as function complementary to CF, i.e. while we
maximize the fitness function, the CF will be minimized, which was our objective.
Therefore we can define function E1 for fitness evaluation:

CFCFE −= max1 (5)

 Applying the equations (2) and (4) to equation (5), and using the definitions from
(3), we can obtain the following formula:

TNFPFNTP
CnotCCostTPCCnotCostTNE

+++
⋅+⋅

=
),(),(

1
(6)

Function E1 will help us to discover the classification rule with the high accuracy.

Nevertheless, we did not consider the demand for comprehensibility and
interestingness of the found rules. In order to ensure that algorithm favours the
smaller and therefore more comprehensible rules, we can construct a simple function:

Size
E 1

2 =
(7)

Where the Size could simply be the number of the nodes in the tree representing
the Condition, for instance. The final function to evaluate each individual from a
population could then be (8), where w1 and w2 would be the weights defined by the
user, balancing between the demands for simplicity of the rules and their accuracy.

2211 EwEwFitnessFun ⋅+⋅= (8)

8 Integration with Databases

To achieve scalability and efficiency of DM algorithm, Structured Query Language
(SQL) can be utilized. SQL is a powerful tool for relational databases and can
significantly improve the performance of our algorithm. Moreover, there is a
possibility of using massively parallel SQL servers. If we have in mind that
evaluation of the individuals in a population is the operation that consumes most of
the time used by the GP algorithm applied to DM, reduction of the evaluation time
would have a significant impact on overall performance of the application. Further
benefits of integrating SQL are avoiding physical access to the data. We can just send
the queries that need to be evaluated to the database server and receive only the
results of the evaluation. In this way genetic DM application can benefit from the
control of security of the data already provided by relational database management
system. Additionally, it simplifies the problem of accessing the dataset, because SQL
is standardized and drivers for all types of databases are available, enabling simple
adaptation of DM algorithm to whichever database is necessary.

Papers [13] and [26] describe different GP frameworks for the evolution of SQL
queries and parallel database server.

8.1 Classification Rule Evaluation

Consider the task of classification with the two classes: C and not C, where objective
is to evolve a classification rule of the form (9).

IF Condition THEN GoalAttribute=C (9)

Since there are only two classes, we can evolve only one function: Condition that
should return true if the evaluated element from the dataset belongs to the class C,
and false in the case that the element belongs to the class not C. Condition will be
represented as a parse tree and GP will be used to evolve the tree that classifies
correctly the highest number of elements of the given dataset. To evaluate each
individual, a query from the Figure 1 will be used.
SELECT GoalAttribute, Count(*)

FROM MyRelation

WHERE Condition

GROUP BY GoalAttribute

Fig. 3. SQL query for evaluation of an individual (Condition)

GoalAttribute will represent attribute from the dataset that has two possible values:
class C and class not C. Task is simplified so that entire dataset is located in one
database relation MyRelation. Result of query evaluation will be Table III.

Table III The result of evaluating SQL query for one individual (Condition)

GoalAttribute Value (Class) Count
C Count(Condition, C)

Not C Count(Condition, not C)

If Table III is compared with Table II hereunder relation (10) can be observed.

Count(Condition, C) = TP

Count(Condition, not C) = FP
(10)

In order to evaluate the fitness of each individual using the functions described in
the chapter 7 we need to have the exact values of TP, TN, FP and FN, and also
Count(C) and Count(not C). If the last two numbers are not given in advance, we can
obtain them straightforward by evaluating modified SQL query from the Figure 3,
where condition (“WHERE Condition” part) is left out.

Now we have acquired further values:
Count(C) = TP + FN

Count(not C) = FP + TN
(11)

As we already have the values of TP and FP, by the simple calculation we can
have the missing numbers FN and TN as well. Finally, we can evaluate the fitness
function of our individual, using the equation (8).

