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Abstract

In this paper we consider three different kinds of domain dependent control knowledge (temporal,
procedural and HTN-based) that are useful in planning. Our approach is declarative and relies on
the language of logic programming with answer set semantics (LPASS). We show that the addition
of these three kinds of control knowledge only involves adding a few more rules to a planner written
in LPASS that can plan without any control knowledge. Thus domain dependent control knowledge
can be modularly added to (or removed from) a planning problem without the need of modifying the
planner. We formally prove the correctness of our planner, both in the absence and presence of the
control knowledge. Finally, we do some initial experimentation that shows the reduction in planning
time when procedural domain knowledge is used and the plan length is big.

1 Introduction and Motivation

The simplest formulation of planning — referred to as classical planning — entails finding a sequence
of actions that takes a world from a completely known initial state to a state that satisfies certain goal
conditions. The inputs to a corresponding planner are the descriptions (in a compact description language
such as STRIPS [16]) of the effect of actions on the world, the description of the initial state and the
description of the goal conditions, and the output is a plan (if it exists) consisting of a sequence of
actions. The complexity of classical planning is known to be PSPACE-complete for finite domains and
undecidable in the general case [9, 15]. By making certain assumptions such as fixing the length of plans,
and requiring actions to be deterministic the complexity reduces to NP-complete.

To be able to plan is widely recognized as an important characteristic of an intelligent entity. Thus when
developing many intelligent systems, despite the complexity, we need to be able to build planners. But
we can not wish away the complexity. Since the complexity is due to the exponential size of the search
space, any approach to overcome the complexity would require searching efficiently and intelligently.
This is the crux of the three main successful approaches to planning: (i) using heuristics [7, 21, 6] that
are derived from the description, (ii) translating the planning problem to model finding in a logic and
using intelligent model finding techniques for that logic [23], and (iii) using domain dependent control
knowledge! [1, 14, 33]. Among these the third one has led to a set of successful and competitive planners
(for example, TLPlan [1], TALplan [14] and SHOP [33]) with respect to several planning benchmarks
and is widely predicted [44] to be the most scalable. It should be noted that, strictly speaking, by using
the third approach we move away from classical planning as we need an additional input, the domain
knowledge.

IThis is alternatively referred to in the literature as ‘domain dependent knowledge’, ‘control knowledge’, ‘domain knowl-
edge’, and ‘domain constraints’. We also sometimes use these shortened terms in this paper.



In this paper our main focus is the third approach of planning using domain knowledge. We discuss various
kinds of domain knowledge (that can be exploited by a planner), how to represent such knowledge, and
how to use them during planning. In addition, we integrate the second and the third approach as ‘logic’
being a good tool to express knowledge is a common thread between the two approaches.

By planning using domain knowledge we mean that there is a planner which can, if necessary, plan
without any domain knowledge; but can usually plan faster using domain knowledge. Our view is in
agreement with the planning systems TLPlan [1], and TALplan [14] but is in disagreement with most
HTN planners. The TLPlan and TALplan systems explore the use of temporal domain knowledge in
planning. In this paper we identify two other kinds of domain knowledge, procedural and partial ordered,
and explore their role in planning.

Our formulation of procedural domain knowledge is inspired by GOLOG, referred to alternatively as a
logic programming language, or an action execution language. Although syntactically our procedural
domain knowledge is very similar to GOLOG programs, our use of procedural knowledge during planning
is very different from how GOLOG programs are used. Similarly, our formulation of partial ordered
domain knowledge is inspired by HTN constructs, but our use of this type of knowledge during planning
is very different from the workings of HTN planners. The main difference is that typical GOLOG
programming or HTN planning do not have an independent planner that can do classical planning without
using the knowledge encoded in the GOLOG programs or the HTN descriptions. In our approach, which
is similar to the approach in [1], the planner module is separate from the domain knowledge (encoding
temporal, procedural, or partial ordered knowledge), and can plan independent of the domain knowledge.

To achieve our goal of planning using domain knowledge, an important first step is to be able to both
reason about actions and their effects on the world, and represent and reason about domain knowledge.
This leads to the question of choosing an appropriate language for both reasoning and representation
tasks. For this we choose the language of logic programming with answer set semantics (LPASS) [19],
also referred to as A-Prolog [18] or AnsProlog [4]. The reasons behind our choice of this language over
others are many? and include:

e LPASS is a non-monotonic language and hence suitable for knowledge representation, especially for
reasoning in presence of incomplete knowledge.

e LPASS is more expressive than classical (monotonic) logics such as propositional logic and first-
order logic. For example, it can express transitive closure. Also, the non-classical constructs ‘+’
and ‘ not ’ of LPASS allow it to encode a form of directionality that makes it easy to encode
causality, which as shown in [29] can not be expressed in classical logic in a straightforward way.

e The non-classical constructs also give a structure to LPASS programs and statements, such as a
head and a body, which allows us to define various subclasses each with different complexity and
expressibility properties [11]. A particular subclass (when no classical negation is allowed) has the
same complexity as propositional logic but more expressibility while the most general case — which
allows “or” in the head — has the complexity and expressibility of the seemingly more complicated
default logic [37]. In general, LPASS is syntactically simpler to other non-monotonic logics and at
the same time as expressive as some [37].

e There exists a sizable body of “building block” results about LPASS which makes it more amenable
for knowledge representation and for correctness analysis of the representations.

This includes result about composition of several LPASS programs so that certain original con-
clusions are preserved (referred to as ‘restricted monotonicity’), a transformation of a program so
that it can deal with incomplete information, abductive assimilation of new knowledge, language
independence and tolerance, splitting an LPASS program to smaller components for computing its

2The book [4] contains elaboration of these points.



answer sets, and proving properties about the original program. To the best of our knowledge, for
no other knowledge representation language has a comparable body of mathematical results been
accumulated.

There exist several efficient LPASS interpreters [35, 10] and LPASS has been shown to be useful in
several application domains other than knowledge representation and planning. This includes policy
description, product configuration, cryptography and encryption, wire routing, decision support in
a space shuttle and its ‘if’—‘then’ structure has been found to be intuitive for knowledge encoding
from a human expert point of view.

Finally, LPASS has already been used in planning [41, 13, 26], albeit in the absence of domain
knowledge. In this regard LPASS is suitable for concisely expressing the effect of actions and static
causal relations between fluents. Note that concise expression of effect of actions involves represen-
tation of the ‘frame problem’ which was one of the original motivation behind the development of
non-monotonic logics. Together with its ability to enumerate possible action occurrences LPASS
is a suitable candidate for model based planning, and falls under the category (ii) of successful
approaches to planning.

As evident from our choice of language, our main focus in this paper is the knowledge representation
aspects of planning using domain knowledge. In particular, our concern includes:

the ease of expressing effects of actions on the world, and reasoning about them,
the ease of expressing and reasoning about various kinds of domain constraints,
the ease of adding new kind of domain constraints, and

proving correctness results about the LPASS representation of the planning with domain constraints
task.

We do performs some limited efficiency experiments, but leave more detailed experimentation to future

work.

With the above focus, the contributions of the paper and the sections they appear in can be summarized
as follows:

1.

In Section 3 we encode planning (without domain constraints) using LPASS in presence of both
dynamic effect of actions and static causal laws, and with goals as restricted first order formulas.
We then formally prove the relation between valid trajectories of the action theory, and answer
sets of the encoded program. The main difference between our formulation and earlier LPASS
encodings [41, 13, 26] is our use of static causal laws, and more general goals, and our consideration
of trajectories instead of plans. The reason we relate trajectories instead of plans is because in
presence of static causal laws the effect of actions may be non-deterministic.

. In Section 4.1 we show how to incorporate the use of temporal constraints in planning to the initial

planning formulation described in the previous item. The incorporation involves only the addition
of a few more rules, thus illustrating the declarativeness and elaboration tolerance of our approach.
We then formally prove the relation between valid trajectories of the action theory satisfying the
temporal constraints, and answer sets of the updated program. Our approach differs from [1, 14] in
that we use LPASS for both the basic encoding of planning and the temporal constraints, while the
planners in [1, 14] are written in procedural languages. Preliminary experiments show our approach
to be less efficient. But our use of LPASS allows us to have correctness proofs, which is one of our
major councerns. Such correctness proofs are not part of [1, 14].



3. In Section 4.2 we consider the use of procedural domain knowledge in planning. An example of a
procedural domain knowledge is a program written as a1;as; (as|as|as); f?7. This program tells the
planner that it should make a plan where a; is the first action, as is the second action and then it
should choose one of a3, a4 or as such that after the plan’s execution f will be true.

We define programs representing procedural domain knowledge and specify when a trajectory is a
trace of such a program. We then show how to incorporate the use of procedural domain knowledge
in planning to the initial planning formulation described in item (1.). As in (2.) the incorporation
involves only the addition of a few more rules. We then formally prove the relation between valid
trajectories of the action theory satisfying the procedural domain knowledge, and answer sets of
the updated program. We also present experimental results (Section 4.4) showing the improvement
in planning time due to using such knowledge over planning in the absence of such knowledge.

4. In Section 4.3 we motivate the need of additional constructs from HTN-planning to express domain
knowledge and integrate features of HTN with procedural constructs to develop a more general
language for domain knowledge. We then define trace of such general programs and show how to
incorporate them in planning. We then formally prove the relation between valid trajectories of
the action theory satisfying the general programs containing both procedural and HTN constructs,
and answer sets of the updated program. To the best of our knowledge this is the first time an
integration of HTN and procedural constructs has been proposed for use in planning.

5. As mentioned in the above items, we pay major attention to correctness proofs of our LPASS
formulations. All the proofs appear in Appendix A, and for completeness we present a few results
about LPASS, that we use in our proofs, in Appendix B.

In regards to closely related work, although planning through model finding of propositional encodings
[23] has been studied quite a bit, those papers do not have correctness proofs and do not use the varied
domain constraints that we use in this paper.

We now start with some preliminaries and background material about reasoning about actions and
LPASS, which will be used in the rest of the paper.

2 Preliminaries and Background

2.1 Reasoning about actions: the action description language B

Recall that planning involves finding a sequence of actions that takes a world from a given initial state to
a state that satisfies certain goal conditions. To do planning, we must be first able to reason about the
impact of a single action on a world. This is also the first step in ‘reasoning about actions’. In general,
reasoning about actions involves defining a transition function from states (of the world) and actions
to sets of states where the world might be after executing the action. Since explicit representation of
this function would require exponential space in the size of the number of fluents (i.e., properties of the
world), actions and their effects on the world are described using an action description language, and the
above mentioned transition function is implicitly defined in terms of that description.

We now present the action description language B from [20] which we will use in this paper. This language
consists of two finite, disjoint sets of names A and F, called actions and fluents, respectively, and a set
of propositions of the following form:

caused({p1,...,pn}, f) (1)
causes(a, f, {p1,...,Pn}) (2)
executable(a, {p1,...,pn}) (3)
initially(f) )



where f and p;’s are fluent literals (a fluent literal is either a fluent g or its negation —¢g) and a is an
action. (1) represents a static causal law, i.e., a ramification constraint. It conveys the meaning that
whenever the fluent literals py, ..., p, hold, so does f. (2), referred to as a dynamic causal law, represents
the (conditional) effect of a while (3) states an executability condition of a. Intuitively, a proposition
of the form (2) states that f is guaranteed to be true after the execution of a in any state of the world
where py,...,p, are true. An executability condition of a says that a is executable in a state in which
P1,-..,pn hold. Propositions of the form (4) are used to describe the initial state. It states that f holds
in the initial state.

An action theory is a pair (D,?) where 7, called the initial state description, consists of propositions
of the form (4) and D, called the domain description, consists of propositions of the form (1)-(3). For
convenience, we sometimes denote the set of propositions of the form (1), (2), and (3) by D¢, Dp, and
Dp, respectively.

Example 1 The well-known blocks world domain can be expressed using the following propositions®:

( causes(move(X,Y),on(X,Y),{}), forall X #Y
causes(move(X,Y), ~clear(Y),{}), forall X #Y
causes(m ve(X table), on(X, table), {})
caused({on(X,Y)},-on(Z,Y)), forall Z#X
caused({on(X,Y)},-on(X,Z)), forall Z#Y
caused({on(X,table)},—on(X,Y)), forall YV
caused({-on(Y1, X),...,~on(Y,, X)},clear(X)) where Y/s are blocks different than X
executable(move(X,Y), {clear(X), clear(Y)})
executable(move(X, table), {clear(X)})

D,

where X, Y are variables of type “block”, “table” is a constant. The actions are “move(X,Y)” and
“move(X,table)”, which mean moving block X onto block Y and onto the “table”, respectively. The flu-
ents are “on(X,Y)”, “clear(X)”, and “on(X,table)”. They are used to record the positional information
about the blocks.

Let D be the theory for the domain of blocks a, b, c. An example of an initial state could be given by the
set of initial propositions:

initially on(a, table), initially on(b, a), initially on(c, b),
initially —on(b, table), initially —on(b, ¢),
? =< initially —on(a,b), initially —on(a,c),
initially —on(c, table), initially —on(c, a),
initially —clear(a), initially —clear(b), initially clear(c)

A domain description given in B defines a transition function from pairs of actions and states to sets of
states whose precise definition is given below. Intuitively, given an action a and a state s, the transition
function ® defines the set of states ®(a, s) that may be reached after executing the action a in state s. If
®(a,s) is an empty set it means that a is not executable in s. We now formally define ®.

Let D be a domain description in B. An interpretation I of the fluents in D is a maximal consistent set
of fluent literals drawn from F. A fluent f is said to be true (resp. false) in I iff f € I (resp. =f € I).
The truth value of a fluent formula in I is defined recursively over the propositional connectives in the
usual way. For example, f A g is true in I iff f is true in I and g is true in I. We say that a formula ¢
holds in I (or I satisfies ¢), denoted by I = ¢, if ¢ is true in I.

3We follow the convention in logic programming in that terms beginning with a capital and lower-case letters represent
variables and constants, respectively. A proposition with variables represents the set of its ground instances.



Let u be a consistent set of fluent literals and K a set of static causal laws. We say that u is closed under
K if for every static causal laws “caused({p1,...,p,}, f)” in K, if {p1,...,p,} C u then so does f. By
Clk (u) we denote the least consistent set of literals from D that contains u and is also closed under K.

Formally, a state of D is an interpretation of the fluents in F that is closed under the set of static causal
laws D¢ of D.

An action a is ervecutable in a state s if there exists an executability proposition
“executable(a, {fi,...,fn})” in D such that s E fi A ... A f,. Clearly, if “executable(a,{})”
belongs to D, then a is executable in every state of D.

The direct effect of an action a in a state s of D is the set E(a,s) = {f | D contains a dynamic law
“causes(a, f,{f1,...,fn})” and fi e sfori=1,...,n}.

For a domain description D, ®(a, s), the set of states that may be reached by executing a in s, is defined
as follows.

1. If a is executable in s, then

D(a,s) ={s' | s isastate and s' = Clp.(F(a,s)U(sNs'))};
2. If a is not executable in s, then ®(a,s) = 0.

The intuition behind the above formulation is as follows. The direct effects of an action « in a state s are
determined by the dynamic causal laws and are given by E(a,s). All fluent literals in E(a, s) must hold
in any resulting state. The set s N s’ contains the fluent literals of s which continue to hold by inertia,
i.e they hold in s’ because of not being changed by any action. In addition, the resulting state must be
closed under the set of static causal laws Dc. These three aspects are captured by the definition above.
Observe that when D¢ is empty and «a is executable in state s, ®(a, s) is equivalent to the set of states
that satisfy E(a,s) and are closest to s using symmetric difference? as the measure of closeness [31].
Additional explanations and motivations behind the above definition can be found in [3, 31, 43].

