
Domain-Dependent Knowledge in Answer Set PlanningTran Cao Son� Chitta Baraly and Tran Hoai Namy Sheila McIlraithz�Computer Science yComputer Science and Engineering zComputer ScienceNew Mexico State University Arizona State University Knowledge Systems LaboratoryPO Box 30001, MSC CS Tempe, AZ 85287, USA Stanford UniversityLas Cruces, NM 88003, USA fchitta,namtrang@asu.edu Stanford, CA 94305tson@cs.nmsu.edu sam@ksl.stanford.eduOctober 13, 2002AbstractIn this paper we consider three di�erent kinds of domain dependent control knowledge (temporal,procedural and HTN-based) that are useful in planning. Our approach is declarative and relies onthe language of logic programming with answer set semantics (LPASS). We show that the additionof these three kinds of control knowledge only involves adding a few more rules to a planner writtenin LPASS that can plan without any control knowledge. Thus domain dependent control knowledgecan be modularly added to (or removed from) a planning problem without the need of modifying theplanner. We formally prove the correctness of our planner, both in the absence and presence of thecontrol knowledge. Finally, we do some initial experimentation that shows the reduction in planningtime when procedural domain knowledge is used and the plan length is big.1 Introduction and MotivationThe simplest formulation of planning { referred to as classical planning { entails �nding a sequenceof actions that takes a world from a completely known initial state to a state that satis�es certain goalconditions. The inputs to a corresponding planner are the descriptions (in a compact description languagesuch as STRIPS [16]) of the e�ect of actions on the world, the description of the initial state and thedescription of the goal conditions, and the output is a plan (if it exists) consisting of a sequence ofactions. The complexity of classical planning is known to be PSPACE-complete for �nite domains andundecidable in the general case [9, 15]. By making certain assumptions such as �xing the length of plans,and requiring actions to be deterministic the complexity reduces to NP-complete.To be able to plan is widely recognized as an important characteristic of an intelligent entity. Thus whendeveloping many intelligent systems, despite the complexity, we need to be able to build planners. Butwe can not wish away the complexity. Since the complexity is due to the exponential size of the searchspace, any approach to overcome the complexity would require searching e�ciently and intelligently.This is the crux of the three main successful approaches to planning: (i) using heuristics [7, 21, 6] thatare derived from the description, (ii) translating the planning problem to model �nding in a logic andusing intelligent model �nding techniques for that logic [23], and (iii) using domain dependent controlknowledge1 [1, 14, 33]. Among these the third one has led to a set of successful and competitive planners(for example, TLPlan [1], TALplan [14] and SHOP [33]) with respect to several planning benchmarksand is widely predicted [44] to be the most scalable. It should be noted that, strictly speaking, by usingthe third approach we move away from classical planning as we need an additional input, the domainknowledge.1This is alternatively referred to in the literature as `domain dependent knowledge', `control knowledge', `domain knowl-edge', and `domain constraints'. We also sometimes use these shortened terms in this paper.1

In this paper our main focus is the third approach of planning using domain knowledge. We discuss variouskinds of domain knowledge (that can be exploited by a planner), how to represent such knowledge, andhow to use them during planning. In addition, we integrate the second and the third approach as `logic'being a good tool to express knowledge is a common thread between the two approaches.By planning using domain knowledge we mean that there is a planner which can, if necessary, planwithout any domain knowledge; but can usually plan faster using domain knowledge. Our view is inagreement with the planning systems TLPlan [1], and TALplan [14] but is in disagreement with mostHTN planners. The TLPlan and TALplan systems explore the use of temporal domain knowledge inplanning. In this paper we identify two other kinds of domain knowledge, procedural and partial ordered,and explore their role in planning.Our formulation of procedural domain knowledge is inspired by GOLOG, referred to alternatively as alogic programming language, or an action execution language. Although syntactically our proceduraldomain knowledge is very similar to GOLOG programs, our use of procedural knowledge during planningis very di�erent from how GOLOG programs are used. Similarly, our formulation of partial ordereddomain knowledge is inspired by HTN constructs, but our use of this type of knowledge during planningis very di�erent from the workings of HTN planners. The main di�erence is that typical GOLOGprogramming or HTN planning do not have an independent planner that can do classical planning withoutusing the knowledge encoded in the GOLOG programs or the HTN descriptions. In our approach, whichis similar to the approach in [1], the planner module is separate from the domain knowledge (encodingtemporal, procedural, or partial ordered knowledge), and can plan independent of the domain knowledge.To achieve our goal of planning using domain knowledge, an important �rst step is to be able to bothreason about actions and their e�ects on the world, and represent and reason about domain knowledge.This leads to the question of choosing an appropriate language for both reasoning and representationtasks. For this we choose the language of logic programming with answer set semantics (LPASS) [19],also referred to as A-Prolog [18] or AnsProlog [4]. The reasons behind our choice of this language overothers are many2 and include:� LPASS is a non-monotonic language and hence suitable for knowledge representation, especially forreasoning in presence of incomplete knowledge.� LPASS is more expressive than classical (monotonic) logics such as propositional logic and �rst-order logic. For example, it can express transitive closure. Also, the non-classical constructs ` 'and ` not ' of LPASS allow it to encode a form of directionality that makes it easy to encodecausality, which as shown in [29] can not be expressed in classical logic in a straightforward way.� The non-classical constructs also give a structure to LPASS programs and statements, such as ahead and a body, which allows us to de�ne various subclasses each with di�erent complexity andexpressibility properties [11]. A particular subclass (when no classical negation is allowed) has thesame complexity as propositional logic but more expressibility while the most general case { whichallows \or" in the head { has the complexity and expressibility of the seemingly more complicateddefault logic [37]. In general, LPASS is syntactically simpler to other non-monotonic logics and atthe same time as expressive as some [37].� There exists a sizable body of \building block" results about LPASS which makes it more amenablefor knowledge representation and for correctness analysis of the representations.This includes result about composition of several LPASS programs so that certain original con-clusions are preserved (referred to as `restricted monotonicity'), a transformation of a program sothat it can deal with incomplete information, abductive assimilation of new knowledge, languageindependence and tolerance, splitting an LPASS program to smaller components for computing its2The book [4] contains elaboration of these points. 2

answer sets, and proving properties about the original program. To the best of our knowledge, forno other knowledge representation language has a comparable body of mathematical results beenaccumulated.� There exist several e�cient LPASS interpreters [35, 10] and LPASS has been shown to be useful inseveral application domains other than knowledge representation and planning. This includes policydescription, product con�guration, cryptography and encryption, wire routing, decision support ina space shuttle and its `if'{`then' structure has been found to be intuitive for knowledge encodingfrom a human expert point of view.� Finally, LPASS has already been used in planning [41, 13, 26], albeit in the absence of domainknowledge. In this regard LPASS is suitable for concisely expressing the e�ect of actions and staticcausal relations between
uents. Note that concise expression of e�ect of actions involves represen-tation of the `frame problem' which was one of the original motivation behind the development ofnon-monotonic logics. Together with its ability to enumerate possible action occurrences LPASSis a suitable candidate for model based planning, and falls under the category (ii) of successfulapproaches to planning.As evident from our choice of language, our main focus in this paper is the knowledge representationaspects of planning using domain knowledge. In particular, our concern includes:� the ease of expressing e�ects of actions on the world, and reasoning about them,� the ease of expressing and reasoning about various kinds of domain constraints,� the ease of adding new kind of domain constraints, and� proving correctness results about the LPASS representation of the planning with domain constraintstask.We do performs some limited e�ciency experiments, but leave more detailed experimentation to futurework.With the above focus, the contributions of the paper and the sections they appear in can be summarizedas follows:1. In Section 3 we encode planning (without domain constraints) using LPASS in presence of bothdynamic e�ect of actions and static causal laws, and with goals as restricted �rst order formulas.We then formally prove the relation between valid trajectories of the action theory, and answersets of the encoded program. The main di�erence between our formulation and earlier LPASSencodings [41, 13, 26] is our use of static causal laws, and more general goals, and our considerationof trajectories instead of plans. The reason we relate trajectories instead of plans is because inpresence of static causal laws the e�ect of actions may be non-deterministic.2. In Section 4.1 we show how to incorporate the use of temporal constraints in planning to the initialplanning formulation described in the previous item. The incorporation involves only the additionof a few more rules, thus illustrating the declarativeness and elaboration tolerance of our approach.We then formally prove the relation between valid trajectories of the action theory satisfying thetemporal constraints, and answer sets of the updated program. Our approach di�ers from [1, 14] inthat we use LPASS for both the basic encoding of planning and the temporal constraints, while theplanners in [1, 14] are written in procedural languages. Preliminary experiments show our approachto be less e�cient. But our use of LPASS allows us to have correctness proofs, which is one of ourmajor concerns. Such correctness proofs are not part of [1, 14].3

3. In Section 4.2 we consider the use of procedural domain knowledge in planning. An example of aprocedural domain knowledge is a program written as a1; a2; (a3ja4ja5); f?. This program tells theplanner that it should make a plan where a1 is the �rst action, a2 is the second action and then itshould choose one of a3, a4 or a5 such that after the plan's execution f will be true.We de�ne programs representing procedural domain knowledge and specify when a trajectory is atrace of such a program. We then show how to incorporate the use of procedural domain knowledgein planning to the initial planning formulation described in item (1.). As in (2.) the incorporationinvolves only the addition of a few more rules. We then formally prove the relation between validtrajectories of the action theory satisfying the procedural domain knowledge, and answer sets ofthe updated program. We also present experimental results (Section 4.4) showing the improvementin planning time due to using such knowledge over planning in the absence of such knowledge.4. In Section 4.3 we motivate the need of additional constructs from HTN-planning to express domainknowledge and integrate features of HTN with procedural constructs to develop a more generallanguage for domain knowledge. We then de�ne trace of such general programs and show how toincorporate them in planning. We then formally prove the relation between valid trajectories ofthe action theory satisfying the general programs containing both procedural and HTN constructs,and answer sets of the updated program. To the best of our knowledge this is the �rst time anintegration of HTN and procedural constructs has been proposed for use in planning.5. As mentioned in the above items, we pay major attention to correctness proofs of our LPASSformulations. All the proofs appear in Appendix A, and for completeness we present a few resultsabout LPASS, that we use in our proofs, in Appendix B.In regards to closely related work, although planning through model �nding of propositional encodings[23] has been studied quite a bit, those papers do not have correctness proofs and do not use the varieddomain constraints that we use in this paper.We now start with some preliminaries and background material about reasoning about actions andLPASS, which will be used in the rest of the paper.2 Preliminaries and Background2.1 Reasoning about actions: the action description language BRecall that planning involves �nding a sequence of actions that takes a world from a given initial state toa state that satis�es certain goal conditions. To do planning, we must be �rst able to reason about theimpact of a single action on a world. This is also the �rst step in `reasoning about actions'. In general,reasoning about actions involves de�ning a transition function from states (of the world) and actionsto sets of states where the world might be after executing the action. Since explicit representation ofthis function would require exponential space in the size of the number of
uents (i.e., properties of theworld), actions and their e�ects on the world are described using an action description language, and theabove mentioned transition function is implicitly de�ned in terms of that description.We now present the action description language B from [20] which we will use in this paper. This languageconsists of two �nite, disjoint sets of names A and F, called actions and
uents, respectively, and a setof propositions of the following form: caused(fp1; : : : ; png; f) (1)causes(a; f; fp1; : : : ; png) (2)executable(a; fp1; : : : ; png) (3)initially(f) (4)4

where f and pi's are
uent literals (a
uent literal is either a
uent g or its negation :g) and a is anaction. (1) represents a static causal law, i.e., a rami�cation constraint. It conveys the meaning thatwhenever the
uent literals p1; : : : ; pn hold, so does f . (2), referred to as a dynamic causal law, representsthe (conditional) e�ect of a while (3) states an executability condition of a. Intuitively, a propositionof the form (2) states that f is guaranteed to be true after the execution of a in any state of the worldwhere p1; : : : ; pn are true. An executability condition of a says that a is executable in a state in whichp1; : : : ; pn hold. Propositions of the form (4) are used to describe the initial state. It states that f holdsin the initial state.An action theory is a pair (D;�) where �, called the initial state description, consists of propositionsof the form (4) and D, called the domain description, consists of propositions of the form (1)-(3). Forconvenience, we sometimes denote the set of propositions of the form (1), (2), and (3) by DC , DD, andDE , respectively.Example 1 The well-known blocks world domain can be expressed using the following propositions3:
D1 =8>>>>>>>>>>>><>>>>>>>>>>>>:

causes(move(X;Y); on(X;Y); fg); for all X 6= Ycauses(move(X;Y);:clear(Y); fg); for all X 6= Ycauses(move(X; table); on(X; table); fg)caused(fon(X;Y)g;:on(Z; Y)); for all Z 6= Xcaused(fon(X;Y)g;:on(X;Z)); for all Z 6= Ycaused(fon(X; table)g;:on(X;Y)); for all Ycaused(f:on(Y1; X); : : : ;:on(Yn; X)g; clear(X)) where Y 0i s are blocks di�erent than Xexecutable(move(X;Y); fclear(X); clear(Y)g)executable(move(X; table); fclear(X)g)where X , Y are variables of type \block", \table" is a constant. The actions are \move(X;Y)" and\move(X; table)", which mean moving block X onto block Y and onto the \table", respectively. The
u-ents are \on(X;Y)", \clear(X)", and \on(X; table)". They are used to record the positional informationabout the blocks.Let D be the theory for the domain of blocks a; b; c. An example of an initial state could be given by theset of initial propositions:� = 8>>>><>>>>: initially on(a; table); initially on(b; a); initially on(c; b);initially :on(b; table); initially :on(b; c);initially :on(a; b); initially :on(a; c);initially :on(c; table); initially :on(c; a);initially :clear(a); initially :clear(b); initially clear(c) 9>>>>=>>>>; 2A domain description given in B de�nes a transition function from pairs of actions and states to sets ofstates whose precise de�nition is given below. Intuitively, given an action a and a state s, the transitionfunction � de�nes the set of states �(a; s) that may be reached after executing the action a in state s. If�(a; s) is an empty set it means that a is not executable in s. We now formally de�ne �.Let D be a domain description in B. An interpretation I of the
uents in D is a maximal consistent setof
uent literals drawn from F. A
uent f is said to be true (resp. false) in I i� f 2 I (resp. :f 2 I).The truth value of a
uent formula in I is de�ned recursively over the propositional connectives in theusual way. For example, f ^ g is true in I i� f is true in I and g is true in I . We say that a formula 'holds in I (or I satis�es '), denoted by I j= ', if ' is true in I .3We follow the convention in logic programming in that terms beginning with a capital and lower-case letters representvariables and constants, respectively. A proposition with variables represents the set of its ground instances.5

Let u be a consistent set of
uent literals and K a set of static causal laws. We say that u is closed underK if for every static causal laws \caused(fp1; : : : ; png; f)" in K, if fp1; : : : ; png � u then so does f . ByClK(u) we denote the least consistent set of literals from D that contains u and is also closed under K.Formally, a state of D is an interpretation of the
uents in F that is closed under the set of static causallaws DC of D.An action a is executable in a state s if there exists an executability proposition\executable(a; ff1; : : : ; fng)" in D such that s j= f1 ^ : : : ^ fn. Clearly, if \executable(a; fg)"belongs to D, then a is executable in every state of D.The direct e�ect of an action a in a state s of D is the set E(a; s) = ff j D contains a dynamic law\causes(a; f; ff1; : : : ; fng)" and fi 2 s for i = 1; : : : ; ng.For a domain description D, �(a; s), the set of states that may be reached by executing a in s, is de�nedas follows.1. If a is executable in s, then�(a; s) = fs0 j s0 is a state and s0 = ClDC (E(a; s) [(s \ s0))g;2. If a is not executable in s, then �(a; s) = ;.The intuition behind the above formulation is as follows. The direct e�ects of an action a in a state s aredetermined by the dynamic causal laws and are given by E(a; s). All
uent literals in E(a; s) must holdin any resulting state. The set s \ s0 contains the
uent literals of s which continue to hold by inertia,i.e they hold in s0 because of not being changed by any action. In addition, the resulting state must beclosed under the set of static causal laws DC . These three aspects are captured by the de�nition above.Observe that when DC is empty and a is executable in state s, �(a; s) is equivalent to the set of statesthat satisfy E(a; s) and are closest to s using symmetric di�erence4 as the measure of closeness [31].Additional explanations and motivations behind the above de�nition can be found in [3, 31, 43].Every domain description D in B has a unique transition function �, and we say � is the transitionfunction of D. We illustrate the de�nition of the transition function in the next example.Example 2 Consider the block word domain from Example 1 with the set of blocks fa; b; c; d; e; fg. Thestate depicted in the Fig. 1 is given by the set5s0 = fon(a; table); on(b; a); on(c; b); clear(c); on(d; table); on(e; d); on(f; e); clear(f)g:
abc defFigure 1: A state of the block world domain with 6 blocks a, b, c, d, e, and f4We say s1 is strictly closer to s than s2 if s1 n s [s n s1 � s2 n s [s n s2.5To simplify the notation, we list only positive literals in states (i.e., whatever is not in a state is false).6

In state s0, the actions move(c; table), move(f; table), move(f; c), and move(c; f) are executable. Wehave the following possible transitions from state s0:(s0 [f on(c; table); clear(b) g) n f on(c; b) g 2 �(move(c; table); s0):(s0 [f on(f; table); clear(e) g) n f on(f; e) g 2 �(move(f; table); s0):(s0 [f on(c; f); clear(b) g) n f on(c; b); clear(f) g 2 �(move(c; f); s0):(s0 [f on(f; c); clear(e) g) n f on(f; e); clear(c) g 2 �(move(f; c); s0): 2For a domain description D with transition function �, a sequence s0a1s1 : : : ansn where si's are statesand ai's are actions is called a trajectory in D if si+1 2 �(si; ai+1) for i 2 f0; : : : ; n � 1g. A trajectorys0a1s1 : : : ansn achieves a
uent formula � if sn j= �.A domain description D is consistent i� for every action a and state s, if a is executable in s, then�(a; s) 6= ;. An action theory (D;�) is consistent if D is consistent and s0 = ff j initially(f) 2 �g is astate of D. In what follows, we will consider only consistent action theories.2.2 Logic Programming with answer set semantics (LPASS) and its applica-tionIn this section we review LPASS and and its applicability to problem solving.2.2.1 Logic Programming with answer set semantics (LPASS)Although the programming language Prolog and the �eld of logic programming have been around forseveral decades, the answer set semantics of logic programs { initially referred to as the stable modelsemantics, was rather recently proposed by Gelfond and Lifschitz in [19]. Unlike earlier characterizationsof logic programs where the goal was to �nd a unique appropriate `model' of a logic program, the answerset semantics allows the possibility that a logic program may have multiple appropriate models, or noappropriate models at all. It is this feature of the answer set semantics that plays an important role inusing LPASS for problem solving. We now present the syntax and semantics of LPASS.A logic program � is a set of rules of the forma0 a1; : : : ; am; not am+1; : : : ; not an (5)or ? a1; : : : ; am; not am+1; : : : ; not an (6)where 0 � m � n, each ai is an atom of a �rst-order language LP , ? is a special symbol denotingthe truth value false, and not denotes a special unary predicate { the negation-as-failure operator. Anegation as failure literal (or naf-literal) is of the form not a where a is an atom. For a rule of the form(5)-(6), the left and right hand side of the rule are called the head and the body, respectively. A rule ofthe form (6) is also called a constraint.Given a logic program �. We will assume that each rule in � is replaced by the set of its ground instancesso that all atoms in � are ground. Consider a set of ground atoms X . The body of a rule of the form(5) or (6) is satis�ed by X if fam+1; : : : ; ang \ X = ; and fa1; : : : ; amg � X . A rule of the form (5) issatis�ed by X if either its body is not satis�ed by X or a0 2 X . A rule of the form (6) is satis�ed by Xif its body is not satis�ed by X . An atom a is supported by X if a is the head of some rule (5) such thatfa1; : : : ; amg � X and fam+1; : : : ; ang \X = ;. 7