The problem gets more complicated when there are more then two classes in the
classification task. Let us suppose that there are n classes, where n>2: {C1,…, Cn},
which means that the GoalAttribute has n possible values. We can choose one of the
options:
• Either the algorithm is easily adapted4 to run for two classes (like we described

above) n-1 times, where two classification classes will be Ci and not Ci , i=1,..,n-1.
Finally each of these n-1 algorithms will discover one best rule for one class from
{C1,…, Cn-1}. Data elements that are not “covered” by any of the found rules will
belong to default class Cn.

• Another approach is to try to create classification rules for n-1 classes with one run
of evolutionary algorithm. Again, class Cn can be considered as default class. This
time evolutionary DM algorithm must evolve simultaneously n-1 classification
rules, one per each (different) class. These rules will be the results of the algorithm.
In order to induce evolution of individuals that predict different classes, it is
beneficial to use a method to enforce creation of the rules for all n-1 classes and
prevent from losing classification rules for any of these classes. For instance, a
type of elitist algorithm can be applied to copy the best individuals for each class to
the next generation without the changes, ensuring a good representative of every
class in each population.

4 There will be a small difference in evaluating the fitness from the SQL query, since Table III

will have more rows depending on the number of classes

AND

OR

Attr1 Val1 =
Attr2

>

Val2 Attr3

<
Attr1

Ci

Condition Class

IF THENCondition Class=Ci

Individual

Classification
Rule

Fig. 4. GP algorithm individual and the corresponding classification rule

Using the analogy with classification problem with two classes, we can evaluate
corresponding fitness value for every individual in the population. Evidently, in this
more complicated classification task, every individual in the population, beside the
tree representing the Condition, carries also the value of the class (Figure 2). When
evaluating an individual, we can assign to the given individual the class Ck that has
the highest value of Count:

kiCConditionCountCConditionCount ik ≠∀>),,(),((12)

8.2 Encoding
General encoding of individuals is already described before, however we did not
mention the Condition encoding yet. Since we are using GP framework, as expected,
Condition will be represented as a parse tree. The terminal set includes names of
predicting attributes and values of their corresponding domains. Nonterminals,
represented as inner nodes of the tree, can be Boolean operators: {AND, OR, NOT}
and comparison operators: {>, >=, <, <=, #} for instance. Also, numerical operators
{+, -, *, /} can be used on a given numerical attributes. Moreover, other operators
supported by SQL can be considered as nonterminals as well, but one should first
consider the pros and cons of applying the new functions and what effect on the
solution could they have. The important issue is the problem of closure. If we
consider atomic representation, inner nodes corresponding to the nonterminals will
include only operators {AND, OR, NOT}. Leaves of the Condition tree will be one of
the two types: numerical or qualitative, and will have the form as in (1).

In the case of qualitative attributes: Operator is from {=, #}, Attribute is the name
of one predicting qualitative attribute and AttributeValue is the constant from the
Attribute’s domain, i.e. one of the n (n>0) values that are defined and found in the
dataset for the given attribute.

For the numerical attributes, Attribute is defined in the same way as for the
qualitative leaf. On the other hand, AttributeValue is randomly selected number from
the interval [min(Attribute), max(Attribute)]. More operators are applicable on
numerical attributes, but having more operators included does not necessarily mean
better results of the algorithm. Even though we can choose all the comparison
operators from the set {>, >=, <, <=, =, #}, the use of {=, #} would mean comparing

the given numerical attribute with the constant from that attribute domain on equality
(inequality). Obviously, the expression would have very low informational value and
including operators {=, #} would just unnecessary increase the search space. In order
to decrease the search space, only numerical operators: {>, <} were included in the
experiment.