Every domain description D in B has a unique transition function ®, and we say ® is the transition
function of D. We illustrate the definition of the transition function in the next example.

Example 2 Consider the block word domain from Example 1 with the set of blocks {a,b,c,d, e, f}. The
state depicted in the Fig. 1 is given by the set®

so = {on(a,table),on(b,a),on(c,b),clear(c), on(d, table),on(e,d),on(f,e), clear(f)}.

Figure 1: A state of the block world domain with 6 blocks a, b, ¢, d, e, and f

4We say sp is strictly closer to s than so if 51 \sUs\s1 Csa\sUs\ sa.
5To simplify the notation, we list only positive literals in states (i.e., whatever is not in a state is false).



In state sg, the actions move(c, table), move(f,table), move(f,c), and move(c, f) are executable. We
have the following possible transitions from state sq:

(so U {on(c,table), clear(b) })\ {on(c,b) } € ®(move(c,table), so)

(so U {on(f, table),clear(e) })\ {on(f,e)} € @(move(f,table),so)
(so U{on(c, f),clear(d) })\ { on(c,b),clear(f) } € ®(move(c, f), so)
(soU{on(f,c),clear(e) })\ {on(f,e),clear(c)} € ®(move(f,c),so)

O

For a domain description D with transition function ®, a sequence sga1$; ...a,S, Where s;’s are states
and a;’s are actions is called a trajectory in D if s;11 € ®(s;,a:41) for i € {0,...,n — 1}. A trajectory
50G151 - .. @Sy, achieves a fluent formula A if s,, = A.

A domain description D is consistent iff for every action a and state s, if a is executable in s, then
®(a,s) # 0. An action theory (D,?) is consistent if D is consistent and so = {f | initially(f) € 7} is a
state of D. In what follows, we will consider only consistent action theories.

2.2 Logic Programming with answer set semantics (LPASS) and its applica-
tion

In this section we review LPASS and and its applicability to problem solving.

2.2.1 Logic Programming with answer set semantics (LPASS)

Although the programming language Prolog and the field of logic programming have been around for
several decades, the answer set semantics of logic programs — initially referred to as the stable model
semantics, was rather recently proposed by Gelfond and Lifschitz in [19]. Unlike earlier characterizations
of logic programs where the goal was to find a unique appropriate ‘model’ of a logic program, the answer
set semantics allows the possibility that a logic program may have multiple appropriate models, or no
appropriate models at all. It is this feature of the answer set semantics that plays an important role in
using LPASS for problem solving. We now present the syntax and semantics of LPASS.

A logic program II is a set of rules of the form

ag < A1, .., Ay, NOE A1y - - -, NOE Gy (5)
or

— 4 a1,..., 0y, N0t A1, ...,N0t Ay (6)
where 0 < m < n, each a; is an atom of a first-order language LP, — is a special symbol denoting

the truth value false, and not denotes a special unary predicate the negation-as-failure operator. A
negation as failure literal (or naf-literal) is of the form not a where a is an atom. For a rule of the form
(5)-(6), the left and right hand side of the rule are called the head and the body, respectively. A rule of
the form (6) is also called a constraint.

Given a logic program II. We will assume that each rule in II is replaced by the set of its ground instances
so that all atoms in I are ground. Consider a set of ground atoms X. The body of a rule of the form
(5) or (6) is satisfied by X if {ay41,...,a,} N X =0 and {a1,...,a} C X. A rule of the form (5) is
satisfied by X if either its body is not satisfied by X or ag € X. A rule of the form (6) is satisfied by X
if its body is not satisfied by X. An atom a is supported by X if a is the head of some rule (5) such that

{ai,...;am} C X and {am41,- .., ap}NX =10.

3 3



For a set of ground atoms X and a program II, the reduct of II with respect to X, denoted by IT¥X, is the
program obtained from the set of all ground instances of II by deleting

1. each rule that has a naf-literal not a in its body with a € S, and

2. all naf-literals in the bodies of the remaining clauses.
S is an answer set (or a stable model) of 11 if it satisfies the following conditions.

1. If TI does not contain any naf-literal (i.e. m = n in every rule of II) then S is the smallest set of
atoms such that

(a) for any ground instance ag < a1, ..., a,, of a rule from 11, if a1, ...,a,, € S, then ag € S, and

(b) for any ground instance — < ay, ..., a, of a rule from II, {ay,...,am}\ S # 0.

2. If the program II does contain some naf-literal (m < n in some rule of II), then S is an answer set
of IT if S is the answer set of [I9. (Note that II° does not contain naf-literals, its answer set is
defined in the first item.)

A program II is said to be consistent if it has an answer set. Otherwise, it is inconsistent.

Many robust and efficient systems that can compute answer sets of propositional logic programs have
been developed. Two of the frequently used systems are dlv [10] and smodels [35]. Recently, XSB
[40], a system developed for computing the well-founded model of logic programs, has been extended to

compute stable models of logic programs as well.

2.2.2 Problem solving using LPASS

Prolog and other early logic programming systems were geared towards answering yes/no queries with
respect to a program, and if the queries had variable then returning instantiations together with an ‘yes’
answer. The possibility of multiple answer sets and no answer sets has given rise to an alternative way
to solve problems using LPASS. In this approach, referred to by some as answer set programming (also
known as stable model programming) [30, 34, 26], possible solutions of a problem are enumerated as
answer set candidates and non-solutions are eliminated through rules with — in the head, resulting in a
program whose answer sets have one-to-one correspondence with the solutions of the problem.

We illustrate the concepts of answer set programming by showing how the 3-coloring problem of a bi-
directed graph G can be solved using LPASS. Let the three colors be red (), blue (b), and green (g) and
the vertex of G be 0,1,...,n. Let P(G) be the program consisting of

e the set of atoms edge(u,v) for every edge (u,v) of G,

e for each vertex u of G, three rules stating that u must be assigned one of the colors red, blue, or

green:
color(u, g) < not color(u,b), not color(u,r)
color(u,r) < not color(u,b), not color(u, g)
color(u,b) < not color(u,r),not color(u, g)
and



e for each edge (u,v) of G, three rules representing the constraint that 4 and v must have different
color:

— « color(u,r), color(v,r), edge(u, v)

dge(u,v)

— « color(u,b), color(v,b), edge
sedge(u,v)

b
— <« color(u, g), color(v, g)

It can be shown that for each graph G, (i) P(G) is inconsistent iff the 3-coloring problem of G' does not
have a solution; and (ii) if P(G) is consistent then each answer set of P(G) corresponds to a solution of
the 3-coloring problem of G and vice versa.

To make answer set style programming easier, Niemeld et al. [36] introduce a new type of rules, called
cardinality constraint rule (a special form of the weight constraint rule) of the following form:

Hby,....bk}u < ar,...,am,n0t Gmy1, ..., n0t ay (7)

where a; and b; are atoms and ! and u are two integers, [ < u. The intuitive meaning of this rule is
that whenever its body is satisfied then at least [ and at most u atoms of the set {by,...,br} must be
true. Using rules of this type, one can greatly reduce the number of rules of programs in answer set
programming. For instance, in the above example, the three rules representing the constraint that every
node u needs to be assigned one of the three colors can be packed into one cardinality constraint rule:

Heolor(u, g), color(u,r), color(u, b)}1

The semantics of logic programs with such rules is given in [36]. For our purpose in this paper we only
need to consider rules with | = u = 1, and restrict that if we have rules of the form (7) in our program
then there are no other rules with any of by,...,b; in their head. In that case a program with rules of
the form (7) has the same answer sets (with respect to the definition in [36]) as the program where rules
of the form (7) are replaced by the following set of rules:

by < a1,...,0m,n0t Amy1, ..., N0t ay,not by, ... not by
by < ai,...,Qm,n0t a1, - .., not a,,not by, not bs, ..., not by
b < ai,...,am,not ayt1,...,n0t a,,not by, ..., not by_1

3 Answer Set Planning: Using LPASS for planning

In this section we show how to do planning using LPASS referred to as Answer Set Planning (or
ASP) [26] when the effect of actions on the world and the relationship between fluents in the world
are expressed in the action description language B. Formally, a planning problem with respect to B is
specified by a triple (D,?,A) where (D,?7) is an action theory in B and A is a fluent formula (or goal),
which a goal state must satisfy. A sequence of actions a1, ..., a,, is then called a possible plan for A if
there exists a trajectory spaisy ...amsm,m in D such that sg and s,, satisfies 7 and A, respectively. Note
that we define a ‘possible plan’ instead of a ‘plan’. (In the later case the goal must be achieved on every
possible trajectory.) This is because the presence of static causal laws in D allows the possibility that
the effect of actions may be non-deterministic, and planning with non-deterministic actions is beyond the
expressibility of LPASS. However, if D is deterministic, i.e., |®(a, s)| < 1 for every pair of a state s and
action a, then the notions of ‘possible plan’ and ‘plan’ coincide.

Given a planning problem (D,?, A), answer set planning solves it by translating it into a logic program
II(D,?,A) (or I, for short) consisting of domain-dependent rules that describe D, 7, and A and domain-
independent rules that generate action occurrences and represent the transitions between states. We now
present the rules of II(D,?,A). Our encoding closely follows the syntax of the smodels system as we
did most of our experiments using it. We begin with the set of rules for the representation of D and 7.



3.1 Action theory representation

We assume that actions and fluents in A and F are specified by the predicates action(.) and fluent(.),
respectively, together with the necessary typed-definitions that are added for the use of variables. The
encoding of ? is straightforward and does not require any special treatment as each element in ? can be
viewed as a fact (rule without body) of II. Since each set of literals {p1,...,p,} in (1)-(3) is a conjunction
of literals, D can be encoded as a set of facts of II as follows. First, we assign to each set of fluent literals,
say {pi,...,pn}, that occurs in a proposition of D a distinguished name, say ng. The constant nil
denotes the set {}. A set of literals {p1,...,pn}, with the name ngy, will be encoded by the set of atoms
{conj(ng),in(p1,ng),...,in(pn,ng)} where conj(ng) specifies the type of the formula (a conjunction),
and in(f;,ng) indicates that f; is a conjunct of ¢. A proposition of the form causes(a, f, {p1,...,pn})
with n> 0 is encoded as a set of atoms consisting of causes(a, f,n4) and the set of atoms representing
the formula ¢ = p; A ... A p,. Similar encodings are done for other types of propositions in D.

Example 3 To encode the block world domain in Example 1, we use the predicate block(X) as the type
definition for blocks. The actions and fluents are defined by the following rules:

action(move(X,Y)) <« block(X),block(Y),X #Y.
fluent(on(X,Y)) <+ block(X),block(Y),X #Y.

fluent(on(X,table)) <« block(X).
fluent(clear(X)) <+ block(X).

To encode the set of dynamic laws defined by the schema “causes(move(X,Y),on(X,Y),{}) for X #Y”
we write:

causes(move(X,Y), on(X,Y),nil) « block(X),block(Y),X # Y.

and to encode the static law “caused({-on(Y7, X),...,-on(Y,,X)},clear(X)) where Y;’s are blocks
different from X" we assign the name ‘set_nothing_on(X)’ to the set {—on (Y1, X),...,—on(Y,, X)} and
use the following rules:

set(set_nothing_on(X)) <+ block(X).
in(neg(on(Y, X)), set_nothing_on(X)) <+ block(X),block(Y),X #Y.
caused(set_nothing-on(X),cear(X)) <+ block(X).

The first rule defines the set named “set_nothing_on(X)” for a block X. The second rule specifies
the members of this set and the third rule encodes the static law. It is worth mentioning again
that set_nothing_on(X) is not a fluent of the domain, it is the name assigned to the set of fluent,
{-on(Y1,X),...,—on(Y,,X)}, introduced for the encoding of the static causal law. Notice also that the
negative literal —on(X,Y) is represented by the term neg(on(X,Y)). The encodings of the other laws
are similar. O

3.2 Domain independent rules

The domain independent rules of II are adapted mainly from [17, 13, 26, 28]. As customary in the
encoding of planning problems, we assume that the length of plans we are looking for is given. We denote
it by the constant length and use a sort time, whose domain is the set of integers from 0 to length, to
represent, the time moments in which the system is in. The main predicates in these rules are:

e holds(L,T): L holds at time T,

e possible(A,T): action A is executable at time 7', and
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e occ(A,T): action A occurs at time T
e hf(F,T): formula F holds at time T
In the following rules, 7' is a variable of the sort time, L and G are variables denoting fluent literals

(written as F' or neg(F') for some fluent F' — defined preciesly in rules (16) and (17)), S is a variable of
the sort conj (conjunction), and A, B are variables of the sort action.

holds(L,T+1) <« occ(A,T),causes(A,L,S),hf(S,T). (8)
holds(L,T) caused(S, L), hf(S,T). (9)
possible(A,T) <« executable(A,S),hf(S,T). (10)
holds(L,0) < literal(L),initially(L). (11)
occ(A,T) <« action(A),possible(A,T),not nocc(A,T). (12)
nocc(A,T) <« action(A),action(B), A # B,occ(B,T). (13)
nhf_conj(F,T) <« conj(F),in(F,F),not hf(Fi,T). (14)
hf(F,T) <« conj(F),not nhf_conj(F,T). (15)

Here, the rule (8) encodes the effects of actions and the rule (9) encodes the effects of static causal laws.
The rule (10) defines a predicate that determines when an action can occur and (11) encodes the initial
situation. The rules (12)-(13) generates action occurrences, one at a time®. The last two rules encode
when a conjunction is true. The rules of inertia (or the frame axioms) and rules defining literals are

encoded using the following rules:

literal(L) <«  fluent(L). (16)
literal(neg(L)) <«  fluent(L). (17)
contrary(F,neg(F)) <« fluent(F). (18)
contrary(neg(F),F) <« fluent(F). (19)
holds(L,T+1) <« contrary(L,G),holds(L,T),not holds(G,T+1). (20)

The first two rules define what is considered to be a literal. The next two rules say that neg(F) and F'
are contrary literals. The last rule says that if L holds at T" and its contrary does not hold at 7'+ 1, then
L continues to hold at T' 4+ 1. Finally, to represent the fact that neg(F) and F' can not be true at the
same time, the following constraint is added to II.

1« fluent(F),holds(F,T), holds(neg(F),T). (21)

3.3 Goal representation

To encode the goal A, we define formulas and provide a set of rules for formula evaluation. We consider
formulas which are bounded classical formulas with each bound variable associated with a sort. They are
formally defined as follows.

Definition 1 1. A fluent literal is a formula.

2. The negation of a formula is a formula.

3. A finite conjunction of formulas is a formula.

6These two rules can be replaced by the smodels cardinality constraint rule “0{occ(A,T) : action(A)}1 < time(T)”
and a set of constraint that requires that actions can occur only when they are executable and when some actions are
executable then one has to occur. In many of our experiments, program with these rules yields better performance.
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4. A finite disjunction of formulas is a formula.

5. If X;,...,X, are variables that can have values from the sorts s1,...,s,, and f(X;,...,X,) is a

formula then VX : s1,..., Xy ¢ sn.f(X1,...,X,) is a formula. When the sets sq, ..., s, are clear
from the context, we simply write VX1, ..., X, f(X1,..., Xn).