For a set of ground atoms X and a program �, the reduct of � with respect to X , denoted by �X , is theprogram obtained from the set of all ground instances of � by deleting1. each rule that has a naf-literal not a in its body with a 2 S, and2. all naf-literals in the bodies of the remaining clauses.S is an answer set (or a stable model) of � if it satis�es the following conditions.1. If � does not contain any naf-literal (i.e. m = n in every rule of �) then S is the smallest set ofatoms such that(a) for any ground instance a0 a1; : : : ; am of a rule from �, if a1; : : : ; am 2 S, then a0 2 S, and(b) for any ground instance ? a1; : : : ; am of a rule from �, fa1; : : : ; amg n S 6= ;.2. If the program � does contain some naf-literal (m < n in some rule of �), then S is an answer setof � if S is the answer set of �S . (Note that �S does not contain naf-literals, its answer set isde�ned in the �rst item.)A program � is said to be consistent if it has an answer set. Otherwise, it is inconsistent.Many robust and e�cient systems that can compute answer sets of propositional logic programs havebeen developed. Two of the frequently used systems are dlv [10] and smodels [35]. Recently, XSB[40], a system developed for computing the well-founded model of logic programs, has been extended tocompute stable models of logic programs as well.2.2.2 Problem solving using LPASSProlog and other early logic programming systems were geared towards answering yes/no queries withrespect to a program, and if the queries had variable then returning instantiations together with an `yes'answer. The possibility of multiple answer sets and no answer sets has given rise to an alternative wayto solve problems using LPASS. In this approach, referred to by some as answer set programming (alsoknown as stable model programming) [30, 34, 26], possible solutions of a problem are enumerated asanswer set candidates and non-solutions are eliminated through rules with ? in the head, resulting in aprogram whose answer sets have one-to-one correspondence with the solutions of the problem.We illustrate the concepts of answer set programming by showing how the 3-coloring problem of a bi-directed graph G can be solved using LPASS. Let the three colors be red (r), blue (b), and green (g) andthe vertex of G be 0; 1; : : : ; n. Let P (G) be the program consisting of� the set of atoms edge(u; v) for every edge (u; v) of G,� for each vertex u of G, three rules stating that u must be assigned one of the colors red, blue, orgreen: color(u; g) not color(u; b); not color(u; r)color(u; r) not color(u; b); not color(u; g)color(u; b) not color(u; r); not color(u; g)and 8

� for each edge (u; v) of G, three rules representing the constraint that u and v must have di�erentcolor: ? color(u; r); color(v; r); edge(u; v)? color(u; b); color(v; b); edge(u; v)? color(u; g); color(v; g); edge(u; v)It can be shown that for each graph G, (i) P (G) is inconsistent i� the 3-coloring problem of G does nothave a solution; and (ii) if P (G) is consistent then each answer set of P (G) corresponds to a solution ofthe 3-coloring problem of G and vice versa.To make answer set style programming easier, Niemel�a et al. [36] introduce a new type of rules, calledcardinality constraint rule (a special form of the weight constraint rule) of the following form:lfb1; : : : ; bkgu a1; : : : ; am; not am+1; : : : ; not an (7)where ai and bj are atoms and l and u are two integers, l � u. The intuitive meaning of this rule isthat whenever its body is satis�ed then at least l and at most u atoms of the set fb1; : : : ; bkg must betrue. Using rules of this type, one can greatly reduce the number of rules of programs in answer setprogramming. For instance, in the above example, the three rules representing the constraint that everynode u needs to be assigned one of the three colors can be packed into one cardinality constraint rule:1fcolor(u; g); color(u; r); color(u; b)g1 The semantics of logic programs with such rules is given in [36]. For our purpose in this paper we onlyneed to consider rules with l = u = 1, and restrict that if we have rules of the form (7) in our programthen there are no other rules with any of b1; : : : ; bk in their head. In that case a program with rules ofthe form (7) has the same answer sets (with respect to the de�nition in [36]) as the program where rulesof the form (7) are replaced by the following set of rules:b1 a1; : : : ; am; not am+1; : : : ; not an; not b2; : : : ; not bkb2 a1; : : : ; am; not am+1; : : : ; not an; not b1; not b3; : : : ; not bk: : :bk a1; : : : ; am; not am+1; : : : ; not an; not b1; : : : ; not bk�13 Answer Set Planning: Using LPASS for planningIn this section we show how to do planning using LPASS { referred to as Answer Set Planning (orASP) [26] { when the e�ect of actions on the world and the relationship between
uents in the worldare expressed in the action description language B. Formally, a planning problem with respect to B isspeci�ed by a triple hD;�;�i where (D;�) is an action theory in B and � is a
uent formula (or goal),which a goal state must satisfy. A sequence of actions a1; : : : ; am is then called a possible plan for � ifthere exists a trajectory s0a1s1 : : : amsm in D such that s0 and sm satis�es � and �, respectively. Notethat we de�ne a `possible plan' instead of a `plan'. (In the later case the goal must be achieved on everypossible trajectory.) This is because the presence of static causal laws in D allows the possibility thatthe e�ect of actions may be non-deterministic, and planning with non-deterministic actions is beyond theexpressibility of LPASS. However, if D is deterministic, i.e., j�(a; s)j � 1 for every pair of a state s andaction a, then the notions of `possible plan' and `plan' coincide.Given a planning problem hD;�;�i, answer set planning solves it by translating it into a logic program�(D;�;�) (or �, for short) consisting of domain-dependent rules that describe D, �, and � and domain-independent rules that generate action occurrences and represent the transitions between states. We nowpresent the rules of �(D;�;�). Our encoding closely follows the syntax of the smodels system as wedid most of our experiments using it. We begin with the set of rules for the representation of D and �.9

3.1 Action theory representationWe assume that actions and
uents in A and F are speci�ed by the predicates action(:) and fluent(:),respectively, together with the necessary typed-de�nitions that are added for the use of variables. Theencoding of � is straightforward and does not require any special treatment as each element in � can beviewed as a fact (rule without body) of �. Since each set of literals fp1; : : : ; png in (1)-(3) is a conjunctionof literals, D can be encoded as a set of facts of � as follows. First, we assign to each set of
uent literals,say fp1; : : : ; png, that occurs in a proposition of D a distinguished name, say n�. The constant nildenotes the set fg. A set of literals fp1; : : : ; png, with the name n�, will be encoded by the set of atomsfconj(n�); in(p1; n�); : : : ; in(pn; n�)g where conj(n�) speci�es the type of the formula (a conjunction),and in(fj ; n�) indicates that fj is a conjunct of �. A proposition of the form causes(a; f; fp1; : : : ; png)with n> 0 is encoded as a set of atoms consisting of causes(a; f; n�) and the set of atoms representingthe formula � = p1 ^ : : : ^ pn. Similar encodings are done for other types of propositions in D.Example 3 To encode the block world domain in Example 1, we use the predicate block(X) as the typede�nition for blocks. The actions and
uents are de�ned by the following rules:action(move(X;Y)) block(X); block(Y); X 6= Y:fluent(on(X;Y)) block(X); block(Y); X 6= Y:fluent(on(X; table)) block(X):f luent(clear(X)) block(X):To encode the set of dynamic laws de�ned by the schema \causes(move(X;Y); on(X;Y); fg) for X 6= Y "we write: causes(move(X;Y); on(X;Y); nil) block(X); block(Y); X 6= Y:and to encode the static law \caused(f:on(Y1; X); : : : ;:on(Yn; X)g; clear(X)) where Yi's are blocksdi�erent from X", we assign the name `set nothing on(X)' to the set f:on(Y1; X); : : : ;:on(Yn; X)g anduse the following rules: set(set nothing on(X)) block(X):in(neg(on(Y;X)); set nothing on(X)) block(X); block(Y); X 6= Y:caused(set nothing on(X); clear(X)) block(X):The �rst rule de�nes the set named \set nothing on(X)" for a block X . The second rule speci�esthe members of this set and the third rule encodes the static law. It is worth mentioning againthat set nothing on(X) is not a
uent of the domain, it is the name assigned to the set of
uent,f:on(Y1; X); : : : ;:on(Yn; X)g, introduced for the encoding of the static causal law. Notice also that thenegative literal :on(X;Y) is represented by the term neg(on(X;Y)). The encodings of the other lawsare similar. 23.2 Domain independent rulesThe domain independent rules of � are adapted mainly from [17, 13, 26, 28]. As customary in theencoding of planning problems, we assume that the length of plans we are looking for is given. We denoteit by the constant length and use a sort time, whose domain is the set of integers from 0 to length, torepresent the time moments in which the system is in. The main predicates in these rules are:� holds(L; T): L holds at time T ,� possible(A; T): action A is executable at time T , and10

� occ(A; T): action A occurs at time T .� hf(F; T): formula F holds at time T .In the following rules, T is a variable of the sort time, L and G are variables denoting
uent literals(written as F or neg(F) for some
uent F { de�ned preciesly in rules (16) and (17)), S is a variable ofthe sort conj (conjunction), and A;B are variables of the sort action.holds(L; T+1) occ(A; T); causes(A;L; S); hf(S; T): (8)holds(L; T) caused(S;L); hf(S; T): (9)possible(A;T) executable(A;S); hf(S; T): (10)holds(L; 0) literal(L); initially(L): (11)occ(A; T) action(A); possible(A;T); not nocc(A; T): (12)nocc(A; T) action(A); action(B); A 6= B; occ(B; T): (13)nhf conj(F; T) conj(F); in(F1; F); not hf(F1; T): (14)hf(F; T) conj(F); not nhf conj(F; T): (15)Here, the rule (8) encodes the e�ects of actions and the rule (9) encodes the e�ects of static causal laws.The rule (10) de�nes a predicate that determines when an action can occur and (11) encodes the initialsituation. The rules (12)-(13) generates action occurrences, one at a time6. The last two rules encodewhen a conjunction is true. The rules of inertia (or the frame axioms) and rules de�ning literals areencoded using the following rules:literal(L) fluent(L): (16)literal(neg(L)) fluent(L): (17)contrary(F;neg(F)) fluent(F): (18)contrary(neg(F); F) fluent(F): (19)holds(L; T+1) contrary(L;G); holds(L; T); not holds(G; T+1): (20)The �rst two rules de�ne what is considered to be a literal. The next two rules say that neg(F) and Fare contrary literals. The last rule says that if L holds at T and its contrary does not hold at T +1, thenL continues to hold at T + 1. Finally, to represent the fact that neg(F) and F can not be true at thesame time, the following constraint is added to �.? fluent(F); holds(F; T); holds(neg(F); T): (21)3.3 Goal representationTo encode the goal �, we de�ne formulas and provide a set of rules for formula evaluation. We considerformulas which are bounded classical formulas with each bound variable associated with a sort. They areformally de�ned as follows.De�nition 1 1. A
uent literal is a formula.2. The negation of a formula is a formula.3. A �nite conjunction of formulas is a formula.6These two rules can be replaced by the smodels cardinality constraint rule \0focc(A;T) : action(A)g1 time(T)"and a set of constraint that requires that actions can occur only when they are executable and when some actions areexecutable then one has to occur. In many of our experiments, program with these rules yields better performance.11

4. A �nite disjunction of formulas is a formula.5. If X1; : : : ; Xn are variables that can have values from the sorts s1; : : : ; sn, and f(X1; : : : ; Xn) is aformula then 8X1 : s1; : : : ; Xn : sn:f(X1; : : : ; Xn) is a formula. When the sets s1; : : : ; sn are clearfrom the context, we simply write 8X1; : : : ; Xn:f(X1; : : : ; Xn).6. If X1; : : : ; Xn are variables that can have values from the sorts s1; : : : ; sn, and f(X1; : : : ; Xn) is aformula then 9X1 : s1; : : : ; Xn : sn:f(X1; : : : ; Xn) is a formula. When the sets s1; : : : ; sn are clearfrom the context, we simply write 9X1; : : : ; Xn:f(X1; : : : ; Xn). 2For convenience, we divide formulas into two groups: atomic and non-atomic. An atomic formula is a
uent literal. Other formulas are non-atomic formulas. A sort called formula is introduced. To encodeatomic formulas, we add the following rules to �:formula(L) literal(L): (22)We use conj, disj, and negation and forall and exists to represent the connectives ^; _; : and thequanti�ers 8 and 9, respectively. � contains the following type de�nition rules:formula(F) conj(F): (23)formula(F) disj(F): (24)formula(F) negation(F; F1): (25)formula(F) forall(F): (26)formula(F) exists(F): (27)Each non-atomic formula � will be associated with a unique name, denoted by n�, and is encoded by(possibly) a set of rules, denoted by r(�), which is de�ned inductively as follows.� For � = :', r(�) = r(') [fnegation(n�; n')g7.� For � = '1 ^ : : : ^ 'n, r(�) = Sni=1 r('i) [fconj(n�)g [fin(n'i ; n�) j i = 1; : : : ; ng.� For � = '1 _ : : : _ 'n, r(�) = Sni=1 r('i) [fdisj(n�)g [fin(n'i ; n�) j i = 1; : : : ; ng.� For � = 8X1; : : : ; Xn:f(X1; : : : ; Xn), r(�) consists of rules de�ning the domains of X1; : : : ; Xn, theatom forall(n�), and the following rulein(f(X1; : : : ; Xn); n�) in(X1; s1); : : : ; in(Xn; sn):� For � = 9X1; : : : ; Xn:f(X1; : : : ; Xn), r(�) consists of rules de�ning the domains of X1; : : : ; Xn, theatom exists(n�), and the following rulein(f(X1; : : : ; Xn); n�) in(X1; s1); : : : ; in(Xn; sn):For example, the conjunction � = f ^ g ^ h is represented by the set of atoms fconj(n�), in(f; n�),in(g; n�), in(h; n�)g. We will now de�ne hf(F; T) that determines whether or not a formula F holds atthe time moment T . For this purpose, we add to � the following rules:hf(F; T) disj(F); in(F1; F); hf(F1; T): (28)hf(F; T) negation(F; F1); not hf(F1; T): (29)hf(F; T) literal(F); holds(F; T): (30)hf(F; T) exists(F); in(F1; F); hf(F1; T): (31)nhf forall(F; T) forall(F); in(F1; F); not hf(F1; T): (32)hf(F; T) forall(F); not nhf forall(F; T): (33)7To simplify notation, when ' is an atomic formula (f or :f), we have n' as '.12

The meanings of these rules are straightforward. The �rst rule says that a disjunction holds if one of itsdisjuncts holds. Rules (31)-(33) are for quanti�ed formulas. Notice that rules for determining the truthvalue of conjunctions have been listed in the previous subsection (Rules (14) and (15)).We now state a theorem which states that rules (14), (15)), and (28)-(33) correctly implement theevaluation of a
uent formula given the truth value of the
uents.Theorem 1 Let S be a set of formulas, s be a state, and t be a non-negative integer. Let � = R1[R2[r(S) [r(s) where� R1 is the set of rules (14), (15), and (28)-(33) in which the time variable T takes the value t,� R2 consists of the set of rules de�ning literals (Rules (16) and (17)) and the set of rules de�ningthe
uents of the domain,� r(s) = fholds(l; t) j l is a literal and l 2 sg, and� r(S) = S�2S r(�).Then,(i) The program � has a unique answer set, X .(ii) For every formula � in the set S, � is true in s, i.e. s j= �, if and only if hf(n�; t) belongs to X .Proof. See Appendix A.1 2We now proceed towards formulating the correctness of our implementation of planning in B.3.4 Correctness of �Let �n(D;�;�) (or �n when it is clear from the context what D, �, and � are) be the logic programconsisting of� the set of domain-independent rules (rules (8)-(33)) in which the domain of T is f0; : : : ; ng,� the set of atoms encoding D and �,� the set of atoms and rules encoding �, r(�), and� the rule not hf(n�; n) that encodes the requirement that � holds at n.The following result (similar to the main result in [28]) shows the equivalence between trajectories achiev-ing � and answer sets of �n. Before stating the theorem, we introduce the following notation: for ananswer set M of �n, we de�ne si(M) = ff j f is a
uent literal and holds(f; i) 2Mg.Theorem 2 For a planning problem hD;�;�i with a consistent action theory (D;�),(i) if s0a0 : : : an�1sn is a trajectory achieving �, then there exists an answer set M of �n such that1. occ(ai; i) 2M for i 2 f0; : : : ; n� 1g and2. si = si(M) for i 2 f0; : : : ; ng.and 13

(ii) if M is an answer set of �n, then there exists an integer 0 � k � n such that s0(M)a0 : : : ak�1sk(k)is a trajectory achieving � where occ(ai; i) 2 M for 0 � i < k. Moreover, if k < n then no actionis executable in the state sk(M).Proof. See Appendix A.2 2It is worth noticing that the second item of the theorem implies that the trajectory achieving � corre-sponds to an answer set M of �n could be shorter than the prede�ned length n. This happens when thegoal is reached with a shorter sequence of actions and no action is executable in the resulting state.The next corollary follows directly from Theorem 2.Corollary 3.1 For a planning problem hD;�;�i with a consistent and deterministic action theory(D;�),1. a sequence of actions a0; : : : ; an�1 is a plan achieving � from � if there exists an answer set M of�n such that occ(ai; i) 2M for i 2 f0; : : : ; n� 1g; and2. for each answer set M of �n, there exists an integer 0 � k � n such that a0; : : : ; ak�1 is a planachieving � from � where occ(ai; i) 2 M for 0 � i < k. Moreover, if k < n then no action isexecutable in the state reached after executing a0; : : : ; ak�1 in the initial state.4 Control Knowledge as ConstraintsWe now move on to the main contribution of this paper: augmenting the answer set planning (ASP)program � in the previous section with di�erent kinds of domain knowledge. The domain knowledge actas constraints on the answer sets of �. For each kind of domain knowledge (also referred to as constraints)we introduce new constructs for its encoding and present a set of rules that check when a constraint issatis�ed. We start with temporal domain knowledge.4.1 Temporal KnowledgeUse of temporal domain knowledge in planning was �rst proposed by Bacchus and Kabanza in [1]. In theirformulation temporal knowledge is used to prune the search space while planning using forward search.In their paper, temporal constraints are speci�ed using a future linear temporal logic with a preciselyde�ned semantics. Since their representation is separate from the action and goal representation, it iseasy to add them to (or remove them from) a planning problem . Planners exploiting temporal knowledgeto control search have proven to be highly e�cient and to scale up well [2]. In this paper, we representtemporal knowledge using temporal formulas. In our notation, a temporal formula is either� a formula as de�ned in De�nition 1 (for clarity we will henceforth refer to such formulas as simpleformulas), or� a goal formula of the form goal(') where ' is a formula de�ned in De�nition 1, or� a formula of the form until(';), always('), eventually('), or next(') where ' and aretemporal formulas.� (When the context is clear we will often refer to temporal formulas as formulas.)14

Here, until, always, eventually, and next are temporal operators with standard meaning and goal isa special operator, called goal operator. Intuitively, a formula goal(') states that ' is part of the goaland must be true in a goal state. This provides a convenient way for expressing the control knowledgewhich depends on goal information. A temporal formula is said to be goal-independent if no goal formulaoccurs in it. Otherwise, it is goal-dependent. Bacchuss and Kabanza [1] observed that useful temporalknowledge in planning is often goal-dependent. In the block world domain, the following goal-dependentformula8: always(goal(on(X; table)) ^ on(X; table) � next(on(X; table))) (34)can be used to express that if the goal is to have a block on the table and it is already on the table thenit should be still on the table in the next moment of time. This has the e�ect of preventing the agentfrom super
uously picking up a block from the table if it is supposed to be in the table in a goal state.It is worth noting that under this de�nition, temporal operators can be nested many times but the goaloperator goal cannot be nested. For instance, if ' is a
uent formula, always(next(')) is a temporalformula, but goal(goal(')) is not.Temporal formulas which do not contain the goal operator (i.e. goal-independent formulas) will beinterpreted over a in�nite sequence of states of D, denoted by I = hs0; s1; : : : ; i. On the other handtemporal formulas which contain goal (i.e. goal-dependent formulas) will be evaluated with respect toa pair hI; 'i where I is a sequence of states and ' is a simple formula. We now formally de�ne themusing two separate de�nitions. De�nition 2 deals with goal-independent formulas while De�nition 3 isconcerned with general temporal formulas (possibly goal-dependent).De�nition 2 (See [1]) Let I = hs0; s1; : : : ; sn; : : :i be a sequence of states of D. Let f1 and f2 begoal-independent temporal formulas, t be a non-negative integer, and f3 be a simple formula. LetIt = hst; st+1; : : : ; i denoting the subsequence of I starting from st.I entails or satis�es a goal-independent temporal formula f , denoted by I j= f , if I0 j= f where� It j= f3 i� st j= f3.� It j= until(f1; f2) i� there exists t � t2 such that It2 j= f2 and for all t � t1 < t2 we have It1 j= f1.� It j= next(f1) i� It+1 j= f1.� It j= eventually(f1) i� there exists t � t1 such that It1 j= f1.� It j= always(f1) i� for all t � t1 we have It1 j= f1.For a �nite sequence of states I = hs0; : : : ; sni and a goal-independent temporal formula f , we say Ientails (or satis�es) f , denoted by I j= f , if I 0 j= f where I 0 = hs0; : : : ; sn; sn; : : :i. 2Next we de�ne when temporal formulas are entailed or satis�ed by a sequence of states and a goal.De�nition 3 Let I = hs0; s1; : : : ; sn; : : :i be a sequence of states of D and ' be a simple formula denotingthe goal. Let f1 and f2 be temporal formulas (possibly goal dependent), t be a non-negative integer, andf3 be a simple formula. Let It = hst; st+1; : : : ; i.I entails or satis�es a temporal formula f with respect to ', denoted by hI; 'i j= f , if hI0; 'i j= f where� hIt; 'i j= f3 i� st j= f3.8As before we use the convention that a formula with variables represents the set of its ground instantiations.15