9 Experiment

In this section, an experiment and the results obtained by applying GP to the
classification are presented. The cellular model of GP is implemented, where
individuals are mapped into the 2-dimensional array. Crossover is not applied inside
of the leaves. If the crossover creates an individual that has the larger depth than the
maximal depth allowed, the operation is considered unsuccessful and a fitter parent is
copied to the new generation. Implemented mutation operator has two types: (a) a
mutation of the whole sub-tree, and (b) inside of a chosen leaf. In the first case (a) we
have the standard mutation defined for the genetic algorithms, and in the latter (b) we
can modify the leaf in the three possible ways. 1) Either another operator of the
corresponding type (qualitative or numerical) can be randomly selected, or 2) a
different attribute value can be randomly chosen among the possible values or 3) a
new attribute can be generated leading to a random creation of the a corresponding
operator and an attribute value as well. When performing the mutation, decision about
the mutation type (a or b case) to be carried out is made by creating a random number.
Algorithm accepts both qualitative (discrete, nominal) and numerical (continuous)
data.

The following parameters (obtained in the previous testing) were used in the
experiment: the crossover probability: 0.7, the mutation probability: 0.2, the
reproduction probability: 0.1, population size: 20 x 20 (400), number of epochs: 200,
maximum depth of trees allowed: 7, branching factor: 2. Number of classes is 2 and
attribute types are qualitative and numerical. SQL queries are used for evaluation of
individuals, and for evaluating the fitness equations (6), (7) and (8) were used, where
w1 is 1 and w2 is 0.05.

Three datasets from the STATLOG project5 have been used: German Credit,
Australian Credit and Heart Disease, but due to a lack of space here are presented
only results with the first dataset, which is the largest. German Credit dataset contains
historical data about loan applicants and their credibility, having 1000 records divided
in 2 classes (Good and Bad Credit). First class has 700 elements, second 300. Number
of qualitative attributes is 13 and continuous 7. Cost matrix from Table I is used,
where the class C is Good Credit, and clearly the class not C represents Bad Credit,
Cost(C, not C) = 1 and Cost(not C, C) = 5. For evaluation of prediction ability of
algorithm 10-fold cross validation is used and equation (2).

The program was developed under the operating system MS Windows 98 and has
been implemented in Borland Delphi 6, while datasets are stored in MS Access 97

5 http://www.liacc.up.pt/ML/StatLog/

http://www.liacc.up.pt/ML/statlog/

database. For accessing the data, implemented program uses SQL queries and the
ActiveX Data Objects (ADO) component in Delphi6.

9.1 Results

Obtained results of the cellular GP are compared to the results of the best performing
algorithms (of more then 20 algorithms that participated) in the STATLOG project. In
the brackets are shown the ordinal numbers of each algorithm’s performance on the
German Credit dataset in the project. Bellow are presented the results of the well
known algorithms that participated in the project, such are K-nearest neighbours
(KNN), C4.5 - the most famous decision tree based classification method, or
BackProp, which is short from back propagation method for learning using neural
networks. Complete results of the performance of all algorithms in the project can be
found at [9].

Table IV. German Credit dataset – results

Algorithm Average Train Cost Average Test Cost
Cellular GP 0.472 0.539
Discrim7 (1.) 0.509 0.535
LogDisc (2.) 0.499 0.538
Castle (3.) 0.582 0.583
Alloc80 (4.) 0.597 0.584
KNN (10.) 0 0.694
BackProp (14.) 0.446 0.772
BayesTree (15.) 0.126 0.778
C4.5 (22.) 0.64 0.985

Even though we used relatively small population of 400 individuals (20 x 20) and

only 200 epochs, the results in the Table IV show very good performance of the
cellular GP algorithm. Obtained results are comparable to the results of the best
performing algorithms from the StatLog project and significantly better then some
known algorithms like C4.5 or the back propagation algorithm with neural networks,
which is a promising fact.

In the figure bellow we can observe learning curve of the cellular GP algorithm in
the 7th run of the 10-fold testing. We can observe one interesting characteristic: the
fitness value has the tendency to be a non-decreasing function, i.e. the best individual
is either kept or is replaced by the individual with the higher fitness value. Mentioned
behaviour can be noticed on the other results charts of this algorithm representing the
fitness value of the best individual in the population. Note that we did not use any
elitist model that would transfer automatically few best individuals to the next epoch.