3

6. If X1,...,X,, are variables that can have values from the sorts s1,...,s,, and f(Xi,...,X,) is a

formula then 3X; : s1,..., X, : sp.f(X1,...,X,,) is a formula. When the sets si,...,s, are clear
from the context, we simply write 3X1,..., X,. f(X1,..., Xn).

3

O

For convenience, we divide formulas into two groups: atomic and non-atomic. An atomic formula is a
fluent literal. Other formulas are non-atomic formulas. A sort called formula is introduced. To encode
atomic formulas, we add the following rules to II:

formula(L) < literal(L). (22)

We use conj, disj, and negation and forall and exists to represent the connectives A, V, — and the
quantifiers V and 3, respectively. II contains the following type definition rules:

formula(F) <+ conj(F). (23)
formula(F) <+ disj(F). (24)
formula(F) <« negation(F, Fy). (25)
formula(F) <«  forall(F). (26)
formula(F) < exists(F). (27)

Each non-atomic formula ¢ will be associated with a unique name, denoted by ng, and is encoded by
(possibly) a set of rules, denoted by r(¢), which is defined inductively as follows.

o For ¢ = g, () = r(p) U {negation(ng,n,)}".

n

o For 6 =1 Ao A, 1(0) = P, (1) Udconj(ng)} U fin(ng,,mg) i =1,....n}.

n

e Forg=p1 V...V, r(¢) = Ui:l r(pi) U {dzsy(n¢)} U {in(nw“n(ﬁ) ‘ i=1,... 7’!7,}.
e For ¢ =VXy,..., Xp,.f(X1,...,X},), r(¢) consists of rules defining the domains of Xy,..., X, the

atom forall(ng), and the following rule

Zn(f(Xla .- /Xn)an(ﬁ) « in(le 51)7 s 7in(Xn78n)'

e For ¢ =3Xy,..., X,.f(X4,...,X,), r(¢) consists of rules defining the domains of X;,..., X, the

3

atom exists(ng), and the following rule
Zn(f(Xla Tt Xn)a”(ﬁ) « in(le 51)7 s 7in(Xn7 Sn)'
For example, the conjunction ¢ = f A g A h is represented by the set of atoms {conj(ng), in(f,ne),

in(g,ne), in(h,ne)}. We will now define hf(F,T) that determines whether or not a formula F' holds at
the time moment T'. For this purpose, we add to II the following rules:

hi(F,T) « disj(F),in(Fy, F),hf(Fi,T). (28)
hf(F,T) < negation(F,Fy),not hf(F,T). (29)
hf(F,T) < literal(F),holds(F,T). (30)
hf(E,T) <+ exists(F),in(Fi,F),hf(F1,T). (31)
nhf_forall(F,T) <« forall(F),in(Fi,F),not hf(F\,T). (32)
hf(F,T) <+ fordll(F),not nhf_forall(F,T). (33)

"To simplify notation, when ¢ is an atomic formula (f or =f), we have n, as ¢.
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The meanings of these rules are straightforward. The first rule says that a disjunction holds if one of its
disjuncts holds. Rules (31)-(33) are for quantified formulas. Notice that rules for determining the truth
value of conjunctions have been listed in the previous subsection (Rules (14) and (15)).

We now state a theorem which states that rules (14), (15)), and (28)-(33) correctly implement the
evaluation of a fluent formula given the truth value of the fluents.

Theorem 1 Let S be a set of formulas, s be a state, and ¢ be a non-negative integer. Let Il = Ry U Ry U
r(S) Ur(s) where
e Ry is the set of rules (14), (15), and (28)-(33) in which the time variable T' takes the value ¢,

e R, consists of the set of rules defining literals (Rules (16) and (17)) and the set of rules defining
the fluents of the domain,

e 7(s) = {holds(l,t) |l is a literal and [ € s}, and
o 7(5) = U¢es r(¢).

Then,

(i) The program II has a unique answer set, X.

(ii) For every formula ¢ in the set S, ¢ is true in s, i.e. s = ¢, if and only if hf(ne,t) belongs to X.

Proof. See Appendix A.1 a

We now proceed towards formulating the correctness of our implementation of planning in B.

3.4 Correctness of 11

Let II,,(D,?,A) (or II,, when it is clear from the context what D, 7, and A are) be the logic program
consisting of

e the set of domain-independent rules (rules (8)-(33)) in which the domain of T is {0,...,n},

e the set of atoms encoding D and 7,

e the set of atoms and rules encoding A, r(A), and

e the rule < not hf(na,n) that encodes the requirement that A holds at n.
The following result (similar to the main result in [28]) shows the equivalence between trajectories achiev-

ing A and answer sets of II,,. Before stating the theorem, we introduce the following notation: for an
answer set M of II,,, we define s;(M) = {f | f is a fluent literal and holds(f,i) € M}.

Theorem 2 For a planning problem (D,? A) with a consistent action theory (D,?)

3

(i) if spag . ..an—18, is a trajectory achieving A, then there exists an answer set M of II,, such that

1. occ(a;,i) € M for i € {0,...,n — 1} and
2. s;=si(M) forie{0,...,n}.

and
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(ii) if M is an answer set of II,,, then there exists an integer 0 < k < n such that so(M)ag ... ar_15,(k)
is a trajectory achieving A where occ(a;, i) € M for 0 < i < k. Moreover, if k < n then no action
is executable in the state sy (M).

Proof. See Appendix A.2 a

It is worth noticing that the second item of the theorem implies that the trajectory achieving A corre-
sponds to an answer set M of IT,, could be shorter than the predefined length n. This happens when the
goal is reached with a shorter sequence of actions and no action is executable in the resulting state.

The next corollary follows directly from Theorem 2.

Corollary 3.1 For a planning problem (D,7 A) with a consistent and deterministic action theory
(D,?),

1. a sequence of actions ag,...,a,_1 is a plan achieving A from ? if there exists an answer set M of
II,, such that occ(a;,i) € M fori € {0,...,n — 1}; and

2. for each answer set M of II,, there exists an integer 0 < k < n such that ag,...,ar_; is a plan
achieving A from ? where occ(a;,i) € M for 0 < i < k. Moreover, if k¥ < n then no action is
executable in the state reached after executing ag, ..., ar—1 in the initial state.

4 Control Knowledge as Constraints

We now move on to the main contribution of this paper: augmenting the answer set planning (ASP)
program II in the previous section with different kinds of domain knowledge. The domain knowledge act
as constraints on the answer sets of II. For each kind of domain knowledge (also referred to as constraints)
we introduce new constructs for its encoding and present a set of rules that check when a constraint is
satisfied. We start with temporal domain knowledge.

4.1 Temporal Knowledge

Use of temporal domain knowledge in planning was first proposed by Bacchus and Kabanza in [1]. In their
formulation temporal knowledge is used to prune the search space while planning using forward search.
In their paper, temporal constraints are specified using a future linear temporal logic with a precisely
defined semantics. Since their representation is separate from the action and goal representation, it is
easy to add them to (or remove them from) a planning problem . Planners exploiting temporal knowledge
to control search have proven to be highly efficient and to scale up well [2]. In this paper, we represent
temporal knowledge using temporal formulas. In our notation, a temporal formula is either

e a formula as defined in Definition 1 (for clarity we will henceforth refer to such formulas as simple
formulas), or
e a goal formula of the form goal(y) where ¢ is a formula defined in Definition 1, or

e a formula of the form until(p, ), always(p), eventually(y), or next(p) where ¢ and v are
temporal formulas.

e (When the context is clear we will often refer to temporal formulas as formulas.)
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Here, until, always, eventually, and next are temporal operators with standard meaning and goal is
a special operator, called goal operator. Intuitively, a formula goal(y) states that ¢ is part of the goal
and must be true in a goal state. This provides a convenient way for expressing the control knowledge
which depends on goal information. A temporal formula is said to be goal-independent if no goal formula
occurs in it. Otherwise, it is goal-dependent. Bacchuss and Kabanza [1] observed that useful temporal
knowledge in planning is often goal-dependent. In the block world domain, the following goal-dependent
formula®:

always(goal(on (X, table)) A on(X, table) D next(on(X, table))) (34)

can be used to express that if the goal is to have a block on the table and it is already on the table then
it should be still on the table in the next moment of time. This has the effect of preventing the agent
from superfluously picking up a block from the table if it is supposed to be in the table in a goal state.

It is worth noting that under this definition, temporal operators can be nested many times but the goal
operator goal cannot be nested. For instance, if ¢ is a fluent formula, always(next(y)) is a temporal
formula, but goal(goal(yp)) is not.

Temporal formulas which do not contain the goal operator (i.e. goal-independent formulas) will be
interpreted over a infinite sequence of states of D, denoted by I = (sg,$1,...,). On the other hand
temporal formulas which contain goal (i.e. goal-dependent formulas) will be evaluated with respect to
a pair (I, ) where I is a sequence of states and ¢ is a simple formula. We now formally define them
using two separate definitions. Definition 2 deals with goal-independent formulas while Definition 3 is
concerned with general temporal formulas (possibly goal-dependent).

Definition 2 (See [1]) Let I = (sq,81,...,5n,...) be a sequence of states of D. Let f; and fo be
goal-independent temporal formulas, ¢ be a non-negative integer, and f3 be a simple formula. Let
I; = (s¢, St+1,- .., ) denoting the subsequence of I starting from s;.

I entails or satisfies a goal-independent temporal formula f, denoted by I = f, if Iy = f where

[ ] It |: f3 lﬂ St ‘: f3.
I; |= until(f,, f») iff there exists ¢ < t5 such that I;, = fo and for all t < #; < to we have I, = fi.
It |: next(f1) iff It+1 ‘: fl-

I; |= eventually(f) iff there exists ¢ < ¢; such that I;, = fi.

I, |= always(f;) iff for all ¢ < ¢; we have I}, = fi.

For a finite sequence of states I = (sg,...,s,) and a goal-independent temporal formula f, we say I
entails (or satisfies) f, denoted by I = f, if I' = f where I' = (sq, ..., Sn; Sny -« -)- |

Next we define when temporal formulas are entailed or satisfied by a sequence of states and a goal.

Definition 3 Let I = (sg, $1,...,8n,...) be a sequence of states of D and ¢ be a simple formula denoting
the goal. Let f; and fy be temporal formulas (possibly goal dependent), ¢ be a non-negative integer, and
f3 be a simple formula. Let Iy = (s¢, S¢41,..., ).

I entails or satisfies a temporal formula f with respect to ¢, denoted by (I, ) | f, if (lo,p) = f where

o (I, 0) = f3iff 54 = f3.

8 As before we use the convention that a formula with variables represents the set of its ground instantiations.
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Ii, o) |= goal(f3) iff p |= f3

Ii,p) = unt1](f1 f2) iff there exists t < to such that (I;,, ) = fo and for all ¢t < t; < t, we have
Itl 9 (,0) |

I, o) | next(fy) iff Iy, 9) = fi.
I;, ¢) |= eventually(f;) iff there exists ¢ < t; such that (I;,, ) = fi.

(
(
(
(
(
(

I, @) |= always(f) iff for all ¢ < ¢; we have (I;,, @) = fi.

For a finite sequence of states I = (sq,...,S,), a temporal formula f, and a simple formula ¢ we say I
satisfies f with respect to @, denoted by (I, ) |= f, if (I',¢) |= f where I' = (sq, ..., Sn, Sn,---)- |

Similar to simple non-atomic formulas, temporal formulas can be encoded in ASP using constants, atoms,
and rules. We do this in two steps.

First, each temporal formula, say ¢, is represented by a set of rules r(¢), which is defined inductively as
follows.

o For simple formulas ¢, r(¢) is defined as before (Section 3.3).
o For ¢ = always(p), r(¢) = r(p) U {always(ng, n,) «}.

e For ¢ = next(y), r(¢) = r(p) U {next(ng,n,) «}.

e For ¢ = eventually(p), r(¢) = r(¢) U {eventually(ng,n,) <}.
e For ¢ = until(p, ), r() = r() Ur() U{until(ng,n,,ny) «}.

e For ¢ = goal(vy), r(¢) = r(yp) with ny is the name associated to goal(); in what follows, we will
use Ngoq(y) to denote the name assigned to the goal formula goal(1)).

For example, r(until(f,next(g))) is the set of facts {until(fi, f, f2),next(f2,g)}, where f; and fo are
the names assigned to until(f, next(g)) and next(g), respectively. When encoding temporal formulas
with variables we can instantiate them first and then encode the instantiation, or do the encoding as
illustrated by the following example, where we encode the temporal formula (34).

Example 4 To encode the temporal formula (34), we name the sub-formulas as follows, where the
variables in the names play the same role as the variables in the formulas.

1. n1(X) = next(on(X, table))

2. na2(X) = goal(on(X, table)) A on(X, table)

3. n3(X) = —(goal(on(X, table)) A on(X, table)) V next(on(X, table))

4. n4(X) = always(goal(on(X, table)) A on(X, table) D next(on(X,table)))

Then the encoding of (34) is the encoding of n4(X).

The rules encoding n;(X) are:

next(ni(X),on(X,table)) <« block(X).

no(X) is encoded by the following rules:

conj(na2(X)) «—  block(X).
in(ngoal(on(x,table))7n2 (X)) — blOCk(X)
in(on(X, table),n2(X)) —  block(X).
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The set of rules encoding n3(X) contains the rules for encoding ns(X) and n;(X) and the following
rules:

disj(ns(X)) «—  block(X).

in(ni(X),ns (X)) + block(X).

in(negation(na(X)),n3(X)) <+ block(X).

Finally, the set of rules encoding n4(X) contains r(n3(X)) and the following rule:

always(na(X),n3(X)) <« block(X).

O

To complete the encoding of temporal constraints, we now provide the rules for evaluating temporal
formulas. To achieve that we extend the earlier set of rules in Section 3.3 that define the predicate hf.
As when defining entailment of temporal formulas, we first consider goal-independent temporal formulas.
The rules needed for evaluating temporal formulas whose first level operator is different than the goal
operator are as follows:

hf(N,T) < wuntil(N,Ny, Ny), hf_during(N,,T,T'), hf(Ny, T"). (35)

hf(N,T) <+ always(N,N1),hf_during(N1,T,n+1). (36)

hf(N,T) <« eventually(N,Ny),hf(Ny,T"), T <T". (37)

hf(N,T) « next(N,N:),hf(Ni, T +1). (38)
nhf_during(N,T,T') < not hf(N,T"), T<T"<T'. (39)
hf_during(N,T,T') <« hf(N,T),not nhf_during(N,T,T"). (40)

In the above rules, for a temporal formula N, hf(N,T) means that N is satisfied by (s, s741,- .. 5n),
where st refers to the state corresponding to time point 7. With this meaning the rules encode Defini-
tion 2 in a straightforward way.

The next theorem shows that rules (35)-(40) correctly implement the semantics of goal-independent
temporal formulas.

Theorem 3 Let S be a set of goal-independent temporal formulas, I = (sg, s1 ...s,) be a sequence of
states, and I; denote (sq,...s,). Let

H:R1 URQUT(S)UT(I)

where

e Ry consists of the set of rules (14), (15), and (28)-(33) in which the domain of T is {0, ...,n}, the
set of rules (16)-(17)), and the set of rules defining the fluents of the domain,

e R, is the set of rules (35)-(40) in which the domain of T is {0,...,n},

o 7(I) =UP {holds(l,t) | | is a fluent literal and ! € s;}, and
o 7(5) = U¢es r(¢).