� hIt; 'i j= goal(f3) i� ' j= f3� hIt; 'i j= until(f1; f2) i� there exists t � t2 such that hIt2 ; 'i j= f2 and for all t � t1 < t2 we havehIt1 ; 'i j= f1.� hIt; 'i j= next(f1) i� hIt+1; 'i j= f1.� hIt; 'i j= eventually(f1) i� there exists t � t1 such that hIt1 ; 'i j= f1.� hIt; 'i j= always(f1) i� for all t � t1 we have hIt1 ; 'i j= f1.For a �nite sequence of states I = hs0; : : : ; sni, a temporal formula f , and a simple formula ' we say Isatis�es f with respect to ', denoted by hI; 'i j= f , if hI 0; 'i j= f where I 0 = hs0; : : : ; sn; sn; : : :i. 2Similar to simple non-atomic formulas, temporal formulas can be encoded in ASP using constants, atoms,and rules. We do this in two steps.First, each temporal formula, say �, is represented by a set of rules r(�), which is de�ned inductively asfollows.� For simple formulas �, r(�) is de�ned as before (Section 3.3).� For � = always('), r(�) = r(') [falways(n�; n') g.� For � = next('), r(�) = r(') [fnext(n�; n') g.� For � = eventually('), r(�) = r(') [feventually(n�; n') g.� For � = until(';), r(�) = r(') [r() [funtil(n�; n'; n) g.� For � = goal(), r(�) = r() with n� is the name associated to goal(); in what follows, we willuse ngoal() to denote the name assigned to the goal formula goal().For example, r(until(f; next(g))) is the set of facts funtil(f1; f; f2); next(f2; g)g, where f1 and f2 arethe names assigned to until(f;next(g)) and next(g), respectively. When encoding temporal formulaswith variables we can instantiate them �rst and then encode the instantiation, or do the encoding asillustrated by the following example, where we encode the temporal formula (34).Example 4 To encode the temporal formula (34), we name the sub-formulas as follows, where thevariables in the names play the same role as the variables in the formulas.1. n1(X) = next(on(X; table))2. n2(X) = goal(on(X; table)) ^ on(X; table)3. n3(X) = :(goal(on(X; table)) ^ on(X; table)) _ next(on(X; table))4. n4(X) = always(goal(on(X; table)) ^ on(X; table) � next(on(X; table)))Then the encoding of (34) is the encoding of n4(X).The rules encoding n1(X) are: next(n1(X); on(X; table)) block(X):n2(X) is encoded by the following rules:conj(n2(X)) block(X):in(ngoal(on(X;table)); n2(X)) block(X):in(on(X; table); n2(X)) block(X):16

The set of rules encoding n3(X) contains the rules for encoding n2(X) and n1(X) and the followingrules: disj(n3(X)) block(X):in(n1(X); n3(X)) block(X):in(negation(n2(X)); n3(X)) block(X):Finally, the set of rules encoding n4(X) contains r(n3(X)) and the following rule:always(n4(X); n3(X)) block(X): 2To complete the encoding of temporal constraints, we now provide the rules for evaluating temporalformulas. To achieve that we extend the earlier set of rules in Section 3.3 that de�ne the predicate hf .As when de�ning entailment of temporal formulas, we �rst consider goal-independent temporal formulas.The rules needed for evaluating temporal formulas whose �rst level operator is di�erent than the goaloperator are as follows: hf(N;T) until(N;N1; N2); hf during(N1; T; T 0); hf(N2; T 0): (35)hf(N;T) always(N;N1); hf during(N1; T; n+ 1): (36)hf(N;T) eventually(N;N1); hf(N1; T 0); T � T 0: (37)hf(N;T) next(N;N1); hf(N1; T + 1): (38)nhf during(N;T; T 0) not hf(N;T 00); T�T 00<T 0: (39)hf during(N;T; T 0) hf(N;T); not nhf during(N;T; T 0): (40)In the above rules, for a temporal formula N , hf(N;T) means that N is satis�ed by hsT ; sT+1; : : : sni,where sT refers to the state corresponding to time point T . With this meaning the rules encode De�ni-tion 2 in a straightforward way.The next theorem shows that rules (35)-(40) correctly implement the semantics of goal-independenttemporal formulas.Theorem 3 Let S be a set of goal-independent temporal formulas, I = hs0; s1 : : : sni be a sequence ofstates, and It denote hst; : : : sni. Let � = R1 [R2 [r(S) [r(I)where� R1 consists of the set of rules (14), (15), and (28)-(33) in which the domain of T is f0; : : : ; ng, theset of rules (16)-(17)), and the set of rules de�ning the
uents of the domain,� R2 is the set of rules (35)-(40) in which the domain of T is f0; : : : ; ng,� r(I) = [nt=0fholds(l; t) j l is a
uent literal and l 2 stg, and� r(S) = S�2S r(�).Then,(i) The program � has a unique answer set, X . 17

(ii) For every temporal formula � in the set S, � is true in It, i.e., It j= �, if and only if hf(n�; t)belongs to X .Proof. See Appendix A.1 2Having de�ned temporal constraints and speci�ed when they are satis�ed, adding temporal knowledgeto a planning problem in ASP is easy. We must encode the knowledge as a temporal formula9 and thenadd the set of rules representing this formula and the rules (35)-(40) to �. Finally, we need to add theconstraint that requires that the goal is true at the �nal state and the temporal formula is satis�ed. Moreprecisely, for a planning problem hD;�;�i and a goal-independent temporal formula �, let �TLPn be theprogram consisting of� the program �n,� the rules (35)-(40)� the rules encoding � and the constraint not hf(n�; 0).The next theorem is about the correctness of �TLPn .Theorem 4 For a planning problem hD;�;�i with a consistent action theory (D;�) and a goal-independent temporal formula �,(i) if s0a0 : : : an�1sn is a trajectory achieving � and I j= � where I = hs0; : : : ; sni, then there existsan answer set M of �TLPn such that1. occ(ai; i) 2M for i 2 f0; : : : ; n� 1g,2. si = si(M) for i 2 f0; : : : ; ng, and3. hf(n�; 0) 2M .and(ii) if M is an answer set of �TLPn , then there exists an integer 0 � k � n such that1. s0(M)a0 : : : ak�1sk(M) is a trajectory achieving � where occ(ai; i) 2M for 0 � i < k and2. I j= � where I = hs0(M); : : : ; sn(M)i.Proof. Follows from Theorem 2 and Theorem 3. 2The above theorem shows how control knowledge represented as goal-independent temporal formulascan be exploited in ASP. We will now extend this result to allow control knowledge expressed usinggoal-dependent temporal formulas. Based on De�nition 3, where entailment of goal-dependent temporalformulas is de�ned, we will need to encode ' j= f3. To simplify this encoding we make the sameassumption that is made in most classical planning literature including [1]: our goals will be a conjunctionof literals. I.e., the goal � in a planning problem hD;�;�i will be a set of literals and each goal formulaoccurring in a temporal formula representing our control knowledge is of the form goal(F) where F is a
uent literal. In the rest of this section, whenever we refer to a planning problem or a goal-dependenttemporal formula we assume that they satisfy this assumption. Let hD;�;�i be a planning problem and� be a temporal formula. �TLP+Goaln be the program consisting of �TLPn and the rulehf(ngoal(L); T) literal(L); conj(n�); in(L; n�): (41)Notice that because � is a conjunction of literals, rule (41) is su�cient for determining whether � j= lfor some
uent literal l holds or not. The next theorem is about the correctness of �TLP+Goaln .9A set of temporal formulas can be viewed as a conjunction of temporal formulas.18

Theorem 5 For a planning problem hD;�;�i with a consistent action theory (D;�) and a temporalformula �,(i) if s0a0 : : : an�1sn is a trajectory achieving � and hI;�i j= � where I = hs0; : : : ; sni, then thereexists an answer set M of �TLP+Goaln such that1. occ(ai; i) 2M for i 2 f0; : : : ; n� 1g,2. si = si(M) for i 2 f0; : : : ; ng, and3. hf(n�; 0) 2M .and(ii) if M is an answer set of �TLP+Goaln , then there exists an integer 0 � k � n such that1. s0(M)a0 : : : ak�1sk(M) is a trajectory achieving � where occ(ai; i) 2M for 0 � i < k and2. hI;�i j= � where I = hs0(M); : : : ; sn(M)i.Proof. To prove this theorem, we �rst need to modify Theorem 3 by (i) allowing goal-dependent formulasto be in the set S; (ii) adding a goal � and the rule (41) to the program � of Theorem 3. The proof ofthis modi�ed theorem is very similar to the proof of Theorem 3. This result, together with Theorem 2,proves the conclusion of this theorem. 24.2 Procedural KnowledgeProcedural knowledge can be thought of as an under-speci�ed sketch of the plans to be generated. Thelanguage constructs of procedural knowledge that we use in this paper are inspired by GOLOG, an Algol-like logic programming language for agent programming, control and execution; and based on a situationcalculus theory of actions [25]. GOLOG has been primarily used as a programming language for high-levelagent control in dynamical environments (see e.g. [8]). Although a planner can be written as a GOLOGprogram (See Chapter 10 of [38]), our view of a GOLOG program in this paper is di�erent. We view it asan incompletely speci�ed plan (or a form of procedural knowledge) that includes non-deterministic choicepoints that are �lled in by the planner. For example, the procedural knowledge (which is very similar toa GOLOG program) a1; a2; (a3ja4ja5); f represents plans which have a1 followed by a2, followed by oneof a3, a4, or a5 such that f is true upon termination of the plan. A planner, when given this proceduralknowledge needs only to decide which one of a3, a4, or a5 it should choose as its third action.We now formally de�ne the syntax of our procedural knowledge, which { keeping with the GOLOGterminology { we refer to as a program.De�nition 4 (Program) For an action theory (D;�),1. an action a is a program;2. a simple formula � (as de�ned in Subsection 3.3) is a program10;3. if pi's are programs then p1; : : : ; pn is a program, and p1; : : : ; pn are said to occur in it;4. if pi's are programs then p1 j : : : j pn is a program, and p1; : : : ; pn are said to occur in it;5. if p1 and p2 are programs and � is a simple formula then \if � then p1 else p2" is a program,and p1 and p2 are said to occur in it;10This is analogous to the GOLOG test action f? which tests the truth value of a
uent.19

6. if p is a program and � is a simple formula then \while � do p" is a program, and p is said tooccur in it; and7. if X1; : : : ; Xn are variables of sort s1; : : : ; sn, respectively, p(X1; : : : ; Xn) is a program, andf(X1; : : : ; Xn) is a simple formula, then pick(X1; : : : ; Xn; f(X1; : : : ; Xn); p(X1; : : : ; Xn)) is a pro-gram, and p(X1; : : : ; Xn) is said to occur in it. 2In general programs that are used in the construction of other programs are said to occur in them.Programs de�ned in Item 1 and 2 are called primitive; and others are referred to as non-primitive. For aprogram p, by progs(p) we denote the set of programs that occur in p. More precisely, progs(p) = fpg ifp is a primitive program; and progs(p) = Spioccurs in p progs(pi) if p is a non-primitive program. Noticethat the de�nition of programs allows \recursive" programs like \while �1 do q" and \while �2 do p"where p and q refer to the �rst and second program, respectively. It is easy to see that there are situationsin which the execution of a program p or q may never stop. In this paper, we are not interested in suchprograms as our purpose is to use programs to construct �nite plans. Towards that purpose, we de�ne anotion of a well-de�ned set of programs as follows.A program p depends on a program q, denoted by q < p, if q 2 progs(p). Let <� be the transitive closureof <. Given a set S of programs of an action theory (D;�), the < relation will induce a partial order onS. We say that S is well-de�ned if (i) for every non-primitive program p 2 S, progs(p) contains at leastone action and (ii) there exists no program p such that p <� p holds. It is worth noting that recursiveprograms in conventional sense (i.e., with break conditions) are normally well-de�ned. For instance, ifp(n) is a program with an integer parameter n then the set of program occurring in p(n), de�ned by\while n > 0 do p(n � 1)", is a well-de�ned program. For this reason, we will limit ourselves to thestudy of well-de�ned sets of programs. From now on, whenever we say a program p, we assume p to besuch that it guarantees progs(p) to be a well-de�ned set of programs. We illustrate the above de�nitionwith the following example.Example 5 In this example, we introduce the elevator domain from [25] which we use in our initialexperiments (Section 4.4). The
uents in this domain and their intuitive meaning are as follows:� on(N) - the request service light of the
oor N is on, indicating a service is requested at the
oorN ,� opened - the door of the elevator is open, and� currentF loor(N) - the elevator is currently at the
oor N .The actions in this domain and their intuitive meaning are as follows:� up(N) - move up to
oor N ,� down(N) - move down to
oor N ,� turnoff(N) - turn o� the indicator light of the
oor N ,� open - open the elevator door, and� close - close the elevator door.
20

The domain description is as follows:
Delevator =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
causes(up(N); currentF loor(N); fg)causes(down(N); currentF loor(N); fg)causes(turnoff(N);:on(N); fg)causes(open; opened; fg)causes(close;:opened; fg)caused(fcurrentF loor(M)g;:currentF loor(N)) for all M 6= Nexecutable(up(N); fcurrentF loor(M);:openedg) for all M < Nexecutable(down(N); fcurrentF loor(M);:openedg) for all M > Nexecutable(turnoff(N); fcurrentF loor(N)g)executable(open; fg)executable(close; fg)executable(null; fg)We consider arbitrary initial states where opened is false, currentF loor(N) is true for a particular Nand a set of on(N) is true; and our goal is to have :on(N) for all N . In planning to achieve such agoal, we can use the following set of procedural domain knowledge (or programs). Alternatively, in theterminology of GOLOG, we can say that the following set of programs can be used to control the elevator,so as to satisfy service requests { indicated by the light being on { at di�erent
oors.go floor(N) � currentF loor(N)jup(N)jdown(N):serve(N) � go floor(N); turnoff(N); open; close:serve a floor � pick(N; on(N); serve(N)):park � if currentF loor(0) then open else [down(0); open]:control � [while 9X:[on(X)] do serve a floor]; parkObserve that go floor(N) is a choice of actions (Item 4, De�nition 4); serve(N) is a sequence of programs(Item 3); serve a floor is a choice of arguments (Item 7); park is an example of the if : : : thenconstruct; and control is a while loop. 2The operational semantics of programs speci�es when a trajectory s0a0s1 : : : an�1sn, denoted by �, is atrace of a program p. Intuitively, � is a trace of a program p means that a0; : : : ; an�1 is a sequence ofactions (and � is a corresponding trajectory) that is consistent with the sketch provided by the proceduralconstraint p starting from the initial state s0. Alternatively, it can be thought of as the program p unfoldsto the sequence of actions a0; : : : ; an�1 in state s0. We now formally de�ne the notion of a trace.De�nition 5 (Trace) Let p be a program. We say that a trajectory s0a0s1 : : : an�1sn is a trace of p ifone of the following conditions is satis�ed:� p = a and a is an action, n = 1 and a0 = a;� p = �, n = 0 and � holds in s0;� p = p1; p2, and there exists an i such that s0a0 : : : si is a trace of p1 and siai : : : sn is a trace of p2;� p = p1 j : : : j pn, and s0a0 : : : an�1sn is a trace of pi for some i 2 f1; : : : ; ng;� p = if � then p1 else p2, and s0a0 : : : an�1sn is a trace of p1 if � holds in s0 or s0a0 : : : an�1snis a trace of p2 if :� holds in s0;� p = while � do p1, n = 0 and :� holds in s0, or� holds in s0 and there exists some i > 0 such that s0a0 : : : si is a trace of p1 and siai : : : sn is atrace of p; or 21

� p = pick(~X; f(~X); q(~X)), and there exists a constant ~x of the sort of ~X such that f(~x) holds in s0and s0a0s1 : : : an�1sn is a trace of q(~x). 2Similar to our earlier encoding of formulas, we will assign to each program a name (with the exception ofactions and formulas), provide rules for the construction of programs, and use the pre�x notation. Again,for a program p, let np denote the name assigned to p. The set of rules representing a program p, whichis not an action or a formula, will be denoted by r(p) and is de�ned inductively as follows.1. For p = p1; p2, r(p) = fproc(np; np1 ; np2)g [r(p1) [r(p2).2. For p = p1 j : : : j pn, r(p) = Sni=1 r(pi) [fin(npi ; np) j 1 � i � ng [fchoiceAction(np)g:3. For p = if � then p1 else p2, r(p) = r(�) [r(p1) [r(p2) [fif(np; n�; np1 ; np2)g:4. For p = while � do p1, r(p) = r(�) [r(p1) [fwhile(np; n�; np1)g:5. For p = pick(~x; f(~x); p1(~x)), r(p) = r(p1(~x)) [r(f(~x)) [fchoiceArgs(np; nf(~x); np1(~x))g:Example 6 In this example we present the encoding of the programs from Example 5.We start with the set of rules encoding the program go floor(N):choiceAction(go floor(N)) floor(N):in(currentF loor(N); go floor(N)) floor(N):in(up(N); go floor(N)) floor(N):in(down(N); go floor(N)) floor(N):The following rules encode the program serve(N):proc(serve(N); go floor(N); serve tail 1(N)) floor(N):proc(serve tail 1(N); turnoff(N); open close) floor(N):proc(open close; open; close) To encode the program serve a floor, we need the following rule:choiceArgs(serve a floor; on(N); serve(N)) floor(N):The following rules encode the program park:if(park; currentF loor(0); open; park 1) proc(park 1; down(0); open) Finally, the encoding of program control consists of the following rules:proc(control; while service needed; park) while(while service needed; existOn; serve a floor) exists(existOn) in(existOn; on(N)) floor(N): 222