6 Developed application is available at http://www.ii.fmph.uniba.sk/~takaca/thesis
7 The best performing algorithm in StatLog project on the German Credit dataset, a statistical

classifier

http://www.ii.fmph.uniba.sk/~takaca/thesis

1
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9

1. 13
.

25
.

37
.

49
.

61
.

73
.

85
.

97
.

10
9.

12
1.

13
3.

14
5.

15
7.

16
9.

18
1.

19
3.

Epoch

Fi
tn

es
s

Best Fitness Avgerage Fitness

Fig. 5. Learning Results of Cellular GP in Classification Task on German Credit Dataset

10 Conclusion

The possibility of applying Genetic Programming in Data Mining was surveyed,
examining its integration with databases and possibilities of parallelization. Cellular
model of GP that uses SQL queries was applied to the classification task, and the
obtained results were compared with the other machine learning algorithms.

Implemented cellular GP algorithm achieved promising results on the used
datasets. GP was suitable and convenient model for encoding the classification rules,
because of the tree representation. Cellular approach seems to be an interesting
genetic parallel model with the certain advantages like: faster convergence and better
results, simplified selection method with less calculation, prevention of loss of the
good solutions8 and a structure convenient for parallel implementation.

However, further investigation and testing should be performed, with larger
datasets and employing the parallel SQL servers. Furthermore, comparison of cellular
model with other parallel GA’s on the similar problem could bring interesting results.

8 Non-decreasing property of the fitness function in a cellular model has been observed in the

results

References

[1] Agrawal, R., Imielinski, T., Swami, A.: Database Mining: A Performance
Perspective. IEEE Trans. Knowledge and Data Eng., vol. 5, no. 6, pp. 914-925,
Dec. 1993.

[2] Araujo, D.L.A., Lopes, H.S., and Freitas, A.A.: Rule Discovery with a Parallel
Genetic Algorithm. Proc. 2000 Genetic and Evolutionary Computation (GECCO-
2000) Workshop Program, 89-92. Las Vegas, NV, USA. July 2000.

[3] Bäck, T., Fogel, D. B., Michalevicz, Z.: Evolutionary Computation 1 – Basic
Algorithms and Operators, Institute of Physics Publishing, Bristol and
Philadelphia, 2000.

[4] Bäck, T., Fogel, D. B., Michalevicz, Z.: Evolutionary Computation 2 – Advanced
Algorithms and Operatorss, Institute of Physics Publishing, Bristol and
Philadelphia, 2000.

[5] Bennett, F.H., Koza, J.R., Keane, M.A., Andr'e, D.: Genetic Programming:
Biologically Inspired Computation that Exhibits Creativity in Solving Non-Trivial
Problems. In AISB'99 Symposium on AI and Scientific Creativity, pages 29--38,
Edinburgh, Scotland, April 1999.

[6] Berka, P.: Metody dobyvani znalosi z databazi. Data Mining – Jak z vasich dat
vytezit maximum: Sbornik k seminarum (Praha, Bratislava, podzim 2002), 22-34.
StatSoft CR s.r.o., Praha, Czech Republic, 2002.

[7] Chen, M.S., Han, J., Yu, P.S.: Data Mining: An Overview from Database
Perspective, IEEE Trans. Knowledge and Data Eng., Vol. 8, No. 6, Dec. 1996,
pp. 866-883.

[8] Eggermont, J., Eiben, A.E., van Hemert, J.I.: A Comparison of Genetic
Programming Variants for Data Classification. Proc. Third International
Symposium on Intelligent Data Analysis (IDA-99). Amsterdam, The
Netherlands. August 1999. Springer-Verlag, Berlin.

[9] Esprit Project 5170 StatLog (1991-94): http://www.niaad.liacc.up.pt/statlog/
[10] Folino G., Pizzuti C., Spezzano G.: A Cellular Genetic Programming Approach

to Classification, Proc. Of the Genetic and Evolutionary Computation
Conference GECCO99 , Morgan Kaufmann, pp. 1015-1020, Orlando, Florida,
July 13-17, 1999

[11] Freitas, A.A.: A Survey of Evolutionary Algorithms for Data Mining and
Knowledge Discovery. To appear in: A. Ghosh and S. Tsutsui. (Eds.) Advances
in Evolutionary Computation. Springer-Verlag, 2002.