Then,

(i) The program II has a unique answer set, X.
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(ii) For every temporal formula ¢ in the set S, ¢ is true in I, i.e., I; |= ¢, if and only if hf(ng,t)
belongs to X.

Proof. See Appendix A.1 a

Having defined temporal constraints and specified when they are satisfied, adding temporal knowledge
to a planning problem in ASP is easy. We must encode the knowledge as a temporal formula® and then
add the set of rules representing this formula and the rules (35)-(40) to II. Finally, we need to add the
constraint that requires that the goal is true at the final state and the temporal formula is satisfied. More
precisely, for a planning problem (D,?, A) and a goal-independent temporal formula ¢, let ITZ“F be the
program consisting of

e the program II,,,
e the rules (35)-(40)

e the rules encoding ¢ and the constraint < not hf(ng,0).

The next theorem is about the correctness of IIZ X,

Theorem 4 For a planning problem (D,7,A) with a consistent action theory (D,?) and a goal-
independent temporal formula ¢,

(i) if spaq...an—15, is a trajectory achieving A and I = ¢ where I = (sq,...,s,), then there exists
an answer set M of TIZLF guch that

1. occ(a;,i) € M for i € {0,...,n—1},
2. s; =8;(M) fori € {0,...,n}, and
3. hf(ng,0) € M.

and
(ii) if M is an answer set of IIL ¥ then there exists an integer 0 < k < n such that

1. so(M)ag ...ar—15,(M) is a trajectory achieving A where occ(a;,i) € M for 0 < i < k and
2. I|= ¢ where I = (sq(M),...,sn(M)).

Proof. Follows from Theorem 2 and Theorem 3. O

The above theorem shows how control knowledge represented as goal-independent temporal formulas
can be exploited in ASP. We will now extend this result to allow control knowledge expressed using
goal-dependent temporal formulas. Based on Definition 3, where entailment of goal-dependent temporal
formulas is defined, we will need to encode ¢ |= f3. To simplify this encoding we make the same
assumption that is made in most classical planning literature including [1]: our goals will be a conjunction
of literals. IL.e., the goal A in a planning problem (D,?, A) will be a set of literals and each goal formula
occurring in a temporal formula representing our control knowledge is of the form goal(F’) where F' is a
fluent literal. In the rest of this section, whenever we refer to a planning problem or a goal-dependent
temporal formula we assume that they satisfy this assumption. Let (D,?, A) be a planning problem and
¢ be a temporal formula. IIILP+Goal he the program consisting of TIZ” and the rule

hf(ngoar(r),T) < literal(L),conj(na),in(L,na). (41)

Notice that because A is a conjunction of literals, rule (41) is sufficient for determining whether A =1
for some fluent literal I holds or not. The next theorem is about the correctness of IILLFP+Goal,

9A set of temporal formulas can be viewed as a conjunction of temporal formulas.
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Theorem 5 For a planning problem (D,? A) with a consistent action theory (D,?) and a temporal

formula ¢,

(i) if spag...an—15, is a trajectory achieving A and (I, A) = ¢ where I = (sq,...,s,), then there
exists an answer set M of IILLP+Goal gych that

1. occ(a;,i) € M for i € {0,...,n — 1},
2. s; =5;(M) fori € {0,...,n}, and
3. hf(ng,0) € M.

and
ii) if M is an answer set of [ITLP+Goal thep there exists an integer 0 < k < n such that
n ] g

1. so(M)ag ...ar—15,(M) is a trajectory achieving A where occ(a;,i) € M for 0 < i < k and
2. (ILA) = ¢ where I = (sq(M),...,s,(M)).

Proof. To prove this theorem, we first need to modify Theorem 3 by (i) allowing goal-dependent formulas
to be in the set S; (ii) adding a goal A and the rule (41) to the program IT of Theorem 3. The proof of
this modified theorem is very similar to the proof of Theorem 3. This result, together with Theorem 2,
proves the conclusion of this theorem. O

4.2 Procedural Knowledge

Procedural knowledge can be thought of as an under-specified sketch of the plans to be generated. The
language constructs of procedural knowledge that we use in this paper are inspired by GOLOG, an Algol-
like logic programming language for agent programming, control and execution; and based on a situation
calculus theory of actions [25]. GOLOG has been primarily used as a programming language for high-level
agent control in dynamical environments (see e.g. [8]). Although a planner can be written as a GOLOG
program (See Chapter 10 of [38]), our view of a GOLOG program in this paper is different. We view it as
an incompletely specified plan (or a form of procedural knowledge) that includes non-deterministic choice
points that are filled in by the planner. For example, the procedural knowledge (which is very similar to
a GOLOG program) ag;as; (ag|as]as); f represents plans which have a; followed by a2, followed by one
of a3, a4, or as such that f is true upon termination of the plan. A planner, when given this procedural
knowledge needs only to decide which one of ag, a4, or a; it should choose as its third action.

We now formally define the syntax of our procedural knowledge, which  keeping with the GOLOG
terminology  we refer to as a program.

Definition 4 (Program) For an action theory (D,?),

1. an action a is a program;

2. a simple formula ¢ (as defined in Subsection 3.3) is a program®?;
3. if p;’s are programs then p;;...;p, is a program, and py,...,p, are said to occur in it;
4. if p;’s are programs then py | ... | p, is a program, and py, ..., p, are said to occur in it;

5. if p; and p, are programs and ¢ is a simple formula then “if ¢ then p; else p,” is a program,
and pl and ps are said to occur in it;

10This is analogous to the GOLOG test action f? which tests the truth value of a fluent.
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6. if p is a program and ¢ is a simple formula then “while ¢ do p” is a program, and p is said to
occur in it; and

7.if Xy,..., X, are variables of sort si,...,s,, respectively, p(Xi,...,X,) is a program, and

f(Xyq,...,X,) is a simple formula, then pick(Xy,...,X,, f(X1,...,Xn),p(X1,...,X,)) is a pro-
gram, and p(Xi,...,X,) is said to occur in it.

O

In general programs that are used in the construction of other programs are said to occur in them.
Programs defined in Item 1 and 2 are called primitive; and others are referred to as non-primitive. For a
program p, by progs(p) we denote the set of programs that occur in p. More precisely, progs(p) = {p} if
p is a primitive program; and progs(p) = Upioccurs in pprogs(pi) if p is a non-primitive program. Notice
that the definition of programs allows “recursive” programs like “while ¢, do ¢” and “while ¢, do p”
where p and q refer to the first and second program, respectively. It is easy to see that there are situations
in which the execution of a program p or ¢ may never stop. In this paper, we are not interested in such
programs as our purpose is to use programs to construct finite plans. Towards that purpose, we define a
notion of a well-defined set of programs as follows.

A program p depends on a program ¢, denoted by ¢ < p, if ¢ € progs(p). Let <* be the transitive closure
of <. Given a set S of programs of an action theory (D, 7), the < relation will induce a partial order on
S. We say that S is well-defined if (i) for every non-primitive program p € S, progs(p) contains at least
one action and (ii) there exists no program p such that p <* p holds. It is worth noting that recursive
programs in conventional sense (i.e., with break conditions) are normally well-defined. For instance, if
p(n) is a program with an integer parameter n then the set of program occurring in p(n), defined by
“while n > 0do p(n—1)”, is a well-defined program. For this reason, we will limit ourselves to the
study of well-defined sets of programs. From now on, whenever we say a program p, we assume p to be
such that it guarantees progs(p) to be a well-defined set of programs. We illustrate the above definition
with the following example.

Example 5 In this example, we introduce the elevator domain from [25] which we use in our initial
experiments (Section 4.4). The fluents in this domain and their intuitive meaning are as follows:

e on(N) - the request service light of the floor N is on, indicating a service is requested at the floor
N,

e opened - the door of the elevator is open, and

e currentFloor(N) - the elevator is currently at the floor N.

The actions in this domain and their intuitive meaning are as follows:

e up(N) - move up to floor N,

e down(N) - move down to floor NV,

e turnof f(IN) - turn off the indicator light of the floor IV,
e open - open the elevator door, and

e close - close the elevator door.
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The domain description is as follows:

(

causes(up(N), currentFloor(N),{})
causes(down(N), currentFloor(N), {})

causes(turnof f(N), —on(N),{})

causes(open, opened, {})

causes(close, ~opened, {})

D B caused({currentFloor(M)}, ~currentFloor(N)) for all M # N
elevator = § executable(up(N), {currentFloor(M), —opened}) for all M < N
executable(down(N), {currentFloor(M),—opened}) for all M > N
executable(turnof f(N), {current Floor(N)})

executable(open, {})
executable(close, {})
executable(null, {})

We consider arbitrary initial states where opened is false, currentFloor(N) is true for a particular N
and a set of on(V) is true; and our goal is to have —on(N) for all N. In planning to achieve such a
goal, we can use the following set of procedural domain knowledge (or programs). Alternatively, in the
terminology of GOLOG, we can say that the following set of programs can be used to control the elevator,
S0 as to satisfy service requests indicated by the light being on at different floors.

go_floor(N)

current Floor(N)|up(N)|down(N).

serve(N) = go_floor(N);turnof f(N); open; close.
serve_a_floor = pick(N,on(N),serve(N)).
park = if currentFloor(0) then open else [down(0);open].
control = [while 3X.[on(X)] do serve_a_floor]; park

Observe that go_floor(N) is a choice of actions (Item 4, Definition 4); serve(N) is a sequence of programs
(Item 3); serve_a_floor is a choice of arguments (Item 7); park is an example of the if ... then
construct; and control is a while loop. O

The operational semantics of programs specifies when a trajectory sgagsi .. .a,_18,, denoted by a, is a
trace of a program p. Intuitively, « is a trace of a program p means that ag,...,a,—1 is a sequence of
actions (and « is a corresponding trajectory) that is consistent with the sketch provided by the procedural
constraint p starting from the initial state sg. Alternatively, it can be thought of as the program p unfolds
to the sequence of actions ay, ...,a, 1 in state so. We now formally define the notion of a trace.

Definition 5 (Trace) Let p be a program. We say that a trajectory soagsi . ..a,—15, is a trace of p if
one of the following conditions is satisfied:

e p=a and a is an action, n =1 and a¢ = a;
e p=¢, n=0and ¢ holds in sg;

e p = p1;po, and there exists an i such that sgag ... s; is a trace of p; and s;a; ... s, is a trace of ps;

p=p1]|...|pn, and spag . ..a,_15, is a trace of p; for some i € {1,...,n};

p =1if ¢ then p; else p,, and spag . ..a, 15, is a trace of p; if ¢ holds in sg or spag -..aG,_15,
is a trace of py if —¢ holds in sq;

p = while ¢ do p;, n =0 and —¢ holds in sg, or
¢ holds in sq and there exists some i > 0 such that sqgaq...s; is a trace of p; and s;a;...s, is a
trace of p; or
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e p= pick(X, f(X),q(X)), and there exists a constant Z of the sort of X such that f(&) holds in sg

and $pags1 - .. ay_18, is a trace of (%)

O

Similar to our earlier encoding of formulas, we will assign to each program a name (with the exception of
actions and formulas), provide rules for the construction of programs, and use the prefix notation. Again,
for a program p, let n, denote the name assigned to p. The set of rules representing a program p, which
is not an action or a formula, will be denoted by r(p) and is defined inductively as follows.

L. For p = pi;p2, r(p) = {proc(np, np,,np,)} Ur(p1) Ur(p2).
2. Forp=pi|...|pn, r(p) = Ui, r(pi) U {in(np,,np) | 1 <i < n}U{choiceAction(ny)}.

For p =if ¢ then p; else ps, r(p) = r(d) Ur(pr) Ur(p2) U{if(np,ng, np,, np,) }-

- w

For p = while ¢ do p1, r(p) = 7(¢) Ur(p1) U {while(n,,ng, np, )}

5. For p = pick(7, f(Z), p1(%)), r(p) = r(p1 (%)) Ur(f(Z)) U {choiceArgs(ny, ngz, np, 7))}

Example 6 In this example we present the encoding of the programs from Example 5.

We start with the set of rules encoding the program go_floor(N):

choice Action(go_-floor(N)) (
in(current Floor(N), go_floor(N)) (
in(up(N), go_floor(N)) <« floor(
in(down(N), go_floor(N)) (

The following rules encode the program serve(N):

proc(serve(N), go_floor(N), serve_tail_ 1(N)) <« floor(N).
proc(servetail 1(N),turnof f(N), open_close) < floor(N).
proc(open_close, open, close) <+

To encode the program serve_a_floor, we need the following rule:

choice Args(serve_a_floor,on(N), serve(N)) < floor(N).

The following rules encode the program park:

if (park, currentFloor(0), open, park-1) <«
proc(park_1, down(0),open) <+

Finally, the encoding of program control consists of the following rules:

proc(control, while_service_needed, park) <
while(while_service_needed, existOn, serve_a_floor)
exists(existOn)

in(existOn,on(N)) < floor(N).
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We now present the LPASS rules that realize the operational semantics of programs. Intuitively,
trans(p,ty,ts) is true in an answer set M iff s;, (M)ay, ...az, 15, (M) is a trace of the program p'!.

trans(A, T, T+ 1) <« action(A),occ(A,T). (42)
trans(F,T1,Tv) < formula(F),hf(F,T1). (43)
trans(P,Ti,T2) < proc(P,P1,Py),T1 < T < T, (44)

trans(Pi,Ti, T'), trans(Ps, T', Ty). (45)
trans(N,T1,T>) < choiceAction(N), (46)
in(Pi,N),trans(P1, T, T>).

trans(I,T1,T2) <« if(I,F, P, Py),hf(F,T\),trans(Py,T,T>). (47)

trans(I,T1,T2) <« if(I,F, P, P;),not hf(F,T\),trans(Ps, T1,T>). (48)

trans(W,T1,Ts) < while(W,F,P),hf(F,T1),T1 <T < T, (49)
trans(P, Ty, T"), trans(W,T', T).

trans(W,T,T) <« while(W,F,P),not hf(F,T). (50)

trans(S,Th,T>) <« choiceArgs(S,F, P),hf(F,Ti),trans(P,T:,T>). (51)

trans(mull, T, T) <« (52)

Here null denotes a dummy program that performs no action. This action is added to allow programs of

the form if ¢ then p to be considered (this will be represented as if ¢ then p else null). The rules
are used for determining whether a trajectory encoded by answer sets of the program II,, is a trace of
a program or not. As with temporal constraints, this is done inductively over the structure of programs.
The rules (42) and (43) are for programs consisting of an action and a simple formula respectively. The
other rules are for the remaining cases. For instance, the rule (49) states that the trajectory from T} to
T, is a trace of a while loop “while F do P”, named W and encoded by the atom while(W, F, P), if
the formula F holds at T; and there exists some T', T} < T’ < Ty such that the trajectory from Tj to
T' is a trace of P and the trajectory from 7" to T5 is a trace of W; and the rule (50) states that the
trajectory from 7' to T is a trace of W if the formula F' does not holds at T'. These two rules effectively
determine whether the trajectory from T to T» is a trace of while(W, F, P). The meanings of the other
rules are similar.

To specify that a plan of length n starting from an initial state must obey the sketch specified by a
program p, all we need to do is to have a rule < not trans(n,,0,n). We now formulate the correctness
of our above encoding of procedural knowledge given as programs, and relate the traces of program with
the answer sets of its LPASS encoding. Let TIZ be the program obtained from II,, by (i) adding the
rules (42)-(52), (ii) adding r(p), and (iii) replacing the goal constraint with < not trans(n,,0,n). The
following theorem is similar to Theorem 2.