We now present the LPASS rules that realize the operational semantics of programs. Intuitively,trans(p; t1; t2) is true in an answer set M i� st1(M)at1 : : : at2�1st2(M) is a trace of the program p11.trans(A;T; T + 1) action(A); occ(A; T): (42)trans(F;T1; T1) formula(F); hf(F; T1): (43)trans(P;T1; T2) proc(P; P1; P2); T1 � T 0 � T2; (44)trans(P1; T1; T 0); trans(P2; T 0; T2): (45)trans(N;T1; T2) choiceAction(N); (46)in(P1; N); trans(P1; T1; T2):trans(I; T1; T2) if(I; F; P1; P2); hf(F; T1); trans(P1; T1; T2): (47)trans(I; T1; T2) if(I; F; P1; P2); not hf(F; T1); trans(P2; T1; T2): (48)trans(W;T1; T2) while(W;F; P); hf(F; T1); T1 < T 0 � T2; (49)trans(P; T1; T 0); trans(W;T 0; T2):trans(W;T; T) while(W;F; P); not hf(F; T): (50)trans(S; T1; T2) choiceArgs(S;F; P); hf(F; T1); trans(P; T1; T2): (51)trans(null; T; T) (52)Here null denotes a dummy program that performs no action. This action is added to allow programs ofthe form if ' then p to be considered (this will be represented as if ' then p else null). The rulesare used for determining whether a trajectory { encoded by answer sets of the program �n { is a trace ofa program or not. As with temporal constraints, this is done inductively over the structure of programs.The rules (42) and (43) are for programs consisting of an action and a simple formula respectively. Theother rules are for the remaining cases. For instance, the rule (49) states that the trajectory from T1 toT2 is a trace of a while loop \while F do P", named W and encoded by the atom while(W;F; P), ifthe formula F holds at T1 and there exists some T 0, T1 < T 0 � T2 such that the trajectory from T1 toT 0 is a trace of P and the trajectory from T 0 to T2 is a trace of W ; and the rule (50) states that thetrajectory from T to T is a trace of W if the formula F does not holds at T . These two rules e�ectivelydetermine whether the trajectory from T1 to T2 is a trace of while(W;F; P). The meanings of the otherrules are similar.To specify that a plan of length n starting from an initial state must obey the sketch speci�ed by aprogram p, all we need to do is to have a rule not trans(np; 0; n). We now formulate the correctnessof our above encoding of procedural knowledge given as programs, and relate the traces of program withthe answer sets of its LPASS encoding. Let �Tn be the program obtained from �n by (i) adding therules (42)-(52), (ii) adding r(p), and (iii) replacing the goal constraint with not trans(np; 0; n). Thefollowing theorem is similar to Theorem 2.Theorem 6 Let (D;�) be a consistent action theory and p be a program. Then,(i) for every answer set M of �Tn with occ(ai; i) 2 M for i 2 f0; : : : ; n � 1g, s0(M)a0 : : : an�1sn(M)is a trace of p; and(ii) if s0a0 : : : an�1sn is a trace of p then there exists an answer set M of �Tn such that sj = sj(M)and occ(ai; i) 2M for j 2 f0; : : : ; ng and i 2 f0; : : : ; n� 1g.Proof. See Appendix A.3 2Now, to do planning using procedural constraints all we need to do is to add the goal constraint to �Tn ,which will �lter out all answer sets where the goal is not satis�ed in time point n, and at the same timewill use the sketch provided by the program p.11Recall that we de�ne si(M) = fholds(f; i) 2M j f is a
uent literalg.23

4.3 HTN KnowledgeThe programs in the previous section are good for representing procedural knowledge but prove cumber-some for encoding partial ordering information. For example, to represent that any sequence containingthe n programs p1; : : : ; pn, in which p1 occurs before p2, is a valid plan for a goal �, one would need to listall the possible sequences and then use the non-determinism construct. For n = 3, the program fragmentwould be (p1; p2; p3jp1; p3; p2jp3; p1; p2). Alternatively, the use of the concurrent construct k from [12],where pkq represents the set consisting of two programs p; q and q; p, is not very helpful either. Thisde�ciency of pure procedural constructs of the type discussed in the previous section prompted us to lookat the constructs in HTN planning [39]. The partial ordering information allowed in HTN descriptionsserves the purpose. Thus all we need is to have the constraint that says p1 must occur before p2.The constructs in HTN by themselves are not expressive enough either as they do not have proceduralconstructs such as procedures, conditionals, or loops, and expressing a while loop using pure HTN con-structs is not trivial. Thus we decided to combine the HTN and procedural constructs and go furtherthan the initial attempt in [5] where complex programs are not allowed to occur within HTN programs.We now de�ne a more general notion of program that allows both procedural and HTN constructs. Forthat we need the following notions. Let S = fp1; : : : ; pkg be a set of programs. Assume that ni, 1 � i � k,is the name assigned to the program pi.� An ordering constraint over S has the form ni � nj where ni 6= nj . Intuitively, an orderingconstraint ni � nj requires that the program pi has to be executed before the program pj .� A truth constraint is of the form (ni; �), (�; ni), or (ni; �; nt), where � is a formula.A truth constraint of the form (ni; �) (resp. (�; ni)) requires that immediately after (resp. imme-diately before) the execution of pi, � must hold.On the other hand, a constraint of the form (ni; �; nt) indicates that � must hold immediately afterthe time pi is executed until pt begins its execution. For this reason, we will assume that whenever(ni; �; nt) belongs to C, so does ni � nt.De�nition 6 (General programs) For an action theory (D;�),� an action a is a general program;� a simple formula � (as de�ned in Subsection 3.3) is a general program;� if pi's are general programs then p1; : : : ; pn is a general program, and p1; : : : ; pn are said to occurin it;� if pi's are general programs then p1 j : : : j pn is a general program, and p1; : : : ; pn are said to occurin it;� if p1 and p2 are general programs and � is a simple formula then \if � then p1 else p2" is ageneral program, and p1 and p2 are said to occur in it;� if p is a general program and � is a simple formula then \while � do p" is a general program,and p is said to occur in it;� if X1; : : : ; Xn are variables of sort s1; : : : ; sn, respectively, p(X1; : : : ; Xn) is a general program,and f(X1; : : : ; Xn) is a simple formula, then pick(X1; : : : ; Xn; f(X1; : : : ; Xn); p(X1; : : : ; Xn)) is ageneral program, and p(X1; : : : ; Xn) is said to occur in it; and� if S is a set of general programs and C is a set of ordering or truth constraints then the pair (S;C)is a general program, and the programs in S are said to occur in (S;C).24

2The notion of well-de�nedness of a set of general programs is de�ned similar to the notion of well-de�nedsets of programs and as before we assume that we only consider general programs p such that progs(p)is a well-de�ned set of general programs.As in the case of programs, the operational semantics of general programs is de�ned using the notion oftrace. We now de�ne the notion of a trace of general programs.De�nition 7 (Trace of general programs) Let p be a general program. We say that a trajectorys0a0 : : : an�1sn is a trace of p if one of the following conditions is satis�ed:1. p = a and a is an action, n = 1 and a0 = a;2. p = �, n = 0 and � holds in s0;3. p = p1; p2, and there exists an i such that s0a0 : : : si is a trace of p1 and siai : : : sn is a trace of p2;4. p = p1 j : : : j pn, and s0a0 : : : an�1sn is a trace of pi for some i 2 f1; : : : ; ng;5. p = if � then p1 else p2, and s0a0 : : : an�1sn is a trace of p1 if � holds in s0 or s0a0 : : : an�1snis a trace of p2 if :� holds in s0;6. p = while � do p1, n = 0 and :� holds in s0, or� holds in s0 and there exists some i > 0 such that s0a0 : : : si is a trace of p1 and siai : : : sn is atrace of p;7. p = pick(~X; f(~X); q(~X)), and there exists a constant ~x of the sort of ~X such that f(~x) holds in s0and s0a0 : : : an�1sn is a trace of q(~x); or8. p = (S;C) and there exists j0=0 � j1 � : : : � jk=n and a permutation (i1; : : : ; ik) of (1; : : : ; k) suchthat the sequence of trajectories �1 = s0a0 : : : sj1 , �2 = sj1aj1 : : : sj2 , : : :, �k = sjk�1ajk�1 : : : snsatis�es the following conditions:(a) for each l, 1 � l � k, �l is a trace of pil ,(b) if nt < nl 2 C then it < il,(c) if (�; nl) 2 C (or (nl; �) 2 C) then � holds in the state sjl�1 (or sjl), and(d) if (nt; �; nl) 2 C then � holds in sjt ; : : : ; sjl�1 . 2The last item of the above de�nition can be visualized by the following illustration:s0a0s1 : : : aj1�1sj1| {z }�1"#trace of pi1 sj1aj1 : : : aj2�1sj2| {z }�2"#trace of pi2 : : : sjl�1ajl�1+1 : : : ajl�1sjl| {z }�l"#trace of pil : : : sjk�1ajk�1+1 : : : ajk�1sjk| {z }�k"#trace of pikNext we show how to represent general programs. Similar to programs in the previous section, we willassign names to general programs and their elements. A general program p = (S;C) is encoded by theset of atoms and rules r(p) = fhtn(np; nS ; nC)g [r(S) [r(C)where r(S) and r(C) is the set of atoms and rules encoding S and C and is described below. Recall thatS is a set of programs and C is a set of constrains. Both S and C are assigned unique names, nS and25

nC . The atoms set(nS) and set(nC) are added to r(S) and r(C) respectively. Each element of S andC is encoded by a set of rules which are added to r(S) and r(C), respectively. Finally, the predicatein(:; :) is used to specify what belongs to S and C, respectively. Elements of C are represented by thepredicates order(�;+;+), postcondition(�;+;�), precondition(�;�;+), and maintain(�;+;�;+) wherethe place holders `*', `+', and `-' denotes the name of a constraint, a general program, and a formula,respectively. For example, if n1 � n2 belongs to C then the set of atoms encoding C will contain the atomin(order(n0; n1; n2); nC) where n0 and nC are the names assigned to the ordering constraint n1 � n2 andC, respectively. Similarly, if C contains (n1; '; n2) then in(maintain(n0; n'; n1; n2); nC) (again, n0 andnC are the name assigned to the truth constraint n1 � n2 and C, respectively) will belong to the set ofatoms encoding C.In the following example, we illustrate the encoding of a general program about the blocks world domain.Example 7 Consider a general program, (S;C), to build a tower from blocks a; b; c that achieves thegoal that a is on top of b and b is on top of c, i.e., the goal is to make on(a; b) ^ on(b; c) hold. We haveS = fmove(b; c);move(a; b)g, andC = 8<: move(b; c) < move(a; b);(clear(b);move(b; c)); (clear(c);move(b; c));(clear(b);move(a; b)); (clear(a);move(a; b)) 9=;With o = move(b; c) < move(a; b), f1 = (clear(b);move(b; c)), f2 = (clear(b);move(a; b)), f3 =(clear(c);move(b; c)), and f4 = (clear(a);move(a; b)), the encoding of p = (S;C) is as follows:r(p) = fhtn(p; nS ; nC)g [r(S) [r(C)r(S) = fset(nS); in(move(a; b); nS); in(move(b; c); nS)gr(C) = fset(nC); in(o; nC); in(f1; nC); in(f2; nC); in(f3; nC); in(f4; nC)g[forder(o;move(b; c);move(a; b)); precondition(f1; clear(b);move(a; b))g[fprecondition(f2; clear(b);move(a; b))g[fprecondition(f3; clear(c);move(b; c)); precondition(f4; clear(a);move(a; b))g 2We now present the LPASS rules that realize the operational semantics of general programs. For thispurpose we need the rules (42)-(52) that was presented earlier. These rules are for general programswhose top level structure is not an HTN. For general programs whose top level feature is an HTN weadd the following rule: trans(N;T1; T2) htn(N;S;C); not nok(N; T1; T2): (53)Intuitively, the above rule states that the general program N can be unfolded between time points T1and T2 (or alternatively: the trajectory from T1 and T2 is a trace of N) if N is an HTN construct (S;C),and it is not the case that the trajectory from T1 and T2 is not a trace of N . The last phrase is encodedby nok(N;T1; T2) and is true when the trajectory from T1 and T2 violates one of the many constraintsdictated by (S;C). The main task that now remains is to present LPASS rules that de�ne nok(N;T1; T2).To do that, as suggested by the de�nition of a trace of a program (S;C), we will need to enumerate thepermutations (i1; : : : ; ik) of (1; : : : ; k) and check whether particular permutations satisfy the conditionsin C. We now introduce some necessary auxiliary predicates and their intuitive meaning.� begin(N; I; T3; T1; T2) { This means that I , a general program belonging to N , starts its executionat time T3, and N starts and ends its execution at T1 and T2 respectively.� end(N; I; T4; T1; T2) { This means that I , a general program belonging to N , ends its execution attime T4, and N starts and ends its execution at T1 and T2, respectively.26

� between(T3; T1; T2) { This is an auxiliary predicate indicating that the inequalities T1 � T3 � T2hold.� not used(N;T; T1; T2) { This means that there exists no sub-program I of N whose executioncovers the time moment T , i.e., T < B or T > E where B and E are the start and �nish time of I ,respectively.� overlap(N;T; T1; T2) { This indicates that there exists at least two general programs I1 and I2 inN whose intervals contain T , i.e., B1 < T < E1 and B2 < T < E2 where Bi and Ei (i = 1; 2) is thestart- and �nish-time of Ii, respectively.We will now give the rules that de�ne the above predicates. First, to specify that each general programI belonging to the general program (S;C), i.e., I 2 S, must start and end its execution one and at mostone time during the time (S;C) is executed, we use the following rules:1fbegin(N; I; T3; T1; T2) : between(T3; T1; T2)g1 htn(N; S;C); in(I; S); trans(N;T1; T2): (54)1fend(N; I; T3; T1; T2) : between(T3; T1; T2)g1 htn(N; S;C); in(I; S); trans(N;T1; T2): (55)The �rst (resp. second) rule says that I { a program belonging to S { must start (resp. end) its executionone and at most one time between T1 and T2. Here, we use cardinality constraints with variables [36]in expressing these constraints. Such constraints with variables are short hand for a set of instantiatedrules of the form (7). For example, the �rst rule is a short hand for the set of rules corresponding to thefollowing cardinality constraint:1fbegin(N; I; T1; T1; T2); : : : ; begin(N; I; T2; T1; T2)g1 htn(N;S;C); in(I; S); trans(N;T1; T2):We now give the rules de�ning not used(:; :; :; :) and overlap(:; :; :; :).used(N;T; T1; T2) htn(N; S;C); in(I; S); begin(N; I;B; T1; T2); end(N; I; E; T1; T2); (56)B � T � E:not used(N;T; T1; T2) not used(N;T; T1; T2): (57)overlap(N;T; T1; T2) htn(N; S;C); in(I1; S); begin(N; I1; B1; T1; T2); end(N; I1; E1; T1; T2); (58)in(I2; S); begin(N; I2; B2; T1; T2); end(N; I2; E2; T1; T2);B1 � T � E1; B2 < T < E2:The rule (56) states that if a general program I in N starts its execution at B and ends its execution atE then its execution spans over the interval [B;E], i.e., every time moment between B and E is used bysome general program in N . The rule (57) states that if a time moment between T1 and T2 is not usedby some general program in N then it is not used. The last rule in this group speci�es the situation whentwo general programs belonging to N overlap.We are now ready to de�ne nok(:; :; :). There are several conditions whose violation makes nok true. The�rst condition is that the time point when a program starts must occur before its �nish time. Next eachgeneral program belonging to the set S of (S;C) must have a single start and �nish time. The violationsof these two conditions are encoded by the following rules which are added to �.nok(N; T1; T2) htn(N; S;C); in(I; S); T3 > T4; begin(N; I; T3; T1; T2); end(N; I; T4; T1; T2): (59)nok(N; T1; T2) htn(N; S;C); in(I; S); T3 � T4; begin(N; I; T3; T1; T2); end(N; I; T4; T1; T2); (60)not trans(I; T3; T4):nok(N; T1; T2) htn(N; S;C); T1 � T � T2; not used(N;T; T1; T2): (61)nok(N; T1; T2) htn(N; S;C); T1 � T � T2; overlap(N;T; T1; T2): (62)27

Together the rules (54)-(62) de�ne when the permutation determined by the set of atoms of the formbegin(N; I;B; T1; T2) and end(N; I; E; T1; T2) violate the initial part of condition 8 of De�nition 7. therules (54)-(55) require each general program in N to have a unique start and �nish time and the rule(59) encodes the violation when the �nish time is earlier than the start time. The rule (60) encodes theviolation when the trace of a general program in N does not correspond to its start and �nish time. Therule (61) encodes the violation when some time point on the trajectory of N is not covered by the trace ofa general program in N ; and the rule (62) encodes the violation when the trace of two general programsin N overlap.The next group of rules encode the violation of the conditions 8(b) { 8(d) of De�nition 7.nok(N; T1; T2) htn(N; S;C); in(I1; S); begin(N; I1; B1; T1; T2); (63)in(I2; S); begin(N; I2; B2; T1; T2);in(O;C); order(O; I1; I2); B1 > B2:nok(N; T1; T2) htn(N; S;C); in(I1; S); end(N; I1; E1; T1; T2); (64)in(I2; S); begin(N; I2; B2; T1; T2); E1 < T3 < B2;in(O;C);maintain(O; F; I1; I2); not hf(F; T3):nok(N; T1; T2) htn(N; S;C); in(I; S); begin(N; I;B; T1; T2); (65)in(O;C); precondition(O; F; I); not hf(F;B):nok(N; T1; T2) htn(N; S;C); in(I; S); end(N; I;E; T1; T2); (66)in(O;C); postcondition(O; F; I); not hf(F; E):The rule (63) encodes the violation when the constraint C of the general program N = (S;C) containsI1 � I2, but I2 starts earlier than I1. The rule (64) encodes the violation when C contains (I1; F; I2) butthe formula F does not hold in some point between the end of I1 and start of I2. The rules (65) and (66)encode the violation when C contains the constraint (F; I) or (I; F) and F does not hold immediatelybefore or after respectively, the execution of I .We now formulate the correctness of our above encoding of procedural and HTN knowledge given asgeneral programs, and relate the traces of a general program with the answer sets of its LPASS encoding.For an action theory (D;�) and a general program p, let �HTNn be the LPASS program obtained from�n by (i) adding the rules (42)-(52) and (53)-(66), (ii) adding r(p), and (iii) replacing the goal constraintwith not trans(nP ; 0; n). The following theorem extends Theorem 6.Theorem 7 Let (D;�) be a consistent action theory and p be a general program. Then,(i) for every answer setM of �HTNn with occ(ai; i) 2M for i 2 f0; : : : ; n�1g, s0(M)a0 : : : an�1sn(M)is a trace of p; and(ii) if s0a0 : : : an�1sn is a trace of p then there exists an answer setM of �HTNn such that sj = sj(M)and occ(ai; i) 2M for j 2 f0; : : : ; ng and i 2 f0; : : : ; n� 1g and trans(np; 0; n) 2M .Proof. See Appendix A.4 2As before, to do planning using procedural and HTN constraints all we need to do is to add the goalconstraint to �HTNn , which will �lter out all answer sets where the goal is not satis�ed in time point n,and at the same time will use the sketch provided by the general program p.4.4 Demonstration ExperimentsWe tested our implementation with some domains from the general planning literature and from theAIPS planning competition [2]. We chose problems for which procedural control knowledge appeared to28

be easier to exploit than other types of control knowledge. Our motivation was: (i) it has already beenestablished that well-chosen temporal and hierarchical constraints will improve a planner's e�ciency;(ii) we have previously experimented with the use of temporal knowledge in the ASP framework [42];and (iii) we are not aware of any empirical results indicating the utility of procedural knowledge inplanning, especially in ASP. (Note that [38] concentrates on using GOLOG to do planning in domainswith incomplete information, not on exploiting procedural knowledge in planning.)We report here the result obtained from our experiment with the elevator example from [25] (elp1-elp3)and the Miconic-10 elevator domain (s1-0,. . . ,s5-0s2), proposed by Schindler Lifts Ltd. for the AIPS 2000competition [2]. Note that some of the planners, that competed in AIPS 2000, were unable to solve thisproblem. The domain description for this example is earlier described in Example 5 and the smodelscode can be downloaded from http://www.cs.nmsu.edu/~tson/asp_planner.The initial state for this planning problem encodes a set of
oors where the light is on and the currentposition of the elevator. For instance, � = fon(1); on(3); on(7); currentF loor(4)g. The goal formula isrepresented by the conjunction ^f is a
oor:on(f). Sometimes, the �nal position of the elevator is addedto the goal. The planning problem is to �nd a sequence of actions that will serve all the
oors wherethe light is on and thus make the on predicate false for all
oors, and if required take the elevator to itsdestination
oor.Since there are a lot of plans that can achieve the desired goal, we can use procedural constraints to guideus to preferable plans. In particular, we can use the procedural knowledge encoded by the following setof simple GOLOG programs from [25], which we earlier discussed in Example 5.go floor(N) � currentF loor(N)jup(N)jdown(N):serve(N) � go floor(N); turnoff(N); open; close:serve a floor � pick(N; on(N); serve(N)):park � if currentF loor(0) then open else [down(0); open]:control � [while 9N:[on(N)] do serve a floor(N)]; parkWe ran experiments on an HP OmniBook 6000 laptop with 130,544 Kb Ram and an Intel Pentium III 600MHz processor, using lparse version 0.99.52 (Windows, build Apr 7, 2000) and smodels version 2.25.for planning in this example with and without the procedural control knowledge. The timings obtainedare given in the following table.Problem Plan # Person # Floors With Control Without ControlLength Knowledge Knowledgeelp1 10 2 6 0.600 0.560elp2 14 3 6 1.411 6.729elp3 18 4 6 3.224 120.693s1-0 4 1 2 0.100 0.020s2-0 8 2 4 1.802 0.921s3-0 12 3 6 22.682 34.519s4-0 15 4 8 164.055 314.101s5-0s1 19 5 4 57.952 > 2 hourss5-0s2 19 5 5 105.040 > 2 hoursAs can be seen, the encoding with control knowledge yields substantially better performance in situationswhere the plan length is big. For large instances (the last two rows), smodels can �nd a plan usingcontrol knowledge in a short time and cannot �nd a plan in 2 hours without control knowledge. In someinstances with small plan lengths, as indicated through boldface in column 6, the speed up due to theuse of procedural knowledge does not make up for the overhead needed in grounding the knowledge. Theoutput of smodels for each run is given in the �le result at the above mentioned URL. For larger instances29