[12] Freitas, A.A.: Evolutionary Computation. To appear in: J. Zytkow and W.
Klosgen. (Eds.) Handbook of Data Mining and Knowledge Discovery. Oxford
University Press, 2001.

[13] Freitas, A.A.: A Genetic Programming Framework for Two Data Mining Tasks:
Classification and Generalized Rule Induction. Genetic Programming 1997:
Proc. 2nd Annual Conf. (Stanford University, July 1997), 96-101. Morgan
Kaufmann, 1997.

[14] Freitas, A.A.: A Survey of Parallel Data Mining. Proc. 2nd Int. Conf. on the
Practical Applications of Knowledge Discovery and Data Mining, 287-300.
London: The Practical Application Company, Mar. 1998.

[15] Freitas, A.A., Lavington, S.H.: Parallel Data Mining for Very Large Relational
Databases. In: H. Liddel et al. (Ed.) LNCS 1067: Proc. Int. Conf. on High-
Performance Computing and Networking (HPCN-96, Brussels, Belgium,
Apr./96), 158-163. Springer-Verlag, 1996.

[16] Freitas, A.A., Lavington, S.H.: A Framework for Data-Parallel Knowledge
Discovery in Databases. IEE Colloquium on Knowledge Discovery and Data
Mining. Digest No. 96/198, pp.6/1-6/4. London: IEE, Oct./96.

[17] Gordon, V.S., Whitley, D.: Serial and Parallel Genetic Algorithms as Function
Optimizers , in: S. Forrest, (Ed.), Fifth International Conference on Genetic
Algorithms, Morgan Kaufmann, San Mateo, CA, 1993, pp. 177--183.

[18] Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, San Francisco, USA, 2001.

[19] Hedberg, S.R.: Parallelism Speeds Data Mining. (Industrial Spotlight) IEEE
Parallel & DistributedTechnology, Winter 1995, 3-6.

[20] Holsheimer, M., Kersten, M., Mannila, H., Toivonen, H.: A Perspective on
Databases and Data Mining. In Proc. of 1st Intl. Conf. on Knowledge Discovery
and Data Mining (KDD), August 1995.

[21] Koza, J.R.: Future Work and Practical Applications of Genetic Programming. In
Handbook of Evolutionary Computation, page H1.1:3. IOP Publishing Ltd and
Oxford University Press, 1997.

[22] Koza, J.R.: Concept Formation and Decision Tree Induction Using the Genetic
Programming Paradigm. Parallel Problem Solving from Nature --- Proceedings
of the first Workshop, PPSN 1, volume 496 of Lecture notes in computer
Science, pp. 124-128, Springer-Verlag, 1991.

[23] Kvasnicka, V., Pospichal, J., Tino, P.: Evolucne algoritmy. Vydavatelstvo STU,
Bratislava, Slovakia, 2000.

[24] Mannila, H.: Methods and Problems in Data Mining. In Proc. of ICDT, Delphi,
Greece, January 1997.

[25] Watson, R.T.: Data Management: Databases and Organizations (Third edition).
John Wiley & Sons, Inc., New York, NY, USA, 2001.

[26] Watson, T., Rakowski, T.: Data Mining with an Evolving Population of Database
Queries. p. 169-174, In: Proceedings of MENDEL'95 - the International
Conference on Genetic Algorithms, Brno (CR), Sept. 26-28, 1995.

[27] Whigham, P.A.: Grammatically-based Genetic Programming. Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World Applications
(Conference proceedings), 1995, p. 33-41.

[28] Whitley, D.: A Genetic Algorithm Tutorial, Statistics and Computing 1994,
Volume 4, pp. 65-85.