Theorem 6 Let (D,?) be a consistent action theory and p be a program. Then,
(i) for every answer set M of I with occ(a;,i) € M for i € {0,...,n — 1}, so(M)ag...an 15,(M)
is a trace of p; and
(ii) if sgag...an_1s, is a trace of p then there exists an answer set M of IIZ such that sj = s;(M)
and occ(a;,i) € M for j € {0,...,n} and i € {0,...,n —1}.
Proof. See Appendix A.3 a

Now, to do planning using procedural constraints all we need to do is to add the goal constraint to 117,
which will filter out all answer sets where the goal is not satisfied in time point n, and at the same time
will use the sketch provided by the program p.

11 Recall that we define s;(M) = {holds(f,i) € M | f is a fluent literal}.
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4.3 HTN Knowledge

The programs in the previous section are good for representing procedural knowledge but prove cumber-
some for encoding partial ordering information. For example, to represent that any sequence containing
the n programs py, . .., pn, in which p; occurs before ps, is a valid plan for a goal A, one would need to list
all the possible sequences and then use the non-determinism construct. For n = 3, the program fragment
would be (p1;p2; ps|p1; ps; p2|ps; p1;p2). Alternatively, the use of the concurrent construct || from [12],
where pl|q represents the set consisting of two programs p;q and g¢;p, is not very helpful either. This
deficiency of pure procedural constructs of the type discussed in the previous section prompted us to look
at the constructs in HTN planning [39]. The partial ordering information allowed in HTN descriptions
serves the purpose. Thus all we need is to have the constraint that says p; must occur before p,.

The constructs in HTN by themselves are not expressive enough either as they do not have procedural
constructs such as procedures, conditionals, or loops, and expressing a while loop using pure HTN con-
structs is not trivial. Thus we decided to combine the HTN and procedural constructs and go further
than the initial attempt in [5] where complex programs are not allowed to occur within HTN programs.

We now define a more general notion of program that allows both procedural and HTN constructs. For
that we need the following notions. Let S = {p1,...,pr} be a set of programs. Assume that n;, 1 <i <k,
is the name assigned to the program p;.

e An ordering constraint over S has the form n; < n; where n; # n;. Intuitively, an ordering
constraint m; < m; requires that the program p; has to be executed before the program p;.
e A truth constraint is of the form (n;, ¢), (¢,n;), or (n;, ¢, n:), where ¢ is a formula.

A truth constraint of the form (n;, @) (resp. (¢,n;)) requires that immediately after (resp. imme-
diately before) the execution of p;, ¢ must hold.

Oun the other hand, a constraint of the form (n;, ¢, n;) indicates that ¢ must hold immediately after
the time p; is executed until p; begins its execution. For this reason, we will assume that whenever
(ni, ¢, nt) belongs to C, so does n; < n;.

Definition 6 (General programs) For an action theory (D,?),

e an action a is a general program;

e a simple formula ¢ (as defined in Subsection 3.3) is a general program;

e if p;’s are general programs then py;...;p, is a general program, and py,...,p, are said to occur
in it;

e if p;’s are general programs then p; | ... | p, is a general program, and p1,. .., p, are said to occur
in it;

e if p; and ps are general programs and ¢ is a simple formula then “if ¢ then p; else p,” is a
general program, and p; and ps are said to occur in it;

e if p is a general program and ¢ is a simple formula then “while ¢ do p” is a general program,
and p is said to occur in it;

e if Xy,...,X,, are variables of sort si,...,s,, respectively, p(Xi,...,X,) is a general program,
and f(Xy,...,X,) is a simple formula, then pick(Xy,..., X,, f(X1,...,X5),p(X1,...,X,)) is a
general program, and p(Xy,...,X,) is said to occur in it; and

e if S is a set of general programs and C is a set of ordering or truth constraints then the pair (S, C)
is a general program, and the programs in S are said to occur in (S, C).
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O

The notion of well-definedness of a set of general programs is defined similar to the notion of well-defined
sets of programs and as before we assume that we only consider general programs p such that progs(p)
is a well-defined set of general programs.

As in the case of programs, the operational semantics of general programs is defined using the notion of
trace. We now define the notion of a trace of general programs.

Definition 7 (Trace of general programs) Let p be a general program. We say that a trajectory
80ag - - - Ap_1Sy, 1s a trace of p if one of the following conditions is satisfied:

1. p=a and a is an action, n = 1 and ag = a;

2. p=¢,n =0 and ¢ holds in sq;

3. p = p1;p2, and there exists an i such that sgag...s; is a trace of p; and s;a; ... s, is a trace of po;
4. p=p1|...| pn, and spaq ...a,_15, is a trace of p; for some i € {1,...,n};

5. p=if ¢ then p; else py, and spaq...a, 15, is a trace of py if ¢ holds in sg or spag - .- an_15,
is a trace of ps if —¢ holds in sq;

6. p=while ¢ do p;, n =0 and —¢ holds in sg, or
¢ holds in sy and there exists some i > 0 such that sgag ...s; is a trace of p; and s;a;...s, is a
trace of p;

7. p= pick()_(‘7 f()_(‘)7 q()?)) and there exists a constant # of the sort of X such that f(Z) holds in sqg
and spag . .. an, 18y, is a trace of ¢(¥); or

8. p= (S, C) and there exists jo=0 < j; < ... < jr=n and a permutation (i, ...,i) of (1,..., k) such
that the sequence of trajectories ay = spag...Sj,, @2 = 55,Gj, ... 85y, -y Ok = Sjp_,Gju_4 ---Sp
satisfies the following conditions:

(a) foreach I, 1 <1 <k,  is a trace of p;,,

(b) if ng <ny € C then it < il,

(c) if (¢,m) € C (or (ny,¢) € C) then ¢ holds in the state s;,_, (or s;,), and
(d) if (ng, ¢, my) € C then ¢ holds in s;,,...,5;5,_,-

The last item of the above definition can be visualized by the following illustration:

50A0S81 - - - Qj1—18j; Sj1Ajq - - - Qjo—185g - - - Sjy;_1Qjy_q+1 - - - Ajp—185; - - - Sjp_ 1 Qjp_q+1 - - - Ajp 155y,
A - N g N g

~~ ~~ ~

aq @2 o Xk
T T T T
4 1
trace of Piy trace of Pigy trace of Py trace of Pi

Next we show how to represent general programs. Similar to programs in the previous section, we will
assign names to general programs and their elements. A general program p = (S, C) is encoded by the
set of atoms and rules

r(p) = {htn(ny,ns,nc)} Ur(S) Ur(C)

where r(S) and r(C) is the set of atoms and rules encoding S and C and is described below. Recall that
S is a set of programs and C' is a set of constrains. Both S and C are assigned unique names, ng and

25



nc. The atoms set(ng) and set(nc¢) are added to r(S) and r(C) respectively. Each element of S and
C is encoded by a set of rules which are added to r(S) and r(C), respectively. Finally, the predicate
in(.,.) is used to specify what belongs to S and C, respectively. Elements of C are represented by the
predicates order(x, +,+), postcondition(x, +, —), precondition(x, —, +), and maintain(x, 4+, —, +) where
the place holders ‘¥, ‘4’ and ‘-’ denotes the name of a constraint, a general program, and a formula,
respectively. For example, if nqy < ny belongs to C' then the set of atoms encoding C' will contain the atom
in(order(ng,n1,n2),nc) where ng and ne are the names assigned to the ordering constraint nq < ny and
C, respectively. Similarly, if C' contains (n1,,n2) then in(maintain(ng, ny,n1,n2),nc) (again, ng and
n¢ are the name assigned to the truth constraint n; < ns and C, respectively) will belong to the set of
atoms encoding C.

In the following example, we illustrate the encoding of a general program about the blocks world domain.

Example 7 Consider a general program, (S,C), to build a tower from blocks a, b, ¢ that achieves the

goal that a is on top of b and b is on top of ¢, i.e., the goal is to make on(a,b) A on(b,c) hold. We have
S = {move(b, c), move(a,b)}, and

move(b, c) < move(a,b),
C =< (clear(b),move(b,c)), (clear(c), move(b, c)),
(clear(b), move(a, b)), (clear(a), move(a, b))
With o = move(b,c¢) < move(a,b), fi = (clear(b),move(b,c)), fo = (clear(b), move(a,b)), f3 =
(clear(c), move(b, c)), and f, = (clear(a), move(a,b)), the encoding of p = (S, C) is as follows:

r(p) = {htn(p,ns,nc)}Ur(S)Ur(C)
r(S) = {set(ns),in(move(a,b),ns),in(move(b,c),ns)}
r(C) = {set(nc),in(o,nc),in(f1,nc),in(f2,nc),in(f3, nc),in(fa,nc)}

U{order (o, move(b, ¢), move(a, b)), precondition( f1, clear(b), move(a, b))}
U{precondition(f., clear(b), move(a, b))}

U{precondition(fs, clear(c), move(b, c)), precondition( fa, clear(a), move(a, b))}

O

We now present the LPASS rules that realize the operational semantics of general programs. For this
purpose we need the rules (42)-(52) that was presented earlier. These rules are for general programs
whose top level structure is not an HTN. For general programs whose top level feature is an HTN we
add the following rule:

trans(N,T1,T2) <+ hin(N,S,C), not nok(N,Ti,T>). (53)

Intuitively, the above rule states that the general program N can be unfolded between time points T}
and Ty (or alternatively: the trajectory from T and T% is a trace of N) if N is an HTN construct (S, C),
and it is not the case that the trajectory from 77 and 75 is not a trace of N. The last phrase is encoded
by nok(N,T;,T>) and is true when the trajectory from T) and T» violates one of the many constraints
dictated by (S, C). The main task that now remains is to present LPASS rules that define nok(N, Ty, Ts).
To do that, as suggested by the definition of a trace of a program (S, C), we will need to enumerate the
permutations (i1,...,i) of (1,...,k) and check whether particular permutations satisfy the conditions
in C. We now introduce some necessary auxiliary predicates and their intuitive meaning.

e begin(N,I,Ts,Ty,Ty) — This means that I, a general program belonging to N, starts its execution
at time T3, and N starts and ends its execution at T} and T, respectively.

e end(N,I,Ty,Ty,T>) This means that I, a general program belonging to N, ends its execution at
time Ty, and N starts and ends its execution at 77 and T, respectively.

26



o between (T3, Ty, T>) — This is an auxiliary predicate indicating that the inequalities T} < T3 < Ty
hold.

e not_used(N,T,Ty,T>) This means that there exists no sub-program I of N whose execution
covers the time moment T',i.e., T < B or T' > E where B and E are the start and finish time of I,
respectively.

e overlap(N,T,Ty,T>) This indicates that there exists at least two general programs I; and I in
N whose intervals contain T, i.e., B < T < E; and By < T < E, where B; and E; (i = 1,2) is the
start- and finish-time of I;, respectively.

We will now give the rules that define the above predicates. First, to specify that each general program
I belonging to the general program (S, C), i.e., I € S, must start and end its execution one and at most
one time during the time (S, C) is executed, we use the following rules:

1{begin(N,I,Ts,T1,T>) : between(T3,T1,T5)}1  « htn(N,S,C),in(1,S),trans(N,T1,T»). (54)
H{end(N,1,Ts,Th,T>) : between(Ts,T1,T2)}1  « htn(N, S,C),in(1,S),trans(N,T1,Ts). (55)

The first (resp. second) rule says that I —a program belonging to S — must start (resp. end) its execution
one and at most one time between T7 and T». Here, we use cardinality constraints with variables [36]
in expressing these constraints. Such constraints with variables are short hand for a set of instantiated
rules of the form (7). For example, the first rule is a short hand for the set of rules corresponding to the
following cardinality constraint:

1{begin(N,I,T,,T1,Ts),...,begin(N,I,Ts,T1,T5)}1 + hin(N,S,C),in(I,S), trans(N,T,,T»).

We now give the rules defining not_used(., ., .,.) and overlap(.,.,.,.).
used(N,T,Ti,T>) <« hin(N,S,C),in(I,S),begin(N,I, B, T\, T>),end(N,I,E, T\, T>), (56)
B<T<E.

not_used(N, T, Ty, T>)
overlap(N, T, T, T»)

not used(N, T, T, T>). (57)
htn(N, S,C),in(I1, S),begin(N, I, B1,T1,T>),end(N, I, E1,T1,T2),  (58)
in(Iz2,S),begin(N, I, By, T1,Ts),end(N, I, E2, T1,T5),

B, <T<E|,Bs <T < Ep».

—
—

The rule (56) states that if a general program I in N starts its execution at B and ends its execution at
E then its execution spans over the interval [B, E], i.e., every time moment between B and E is used by
some general program in N. The rule (57) states that if a time moment between T} and T3 is not used
by some general program in N then it is not_used. The last rule in this group specifies the situation when

two general programs belonging to N overlap.

We are now ready to define nok(.,.,.). There are several conditions whose violation makes nok true. The
first condition is that the time point when a program starts must occur before its finish time. Next each
general program belonging to the set S of (S,C) must have a single start and finish time. The violations
of these two conditions are encoded by the following rules which are added to II.

T

nok(N, Ty, T5) htn(N, S,C),in(1,S),T5 > Ts,begin(N,1,Ts,T1,T>), end(N,I,Ts, T1,T>). (59)

nok(N, T\, T>) <+ htn(N,S,C),in(1,S),Ts < Ta,begin(N,I1,T5, T, T>),end(N,I1,Ts,Ti,T>), (60)
not trans(I,Ts,Ts).

nok(N, Ty, T>) htn(N, S,C), Ty <T < Ta,not_used(N, T, T, T>). (61)

nok(N, T\, T>) <+ htn(N,S,C), Th <T < Ts,overlap(N,T,Ti,T>). (62)

T
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Together the rules (54)-(62) define when the permutation determined by the set of atoms of the form
begin(N,I,B,T,,T,) and end(N, I, E,T,T,) violate the initial part of condition 8 of Definition 7. the
rules (54)-(55) require each general program in N to have a unique start and finish time and the rule
(59) encodes the violation when the finish time is earlier than the start time. The rule (60) encodes the
violation when the trace of a general program in /N does not correspond to its start and finish time. The
rule (61) encodes the violation when some time point on the trajectory of N is not covered by the trace of
a general program in N; and the rule (62) encodes the violation when the trace of two general programs
in N overlap.

The next group of rules encode the violation of the conditions 8(b)  8(d) of Definition 7.

nok(N, T\, T>) <+ htn(N,S,C),in(I1,S),begin(N, I, B1,T1,T>), (63)
in(I2,S),begin(N, I, By, T1,T5),
(0, C),order(0, I, 15), By > Bs.

nok(N,Th,T>) <« hin(N,S,C),in(I1,S),end(N, I, E1,T1,T>), (64)
in(Iz, S), begin(N, I, B, T, Ty), E1 < Ts < Bs,
(0, C), maintain(O, F, I, I),not hf(F,T3).

nok(N, T\, T>») <+ htn(N,S,C),in(I,S),begin(N,I,B,Ti,T>), (65)
in(0, C), precondition(O, F, I),not hf(F, B).
nok(N, T\, T>) <+ htn(N,S,C),in(1,S),end(N,I,E, T, T>), (66)

in(0, C), postcondition(O, F,I),not hf(F, E).

The rule (63) encodes the violation when the constraint C' of the general program N = (S, C') contains
I < I, but I, starts earlier than I,. The rule (64) encodes the violation when C contains (I, F, I) but
the formula F' does not hold in some point between the end of I; and start of I,. The rules (65) and (66)
encode the violation when C contains the constraint (F,I) or (I, F)) and F' does not hold immediately
before or after respectively, the execution of I.