of the elevator domain [2] (5 persons or more and 10
oors or more), our implementation terminatedprematurely with either a stack over
ow error or a segmentation fault error.5 ConclusionIn this paper we considered three di�erent kinds of domain dependent control knowledge (temporal,procedural and HTN-based) that are useful in planning. Our approach is declarative and relies on thelanguage of logic programming with answer set semantics (LPASS). We showed that the addition of thesethree kinds of control knowledge only involves adding a few more rules to a planner written in LPASSthat can plan without any control knowledge. We formally proved the correctness of our planner, bothin the absence and presence of the control knowledge. Finally, we did some initial experimentation thatshows the reduction in planning time when procedural domain knowledge is used and the plan length isbig.In the past temporal domain knowledge is used in planning in [1, 14]. In both cases, the planners arewritten in a procedural language, and there is no correctness proof of the planners. On the other hand theperformance of these planners are much better12 than our implementation using LPASS. In comparison,our focus in this paper is on the `knowledge representation' aspects of planning with domain dependentcontrol knowledge and demonstration of relative performance gains when such control knowledge is used.Thus we present correctness proof of our planners and stress the ease of adding the control knowledge toplanner. In this regard, an interesting observation is that it is straightforward to add control knowledgefrom multiple sources or angles. Thus say two di�erent general programs can be added to the planner,and any resulting plan must then satisfy the two sketches dictated by the two general programs.As mentioned earlier our use of HTN-based constraints in planning is very di�erent from HTN-planningand the recent HTN-based planner [33]. Unlike our approach in this paper, these planners can not beseparated to two parts: one doing planning that can plan even in the absence of the knowledge encoded asHTN and the other encoding the knowledge as an HTN. In other words, these planners are not extendedclassical planners that allow the use of domain knowledge in the form of HTN on top of a classicalplanner. The timings of the planner [33] on AIPS 2000 planning domains are very good though. Toconvince ourselves of the usefulness of procedural constraints we used their methodology with respectto procedural domain knowledge and wrote general programs for planning with blocks world and thepackage delivery domain and as in [33] we wrote planners in a procedural language (the language C tobe speci�c) for these domains and also observed similar performance. We plan to report this result ina future work. With our focus on the knowledge representation aspects we do not further discuss theseexperiments here.Although we explored the use of the di�erent kinds of domain knowledge separately, the declarativenessof our approach allows us to use the di�erent kinds of domain knowledge for the same planning problem.For example, for a particular planning problem we may have both temporal domain knowledge and amixture of procedural and hierarchical domain knowledge given as a general program. In that caseplanning will involve �nding an action sequence that follows the sketch dictated by the general programand the same time obeys the temporal domain knowledge. This distinguishes our work from other relatedwork [22, 24, 5, 32] where the domain knowledge allowed were much more restricted.A byproduct of the way we deal with procedural knowledge is that, in a propositional environment, ourapproach of planning (ASP) with procedural knowledge can be viewed as an o�-line interpreter for aGOLOG program. Because of the declarative nature of LPASS the correctness of this interpreter is easierto prove than the earlier interpreters which were mostly written in Prolog.12This provides a challenge to the community developing LPASS systems to develop LPASS systems that can match orcome close to (if not surpass) the performance of procedural systems.30

Acknowledgments The �rst two authors would like to acknowledge the support of the NASA grantNCC2-1232. The fourth author would like to acknowledge the support of NASA grant NAG2-1337. Thework of Chitta Baral was also supported in part by the NSF grant 0070463. The work of Tran Cao Sonwas also supported in part by NSF grant EIA-981072.Appendix A - ProofsWe apply the Splitting Theorem and Splitting Sequence Theorem [27] several times in our proof. For easeof reading, the basic notations and the splitting theorem are included in Appendix B. Since we assumea propositional language any rule in this paper can be considered as a collection of its ground instances.Therefore, throughout the proof, we often say a rule r whenever we refer to a ground rule r.Appendix A.1 - Proofs of Theorem 1 and 3It is easy to see that Theorem 1 is a special case of Theorem 3 because rules (35)-(40) are only used forformulas containing temporal operators. Thus, it su�ces to prove Theorem 3.Theorem 3 Let S be a set of goal-independent temporal formulas, I = hs0; s1 : : : sni be a sequence ofstates, and It = hst; : : : sni. Let � = R1 [R2 [r(S) [r(I)where� R1 consists of the set of rules (14), (15), and (28)-(33) in which the domain of T is f0; : : : ; ng, theset of rules (16)-(17)), and the set of rules de�ning the
uents of the domain,� R2 is the set of rules (35)-(40) in which the domain of T is f0; : : : ; ng,� r(I) = [nt=0fholds(f; t) j l is a
uent literal and l 2 stg, and� r(S) = S�2S r(�).Then,(i) The program � has a unique answer set, X .(ii) For every temporal formula � in the set S, � is true in It, i.e., It j= �, if and only if hf(n�; t)belongs to X .Proof. The proof is based on induction over the structural complexity of �. To capture this complexity,we associate to each formula, �, a non-negative number, �(�), as follows.� �(�) = 0 if � is a literal.� �(�) = maxki=1 �(�i) + 1 if � has the form op(�1; �2; : : : �k), where op is a logical connectiveamong :;^ and _ (negation, conj, and disj), or a temporal connective until, next, always oreventually.� �(�) = �(�1) + 1 if � = 8X1; : : : Xk:�1 or � = 9X1; : : : Xk:�1.
31

First, we prove (i). We know that if a program is locally strati�ed then it has a unique answer set[4]. We will show that � (more precisely, the set of ground rules of �) is indeed locally strati�ed.To accomplish that we need to �nd a mapping � from literals of � to N that has the property: ifA0 A1; A2; : : : An; not B1; not B2; : : : not Bm is a rule in �, then �(A0) � �(Ai) for all 1 � i � n and�(A0) > �(Bj) for all 1 � j � m.We de�ne � as follow.� �(nhf conj(�; t)) = 5 � �(�) + 1.� �(nhf forall(�; t)) = 5 � �(�) + 1.� �(nhf always(�; t)) = 5 � �(�) + 1.� �(hf(�; t)) = 5 � �(�) + 2.� �(nhf during(�; t; t0)) = 5 � �(�) + 3.� �(hf during(�; t; t0)) = 5 � �(�) + 4.� �(l) = 0 for every other literal of �.Examining all the rules in �, we can verify that � has the necessary property.We now prove (ii). Let X be the answer set of �. We prove by induction over �(�).Base: Let � be a formula with �(�) = 0. By the de�nition of �, we know that � is a literal. Then � istrue in st i� � is in st, that is, i� holds(�; t) belongs to X , which, because of rule (30), proves the basecase since for a literal, n� is � itself.Step: Assume that for all 0 � j � k and formula � such that �(�) = j, the formula � is true in st i�hf(n�; t) is in X .Let � be such a formula that �(�) = k + 1.� Case 1: � = :�1. We have �(�1) = �(�) � 1 = k. By induction, st j= �1 i� hf(n�1 ; t) 2 X .Assume hf(n�; t) =2 X . Because of rule (29) and negation(n�; n�1) being in X , we also havehf(n�1 ; t) 2 X . It follows that st j= �1, so st 6j= �. Now consider the case that hf(n�; t) 2 X .Formula � is a negation which is supported only by the rule (29). The body of the rule is satis�edby X , so hf(n�1 ; t) =2 X . Hence, st 6j= �1, and therefore, st j= �.� Case 2: � = �1 ^ �2 ^ : : : �i. For all 1 � j � i, we have �(�j) � k. By induction,st j= �i i�hf(n�i ; t) 2 X . Assume that st j= �, then st j= �i for all 1 � j � i. By induction, for each j,hf(n�j ; t) 2 X . Thus the body of a ground rule of the form (14) with F = n�, is not satis�able inX . It follows that nhf conj(n�; t) =2 X . Because of rule (15), we have hf(n�; t) 2 X . Now, considerthe case hf(n�; t) 2 X . The only rule supporting hf(n�; t) is (15), so we have nhf conj(n�; t) =2 X .If there exists j such that hf(n�j ; t) =2 X , then the body of rule(14) is satis�ed by F = n�, F1 = n�j ,T = t, which causes nhf conj(n�; t) 2 X . Hence for all 1 � j � i, hf(n�j ; t) 2 X , so st j= �j . Thisimplies st j= �.� Case 3: � = �1_�2_: : : �i. We have �(�j) � k for all 1 � j � i, so the inductive assumption is validfor all the �j . Let st j= �. Then there is a �j such that st j= �j . By induction, hf(n�j ; t) 2 X . WithF = n�, F1 = n�j , and T = t in rule (28), we have hf(n�; t) 2 X . Now assume hf(n�; t) 2 X .Because the atom is supported only by rule (28), there exists j such that hf(n�j ; t) 2 X . Byinduction, we have st j= �j , so st j= �. 32

� Case 4: � is a quanti�ed formula. The argument for forall- and exists-quanti�ed formula issimilar to that of a conjunction and disjunction, respectively. We omit the details here for brevity.Before continue with the proof, observe that similar to the case of conjunctive formula, we caneasily show that hf during(n�; t1; t2) 2 X i� hf(n�; t) 2 X (that is st j= �) for all t1 � t < t2.� Case 5: � = until(�1; �2). We have that �(�1) � k and �(�2) � k. Assume that It j= �. ByDe�nition 2, there exists t � t2 � n such that It2 j= �2 and for all t � t1 < t2, It1 j= �1. Byinductive hypothesis, hf(n�2 ; t2) 2 X and for all t1, t � t1 < t2, hf(n�1 ; t1) 2 X . It follows thathf during(n�1 ; t; t2) 2 X . Because of rule (35), we have hf(n�; t) 2 X . On the other hand, ifhf(n�; t) 2 X , because the only rule supporting hf(n�; t) is (35), there exists t � t2 � n suchthat hf during(n�1 ; t; t2) 2 X and hf(n�2 ; t2). It follows from hf during(n�1 ; t; t2) 2 X thathf(n�1 ; t1) 2 X for all t � t1 < t2. By inductive hypothesis, we have It1 j= �1 for all t � t1 < t2and It2 j= �2. Thus It j= until(�1; �2), i.e., It j= �.� Case 6: � = next(�1). Note that �(�1) � k. Rule (38) is the only rule supporting hf(n�; t) where� = next(�1). So hf(n�; t) 2 X i� hf(n�1 ; t+ 1) 2 X i� It+1 j= �1 i� It j= next(�1) i� It j= �.� Case 7: � = always(�1). We note that �(�1) � k. Observe that hf(n�; t) is supported only byrule (36). So hf(n�; t) 2 X i� hf during(n�1 ; t; n+1) 2 X . The latter happens i� hf(n�1 ; t1) 2 Xfor all t � t1 � n, that is, i� It1 j= �1 for all t � t1 � n which is equivalent to It j= always(�1),i.e., i� It j= �.� Case 8: � = eventually(�1). We know that hf(n�; t) 2 X is supported only by rule (37).So hf(n�; t) 2 X i� there exists t � t1 � n such that hf(n�1 ; t1) 2 X . Because �(�1) � k,by induction, hf(n�; t) 2 X i� there exists t � t1 � n such that It1 j= �1, that is, i� It j=eventually(�1), i.e., i� It j= �.The above cases prove the inductive step, and hence, the theorem. 2Appendix A.2 - Proof of Theorem 2We now turn our attention to Theorem 2. For a planning problem hD;�;�i, let� = �n(D;�;�) n (r(�) [f not holds(n�; n)g;i.e., � is obtained from �n(D;�;�) by removing the rules encoding � and the constraint not holds(n�; n). The next lemma will be useful in our proofs.Lemma 1 For a set of causal laws K and a set of
uent literals Y , for every integer k, the programholds(L; k) holds(L1; k); : : : ; holds(Lm; k) (if caused(fL1; : : : ; Lmg; L) 2 K)holds(L; k) (if L 2 Y)has a unique answer set fholds(l; k) j l 2 ClK(Y)g.Proof. Let us denote the given program by P . Since P is a positive program, its unique answer set Xis the least �x-point of the operator TP (Z) = fl j there exists a rule l l1; : : : ; ln such that li 2 Zg. Fora set S of literals in P , let us denote F (S) = ff j holds(f; k) 2 Sg. To prove the lemma is equivalent toprove F (X) = ClK(Y).We �rst prove that F (X) � ClK(Y). We will show, by induction over i, that F (T iP (;)) � ClK(Y) forevery i. The base case is trivial since F (T 0P (;)) = Y [Y1 � ClK(Y) where Y1 = fl j causes(fg; l) 2 Kg.33

Assume that we have proved that F (T iP (;)) � ClK(Y). We need to show that F (T i+1P (;)) � ClK(Y).By de�nition of P , we have that f 2 F (T i+1P (;)) if there exists a causal law caused(fl1; : : : ; lmg; f) inK such that li 2 F (T iP (;)). This also implies that f 2 ClK(Y) because of the closeness of ClK(Y) withrespect to K. The inductive step is proved. This means that F (X) � ClK(Y).We now prove that ClK(Y) � F (X). Assume that f 2 ClK(Y). By de�nition of ClK(Y) we concludethat there exists a sequence of causal laws caused(ff11 ; : : : ; f1n1g; l1), : : :, caused(ffm1 ; : : : ; fmnmg; lm),where lm = f and for every t, 1 � t � m, ff t1; : : : ; f tntg � Y [S0�i<tff i1; : : : ; f inig. It is easy to see thatthis implies that f 2 F (TmP (;)). This means that ClK(Y) � F (X). This, together with F (X) � ClK(Y),proves the lemma. 2We now prove some useful properties of �. We will prove that if (D;�) is consistent then � is consistent(i.e., � has an answer set) and that � correctly implements the transition function � of D. Notice thathere we say that � is consistent i� � has an answer set X and for every
uent f and t, 0 � t � n, X doesnot contain both holds(f; t) and holds(neg(f); t)). First, we simplify � by using the splitting theorem[27] (Theorem 8, Appendix B). Let V be the set of literals in the language of � whose parameter list doesnot contain the time parameter. That is, V consists of� atoms used to encode D: causes(A;L; S), caused(S;L), in(F; F1), formula(F), conj(F), disj(F),literal(L), fluent(F), action(A), negation(F; F1), forall(F), and exists(F), and� atoms used to encode �: initially(L).It is easy to see that V is a splitting set of �. Furthermore, it is easy to see that the bottom programbV (�) consists of� the atoms and rules encoding all the conjunctions occurring in D,� all the ground instances of rules (16)-(19) and (22)-(27)Obviously, bV (�) is a positive program, and hence, it has a unique answer set. Let us denote the uniqueanswer set of bV (�) by A0. The partial evaluation of � with respect to (V;A0), �1 = eV (� n bV (�); A0),is the collection of the following rules13:holds(L; T+1) occ(A; T); hf(n�; T): (if causes(A;L; �) 2 D) (67)holds(L; T) hf(n�; T): (if caused(�;L) 2 D) (68)possible(A;T) hf(n�; T): (if executable(a; �) 2 D) (69)holds(L; 0) (if initially(L) 2 �) (70)occ(A; T) possible(A;T); not nocc(A; T): (if A is an action) (71)nocc(A; T) occ(B; T): (for every pair of actions A 6= B) (72)holds(F; T+1) holds(F; T); not holds(neg(F); T+1): (for every
uent F) (73)holds(neg(F); T+1) holds(neg(F); T); not holds(F; T+1): (for every
uent F) (74) holds(F; T); holds(neg(F); T): (for every
uent F) (75)hf(F; T) hf(F1; T): (if disj(F) 2 A0; in(F1; F) 2 A0) (76)nhf conj(F; T) not hf(F1; T): (if conj(F) 2 A0; in(F1; F) 2 A0) (77)hf(F; T) not nhf conj(F; T): (if conj(F) 2 A0) (78)hf(F; T) not hf(F1; T): (if negation(F; F1) 2 A0) (79)hf(F; T) (if F is a literal and holds(F; T) 2 A0) (80)hf(F; T) hf(F1; T): (if exists(F) 2 A0; in(F1; F) 2 A0) (81)nhf forall(F; T) not hf(F1; T): (if forall(F) 2 A0; in(F1; F) 2 A0) (82)hf(F; T) not nhf forall(F; T): (if forall(F) 2 A0) (83)13Again, a rule with variables stands for a collection of its ground instances. Further, � stands for a conjunction of literalsoccurring in D. 34

Let �2 be the program consisting of the following rules:holds(L; T+1) occ(A; T); holds(L1; T); : : : ; holds(Lk; T): (84)(if causes(A;L; fL1; : : : ; Lkg) 2 D)holds(L; T) holds(L1; T); : : : ; holds(Lm; T): (if caused(fL1; : : : ; Lmg; L) 2 D) (85)possible(A;T) holds(L1; T); : : : ; holds(Lt; T): (if executable(a; fL1; : : : ; Ltg) 2 D) (86)holds(L; 0) (if initially(L) 2 �) (87)occ(A; T) possible(A;T); not nocc(A; T): (if A is an action) (88)nocc(A; T) occ(B; T): (for every pair of actions A 6= B) (89)holds(F; T+1) holds(F; T); not holds(neg(F); T+1): (for every
uent F) (90)holds(neg(F); T+1) holds(neg(F); T); not holds(F; T+1): (for every
uent F) (91) holds(F; T); holds(neg(F); T): (for every
uent F)14 (92)Because of Theorem 3, it is easy to see that the following lemma holds.Lemma 2 For answer set X of �1, Y = X \ lit(�2) is an answer set of �2.For every answer set Y of �2, X = Y [fhf(n�; t) j formula(n�) 2 A0; st(Y) j= �g is an answer set of�1 where st(Y) = fl j l is a
uent literal and holds(l; t) 2 Y g. 2It follows from the splitting theorem and from Lemma 2 that to prove the consistency and correctnessof � it is enough to prove the consistency of �2, the program consisting of rules (84)-(91) and that �2correctly implements the transition function � of D. We prove this in the next lemmas.Lemma 3 Let X be an answer set of �2. Then, for every t, 0 � t � n,1. st(X) is a state of D,2. if X contains occ(a; t) then a is executable in st(X) and st+1(X) 2 �(a; st(X))15, and3. if occ(a; t) 62 X for every action a, then st+1(X) = st(X).Proof. It is easy to see that the sequence hUtint=0, whereUt = fholds(L; T) j L is a literal and T � tg [focc(A; T) j A is an action and T � tg[fnocc(A; T) j A is an action and T � tg [fpossible(A;T) j A is an action and T � tg;is a splitting sequence of �2. Since X is an answer set of �2, by the splitting sequence theorem (Theorem9, Appendix B), there exists a sequence of sets of literals hXtint=0 such that Xt � Ut n Ut�1, and� X = Sni=0Xi,� X0 is an answer set of bU0(�2) and� for every t > 0, Xt is an answer set of eUt(bUt(�2) n bUt�1(�2);Si�t�1Xi).We will prove the lemma by inductively proving that for every t, 0 � t � n, Xt satis�es the followingconditions:14It is easy to see that every answer set of �2 is an answer set of the program consisting of rules (84)-(91) that satis�esthe constraint (92). For this reason, rule (92) will be omitted subsequently when we use the splitting theorem.15Recall that for every set Y , st(Y) is the set ff j holds(f; t) 2 Y g35

(i) everyXt is complete and consistent with respect to F in the sense that for each
uent f , Xt containseither holds(f; t) or holds(neg(f); t) but not both,(ii) every Xt contains at most one atom of the form occ(a; t),(iii) st(Xt) is a state of D, and(iv) if occ(a; t�1) 2 Xt�1 then a is executable in st�1(Xt�1) and st(Xt) 2 �(a; st�1(Xt�1)); if no atomof the form occ(a; t� 1) belongs to Xt�1 then st�1(Xt�1) = st(Xt).Base case: t = 0. Trivially, X0 satis�es (iv). So, we only need to show that X0 satis�es (i)-(iii).Let P0 = bU0(�2). We have that P0 consists of only rules of the form (85)-(89) in which T = 0. LetZ0 = fholds(f; 0) j f is a
uentg [fholds(neg(f); 0) j f is a
uentg. We can easily checked that Z0 is asplitting set of P0. Thus, by the splitting theorem, X0 =M0 [N0 where M0 is an answer set of bZ0(P0)and N0 is an answer set of eZ0;M0 = eZ0(P0 n bZ0(P0);M0). BecauseM0 contains only literals of the formholds(f; 0) and N0 contains only literals of the form occ(a; 0), nocc(a; 0), and possible(a; 0), we have thats0(X0) = s0(M0) and occ(a; 0) 2M0 i� occ(a; 0) 2 N0. Hence, to prove that X0 satis�es (i)-(iv), we showthat M0 satis�es (i) and (iii) and N0 satis�es (ii).We have that the bottom program bZ0(P0) consists of rules of the form (87) and (85). It follows fromLemma 1 that M0 is the unique answer set of bZ0(P0) and M0 = fholds(f; 0) j f 2 s0g where s0 is theinitial state of (D;�). Because of the completeness of � and the consistency of (D;�), we can concludethat M0 is complete and consistent. Thus, M0 satis�es (i). Furthermore, because s0(M0) = s0, weconclude that M0 satis�es (iii).The partial evaluation of P0 with respect to (Z0;M0), eZ0;M0 , consists ofeZ0;M0 =8>>>>>><>>>>>>: possible(A; 0) (a1)(if executable(A; fL1; : : : ; Lmg) 2 D and holds(Li; 0) 2M0)occ(A; 0) possible(A; 0); not nocc(A; 0): (a2)nocc(A; 0) occ(B; 0): (a3)(for every pair of actions A 6= B) holds(F; 0); holds(neg(F); 0) (a4)(for every
uent F)Let R be the set of atoms occurring in the rule (a1) of eZ0;M0 . There are two cases:� Case 1: R = ;. Obviously, the empty set is the unique answer set of eZ0;M0 . Thus, N0 does notcontain any atom of the form occ(a; 0).� Case 2: R 6= ;. By applying the splitting theorem one more time with the splitting set Rwe can conclude that N0 is an answer set of eZ0;M0 if and only if there exists some action a,possible(a; 0) 2 R, andN0 = R [focc(a; 0)g [fnocc(b; 0) j b is an action in D; b 6= ag:Thus, N0 contains only one atom of the form occ(a; 0).The above two cases show that N0 contains at most one atom of the form occ(a; 0). This concludes theproof of the base case.Step: Assume that Xt, t < k, satis�es (i)-(iv). We will show that Xk also satis�es (i)-(iv). LetMk�1 = Sk�1t=0 Xt. The splitting sequence theorem implies that Xk is an answer set of Pk that consistsof the following rules:holds(L; k) (93)(if occ(A; k � 1) 2Mk�1; causes(A;L; fL1; : : : ; Lkg) 2 D; holds(Li; k � 1) 2Mk�1)36

holds(L; k) holds(L1; k); : : : ; holds(Lm; k): (if caused(fL1; : : : ; Lmg; L) 2 D) (94)possible(A; k) holds(L1; k); : : : ; holds(Lt; k): (if executable(a; fL1; : : : ; Ltg) 2 D) (95)occ(A; k) possible(A; k); not nocc(A; k): (if A is an action) (96)nocc(A; k) occ(B; k): (for every pair of actions A 6= B) (97)holds(F; k) not holds(neg(F); k): (if holds(F; k � 1) 2Mk�1) (98)holds(neg(F); k) not holds(F; k): (if holds(neg(F); k � 1) 2Mk�1) (99) holds(F; k); holds(neg(F); k): (100)There are two cases:� Case 1: Mk�1 does not contain an atom of the form occ(a; k � 1). Then, it is easy to check thatsk(Xk) = sk�1(Xk�1). Because Xk�1 satis�es (i)-(iv), Xk also satis�es (i)-(iv).� Case 2: There exists an action a such that occ(a; k � 1) 2 Mk�1. Let s0 = fl j holds(l; k) 2 Xkg.From the constraint (100), we have that for every
uent f , Xk cannot contain both holds(f; k)and holds(neg(f); t). This means that Xk is consistent. We now show that Xk is also complete.Assume the contrary, i.e., there exists a
uent f such that neither holds(f; k) nor holds(neg(f); f)belongs to Xk. Because of the completeness of sk�1(Xk�1) (Item (i), inductive hypothesis), eitherholds(f; k � 1) 2 sk�1(Xk�1) or holds(f; k � 1) 62 sk�1(Xk�1). If the �rst case happens, rule (98)belongs to Pk, and hence, Xk must contain holds(f; k), which contradicts our assumption thatholds(f; k) 62 Xk. Similarly, if the second case happens, because of rule (99), we can conclude thatholds(neg(f); k) 2 Xk which is also a contradiction. Thus, our assumption on the incompletenessof Xk is incorrect. In other words, we have proved that Xk is indeed complete and consistent, i.e.,(i) is proved for Xk.Let Yk = fholds(l; k) j l is a
uent literal and holds(l; k) 2 Xkg and Zk = fholds(l; k) j l is a
uentliteralg. Zk is a splitting set of Pk . Let �k = bZk (Pk). From the splitting theorem, we know thatYk must be an answer set of the program (�k)Yk that consists of the following rules:holds(L; k) (if occ(A; k � 1) 2Mk�1; causes(A;L; fL1; : : : ; Lkg) 2 D; (b1)holds(Li; k � 1) 2Mk�1)holds(L; k) holds(L1; k); : : : ; holds(Lm; k): (if caused(fL1; : : : ; Lmg; L) 2 D) (b2)holds(F; k) (if holds(F; k � 1) 2M1 and holds(neg(F); k) 62 Yk) (b3)holds(neg(F); k) (if holds(neg(F); k � 1) 2M1 and holds(F; k) 62 Yk) (b4)Let Q1 and Q2 be the set of atoms occurring in the rule (b1) and (b3)-(b4), respectively. LetC1 = fl j holds(l; k) 2 Q1g and C2 = fl j holds(l; k) 2 Q2g. By de�nition of Yk, Q1, and Q2,we can conclude that C1 = E(a; sk�1(Xk�1)) and C2 = s0 \ sk�1(Xk�1). Furthermore, Lemma 1implies that (�k)Yk has a unique answer set fholds(f; k) j f 2 ClDC (C1[C2)g which is Yk (becauseYk is an answer set of �k). Hence, s0 = ClDC (E(a; sk�1(Xk�1)) [(s0 \ sk�1(Xk�1))). This impliesthat s0 2 �(a; sk�1(Xk�1)). In other words, we have proved that Xk satis�es (iii)-(iv).The above two cases show that Xk satis�es (iii) and (iv). It remains to be shown that Xk contains atmost one atom of the form occ(a; k). Again, by the splitting theorem, we can conclude that Nk = Xk nYkmust be an answer set of the following programeYk = (possible(A; k) (if executable(A; fL1; : : : ; Lmg) 2 D and holds(Li; k) 2 Yk)occ(A; k) possible(A; k); not nocc(A; k): (if A is an action)nocc(A; k) occ(B; k): (for every pair of actions A 6= B)Let Rk be the set of atoms occurring in the �rst rule of eYk . Similar to the proof of the base case, we canshow that for every answer set Nk of eYk , either Nk does not contain an atom of the form occ(a; k) of thereexists one and only one action a such that possible(a; k) 2 Rk and NK = Rk [focc(a; k)g[fnocc(b; a) j bis an action, b 6= ag. In either case, we have that Xk = Yk [Nk satis�es the conditions (ii). The inductivestep is proved.The conclusion of the lemma follows immediately from the fact that st(X) = st(Xt) for every t andocc(a; t) 2 X i� occ(a; t) 2 Xt and Xt satis�es the property (i)-(iv). The lemma is proved. 237

Lemma 4 For every trajectory s0a0 : : : an�1sn in D and a consistent action theory (D;�), �2 has ananswer set X such that for every t, 0 � t � n,1. st(X) = st and2. occ(at; t) 2 X.Proof. We prove the theorem by constructing an answer set X of �2 that satis�es the Items 1 and 2.Again, we apply the splitting sequence theorem with the splitting sequence hUtint=0, whereUt = fholds(L; T) j L is a literal and T � tg [focc(A; T) j A is an action and T � tg[fnocc(A; T) j A is an action and T � tg [fpossible(A;T) j A is an action and T � tg:We will show that the following sequence of sets of literals hXtint=0,Xt = fholds(f; t) j f 2 stg [focc(at; t)g [fnooc(b; t) j b is an action in D; b 6= ag [Rt;where Rt = fpossible(a; t) j a is executable in stg is a solution to �2 with respect to hUtint=0. Thisamounts to prove that� X0 is an answer set of bU0(�2) and� for every t > 0, Xt is an answer set of eUt(bUt(�2) n bUt�1(�2);Si�t�1Xi).We �rst prove that X0 is an answer set of P0 = bU0(�2). By the construction of P0 and X0, we have that(P0)X0 consists of the following rules:
(P0)X0 =8>>>>>>>>>>>><>>>>>>>>>>>>:

holds(F; 0) (if initially(f) 2 �) (a1)holds(L; 0) holds(L1; 0); : : : ; holds(Lm; 0): (a2)(if caused(fL1; : : : ; Lmg; L) 2 D)possible(A; 0) holds(L1; 0); : : : ; holds(Lm; 0): (a3)(if executable(A; fL1; : : : ; Lmg) 2 D)occ(a0; 0) possible(a0; 0): (a4)nocc(B; 0) occ(A; 0): (a5)(for every pair of actions B 6= A) holds(F; 0); holds(neg(F); 0) (a6)(for every
uent F)We will show that X0 is a minimal set of literals closed under the rules (a1)-(a6) and therefore is ananswer set of P0. Since holds(f; 0) 2 X0 i� f 2 s0 (De�nition of X0) and f 2 s0 i� initially(f) 2 �(De�nition of s0), we conclude that X0 is closed under the rule (a1). Because of s0 is closed under thestatic causal laws in D, we conclude that X0 is closed under the rule (a2). The de�nition of R0 guaranteesthat X0 is closed under the rule (a3). Since s0a0 : : : an�1sn is a trajectory of D, a0 is executable in S0.This implies that possible(a0; 0) 2 R0. This, together with the fact that occ(a0; 0) 2 X0, implies that X0is closed under the rule (a4). The construction of X0 also implies that X0 is closed under the rule (a5).Finally, because of the consistency of �, we have thatX0 does not contain holds(f; 0) and holds(neg(f); 0)for any
uent f . Thus, X0 is closed under the rules (a1)-(a6).To complete the proof, we need to show that X0 is minimal. Consider an arbitrary set of atoms X 0 thatis closed under the rules (a1)-(a6). This implies the following:� holds(f; 0) 2 X 0 for every f 2 s0 (because of the rule (a1)).� R0 � X 0 (because of the rule (a3) and the de�nition of R0).� occ(a0; 0) 2 X 0 (because of the rule (a4)).� fnocc(b; 0) j b is an action, b 6= ag � X 0 (because occ(a0; 0) 2 X 0 and the rule (a5)).38

The above items imply that X0 � X 0. In other words, we show that X0 is a minimal set of literals thatis closed under the rules (a1)-(a6). This implies that X0 is an answer set of (P0)X0 , which implies thatX0 is an answer set of P0.To complete the proof of the lemma, we will prove by induction over t, t > 0, that Xt is an answer setof Pt = eUt(bUt�1 (�2) n bUt�1(�2);Si�t�1Xi). Since the proof of the base case (t = 1) and the inductivestep is similar, we skip the base case and present only the proof for the inductive step. Now, assumingthat Xt, t < k, is an answer set of Pt. We show that Xk is an answer set of Pk. Let Mk�1 = Si�k�1Xi.The program Pk consists of the following rules:holds(L; k) (if occ(A; k � 1) 2Mk�1; causes(A;L; fL1; : : : ; Lkg) 2 D; (101)holds(Li; k � 1) 2Mk�1)holds(L; k) holds(L1; k); : : : ; holds(Lm; k): (if caused(fL1; : : : ; Lmg; L) 2 D) (102)possible(A; k) holds(L1; k); : : : ; holds(Lt; k): (if executable(a; fL1; : : : ; Ltg) 2 D) (103)occ(A; k) possible(A; k); not nocc(A; k): (if A is an action) (104)nocc(A; k) occ(B; k): (for every pair of actions A 6= B) (105)holds(F; k) not holds(neg(F); k): (if holds(F; k � 1) 2Mk�1) (106)holds(neg(F); k) not holds(F; k): (if holds(neg(F); k � 1) 2Mk�1) (107) holds(F; k); holds(neg(F); k): (108)It is easy to see that Pk can be split by the set of literal Zk = fholds(f; k) j f is a
uent literalg and thebottom program �k = bZk(Pk) consists of the rules (101)-(102) and (106)-(107). We will prove �rst thatYk = fholds(l; k) j holds(l; k) 2 Xkg is an answer set of the program (�k)Yk that consists of the followingrules: holds(L; k) (if occ(A; k � 1) 2Mk�1; causes(A;L; fL1; : : : ; Lkg) 2 D; (b1)holds(Li; k � 1) 2Mk�1)holds(L; k) holds(L1; k); : : : ; holds(Lm; k): (if caused(fL1; : : : ; Lmg; L) 2 D) (b2)holds(F; k) (if holds(F; k � 1) 2M1 and holds(neg(F); k) 62 Yk) (b3)holds(neg(F); k) (if holds(neg(F); k � 1) 2M1 and holds(F; k) 62 Yk) (b4)Let Q1 and Q2 be the set of atoms occurring in the rule (b1) and (b3)-(b4), respectively. Let C1 = fl jholds(l; k) 2 Q1g and C2 = fl j holds(l; k) 2 Q2g. By de�nition of Yk, Q1, and Q2, we can conclude thatC1 = E(a; sk�1(Xk�1)) and C2 = sk \ sk�1(Xk�1). Furthermore, Lemma 1 implies that (�k)Yk has aunique answer set fholds(f; k) j f 2 ClDC (C1 [C2)g = fholds(f; k) j f 2 skg which equals Yk because ofthe construction of Xk and Yk . Thus, Yk is an answer set of �k. It follows from the splitting theorem thatto complete the proof of the inductive step, we need to show that Nk = Xk n Yk is an answer set of thepartial evaluation of Pk with respect to (Zk; Yk), eZk;Yk = eZk (Pk n bZk (Pk); Xk), which is the followingprogrameZk;Yk = (possible(A; k) (if executable(A; fL1; : : : ; Lmg) 2 D and holds(Li; k) 2 Yk)occ(A; k) possible(A; k); not nocc(A; k): (if A is an action)nocc(A; k) occ(B; k): (for every pair of actions A 6= B)It is easy to see that the reduct of eZk;Yk with respect to Nk, (eZk;Yk)Nk , consists of the following rules(eZk;Yk)Nk = (possible(A; k) (if executable(A; fL1; : : : ; Lmg) 2 D and holds(Li; k) 2 Yk)occ(ak; k) possible(ak; k):nocc(A; k) occ(B; k): (for every pair of actions A 6= B)Let Rk be the set of atoms occurring in the �rst rule of (eZk;Yk)Nk . Because s0a0 : : : ansn is a trajectoryin D, ak is executable in sk. Thus, possible(ak; k) belongs to Rk. It is easy to see that Nk is the uniqueanswer set of (eZk;Yk)Nk . In other words, Nk is an answer set of eZk ;Yk . The inductive step is proved.The property of Xt implies that the sequence hXtint=0 is a solution to �2 with respect to the sequencehUtint=0. By the splitting sequence theorem, X = Snt=0Xt is an answer set of �2. Because of theconstruction of Xt, we have that st(X) = st(Xt) = st for every t and occ(at; t) 2 X for every t,0 � t � n. The lemma is proved. 239

The above lemmas lead to the following corollaries.Corollary 5.1 Let X be an answer set of �. Then, for every t, 0 � t � n,(i) st(X) is a state of D,(ii) if X contains occ(a; t) then a is executable in st(X) and st+1(X) 2 �(a; st(X)), and(iii) if occ(a; t) 62 X for every action a, then st+1(X) = st(X).Proof. It follows from the Lemma 2 that Y = X \ lit(�2) is an answer set of �2. Because st(X) = st(Y)and Lemma 3, we conclude that X satis�es the (i)-(iii). 2Corollary 5.2 For every trajectory s0a0 : : : an�1sn in D and a consistent action theory (D;�), � has ananswer set X such that for every t, 0 � t � n,(i) st(X) = st and(ii) occ(at; t) 2 X.Proof. From Lemma 4, there exists an answer set Y of �2 such that st(Y) = st and occ(at; t) 2 Y . Itfollows from the Lemma 2 that X = Y [fhf(n�; t) j formula(n�) 2 A0; st(Y) j= �g is an answer set of�. Because st(X) = st(Y), we conclude that X satis�es (i)-(ii). 2The next observation is also useful.Observation 5.1 For every answer set X of �, if there exists an t such that X does not contain anatom of the form occ(a; t), then X does not contain an atom of the form occ(a; t0) for t � t0.Using the result of Theorem 3 and the above corollaries we can prove Theorem 2.Theorem 2 For a planning problem hD;�;�i,(i) if s0a0 : : : an�1sn is a trajectory achieving �, then there exists an answer set M of �n such that1. occ(ai; i) 2M for i 2 f0; : : : ; n� 1g and2. si = si(M) for i 2 f0; : : : ; ng.and(ii) ifM is an answer set of �n, then there exists an integer 0 � k � n such that s0(M)a0 : : : ak�1sk(M)is a trajectory achieving � where occ(ai; i) 2 M for 0 � i < k. Moreover, if k < n then no actionis executable in the state sk(M).Proof. We have that �n = � [r(�) [f not hf(n�; n)g. It is easy to see that �n can be split byU = lit(�), the set of literals in the language of �, and that � is the bottom, bU (�n). Thus,M is an answerset of �n i� M = X [Y where X is an answer set of � and Y is an answer set of eU (�n n bU (�n); X).(i). Since s0a0 : : : an�1sn is a trajectory achieving �, which is also a trajectory in D, the existenceof X that satis�es the condition (i) of the Lemma follows form Corollary 5.2. Theorem 3 implies thathf(n�; n) belongs to X because sn j= �. Thus, eU (�n n bU (�n); X) only contains rules belonging to40

r(�) which is clearly a consistent program, i.e., it has an answer set Y . This implies the existence of Msatisfying (i).(ii). Let M be an answer set of �n. Then, X =M n (r(�) n lit(�)) is an answer set of �. It follows fromObservation 5.1 that there exists an integer k � n such that for each i, 0 � i < k, there exists an actionai such that occ(ai; i) 2 M and for t � k, occ(a; t) 62 M for every action a. By Corollary 5.1, we knowthat ai is executable in si(M) and si+1(M) 2 �(ai; si(M)). This means that s0(M)a0 : : : ak�1sk(M) is atrajectory (D;�) and sk(M) = sn(M). Moreover, hf(n�; n) must be inM , otherwise eU (�nnbU(�n); X)contains the constraint not hf(n�; n) which causes it to be inconsistent, which contradicts the factthat M is an answer set of �n. This, together with Theorem 3, implies that � holds in sn(M) = sk(M).Thus, s0(M)a0 : : : ak�1sk(M) is a trajectory achieving �. Furthermore, it follows from Corollary 5.1 andthe rules (88) and (89) that if k < n then M does not contain literals of the form possible(a; k). Thisimplies that no action is executable in sk(M). 2Appendix A.3 - Proof of Theorem 6We �rst prove some lemmas that are needed for proving Theorem 6.Lemma 5 For a consistent action theory (D;�), a program p, and an answer set M of �Tn withocc(ai; i) 2M for i 2 f0; : : : ; n� 1g, s0(M)a0s1(M) : : : an�1sn(M) is a trace of p.Proof. It is easy to see to see that the union of the set of literals of � and the set of rules and atomsencoding p, i.e., U = lit(�) [r(p), is a splitting set of �Tn . Further, bU (�Tn) = � [r(p). Thus, by thesplitting theorem, M is an answer set of �Tn i� M = X [Y where X is an answer set of � [r(P), andY is an answer set of eU (�Tn n �;X). Because of the constraint not trans(nP ; 0; n), we know thatif M is an answer set of �Tn then every answer set Y of eU (�Tn n �;X) must contain trans(nP ; 0; n).Furthermore, we have that st(X) = st(M) for every t. Hence, in what follows we will use st(X) andst(M) interchangeably. We prove the conclusion of the lemma by proving a stronger conclusion16:(*) for every program q occurring in p and two time points t1; t2 such that q 6= null andtrans(nq ; t1; t2) 2 M , st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of q (the states si(M) andactions ai are given in the Lemma's statement).Denote �1 = eU (�Tn n �;X). We have that �1 consists of the following rules:trans(A;T; T + 1) (if action(A) 2 X; occ(A; T) 2 X) (109)trans(F; T1; T1) (if formula(F) 2 X; hf(F; T1) 2 X) (110)trans(P; T1; T2) T1 � T 0 � T2; trans(P1; T1; T 0); trans(P2; T 0; T2): (111)(if proc(P; P1; P2) 2 X))trans(N; T1; T2) trans(P1; T1; T2): (112)(if choiceAction(N) 2 X; in(P1; N) 2 X)trans(I; T1; T2) trans(P1; T1; T2): (113)(if if(I; F; P1; P2) 2 X; hf(F; T1) 2 X)trans(I; T1; T2) trans(P2; T1; T2): (114)(if if(I; F; P1; P2) 2 X; hf(F; T1) 62 X)trans(W;T1; T2) T1 < T 0 � T2; trans(P;T1; T 0); trans(W;T 0; T2): (115)(if while(W;F; P) 2 X; hf(F; T1) 2 X)trans(W;T; T) (if while(W;F; P) 2 X; hf(F; T) 62 X) (116)16Recall that for simplicity, in encoding programs or formulas we use l or a as the name associated to l or a, respectively.41