We now formulate the correctness of our above encoding of procedural and HTN knowledge given as
general programs, and relate the traces of a general program with the answer sets of its LPASS encoding.
For an action theory (D,?) and a general program p, let TI#TN be the LPASS program obtained from
IT,, by (i) adding the rules (42)-(52) and (53)-(66), (ii) adding r(p), and (iii) replacing the goal constraint

with < not trans(np,0,n). The following theorem extends Theorem 6.
Theorem 7 Let (D,?) be a consistent action theory and p be a general program. Then,

(i) for every answer set M of TTHTN with occ(a;,i) € M fori € {0,...,n—1}, so(M)ag - ..an_15,(M)
is a trace of p; and
(ii) if sgap...an_15, is a trace of p then there exists an answer set M of ITZTN guch that sj = s;(M)
and occ(a;,i) € M for j € {0,...,n} and i € {0,...,n — 1} and trans(n,,0,n) € M.
Proof. See Appendix A 4 a

As before, to do planning using procedural and HTN constraints all we need to do is to add the goal
constraint to ITZTN which will filter out all answer sets where the goal is not satisfied in time point n,
and at the same time will use the sketch provided by the general program p.

4.4 Demonstration Experiments

We tested our implementation with some domains from the general planning literature and from the
AIPS planning competition [2]. We chose problems for which procedural control knowledge appeared to
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be easier to exploit than other types of control knowledge. Our motivation was: (i) it has already been
established that well-chosen temporal and hierarchical constraints will improve a planner’s efficiency;
(ii) we have previously experimented with the use of temporal knowledge in the ASP framework [42];
and (iii) we are not aware of any empirical results indicating the utility of procedural knowledge in
planning, especially in ASP. (Note that [38] concentrates on using GOLOG to do planning in domains
with incomplete information, not on exploiting procedural knowledge in planning.)

We report here the result obtained from our experiment with the elevator example from [25] (elpl-elp3)
and the Miconic-10 elevator domain (s1-0,. . .,s5-0s2), proposed by Schindler Lifts Ltd. for the AIPS 2000
competition [2]. Note that some of the planners, that competed in AIPS 2000, were unable to solve this
problem. The domain description for this example is earlier described in Example 5 and the smodels
code can be downloaded from http://www.cs.nmsu.edu/ tson/asp_planner.

The initial state for this planning problem encodes a set of floors where the light is on and the current
position of the elevator. For instance, 7 = {on(1),on(3),on(7), currentFloor(4)}. The goal formula is
represented by the conjunction Atis a floor—on(f). Sometimes, the final position of the elevator is added
to the goal. The planning problem is to find a sequence of actions that will serve all the floors where
the light is on and thus make the on predicate false for all floors, and if required take the elevator to its
destination floor.

Since there are a lot of plans that can achieve the desired goal, we can use procedural constraints to guide
us to preferable plans. In particular, we can use the procedural knowledge encoded by the following set
of simple GOLOG programs from [25], which we earlier discussed in Example 5.

go_floor(N) = currentFloor(N)|up(N)|down(N).
serve(N) go_floor(N);turnof f(N); open; close.
serve_a_floor = pick(N,on(N),serve(N)).
if currentFloor(0) then open else [down(0); open].

[while dN.[on(N)] do serve_a_floor(N)]; park

park

control

We ran experiments on an HP OmniBook 6000 laptop with 130,544 Kb Ram and an Intel Pentium III 600
MHz processor, using lparse version 0.99.52 (Windows, build Apr 7, 2000) and smodels version 2.25.
for planning in this example with and without the procedural control knowledge. The timings obtained
are given in the following table.

Problem | Plan | # Person | # Floors | With Control | Without Control
Length Knowledge Knowledge
elpl 10 2 6 0.600 0.560
elp2 14 3 6 1.411 6.729
elp3 18 4 6 3.224 120.693
s1-0 4 1 2 0.100 0.020
s2-0 8 2 4 1.802 0.921
$3-0 12 3 6 22.682 34.519
s4-0 15 4 8 164.055 314.101
$5-0s1 19 5 4 57.952 > 2 hours
$5-0s2 19 5 5 105.040 > 2 hours

As can be seen, the encoding with control knowledge yields substantially better performance in situations
where the plan length is big. For large instances (the last two rows), smodels can find a plan using
control knowledge in a short time and cannot find a plan in 2 hours without control knowledge. In some
instances with small plan lengths, as indicated through boldface in column 6, the speed up due to the
use of procedural knowledge does not make up for the overhead needed in grounding the knowledge. The

output of smodels for each run is given in the file result at the above mentioned URL. For larger instances
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of the elevator domain [2] (5 persons or more and 10 floors or more), our implementation terminated
prematurely with either a stack overflow error or a segmentation fault error.

5 Conclusion

In this paper we considered three different kinds of domain dependent control knowledge (temporal,
procedural and HTN-based) that are useful in planning. Our approach is declarative and relies on the
language of logic programming with answer set semantics (LPASS). We showed that the addition of these
three kinds of control knowledge only involves adding a few more rules to a planner written in LPASS
that can plan without any control knowledge. We formally proved the correctness of our planner, both
in the absence and presence of the control knowledge. Finally, we did some initial experimentation that
shows the reduction in planning time when procedural domain knowledge is used and the plan length is
big.

In the past temporal domain knowledge is used in planning in [1, 14]. In both cases, the planners are
written in a procedural language, and there is no correctness proof of the planners. On the other hand the
performance of these planners are much better!'? than our implementation using LPASS. In comparison,
our focus in this paper is on the ‘knowledge representation’ aspects of planning with domain dependent
control knowledge and demonstration of relative performance gains when such control knowledge is used.
Thus we present correctness proof of our planners and stress the ease of adding the control knowledge to
planner. In this regard, an interesting observation is that it is straightforward to add control knowledge
from multiple sources or angles. Thus say two different general programs can be added to the planner,
and any resulting plan must then satisfy the two sketches dictated by the two general programs.

As mentioned earlier our use of HT'N-based constraints in planning is very different from HTN-planning
and the recent HTN-based planner [33]. Unlike our approach in this paper, these planners can not be
separated to two parts: one doing planning that can plan even in the absence of the knowledge encoded as
HTN and the other encoding the knowledge as an HTN. In other words, these planners are not extended
classical planners that allow the use of domain knowledge in the form of HTN on top of a classical
planner. The timings of the planner [33] on AIPS 2000 planning domains are very good though. To
convince ourselves of the usefulness of procedural constraints we used their methodology with respect
to procedural domain knowledge and wrote general programs for planning with blocks world and the
package delivery domain and as in [33] we wrote planners in a procedural language (the language C to
be specific) for these domains and also observed similar performance. We plan to report this result in
a future work. With our focus on the knowledge representation aspects we do not further discuss these
experiments here.

Although we explored the use of the different kinds of domain knowledge separately, the declarativeness
of our approach allows us to use the different kinds of domain knowledge for the same planning problem.
For example, for a particular planning problem we may have both temporal domain knowledge and a
mixture of procedural and hierarchical domain knowledge given as a general program. In that case
planning will involve finding an action sequence that follows the sketch dictated by the general program
and the same time obeys the temporal domain knowledge. This distinguishes our work from other related
work [22, 24, 5, 32] where the domain knowledge allowed were much more restricted.

A byproduct of the way we deal with procedural knowledge is that, in a propositional environment, our
approach of planning (ASP) with procedural knowledge can be viewed as an off-line interpreter for a
GOLOG program. Because of the declarative nature of LPASS the correctness of this interpreter is easier
to prove than the earlier interpreters which were mostly written in Prolog.

12This provides a challenge to the community developing LPASS systems to develop LPASS systems that can match or
come close to (if not surpass) the performance of procedural systems.
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Appendix A - Proofs

We apply the Splitting Theorem and Splitting Sequence Theorem [27] several times in our proof. For ease
of reading, the basic notations and the splitting theorem are included in Appendix B. Since we assume
a propositional language any rule in this paper can be considered as a collection of its ground instances.
Therefore, throughout the proof, we often say a rule r whenever we refer to a ground rule r.

Appendix A.1 - Proofs of Theorem 1 and 3

It is easy to see that Theorem 1 is a special case of Theorem 3 because rules (35)-(40) are only used for
formulas containing temporal operators. Thus, it suffices to prove Theorem 3.

Theorem 3 Let S be a set of goal-independent temporal formulas, I = (sg,s1 ...8,) be a sequence of
states, and Iy = (s¢,...s,). Let
II = R1 UR2 U’I“(S) U’I“(I)

where
e Ry consists of the set of rules (14), (15), and (28)-(33) in which the domain of T is {0,...,n}, the
set of rules (16)-(17)), and the set of rules defining the fluents of the domain,
e R, is the set of rules (35)-(40) in which the domain of T is {0,...,n},

o (1) =UP o{holds(f,t) | I is a fluent literal and I € s;}, and
e 7(5) = Upes 7(9)-

Then,

(i) The program II has a unique answer set, X.

(ii) For every temporal formula ¢ in the set S, ¢ is true in I, ie., I; = ¢, if and only if hf(ng,t)
belongs to X.

Proof. The proof is based on induction over the structural complexity of ¢. To capture this complexity,
we associate to each formula, ¢, a non-negative number, o(¢), as follows.

e o(¢) =0 if ¢ is a literal.

e o(¢) = maxF | o(¢;) + 1 if ¢ has the form op(¢1,¢o,...¢x), where op is a logical connective
among —, A and V (negation, conj, and disj), or a temporal connective until, next, always or
eventually.

o 0(@) =a(p)+1if ¢ =VX1,... Xp. or ¢ =3X1,... Xp.01.
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First, we prove (i). We know that if a program is locally stratified then it has a unique answer set

[4].

We will show that II (more precisely, the set of ground rules of II) is indeed locally stratified.

To accomplish that we need to find a mapping A from literals of II to N that has the property: if
Ao « Ay, As, ... Ay not By,not Bs,...not By, is a rule in II, then A(Aq) > A(4;) for all 1 <i < n and
)\(Ao) > )\(Bj) for all 1 S ] S m.

We define A as follow.

A(nhf_conj(p,t)) = 5 * () + 1.
A(nhf_forall(¢,t)) = 5% o(¢) + 1.
A(nhf-always(é,t)) = 5 o(¢) + 1.
ARf(6,1)) =5 % 0(¢) + 2.
A(nhf_during(,t,t')) = 5  o(¢) + 3.
A(hf-during($,t,t")) = 5 % o(¢) + 4.
(

A(l) = 0 for every other literal of II.

Examining all the rules in II, we can verify that A has the necessary property.

We now prove (ii). Let X be the answer set of II. We prove by induction over o(¢).

Base: Let ¢ be a formula with o(¢) = 0. By the definition of o, we know that ¢ is a literal. Then ¢ is
true in s; iff ¢ is in s4, that is, iff holds(¢, t) belongs to X, Wthh because of rule (30), proves the base
case since for a literal, ny is ¢ itself.

Step: Assume that for all 0 < j < k and formula ¢ such that o(¢) = j, the formula ¢ is true in s; iff
hf(ng,t) isin X.

Let ¢ be such a formula that o(¢) = k + 1.

Case 1: ¢ = =¢1. We have o(¢1) = o(¢) — 1 = k. By induction, s; = ¢1 iff hf(ng,.t) € X.
Assume hf(ng,t) ¢ X. Because of rule (29) and negation(ng,ng,) being in X, we also have
hf(ng,,t) € X. It follows that s; = ¢1, so s %= ¢. Now consider the case that hf(ng,t) € X.
Formula ¢ is a negation which is supported only by the rule (29). The body of the rule is satisfied
by X, so hf(ng,.t) ¢ X. Hence, s; = ¢1, and therefore, s; = ¢

Case 2: ¢ = g1 Aga A...¢;. Forall 1 < j <i, we have 0(¢;) < k. By induction,s; = ¢; iff
hf(ng,,t) € X. Assume that s; |= ¢, then s, = ¢, for all 1 < j < i. By induction, for each j,
hf(ng,,t) € X. Thus the body of a ground rule of the form (14) with F' = ng, is not satisfiable in
X. It follows that nhf_conj(ng,t) ¢ X. Because of rule (15), we have hf(ng,t) € X. Now, consider
the case hf(ng,t) € X. The only rule supporting hf(ng,t) is (15), so we have nhf_conj(ne,t) ¢ X.
If there exists j such that hf(ng,,t) € X, then the body of rule(14) is satisfied by F' = ng, Fi = ng,,
T = t, which causes nhf_conj(ng,t) € X. Hence for all 1 < j <i, hf(ng,,t) € X, so s; = ¢;. This
implies s; = ¢

Case 3: ¢ = g1 VgaV...¢;. Wehaveo(¢;) < kforalll < j < i, so the inductive assumption is valid
for all the ¢;. Let s; = ¢. Then thereis a ¢; such that s; = ¢;. By induction, hf(ng,,t) € X. Wi‘rh
F =ng, Fi = ng,;, and T =t in rule (28), we have hf(ng,t) € X. Now assume hf(ng,t) €
Because the atom is supported only by rule (28), there exists j such that hf(ng,,t) € X. By
induction, we have s; |= ¢;, s0 s¢ = ¢
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e Case 4: ¢ is a quantified formula. The argument for forall- and exists-quantified formula is
similar to that of a conjunction and disjunction, respectively. We omit the details here for brevity.

Before continue with the proof, observe that similar to the case of conjunctive formula, we can
easily show that hf_during(ng,ti,t2) € X iff hf(ng,t) € X (that is s; = ¢) for all t; <t < ty.

e Case 5: ¢ = until(¢y,ds). We have that o(¢1) < k and o(¢2) < k. Assume that I; = ¢. By
Definition 2, there exists ¢ < to < n such that I, = ¢2 and for all t < t; < t2, Iy, &= ¢1. By
inductive hypothesis, hf(ng,,t2) € X and for all ¢, t < t1 < t2, hf(ng,,t1) € X. It follows that
hf_during(ng,,t,t2) € X. Because of rule (35), we have hf(ng,t) € X. On the other hand, if
hf(ng,t) € X, because the only rule supporting hf(ng,t) is (35), there exists ¢ < to < n such
that hf_during(ng,,t,t2) € X and hf(ng,,t2). It follows from hf_during(ng,,t,t2) € X that
hf(ng,,t1) € X for all t < t; < t». By inductive hypothesis, we have I;, |= ¢; for all t < t; < t»

and Iy, = ¢o. Thus I; = until(¢, ¢2), ie., I} |= ¢.

e Case 6: ¢ = next(¢1). Note that o(¢1) < k. Rule (38) is the only rule supporting hf(ne,t) where
¢ =next(¢1). So hf(ng,t) € X iff hf(ng,,t+1) € X iff ;11 = ¢1 iff I; = next(¢q) iff I; = ¢.

e Case 7: ¢ = always(¢1). We note that o(¢1) < k. Observe that hf(ng,t) is supported only by
rule (36). So hf(ng,t) € X iff hf _during(ng,,t,n+1) € X. The latter happens iff hf(ng,,t1) € X
for all t < t; < n, that is, iff I;, = ¢ for all ¢ < ¢; < n which is equivalent to I; = always(¢,),
i.e., iff It |: ¢

e Case 8: ¢ = eventually(¢,). We know that hf(ng,t) € X is supported only by rule (37).
So hf(ng,t) € X iff there exists t < t; < n such that hf(ng,,t1) € X. Because o(¢1) < k,
by induction, hf(ng,t) € X iff there exists t < t; < n such that I;, |= ¢1, that is, iff I; |=
eventually(¢,), i.e., iff I; |= ¢.