trans(S; T1; T2) trans(P; T1; T2): (117)(if choiceArgs(S; F; P) 2 X; hf(F; T1) 2 X)trans(null; T; T) (118)Clearly, �1 is a positive program. Thus, the unique answer set of �1 is the �x-point of the T�1 operator,de�ned by T�1(X) = fA j there exists a rule A A1; : : : ; An in �1 such that Ai 2 Xg. Let Yk = T k�1(;).By de�nition Y = limn!1 Yn.For every atom A 2 Y , let �(A) denote the smallest integer k such that for all 0 � t < k, A 62 Yt and forall t � k, A 2 Yt. (Notice that the existence of �(A) is guaranteed because T�1 is a monotonic, �x-pointoperator.)We prove (*) by induction over �(trans(nq ; t1; t2)).Base: �(trans(nq ; t1; t2)) = 0. Then �1 contains a rule of the form trans(nq ; t1; t2) . Because q 6= null,we know that trans(nq ; t1; t2) comes from a rule r of the form (109), (110), or (116).� r is of the form (109). So, q is some action a, i.e., action(a) and occ(a; t) both belong to X .Further, t2 = t1+1. Because of Corollary 5.1 we know that a is executable in st1(X) and st2(X) 2�(a; st1(X)). Since st(M) = st(X) for every t, we have that st1(M) a st2(M) is a trace of q.� r is of the form (110). Then q = �; t2 = t1 = t, where � is a formula and hf(n�; t) is in X . ByTheorem 3, � holds in st(X). Again, because st(M) = st(X), so st(M) is a trace of q.� r is of the form (116). Then, t1 = t2, while(nq; �; p1) 2 X , and hf(n�; t1) 62 X . That is, q is theprogram \while � do p1" and � does not holds in st1(M). Thus, st1(M) is a trace of q.Step: Assume that we have proved (*) for �(trans(nq ; t1; t2)) � k. We need to prove it for the case�(trans(nq ; t1; t2)) = k + 1.Because trans(nq ; t1; t2) is in T�1(Yk), there is some rule trans(nq ; t1; t2) A1; : : : Am in �1 such thatall A1; : : : Am are in Yk. From the construction of �1, we have the following cases:� r is a rule of the form (111). Then, there exists q1; q2; t0 such that proc(nq ; nq1 ; nq2) 2X , and trans(nq1 ; t1; t0) 2 Yk and trans(nq2 ; t0; t2). Hence, �(trans(nq1 ; t1; t0)) � k and�(trans(nq2 ; t0; t2)) � k. By inductive hypothesis, st1(M)at1st1+1(M) : : : at0�1st0(M) is a traceof q1 and st0(M)at0st0+1(M) : : : at2�1st2(M) is a trace of q2. Since proc(nq ; nq1; nq2) 2 X we knowthat q = q1; q2. By de�nition, st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of q.� r is a rule of the form (112). Then, choiceAction(nq) is in X . So, q is a choice program,say q = q1 j q2 : : : j ql. In addition, there exists 1 � j � l such that in(nqj ; nq) 2 X andtrans(nqj ; t1; t2) 2 Yk. By the de�nition of �, �(trans(qj ; t1; t2)) � k. By inductive hypothesis,st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of qj . By De�nition 5, it is also a trace of q.� r is a rule of the form (113). Then, by the construction of �1, there exists �, q1, q2 suchthat if(nq; n�; nq1 ; nq2) 2 X , hf(n�; t1) 2 X , and trans(nq1 ; t1; t2) 2 Yk. Thus q is the pro-gram \if � then q1 else q2" and �(trans(nq1 ; t1; t2)) � k. Again, by inductive hypothesis,st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of q1. Because of Theorem 3, � holds in st1(M).Hence, st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of q.� r is a rule of the form (114). Similarly to the above, there exist if(nq; n�; nq1 ; nq2) 2 X , hf(n�; t1) 62X , and trans(nq2 ; t1; t2) 2 Yk. This means that �(trans(nq2 ; t1; t2)) � k. Hence, by inductivehypothesis and Theorem 3, st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of q2 and � is false inst1(M), which mean that st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of \if � then q1 else q2",i.e., a trace of q. 42

� r is a rule of the form (115). This implies that there exist a formula �, a program q1 and a time pointt0 > t1 such that while(nq; n�; nq1) 2 X and hf(n�; t1) 2 X , trans(nq1 ; t1; t0) and trans(nq ; t0; t2)are in Yk. It follows that q is the program \while � do q1". Furthermore, � holds in st1(M), andst1(M)at1st1+1(M) : : : at0�1st0(M) is a trace of q1 and st0(M)at0st0+1(M) : : : at2�1st2(M) is a traceof q. By De�nition 5, this implies that st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of q.� r a rule of the form is (117). Then, choiceArgs(nq) is in X and q has the form pick(~x; f(~x); q1(~x)).trans(nq ; t1; t2) 2 Y implies that there exists a ~xc such that hf(nf(~xc); t1) 2 X andtrans(nq1(~xc); t1; t2) 2 Yk. By the de�nition of �, �(trans(nq1 ; t1; t2)) � k. By induction,st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of program q1(~xc). Together with the fact that f(~xc)holds in st1 , we conclude that st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of q.The above cases prove the inductive step for (*). The lemma follows immediately since trans(np; 0; n)belongs to M . 2To prove the reverse of Lemma 5, we de�ne a function � that maps each program q into an integer �(q)that re
ects the complexity of q (or the number of nested operators in q). �(q) is de�ned recursively overthe construction of q as follows.� For q = � and � is a formula, or q = a and a is an action, �(q) = 0.� For q = q1; q2 or q = if � then q1 else q2, �(q) = 1 + �(q1) + �(q2).� For q = q1 j : : : j qm, �(q) = 1 +maxf�(qi) j i = 1; : : : ;mg.� For q = while � do q1, �(q) = 1 + �(q1).� For q = pick(~x; f(~x); q(~x)), �(q) = 1 +maxf�(q(~xc)) j ~xc is a ground instantiation of ~xg.It is worth noting that �(q) is always de�ned for well-de�ned programs.Lemma 6 Let (D;�) be a consistent action theory, p be a program, and s0a0 : : : sn�1an be a trace of p.Then �Tn has an answer set M such that� occ(ai; t) 2M for 0 � i � n� 1,� st = st(M) for every 0 � t � n, and� trans(np; 0; n) 2M .Proof. We prove the lemma by constructing an answer set of �Tn that satis�es the conditions of thelemma. Similar to the proof of Lemma 5, we split �Tn using U = lit(�) [r(p). Further, M is ananswer set of �Tn i� M = X [Y where X is an answer set of bU (�Tn) and Y is an answer set of�1 = eU (�Tn nbU (�Tn); X), which is the program consisting of the rules (109)-(118) with the correspondingconditions.Because s0a0 : : : an�1sn is a trace of p, it is a trajectory in D. By Corollary 5.2, we know that � has ananswer set X 0 that satis�es the two conditions:� occ(ai; t) 2 X 0 for 0 � i � n� 1 and� st = st(X 0) for every 0 � t � n.Because r(p) consists of only rules and atoms encoding the program p, it is easy to see that there existsan answer set X of � [r(p) such that X 0 � X . Clearly, X also satis�es the two conditions:43

� occ(ai; t) 2 X for 0 � i � n� 1 and� st = st(X) for every 0 � t � n.Since �1 is a positive program we know that �1 has a unique answer set, say Y . From the splittingtheorem, we have that M = X [Y is an answer set of �Tn . Because st(X) = st(M), M satis�es the �rsttwo conditions of the lemma. It remains to be shown that M also satis�es the third condition of thelemma. We prove this by proving a stronger conclusion:(*) If q is a program occurring in p, and there exists two integers t1 and t2 such thatst1(M)at1 : : : at2�1st2(M) is a trace of q then trans(nq ; t1; t2) 2 M . (the states si(M) = si {see above { and the actions ai are de�ned as in the Lemma's statement)We prove (*) by induction over �(q), the complexity of the program q.Base: �(q) = 0. There are only two cases:� q = � for some formula �, and hence, by De�nition 5, we have that t2 � t1 = 0. It follows from theassumption that st1(M) is a trace of q that st1(M) satis�es �. By Theorem 3, hf(n�; t1) 2 X , andhence, we have that trans(n�; t1; t1) 2 Y (because of rule (110)).� q = a where a is an action. Again, by De�nition 5, we have that t2 = t1 + 1. From the assumptionthat st1(M)at1st2(M) is a trace of q we have that at1 = a. Thus, occ(a; t1) 2 M . By rule (109) of�1, we conclude that trans(a; t1; t2) 2 Y , and thus, trans(a; t1; t2) 2M .The above two cases prove the base case.Step: Assume that we have proved (*) for every program q with �(q) � k. We need to prove it for thecase �(q) = k + 1. Because �(q) > 0, we have the following cases:� q = q1; q2. By De�nition 5, there exists t0, t1 � t0 � t2, such that st1at1 : : : st0 is a trace of q1 andst0at0 : : : st2 is a trace of q2. Because �(q1) < �(q) and �(q2) < �(q), by inductive hypothesis, we havethat trans(nq1 ; t1; t0) 2M and trans(nq2 ; t0; t2) 2M . q = q1; q2 implies proc(nq ; nq1 ; nq2) 2M . Byrule (111), trans(nq ; t1; t2) must be in M .� q = q1 j : : : j qi. Again, by De�nition 5, st1at1 : : : at2�1st2 is a trace of some qj . Since �(qj) < �(q),by inductive hypothesis, we have that trans(nqj ; t1; t2) 2M . Because of rule (112), trans(nq ; t1; t2)is in M .� q = if � then q1 else q2. Consider two cases:{ � holds in st1 . This implies that st1(M)at1 : : : at2�1st2(M) is a trace of q1. Because of Theorem3, hf(n�; t1) 2 M . Since �(q1) < �(q), trans(nq1 ; t1; t2) 2 M by inductive hypothesis. Thus,according to rule (113), trans(nq ; t1; t2) must belong to M .{ � does not holds in st1 . This implies that st1(M)at1 : : : at2�1st2(M) is a trace of q2. Becauseof Theorem 3, hf(n�; t1) does not hold in M . Since �(q1) < �(q), trans(nq2 ; t1; t2) is in M byinductive hypothesis. Thus, according to rule (114), trans(nq ; t1; t2) 2M .� q = while � do q1. We prove this case by induction over the length of the trace, t2 � t1.{ Base: t2 � t1 = 0. This happens only when � does not hold in st1(M). As such, because ofrule (116), trans(nq ; t1; t2) is in M . The base case is proved.44

{ Step: Assume that we have proved the conclusion for this case for 0 � t2 � t1 < l. We willshow that it is also correct for t2 � t1 = l. Since t2 � t1 > 0, we conclude that � holds in st1and there exists t1 < t0 � t2 such that st1at1 : : : st0 is a trace of q1 and st0at0 : : : st2 is a traceof q. We have �(q1) < �(q), t0� t1 � t2� t1 and t2� t0 < t2� t1 = l. By inductive hypothesis,trans(nq1 ; t1; t0) and trans(nq ; t0; t2) are in M . By Theorem 3, hf(n�; t1) is in M and fromthe rule (115), trans(nq ; t1; t2) is in M .� q = pick(~x; f(~x); q1(~x)). So, there exists ~xc, such that f(~xc) holds in st1 and the trace of q is atrace of q1(~xc). Since �(q1(~xc)) < �(q), we have that trans(nq1(~xc); t1; t2) 2M . This, together withthe fact that choiceArgs(nq; nf(~xc); nq1(~xc)) 2 r(p) and hf(n�; t1) 2 M (Theorem 3), and the rule(117) imply that trans(nq ; t1; t2) is in M .The above cases prove the inductive step of (*). The conclusion of the lemma follows. 2We now prove the Theorem 6.Theorem 6 Let (D;�) be a consistent action theory and p be a program. Then,(i) for every answer set M of �Tn with occ(ai; i) 2 M for i 2 f0; : : : ; n � 1g, s0(M)a0 : : : an�1sn(M)is a trace of p; and(ii) if s0a0 : : : an�1sn is a trace of p then there exists an answer set M of �Tn such that sj = sj(M)and occ(ai; i) 2M for j 2 f0; : : : ; ng and i 2 f0; : : : ; n� 1g.Proof. (i) follows from Lemma 5 and (ii) follows from Lemma 6. 2Appendix A.4 - Proof of Theorem 7Let p now be a general program. To prove Theorem 7, we will extend the Lemmas 5-6 to account forgeneral programs. Similarly to the proofs of Lemmas 5-6, we will split �HTNn by the set U = lit(�)[r(p).Thus M is an answer set of �HTNn i� M = X [Y where X is an answer set of � [r(p) and Y is ananswer set of the program eU (�HTNn n bU (�HTNn); X) which consists of the rules of program �1 (with thedi�erence that a program is now a general program) and the program �2 which consists of the followingrules: trans(N; T1; T2) not nok(N; T1; T2): (119)(if htn(N;S;C) 2 X)1fbegin(N; I; T3; T1; T2) : between(T3; T1; T2)g1 trans(N; T1; T2): (120)(if htn(N;S;C) 2 X; in(I; S) 2 X)1fend(N; I; T3; T1; T2) : between(T3; T1; T2)g1 trans(N; T1; T2): (121)(if htn(N;S;C) 2 X; in(I; S) 2 X)used(N;T; T1; T2) begin(N; I;B; T1; T2); end(N; I;E; T1; T2); (122)B � T � E:(if htn(N;S;C) 2 X; in(I; S) 2 X)not used(N;T; T1; T2) not used(N; T; T1; T2): (123)overlap(N;T; T1; T2) begin(N; I1; B1; T1; T2); end(N; I1; E1; T1; T2); (124)begin(N; I2; B2; T1; T2); end(N; I2; E2; T1; T2);B1 � T � E1; B2 < T < E2:45

(if htn(N;S;C) 2 X; in(I; S) 2 X; in(I2; S) 2 X)nok(N; T1; T2) T3 > T4; begin(N; I; T3; T1; T2); end(N; I; T4; T1; T2):(125)(if htn(N;S;C) 2 X; in(I; S) 2 X)nok(N; T1; T2) T3 � T4; begin(N; I; T3; T1; T2); end(N; I; T4; T1; T2);(126)not trans(I; T3; T4):(if htn(N;S;C) 2 X; in(I; S) 2 X)nok(N; T1; T2) T1 � T � T2; not used(N; T; T1; T2): (127)(if htn(N;S;C) 2 X)nok(N; T1; T2) T1 � T � T2; overlap(N;T; T1; T2): (128)(if htn(N;S;C) 2 X)nok(N; T1; T2) begin(N; I1; B1; T1; T2); (129)begin(N; I2; B2; T1; T2);B1 > B2:(if htn(N;S;C) 2 X; in(I1; S) 2 X; in(I2; S) 2 X;in(O; C) 2 X; order(O; I1; I2) 2 X))nok(N; T1; T2) end(N; I1; E1; T1; T2); (130)begin(N; I2; B2; T1; T2); E1 < T3 < B2:(if htn(N;S;C) 2 X; in(I1; S) 2 X; in(I2; S) 2 X;in(O; C) 2 X; maintain(O; F; I1; I2) 2 X;and hf(F; T3) 62 X)nok(N; T1; T2) begin(N; I;B; T1; T2); end(N; I;E; T1; T2); (131)(if htn(N;S;C) 2 X; in(I; S) 2 X;in(O; C) 2 X; precondition(O;F; I) 2 Xand hf(F; B) 62 X)nok(N; T1; T2) begin(N; I;B; T1; T2); end(N; I;E; T1; T2): (132)(if htn(N;S;C) 2 X; in(I; S) 2 X;in(O; C) 2 X; postcondition(O; F; I) 2 X;and hf(F; E) 62 X)Let �2 be the program consisting of the above set of rules. Thus eU (�HTNn n bU (�HTNn); X) = �1 [�2.We will continue to use the complexity of program de�ned in the last appendix and extend it to allowthe HTN-construct by adding the following to the de�nition of �(q).� For q = (S;C), �(q) = 1 + �p2S�(p).Notice that every literal of the program �1 [�2 has the �rst parameter as a program17. Hence, we canassociate �(q) to each literal u of �0 where q is the �rst parameter of u. For instance, �(trans(q; t1; t2)) =�(q) or �(nok(q; t1; t2)) = �(q) etc.. Since we will continue using splitting theorem in our proofs, thefollowing observation is useful.Observation 5.2 The two cardinality constraint rules (54) and (55) can be replaced by the followingnormal logic program rules:begin(N; I; T; T1; T2) htn(S;C); in(I; S); trans(N;T1; T2);T1 � T � T3 � T2; not nbegin(N; I; T; T1; T2):nbegin(N; I; T; T1; T2) htn(S;C); in(I; S); trans(N;T1; T2);17More precisely, a program name. 46

T1 � T � T2; T1 � T3 � T2; T 6= T3; begin(N; I; T3; T1; T2):occur(N; I; T1; T2) htn(S;C); in(I; S); T1 � T � T2; begin(N; I; T; T1; T2): htn(S;C); in(I; S); trans(N;T1; T2); not occur(N; I; T1; T2):That is, let �� be the program obtained from �1 [�2 by replacing the rules (54)-(55) with the above setof rules. Then, M is an answer set of �1 [�2 i� M 0 =M [foccur(N; I; T1; T2) j begin(N; I; T; T1; T2) 2M for some T1 � T � T2g [fnbegin(N; I; T 0; T1; T2) j T 6= T 0; T1 � T; T 0 � T2 such thatbegin(N; I; T; T1; T2) 2Mg is an answer set of ��.The next lemma generalizes Lemma 5.Lemma 7 Let q be a general program, Y be an answer set of the program eU (�HTNn n bU (�HTNn); X)(i.e. program �1 [�2), and t1; t2 be two time points such that q 6= null and trans(nq ; t1; t2) 2 Y . Then,st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of q where M = X [Y .Proof. Let �0 = �1 [�2 and Uk = fu j u 2 lit(�0); �(u) � kg.From observation 5.2, we know that we can use the splitting theorem on �0. It is easy to see that hUki1kis a splitting sequence of �0. From the �niteness of �0 and the splitting sequence theorem, we have thatY = S10 Yi where1. Y0 is an answer set of the program bU0(�0) and2. for every integer i, Yi+1 is an answer set for eUi(bUi+1(�0) n bUi(�0);Sj�i Yj).We prove the lemma by induction over �(q).Base: �(q) = 0. From trans(nq ; t1; t2) 2 Y , we have that trans(nq ; t1; t2) 2 Y0. It is easy tosee that bU0(�0) consists of all the rules of �1 whose program has level 0. It follows from Lemma 5st1(M)at1st1+1(M) : : : at2�1st2(M) is a trace of q. The base case is proved.Step: Assume that we have proved the lemma for �(q) = k. We prove it for �(q) = k + 1. From thefact that trans(nq ; t1; t2) 2M and �(nq) = k + 1 we have that trans(nq ; t1; t2) 2 Yk+1 where Yk+1 is ananswer set of the program eUk (bUk+1(�0)nbUk(�0);Sj�k Yk) which consists of rules of the form (119)-(132)and (111)-(117) whose program has the level k + 1, i.e., �(N) = k + 1. Because trans(nq ; t1; t2) 2 Y weknow that there exists a rule that supports trans(nq ; t1; t2). Let r be such a rule. There are followingcases:� r is a rule of the form (111)-(117), the argument is similar to the argument using in the inductivestep for the corresponding case in Lemma 5. Notice a minor di�erence though: in Lemma 5, we donot need to use �(q).� r is a rule of the form (119), which implies that q = (S;C) for some set of programs S and setof constraints C. By de�nition of answer sets, we know that nok(nq ; t1; t2) 62 Yk+1. Furthermore,because of the rules (120) and (121), the fact that trans(nq ; t1; t2) 2 Yk+1 and the de�nition ofweight constraint rule, we conclude that for each qj 2 S there exists two numbers jb and je,t1 � jb; je � t2 such that begin(nq; nqj ; jb; t1; t2) 2 Yk+1 and end(nq ; nqj ; je; t1; t2) 2 Yk+1. Becauseof rule (126), we conclude that trans(nqj ; jb; je) 2 Si�k Yi. Otherwise, we have that nok(nq ; t1; t2) 2Yk+1, and hence, trans(nq ; t1; t2) 62 Yk+1, which is a contradiction. By de�nition of �(q), we havethat �(qj) < �(q). Thus, by inductive hypothesis, we can conclude that: for every qj 2 S, thereexists two numbers jb and je, t1 � jb; je � t2, sjb(M)ajb : : : aje�1sje(M) is a trace of qj .47