The above cases prove the inductive step, and hence, the theorem.

Appendix A.2 - Proof of Theorem 2

We now turn our attention to Theorem 2. For a planning problem (D,?, A}, let

7 =1I,(D,?,A)\ (r(A) U {« not holds(ng,n)}

i.e., 7 is obtained from IL,(D,?,A) by removing the rules encoding A and the constraint
+ not holds(na,n). The next lemma will be useful in our proofs.
Lemma 1 For a set of causal laws K and a set of fluent literals Y, for every integer k, the program

holds(L,k) < holds(Li,k),...,holds(Lm,k) (if caused({L1,...,Lm},L) € K)
holds(L, k) (if LeY)

has a unique answer set {holds(l,k) |1 € Cig(Y)}.

Proof. Let us denote the given program by P. Since P is a positive program, its unique answer set X
is the least fix-point of the operator Tp(Z) = {l | there exists a rule I < Iy, ... 1, such that I; € Z}. For
a set S of literals in P, let us denote F(S) = {f | holds(f, k) € S}. To prove the lemma is equivalent to

prove FI(X) = Clg(Y).

We first prove that F(X) C Clg(Y). We will show, by induction over i, that F(T5(0)) C Clg(Y) for
every i. The base case is trivial since F(T9%(0)) =Y UY; C Clg(Y) where Y; = {l | causes({},1) € K }.
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Assume that we have proved that F(Th(#)) € Clx(Y). We need to show that F(T5(0)) C Clk (V).
By definition of P, we have that f € F(T5" (0)) if there exists a causal law caused({l,...,l,,}, f) in
K such that Il; € F(T5(0)). This also implies that f € Clg(Y) because of the closeness of Clg(Y) with
respect to K. The inductive step is proved. This means that F(X) C Clg(Y).

We now prove that Clg (Y) C F(X). Assume that f € Clx(Y). By definition of Clx(Y) we conclude
that there exists a sequence of causal laws caused({f{,..., fr },l1), ..., caused({f]", ..., " },lmn),
where I,, = f and for every ¢, 1 <t <m, {f{,.... fl } CYUUycic {fi,--.. fi,}. It is easy to see that

this implies that f € F(T7(0)). This means that Clg(Y) C F(X). This, together with F(X) C Clg(Y),
proves the lemma. O

We now prove some useful properties of 7. We will prove that if (D,?) is consistent then 7 is consistent
(i.e., 7 has an answer set) and that = correctly implements the transition function ® of D. Notice that
here we say that « is consistent iff 7 has an answer set X and for every fluent f and ¢, 0 <t <n, X does
not contain both holds(f,t) and holds(neg(f),t)). First, we simplify & by using the splitting theorem
[27] (Theorem 8, Appendix B). Let V' be the set of literals in the language of m whose parameter list does
not contain the time parameter. That is, V' consists of

e atoms used to encode D: causes(A, L, S), caused(S, L), in(F, Fy), formula(F), conj(F), disj(F')
literal(L), fluent(F), action(A), negation(F, Fy), forall(F'), and exists(F'), and

3

e atoms used to encode ?: initially(L).

It is easy to see that V is a splitting set of w. Furthermore, it is easy to see that the bottom program
by (m) consists of

e the atoms and rules encoding all the conjunctions occurring in D,

e all the ground instances of rules (16)-(19) and (22)-(27)
Obviously, by () is a positive program, and hence, it has a unique answer set. Let us denote the unique

answer set of by () by Ag. The partial evaluation of 7 with respect to (V, Ag), m = ey (7 \ by (7), 4op),
is the collection of the following rules'?:

holds(L,T+1) <+ occ(A,T),hf(ng,T). (if causes(A, L, ¢) € D) (67)
holds(L,T) <+ hf(ng,T). (if caused(¢, L) € D) (68)
possible(A,T) <« hf(ng,T). (if executable(a, ¢) € D) (69)
holds(L,0) <+ (if initially (L) € T') (70)
occ(A,T) <« possible(A,T),not nocc(A,T). (if A is an action) (71)
nocc(A,T) <« occ(B,T). (for every pair of actions A # B) (72)
holds(F,T+1) < holds(F,T),not holds(neg(F),T+1).  (for every fluent F') (73)
holds(neg(F),T+1) <« holds(neg(F),T),not holds(F,T+1). (for every fluent F) (74)
« holds(F,T), holds(neg(F),T). (for every fluent F') (75)

hf(F,T) <+ hf(F,T). (if disj(F) € Aq, in(F1,F) € Ao) (76)
nhf_conj(F,T) <« mnothf(Fi,T). (if conj(F) € Ao, in(Fi,F) € Ao) (77)
hf(F,T) <« mnotnhf_conj(F,T). (if conj(F) € Ao) (78)
hf(F,T) <« mnothf(F,T). (if negation(F, F1) € Ag) (79)
hf(F,T) <« (if F is a literal and holds(F,T) € Ay) (80)
hf(F,T) <« hf(F1,T). (if exists(F) € Ao, in(F1, F) € Ao) (81)
nhf_forall(F,T) <+ mnothf(F:,T). (if forall(F) € Ao, in(F1,F) € Ay) (82)
hf(F,T) <« mnotnhf_forall(F,T). (if forall(F) € Ao) (83)

13 Again, a rule with variables stands for a collection of its ground instances. Further, ¢ stands for a conjunction of literals
occurring in D.
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Let w2 be the program consisting of the following rules:

holds(L,T+1) <+ occ(A,T),holds(L1,T),...,holds(Ly,T). (84)

(if causes(A, L, {L1,...,L}) € D)
holds(L,T) <« holds(L1,T),...,holds(L,T). (if caused({L1,...,Lm},L) € D) (85)
possible(A,T) < holds(L1,T),...,holds(L:, T). (if executable(a, {L1,...,L:}) € D) (86)
holds(L,0) + (if initially (L) € T) (87)
occ(A,T) < possible(A,T),not nocc(A,T). (if A is an action) (88)
nocc(A,T) <« occe(B,T). (for every pair of actions A # B) (89)
holds(F,T+1) < holds(F,T),not holds(neg(F),T+1). (for every fluent F) (90)
holds(neg(F),T+1) <« holds(neg(F),T), not holds(F,T+1).  (for every fluent F') (91)
< holds(F,T), holds(neg(F),T). (for every fluent F')'* (92)

Because of Theorem 3, it is easy to see that the following lemma holds.

Lemma 2 For answer set X of m1, Y = X Nlit(m) is an answer set of ma.

For every answer set Y of my, X =Y U{hf(ng,t) | formula(ng) € Ao, s:(Y) = ¢} is an answer set of
71 where s;(Y) = {l| 1 is a fluent literal and holds(l,t) € Y'}. O

It follows from the splitting theorem and from Lemma 2 that to prove the consistency and correctness
of 7 it is enough to prove the consistency of w3, the program consisting of rules (84)-(91) and that 7
correctly implements the transition function ® of D. We prove this in the next lemmas.

Lemma 3 Let X be an answer set of ma. Then, for every t, 0 <t <mn,

1. s¢(X) is a state of D,
2. if X contains occ(a,t) then a is executable in s;(X) and s;11(X) € ®(a, s4(X))", and

3. if occ(a,t) € X for every action a, then s;y1(X) = s¢(X).

Proof. It is easy to see that the sequence (U;),, where

U = {holds(L,T) | L is a literal and T < ¢t} U {occ(A,T) | A is an action and T < t}U
{nocc(A,T) | Ais an action and T < t} U {possible(A,T) | A is an action and T < t},

is a splitting sequence of 7. Since X is an answer set of my, by the splitting sequence theorem (Theorem
9, Appendix B), there exists a sequence of sets of literals (X;)}_, such that X; C U; \ U;_1, and

[ ] X = U?:O Xi:
e X, is an answer set of by, (m2) and

e for every t > 0, X; is an answer set of ey, (by, (m2) \ bu,_, (72), U;<; 1 Xi)-

3

We will prove the lemma by inductively proving that for every ¢, 0 < t < n, X; satisfies the following
conditions:

141t is easy to see that every answer set of 79 is an answer set of the program consisting of rules (84)-(91) that satisfies
the constraint (92). For this reason, rule (92) will be omitted subsequently when we use the splitting theorem.
15Recall that for every set Y, s¢(Y) is the set {f | holds(f,t) € Y}
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(i) every X; is complete and consistent with respect to F in the sense that for each fluent f, X; contains
either holds(f,t) or holds(neg(f),t) but not both,

(ii) every X; contains at most one atom of the form occ(a, t),
(iii) s¢(Xy) is a state of D, and

(iv) if occ(a,t —1) € X;_; then a is executable in s;_1(X;_1) and s:(X¢) € ®(a, s;_1(X¢_1)); if no atom
of the form occ(a,t — 1) belongs to X; 1 then s¢ 1 (X¢_1) = s¢(Xy).

Base case: t = 0. Trivially, X, satisfies (iv). So, we only need to show that X, satisfies (i)-(iii).
Let Py = by,(m2). We have that Py consists of only rules of the form (85)-(89) in which 7' = 0. Let
Zy = {holds(f,0) | f is a fluent} U {holds(neg(f),0) | f is a fluent}. We can easily checked that Zj is a
splitting set of Py. Thus, by the splitting theorem, Xo = My U Ny where M is an answer set of by, (Pp)
and Ny is an answer set of ez, a, = ez, (Fo \ bz, (Fo), Mop). Because My contains only literals of the form
holds(f,0) and Ny contains only literals of the form oce(a,0), noce(a,0), and possible(a,0), we have that
s0(Xo) = s0(Mp) and occ(a,0) € My iff oce(a,0) € No. Hence, to prove that X satisfies (i)-(iv), we show
that My satisfies (i) and (iii) and Ny satisfies (ii).

We have that the bottom program bz, (Pp) consists of rules of the form (87) and (85). It follows from
Lemma 1 that M is the unique answer set of bz, (Py) and My = {holds(f,0) | f € so} where sq is the
initial state of (D,?). Because of the completeness of ? and the consistency of (D,?), we can conclude
that My is complete and consistent. Thus, M satisfies (i). Furthermore, because so(My) = so, we
conclude that M, satisfies (iii).

The partial evaluation of Py with respect to (Zo, Mo), €z,.m,, consists of

possible(A,0) <+ (al)
(if executable(A, {L1,...,Ln}) € D and holds(L;,0) € My)
oce(A, 0) « possible(A,0), not nocc(A, 0). (a2)
€zo.My = § mnocc(A4,0) «— oce(B,0). (a3)
(for every pair of actions A # B)
< holds(F,0), holds(neg(F),0) (ad)

(for every fluent F)
Let R be the set of atoms occurring in the rule (al) of ez, a,. There are two cases:
e Case 1: R = (. Obviously, the empty set is the unique answer set of ez, .. Thus, Ny does not
contain any atom of the form occ(a, 0).

e Case 2: R # (. By applying the splitting theorem one more time with the splitting set R
we can conclude that Ny is an answer set of ey, a, if and only if there exists some action a,
possible(a,0) € R, and

Ny = RU{oce(a,0)} U {nocc(b,0) | b is an action in D, b # a}.

Thus, Ny contains only one atom of the form occ(a, 0).

The above two cases show that Ny contains at most one atom of the form occ(a,0). This concludes the
proof of the base case.

Step: Assume that X;, t < k, satisfies (i)-(iv). We will show that X also satisfies (i)-(iv). Let

My, = Uf;ol X;. The splitting sequence theorem implies that X} is an answer set of P, that consists
of the following rules:

holds(L, k) < (93)
(if occ(A,k L 1) € My_1, causes(A,L,{L1,...,Lx}) € D, holds(L;,k L 1) € Mj_1)
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holds(L, k) <« holds(L1,k), ..., holds(Lm, k). (if caused({L1, ..., Ln}, L) € D) (94)
possible(A,k) <« holds(L1,k),...,holds(L¢, k). (if executable(a,{L1,...,L:}) € D) (95)
occ(A, k) « possible(A, k), not nocc(A, k). (if A is an action) (96)
nocc(A, k) « occ(B,k). (for every pair of actions A # B) (97)
holds(F,k) <« mnot holds(neg(F),k). (if holds(F,k L 1) € My_1) (98)
holds(neg(F),k) <+ mnot holds(F, k). (if holds(neg(F),k L 1) € My_1) (99)
holds(F, k), holds(neg(F), k). (100)

There are two cases:

e Case 1: M, does not contain an atom of the form occ(a,k — 1). Then, it is easy to check that
sk (Xg) = sp_1(Xg_1). Because X satisfies (i)-(iv), Xy also satisfies (i)-(iv).

e Case 2: There exists an action a such that occ(a,k —1) € My_;. Let s’ = {l | holds(l, k) € X}.
From the constraint (100), we have that for every fluent f, X cannot contain both holds(f, k)
and holds(neg(f),t). This means that X} is consistent. We now show that X}, is also complete.
Assume the contrary, i.e., there exists a fluent f such that neither holds(f, k) nor holds(neg(f), f)
belongs to Xj. Because of the completeness of s;_1(X_1) (Item (i), inductive hypothesis), either
holds(f,k — 1) € sp_1(Xg—1) or holds(f,k — 1) & sg_1(Xk_1). If the first case happens, rule (98)
belongs to Py, and hence, Xj; must contain holds(f,k), which contradicts our assumption that
holds(f, k) ¢ Xy. Similarly, if the second case happens, because of rule (99), we can conclude that
holds(neg(f), k) € Xy which is also a contradiction. Thus, our assumption on the incompleteness
of X}, is incorrect. In other words, we have proved that X, is indeed complete and consistent, i.e.,
(i) is proved for Xj.

Let Yy, = {holds(l, k) | I is a fluent literal and holds(l, k) € X} and Z = {holds(l,k) | I is a fluent
literal}. Zj is a splitting set of Py,. Let mp = by, (Pr). From the splitting theorem, we know that
Y}, must be an answer set of the program (m)Y* that consists of the following rules:

holds(L, k) «— (if occ(A,k L 1) € My_,, causes(A,L,{L1,...,Ly})€ D, (b1)
holds(L;, k L 1) € My_1)

holds(L, k) < holds(L1,k),...,holds(Ly,k). (if caused({L1,...,L,},L) € D) (b2)

holds(F, k) «— (if holds(F,k L 1) € My and holds(neg(F),k) € Yi) (b3)

holds(neg(F),k) <+ (if holds(neg(F),k L 1) € My and holds(F,k) & Yy) (b4)

Let @; and @2 be the set of atoms occurring in the rule (b1) and (b3)-(b4), respectively. Let
Cy = {l | holds(l,k) € @1} and Cy = {l | holds(l,k) € Q2}. By definition of Y, @1, and Qs,
we can conclude that C7 = F(a,s_1(Xg_1)) and Cy = s’ N sg_1(X_1). Furthermore, Lemma 1
implies that (mj)¥* has a unique answer set {holds(f,k) | f € Clp.(CyUC>)} which is Y (because
Y} is an answer set of 7). Hence, s’ = Clp, (E(a,sg—1(Xk_1)) U (s' Nsg_1(Xg_1))). This implies
that s’ € ®(a, sg—1(Xk—1)). In other words, we have proved that X satisfies (iii)-(iv).