Furthermore, rules (122)-(128) imply that the set fjb j qj 2 Sg creates a permutation of f1; : : : ; jSjgthat satis�es the �rst condition of De�nition 7.Consider now an ordering qj1 < qj2 in C. This implies that the body of rule (129) will be satis�edif jb1 > jb2 which would lead to trans(nq ; t1; t2) 62 Yk+1. Again, this is a contradiction. Hence,we must have jb1 � jb2 that means that the permutation fjb j qj 2 Sg also satis�es the secondcondition of De�nition 7.Similarly, using (130)-(132) we can prove that the permutation fjb j qj 2 Sg also satis�es the thirdand fourth conditions of De�nition 7.It follows from the above arguments that st1(M)at1 : : : at2�1st2(M) is a trace of q). The inductivestep is proved for this case.The above cases prove the inductive step. This concludes the lemma. 2In the next lemma, we generalize the Lemma 6.Lemma 8 Let (D;�) be a consistent action theory, p be a general program, and s0a0 : : : an�1sn be atrace of p. Then, there is an answer set M of �HTNn such that si(M) = si and occ(ai; i) 2 M andtrans(np; 0; n) 2M .Proof. Based on our discussion on splitting �HTNn using lit(�) [r(q) and the fact that s0a0 : : : an�1snis also a trace in D, we know that there exists an answer set X of � [r(p) such that si(X) = si andocc(ai; i) 2 X . Thus, it remains to be shown that there exists an answer set Y of �0 = �1 [�2 such thattrans(np; 0; n) 2 Y . Similar to the proof of Lemma 7, we use hUki1k as a splitting sequence of �0 whereUk = fu j u 2 lit(�0); �(u) � kg. From the splitting sequence theorem, we have that Y = S10 Yi where1. Y0 is an answer set of the program bU0(�0) and2. for every integer i, Yi+1 is an answer set for eUi(bUi+1(�0) n bUi(�0);Sj�i Yj).We prove the lemma by induction over �(q). Similar to Lemma 6, we prove this by proving a strongerconclusion:(*) There exists an answer set Y = S10 Yi of �0 such that for every program q 6= null occurring in p,st1at1 : : : at2�1st2 is a trace of q i� trans(nq ; t1; t2) 2 Y�(q). (the states si and the actions ai arede�ned as in the Lemma's statement)We will prove (*) by induction over �(q).Base: �(q) = 0. Similar to the base case in Lemma 6 .Step: Assume that we have proved (*) for �(q) � k. We need to prove (*) for �(q) = k + 1. We willconstruct an answer set of �+ = eUk(bUk+1(�0)nbUk(�0);Sj�k Yk) such that for every program q occurringin p with �(q) = k + 1, if st1at1 : : : at2�1st2 is a trace of q then trans(nq ; t1; t2) 2 Yk+1.Let Yk+1 be the set of atoms de�ned as follows.� For every program q with �(q) = k + 1, if q is not of the form (S;C) and st1at1 : : : at2�1st2 is atrace of q, Yk+1 contains trans(nq ; t1; t2). 48

� For every program q with �(q) = k + 1, q = (S;C), and st1at1 : : : at2�1st2 is a trace of q. Byde�nition, there exists a permutation fj1; : : : ; jjSjg of f1; : : : ; jSjg satisfying the conditions (a)-(d)of Item 8 (De�nition 7). Consider such a permutation. To simplify the notation, let us denote thebegin- and end-time of a program qj 2 S in the trace of q by bj and ej , respectively, i.e., sbjabj : : : sejis a trace of qj . Then, Yk+1 contains trans(nq ; t1; t2) and the following atoms:1. begin(nq; nqj ; bj ; t1; t2) for every qj 2 S,2. end(nq; nqj ; ej ; t1; t2) for every qj 2 S, and3. used(nq; t; t1; t2) for for every qj 2 S and bj � t � ej .� Yk+1 does not contain any other atoms except those mentioned above.It is easy to see that Yk+1 satis�es (*) for every program q with �(q) = k + 1. Thus, we need to showthat Yk+1 is indeed an answer set of �+. First, we prove that Yk+1 is closed under (�+)Yk+1. We considerthe following cases:� r is a rule of the form (111). Obviously, if r belongs to (�+)Yk+1, then q = q1; q2 and there exists at1 � t0 � t2 such that trans(nq1 ; t1; t0) and trans(nq2 ; t0; t2) belong to Sj�k Yk because �(q1) < �(q)and �(q2) < �(q). By inductive hypothesis, st1at1 : : : st0 is a trace of q1 and st0at0 : : : st2 is atrace of q2. By De�nition 5, st1at1 : : : st2 is a trace of q. By construction of Yk+1 we have thattrans(nq ; t1; t2) 2 Yk+1. This shows that Yk+1 is closed under r. Similar arguments conclude thatYk+1 is closed under the rule of the form (112)-(117).� r is a rule of the form (119) of (�+)Yk+1. Then, q = (S;C) and by construction of Yk+1, if st1at1 : : : st2is a trace of q then we have trans(nq ; t1; t2) 2 Yk+1. Thus. Yk+1 is closed under the rules of theform (119) too.� r is a rule of the form (120) and (121). Yk+1 is also closed under r because whenevertrans(nq ; t1; t2) 2 Yk+1, we now that there is a trace st1at1 : : : st2 of q, and hence, by De�ni-tion 7, we conclude the existence of the begin- and end-time points bj and ej of qj , respectively.By construction of Yk+1, we have that begin(nq; nqj ; bj ; t1; t2) and end(nq; nqj ; ej ; t1; t2) belong toYk+1 and for each qj , there is a unique atom of this form in Yk+1. Hence, Yk+1 is closed under rulesof the form (120) and (121).� r is a rule of the form (123)-(132). The construction of Yk+1 ensures that the body of r is notsatis�ed by Yk+1, and hence, Yk+1 is closed under r.� r is a rule of the form (122). Because used(nq; t; t1; t2) belongs to Yk+1 for every t, t1 � t � t2. wehave that Yk+1 is closed under r too.The conclusion that Yk+1 is closed under (�+)Yk+1 follows from the above cases.To complete the proof, we need to show that Yk+1 is minimal. Assume the contrary, there exists a propersubset Y 0 of Yk+1 such that Y 0 is closed under (�+)Yk+1 . Let u 2 Yk+1 n Y 0. Since u 2 Yk+1, we have thefollowing cases:� u is the head of a rule of the form (111)-(117). By de�nition of �+, we know that a rule of thisform belongs to �+ i� its body is empty. Thus, from the closeness of Y 0 we have that u 2 Y 0. Thiscontradicts the fact that u 62 Y 0.� u is the head of a rule of the form (119). Similar to the above case, we can conclude that u 2 Y 0which again contradicts the fact that u 62 Y 0.49

� u is the head of a rule r of the form (120). Because of u 2 Yk+1 we conclude that trans(nq ; t1; t2) 2Yk+1. The above case concludes that trans(nq ; t1; t2) 2 Y 0. Since the body of r is true, weconclude that there exists some qj 2 S such that Y 0 does not contain an atom of the formbegin(nq; nqj ; bj ; t1; t2). Thus, Y 0 is not closed under r. This contradicts the assumption thatY 0 is closed under (�+)Yk+1 .� u is the head of a rule r of the form (121). Similar to the above case, we can prove that it violatesthe assumption that Y 0 is closed under (�+)Yk+1 .� u is the head of a rule r of the form (122). Because u 2 Yk+1 we know that the body of r is satis�edby Yk+1, and hence, r belongs to (�+)Yk+1 . Again, because of the closeness of Y 0, we conclude thatu 2 Y 0 which violates the assumption that u 62 Y 0.The above cases imply that Y 0 is not closed under (�+)Yk+1 . Thus, our assumption that Yk+1 is notminimal is incorrect. Together with the closeness of Yk+1, we have that Yk+1 is indeed an answer set of�+. The inductive step is proved since Yk+1 satis�es (*) for every program q with �(q) = k + 1. Thisproves the lemma. 2Theorem 7 Let (D;�) be a consistent action theory and p be a general program. Then,(i) for every answer setM of �HTNn with occ(ai; i) 2M for i 2 f0; : : : ; n�1g, s0(M)a0 : : : an�1sn(M)is a trace of p; and(ii) if s0a0 : : : an�1sn is a trace of p then there exists an answer setM of �HTNn such that sj = sj(M)and occ(ai; i) 2M for j 2 f0; : : : ; ng and i 2 f0; : : : ; n� 1g and trans(np; 0; n) 2M .Proof. (i) follows from Lemma 7 and (ii) follows from Lemma 8. 2Appendix B - Splitting TheoremLet r be a rule a0 a1; : : : ; am; not am+1; : : : ; an:By head(r), body(r), and lit(r) we denote a0, fa1; : : : ; ang, and fa0; a1; : : : ; ang, respectively. pos(r) andneg(r) denote the set fa1; : : : ; amg and fam+1; : : : ; ang, respectively.For a program � over the language LP , a set of literals of LP , A, is a splitting set of � if for every ruler 2 �, r is of the form if head(r) 2 A then lit(r) � A.Let A be a splitting set of �. The bottom of � relative to A, denoted by bA(�), is the program consistingof all rules r 2 � such that the head of r belongs to A.Given a splitting set A for �, and a set X of literals from lit(bA(�)), the partial evaluation of � by X withrespect to A, denoted by eA(�; X), is the program obtained from � as follows. For each rule r 2 �nbA(�)such that1. pos(r) \ A � X ;2. neg(r) \ A is disjoint from X ;there is a rule r0 in eA(�; X) such that 50

1. head(r0) = head(r) , and2. pos(r0) = pos(r) nA,3. neg(r0) = neg(r) nA.Let A be a splitting set of �. A solution to � with respect to A is a pair hX;Y i of set of literals satisfyingthe following two properties:1. X is an answer set of bA(�);2. Y is an answer set of eA(� n bA(�); X);3. X [Y is consistent.The splitting set theorem is as follows.Theorem 8 (Splitting Set Theorem, [27]) Let A be a splitting set for a program �. A set A ofliterals is a consistent answer set of � i� A = X [Y for some solution hX;Y i to � with respect to A. 2A sequence is a family whose index set is an initial segment of ordinals f� j � < �g. A sequence hA�i�<�of sets is monotone if A� � A� whenever � < �, and continuous if, for each limit ordinal � < �,A� = S
<�A
 .A splitting sequence for a program � is a nonempty, monotone, and continuous sequence hA�i�<� ofsplitting sets of � such that lit(�) = S�<� A�.Let hA�i�<� be a splitting sequence of the program �. A solution to � with respect to A is a sequencehE�i�<� of set of literals satisfying the following conditions.1. E0 is an answer set of the program bA0(�);2. for any � such that �+ 1 < �, E�+1 is an answer set for eA�(bA�+1(�) n bA�(�);S
��E
);3. For any limit ordinal � < �, E� = ;;4. S
��E
 is consistent.The splitting set theorem is generalized for splitting sequence next.Theorem 9 (Splitting Sequence Theorem, [27]) Let A = hA�i�<� be a splitting sequence of theprogram �. A set of literals E is a consistent answer set of � i� E = S�<�E� for some solutionhE�i�<� to � with respect to A. 2References[1] F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for planning.Arti�cial Intelligence, 116(1,2):123{191, 2000.[2] F. Bacchus, H. Kautz, D.E. Smith, D. Long, H. Ge�ner, and J. Koehler. AIPS-00 Planning Com-petition. In The Fifth International Conference on Arti�cial Intelligence Planning and SchedulingSystems, 2000. 51

[3] C. Baral. Reasoning about Actions : Non-deterministic e�ects, Constraints and Quali�cation. InProceedings of the 14th International Joint Conference on Arti�cial Intelligence, pages 2017{2023.Morgan Kaufmann Publishers, San Francisco, CA, 1995.[4] C. Baral. Knowledge Representation, reasoning, and declarative problem solving with Answer sets(Book draft). 2001.[5] C. Baral and T. C. Son. Extending ConGolog to allow partial ordering. In Proceedings of the6th International Workshop on Agent Theories, Architectures, and Languages (ATAL), LNCS, Vol.1757, pages 188{204, 1999.[6] A. Blum and M. Furst. Fast planning through planning graph analysis. Arti�cial Intelligence,90:281{300, 1997.[7] B. Bonet and H. Ge�ner. Planning as heuristic search. Arti�cial Intelligence - Special issue onHeuristic Search, 129(1-2):5{33, 2001.[8] W. Burgard, A. B. Cremers, D. Fox, D. H�'ahnel, G. Lakemeyer, Schulz D., W. Steiner, and S. Thrun.The interactive museum tour-guide robot. In Proceedings of the 15th National Conference on Arti-�cial Intelligence (AAAI-98), pages 11{18. AAAI Press, 1998.[9] T. Bylander. The computational complexity of propositional STRIPS planning. Arti�cial Intelli-gence, 69:161{204, 1994.[10] S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and F. Scar-cello. The dlv system: Model generator and application frontends. In Proceedings of the 12thWorkshop on Logic Programming, pages 128{137, 1997.[11] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logicprogramming. ACM Computing Surveys, 33(3):374{425, September 2001.[12] G. De Giacomo, Y. Lesp�erance, and H. Levesque. ConGolog, a concurrent programming languagebased on the situation calculus. Arti�cial Intelligence, 121(1-2):109{169, 2000.[13] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in nonmonotonic logicprograms. In Proceedings of European Conference on Planning, pages 169{181, 1997.[14] P. Doherty and J. Kvarnstom. TALplanner: An Empirical Investigation of a Temporal Logic-basedForward Chaining Planner. In Proceedings of the 6th Int'l Workshop on the Temporal Representationand Reasoning, Orlando, Fl. (TIME'99), 1999.[15] K. Erol, D. Nau, and V.S. Subrahmanian. Complexity, decidability and undecidability results fordomain-independent planning. Arti�cial Intelligence, 76(1-2):75{88, 1995.[16] R. Fikes and N. Nilson. STRIPS: A new approach to the application of theorem proving to problemsolving. Arti�cial Intelligence, 2(3{4):189{208, 1971.[17] M. Gelfond. Posting on TAG-mailing list, 1999.[18] M. Gelfond and N. Leone. Logic programming and knowledge representation { the A-Prolog per-spective. Arti�cial Intelligence, 138(1-2):3{38, 2002.[19] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kowalskiand K. Bowen, editors, Logic Programming: Proceedings of the Fifth International Conf. and Symp.,pages 1070{1080, 1988.[20] M. Gelfond and V. Lifschitz. Action languages. ETAI, 3(6), 1998.[21] J. Ho�mann and B. Nebel. The FF Planning System: Fast Plan Generation Through HeuristicSearch. Journal of Arti�cial Intelligent Research, 14:253{302, 2001.52

[22] Y.C. Huang, B. Selman, and H. Kautz. Control knowledge in planning: Bene�ts and tradeo�s. InProceedings of the 16th National Conference on Arti�cial Intelligence (AAAI-99), pages 511{517.AAAI Press, 1999.[23] H. Kautz and B. Selman. BLACKBOX: A new approach to the application of theorem proving toproblem solving. In Workshop Planning as Combinatorial Search, AIPS-98, Pittsburgh, 1998.[24] H. Kautz and B. Selman. The role of domain-speci�c knowledge in the planning as satis�abilityframework. In Proceedings of the 4th International Conference on Arti�cial Intelligence Planningand Scheduling Systems, 1998.[25] H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. GOLOG: A logic programminglanguage for dynamic domains. Journal of Logic Programming, 31(1-3):59{84, April-June 1997.[26] V. Lifschitz. Answer set planning. In Proceedings of ICLP, pages 23{37, 1999.[27] V. Lifschitz and H. Turner. Splitting a logic program. In Pascal Van Hentenryck, editor, Proceed-ings of the Eleventh International Conf. on Logic Programming, pages 23{38, 1994.[28] V. Lifschitz and H. Turner. Representing transition systems by logic programs. In Proceedings of the5th International Conference on Logic Programming and Nonmonotonic Reasoning, pages 92{106,1999.[29] F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Computation, 4(5):655{678,October 1994.[30] V. Marek and M. Truszczy�nski. Stable models and an alternative logic programming paradigm. InThe Logic Programming Paradigm: a 25-year Perspective, pages 375{398, 1999.[31] N. McCain and M. Turner. A causal theory of rami�cations and quali�cations. In Proceedings of the14th International Joint Conference on Arti�cial Intelligence, pages 1978{1984. Morgan KaufmannPublishers, San Mateo, CA, 95.[32] S. McIlraith. Modeling and programming devices and Web agents. In Proc. of the NASA GoddardWorkshop on Formal Approaches to Agent-Based Systems, LNCS. Springer-Verlag, 2000.[33] D. Nau, Y. Cao, A. Lotem, and H. Mu~noz-Avila. Shop: Simple hierarchical ordered planner. InProceedings of the 16th International Conference on Arti�cial Intelligence, pages 968{973. AAAIPress, 1999.[34] I. Niemel�a. Logic programming with stable model semantics as a constraint programming paradigm.Annals of Mathematics and Arti�cial Intelligence, 25(3,4):241{273, 1999.[35] I. Niemel�a and P. Simons. Smodels - an implementation of the stable model and well-foundedsemantics for normal logic programs. In Proceedings ICLP & LPNMR, pages 420{429, 1997.[36] I. Niemel�a, P. Simons, and T. Soininen. Stable model semantics for weight constraint rules. InProceedings of the 5th International Conference on on Logic Programming and Nonmonotonic Rea-soning, pages 315{332, 1999.[37] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13(1,2):81{132, 1980.[38] R. Reiter. On knowledge-based programming with sensing in the situation calculus. In Proc. of theSecond International Cognitive Robotics Workshop, Berlin, 2000.[39] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti�cial Intelligence, 5:115{135,1974.[40] K. Sagonas, T. Swift, and D.S. Warren. Xsb as an e�cient deductive database engine. In Proceedingsof the SIGMOD, pages 442 { 453, 1994. 53

[41] V.S. Subrahmanian and C. Zaniolo. Relating stable models and ai planning domains. In Proceedingsof the International Conference on Logic Programming, pages 233{247, 1995.[42] L. Tuan and C. Baral. E�ect of knowledge representation on model based planning : experimentsusing logic programming encodings. In Proc. of AAAI Spring symposium on \Answer Set Pro-gramming:Towards E�cient and Scalable Knowledge Representation and Reasoning", pages 110{115,2001.[43] H. Turner. Representing actions in logic programs and default theories. Journal of Logic Program-ming, 31(1-3):245{298, May 1997.[44] D. Wilkins and M. desJardines. A call for knowledge-based planning. AI Magazine, 22(1):99{115,Spring 2001.

54