The above two cases show that X, satisfies (iii) and (iv). It remains to be shown that X}, contains at
most one atom of the form occ(a, k). Again, by the splitting theorem, we can conclude that N, = X \ Yx
must be an answer set of the following program

possible(A, k) <« (if executable(A,{L1,...,Ln}) € D and holds(Li, k) € Yi)
ey, = ¢ occ(A k) «— possible(A, k), not nocc(A, k). (if A is an action)
nocc(A, k) «— occ(B, k). (for every pair of actions A # B)

Let Ry, be the set of atoms occurring in the first rule of ey, . Similar to the proof of the base case, we can
show that for every answer set Ny, of ey, , either N does not contain an atom of the form oce(a, k) of there
exists one and only one action a such that possible(a, k) € Ry and Nx = Ry, U{occ(a, k)} U {nocc(b,a) | b
is an action, b # a}. In either case, we have that X} = Y}, U N}, satisfies the conditions (ii). The inductive
step is proved.

The conclusion of the lemma follows immediately from the fact that s;(X) = s;(X;) for every t and
oce(a,t) € X iff oce(a,t) € Xy and X, satisfies the property (i)-(iv). The lemma is proved. O
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Lemma 4 For every trajectory soao ...an_ 18, in D and a consistent action theory (D,?7), m has an
answer set X such that for every t, 0 <t <n,

1. s¢(X) = st and

2. occ(ays,t) € X.
Proof. We prove the theorem by constructing an answer set X of mo that satisfies the Items 1 and 2.
Again, we apply the splitting sequence theorem with the splitting sequence (U;)},, where

U = {holds(L,T) | L is a literal and T < ¢t} U {occ(A,T) | A is an action and T < t}U
{nocc(A,T) | Ais an action and T < t} U {possible(A,T) | A is an action and T < t}.

We will show that the following sequence of sets of literals (X)),
X: = {holds(f,t) | f € s¢} U{occ(ar,t)} U{nooc(b,t) | bis an action in D, b # a} U Ry,
where R; = {possible(a,t) | a is executable in s;} is a solution to m with respect to (U;)7,. This
amounts to prove that
e X, is an answer set of by, (m2) and

e for every t > 0, X; is an answer set of ey, (by, (m2) \ bu,_, (72), U;<; 1 Xi)-

3

We first prove that Xy is an answer set of Py = by, (72). By the construction of Py and Xg, we have that
(Py)X° consists of the following rules:

( holds(F,0) « (if initially(f) € T) (al)
holds(L, 0) < holds(L1,0),...,holds(L.,,0). (a2)

(if caused({L1,...,Lm},L) € D)
possible(A,0) <+ holds(L1,0),...,holds(Ly,0). (a3)

(Py)Xo = ¢ (if e)Fecutable(A, {Li,...,Ln}) € D)

oce(ao, 0) « possible(ao, 0). (ad)
noce(B, 0) «— occ(A,0). (ab)

(for every pair of actions B # A)
«— holds(F,0), holds(neg(F),0) (ab)

L (for every fluent F)

We will show that X is a minimal set of literals closed under the rules (al)-(a6) and therefore is an
answer set of Py. Since holds(f,0) € Xq iff f € so (Definition of Xg) and f € so iff initially(f) € ?
(Definition of sg), we conclude that X is closed under the rule (al). Because of sq is closed under the
static causal laws in D, we conclude that X is closed under the rule (a2). The definition of Ry guarantees
that X is closed under the rule (a3). Since sgaqg ...a,—15, is a trajectory of D, aq is executable in Sy.
This implies that possible(ag,0) € Rq. This, together with the fact that occ(ag,0) € Xo, implies that X,
is closed under the rule (a4). The construction of Xy also implies that X is closed under the rule (a5).
Finally, because of the consistency of 7, we have that Xy does not contain holds(f,0) and holds(neg(f),0)
for any fluent f. Thus, X is closed under the rules (al)-(a6).

To complete the proof, we need to show that Xg is minimal. Consider an arbitrary set of atoms X' that
is closed under the rules (al)-(a6). This implies the following:

e holds(f,0) € X' for every f € s¢ (because of the rule (al)).
e Ry C X' (because of the rule (a3) and the definition of Ry).
e occ(ag,0) € X' (because of the rule (ad)).

e {nocc(b,0) | bis an action, b # a} C X' (because occ(ag,0) € X' and the rule (a5)).
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The above items imply that Xg C X'. In other words, we show that X is a minimal set of literals that
is closed under the rules (al)-(a6). This implies that Xj is an answer set of (P)X¢, which implies that
X is an answer set of F.

To complete the proof of the lemma, we will prove by induction over ¢, t > 0, that X; is an answer set
of P, = ey, (by,_, (m2) \ bu,_, (72), Ul<t 1 X;). Since the proof of the base case (t = 1) and the inductive
step is similar, we skip the base case and present only the proof for the inductive step. Now, assuming
that X;, t < k, is an answer set of P;. We show that X} is an answer set of Pj. Let M} 1 = UK,%1 X;.
The program P, consists of the following rules:

holds(L,k) <« (if occ(A,k L 1) € My_,, causes(A,L,{L1,...,Ly}) € D, (101)
holds(L;, k L 1) € My_1)
holds(L,k) < holds(L1,k),...,holds(L.,,k). (if caused({L1,...,Ln}, L) € D) (102)
possible(A, k) < holds(Li,k),..., holds(Ly, k). (if executable(a,{L1,...,L:}) € D) (103)
occ(A, k) «  possible(A, k), not nocc(A, k). (if A is an action) (104)
nocc(A, k) « occ(B,k). (for every pair of actions A # B) (105)
holds(F,k) <« mnot holds(neg(F),k). (if holds(F,k L 1) € My_1) (106)
holds(neg(F),k) <+ mnot holds(F, k). (if holds(neg(F),k L 1) € My_1) (107)
< holds(F, k), holds(neg(F), k). (108)

It is easy to see that Py can be split by the set of literal Z; = {holds(f, k) | f is a fluent literal} and the
bottom program 7, = by, (Py,) consists of the rules (101)-(102) and (106)-(107). We will prove first that
Yy, = {holds(l, k) | holds(l, k) € X} is an answer set of the program (7;)¥* that consists of the following
rules:

holds(L, k) «— (if occ(A,k L 1) € M., causes(A,L {L1,...,Ly})€ D, (b1)
holds(Li,k L1) € My_1)

holds(L, k) < holds(L1,k),...,holds(Lm,k). (if caused({L1,...,Lm},L) € D) (b2)

holds(F, k) «— (if holds(F,k L 1) € My and holds(neg(F),k) ¢ Yi) (b3)

holds(neg(F),k) < (if holds(neg(F),k L1) € M, and holds(F,k) ¢ Yy) (b4)

Let @ and @2 be the set of atoms occurring in the rule (b1) and (b3)-(b4), respectively. Let Cy = {I |
holds(l, k) € @1} and Cy = {l | holds(l, k) € Q2}. By definition of Y}, @1, and @2, we can conclude that
Cy = E(a,sp_1(Xy_1)) and Cy = 53, N sp_1(Xp_1). Furthermore, Lemma 1 implies that (7;)* has a
unique answer set {holds(f,k) | f € Clp.(C1 UC2)} = {holds(f, k) | f € sx} which equals Y}, because of
the construction of Xy and Yj. Thus, Y} is an answer set of 7. It follows from the splitting theorem that
to complete the proof of the inductive step, we need to show that Ny = X, \ Y} is an answer set of the
partial evaluation of Py with respect to (Zx,Y%), ez,.v, = ez, (P \ bz, (Px), Xi), which is the following
program

occ(A, k) «— possible(A, k), not nocc(A, k). (if A is an action)

possible(A, k) <+ (if executable(A,{L.,...,Ly,}) € D and holds(L;, k) € Yi)
€7,V =
nocc(A, k) «—  occ(B,k). (for every pair of actions A # B)

It is easy to see that the reduct of ey, y, with respect to Ni, (ez, v, )"V*, consists of the following rules

occlay, k) «— possible(ak, k).
nocc(A, k) +— occ(B,k). (for every pair of actions A # B)

N
(EZkaYk ) k=

{ possible(A, k) <« (if executable(A,{L1,...,Ln}) € D and holds(Li, k) € Y;)

Let Ry be the set of atoms occurring in the first rule of (ezkﬁyk)N’“. Because sgpagq . .. a,s, is a trajectory
in D, ay, is executable in sj. Thus, possible(ax, k) belongs to Ry. It is easy to see that Ny is the unique
answer set of (ez, y,)V*. In other words, Ny is an answer set of ez, v,. The inductive step is proved.

The property of X; implies that the sequence (X;)}* , is a solution to my with respect to the sequence

(Up)i—y. By the splitting sequence theorem, X = [J;_, X; is an answer set of m5. Because of the
construction of X;, we have that s;(X) = s:(X;) = s; for every ¢t and occ(a,t) € X for every t,
0 <t <n. The lemma is proved. O
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The above lemmas lead to the following corollaries.

Corollary 5.1 Let X be an answer set of w. Then, for everyt, 0 <t <mn,

(i) s¢(X) is a state of D,
(ii) if X contains occ(a,t) then a is ezecutable in s¢(X) and si11(X) € ®(a, s¢+(X)), and
(iii) if occ(a,t) € X for every action a, then s;11(X) = s¢(X).

Proof. It follows from the Lemma 2 that Y = X Nlit(72) is an answer set of my. Because s;(X) = 5:(Y)
and Lemma 3, we conclude that X satisfies the (i)-(iii). O

Corollary 5.2 For every trajectory soag . .. an_15, in D and a consistent action theory (D,?7), = has an
answer set X such that for every t, 0 <t <mn,

(i) $¢(X) =s; and
(i) occ(as,t) € X.
Proof. From Lemma 4, there exists an answer set Y of my such that s;(Y) = s; and occ(as,t) € V. It

follows from the Lemma 2 that X =Y U {hf(ng,t) | formula(ng) € Ag,s:(Y) |= ¢} is an answer set of
7. Because s;(X) = s:(Y), we conclude that X satisfies (i)-(ii). O

The next observation is also useful.

Observation 5.1 For every answer set X of w, if there exists an t such that X does not contain an
atom of the form occ(a,t), then X does not contain an atom of the form occ(a,t') fort < t'.

Using the result of Theorem 3 and the above corollaries we can prove Theorem 2.

Theorem 2 For a planning problem (D, 7, A)

(i) if spag .. .a,_18y, is a trajectory achieving A, then there exists an answer set M of II,, such that

1. occ(a;,i) € M for i € {0,...,n — 1} and
2. s;=si(M) forie{0,...,n}.

and

(ii) if M is an answer set of II,,, then there exists an integer 0 < k < n such that so(M)ag ... ar_15:(M)
is a trajectory achieving A where occ(a;, i) € M for 0 < i < k. Moreover, if k& < n then no action
is executable in the state sy (M).

Proof. We have that II,, = 7 Ur(A) U {« not hf(na,n)}. It is easy to see that II, can be split by
U = lit(n), the set of literals in the language of 7, and that 7 is the bottom, by (II,,). Thus, M is an answer
set of II,, iff M = X UY where X is an answer set of 7 and Y is an answer set of e (I, \ b (I1,,), X).

(i). Since sgag...an—15, is a trajectory achieving A, which is also a trajectory in D, the existence
of X that satisfies the condition (i) of the Lemma follows form Corollary 5.2. Theorem 3 implies that
hf(na,n) belongs to X because s, = A. Thus, ey(Il, \ by (Il,), X) only contains rules belonging to
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r(A) which is clearly a consistent program, i.e., it has an answer set Y. This implies the existence of M
satisfying (i).

(ii). Let M be an answer set of II,,. Then, X = M \ (r(A) \ lit(7)) is an answer set of 7. It follows from
Observation 5.1 that there exists an integer k£ < n such that for each i, 0 < i < k, there exists an action
a; such that oce(a;, i) € M and for t > k, occ(a,t) ¢ M for every action a. By Corollary 5.1, we know
that a; is executable in s;(M) and s;41(M) € ®(a;, s;(M)). This means that so(M)ag . ..ar_15,(M) is a
trajectory (D,?) and sg (M) = s,(M). Moreover, hf(na,n) must be in M, otherwise ey (I1,, \ by (I1,,), X)
contains the constraint < not hf(na,n) which causes it to be inconsistent, which contradicts the fact
that M is an answer set of IT,,. This, together with Theorem 3, implies that A holds in s, (M) = si(M).
Thus, so(M)ag .. .ar_15;(M) is a trajectory achieving A. Furthermore, it follows from Corollary 5.1 and
the rules (88) and (89) that if ¥ < n then M does not contain literals of the form possible(a, k). This
implies that no action is executable in s (M). |

Appendix A.3 - Proof of Theorem 6

We first prove some lemmas that are needed for proving Theorem 6.

Lemma 5 For a consistent action theory (D,?), a program p, and an answer set M of TI. with
occ(a;,i) € M fori € {0,...,n—1}, so(M)ags1(M)...an_15,(M) is a trace of p.

Proof. It is easy to see to see that the union of the set of literals of 7 and the set of rules and atoms
encoding p, i.e., U = lit(r) U r(p), is a splitting set of IIZ. Further, by (IIY) = 7 U r(p). Thus, by the
splitting theorem, M is an answer set of I[IZ iff M = X UY where X is an answer set of 7 U r(P), and
Y is an answer set of ey (IIZ \ 7, X). Because of the constraint < not trans(np,0,n), we know that
if M is an answer set of II!' then every answer set Y of ey(II1 \ m, X) must contain trans(np,0,n).
Furthermore, we have that s;(X) = s;(M) for every t. Hence, in what follows we will use s;(X) and

s¢(M) interchangeably. We prove the conclusion of the lemma by proving a stronger conclusion!S:

(*) for every program ¢ occurring in p and two time points ¢;,t2 such that ¢ # mnull and
trans(ng,ti,t2) € M, st (M)a, s, 41(M) ... az,—15:, (M) is a trace of ¢ (the states s;(M) and
actions a; are given in the Lemma’s statement).

Denote m1 = ey (I \ 7, X). We have that m; consists of the following rules:

trans(A, T, T +1) <« (if action(A) € X, occ(A,T) € X) (109)
trans(F,T1,T1) < (if formula(F) € X, hf(F,T1) € X) (110)
trans(P,Ti,T2) <+ T1<T < T, trans(Pi,T:,T'),trans(Ps, T, Ts). (111)
(if proc(P, P1, P») € X))

trans(N,T1,T>) <+ trans(P1,Th,T>). (112)
(if choiceAction(N) € X, in(P,,N) € X)

trans(I,Th,T2) <« trans(Py,Th,T>). (113)
(if if (I, F, P, P)) € X, hf(F,T}) € X)

trans(I,Th,T>) <« trans(Ps,Th,T»). (114)
(it if (I, F, Py, ) € X, hf(F,T) ¢ X)

trans(W,T1,T2) <+ Ti <T' < Ty, trans(P,T1,T"),trans(W,T', Ty). (115)
(if while(W, F, P) € X, hf(F,T:) € X)

trans(W,T,T) <« (it while(W,F,P) € X,hf(F,T) ¢ X) (116)

16 Recall that for simplicity, in encoding programs or formulas we use I or a as the name associated to [ or a, respectively.
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trans(S,Th,T>) <« trans(P,Ti,T>). (117)
(if choiceArgs(S, F,P) € X,hf(F,T) € X)
trans(null, T, T) <+ (118)

Clearly, m; is a positive program. Thus, the unique answer set of 7y is the fix-point of the 7%, operator,
defined by Tr, (X) = {A | there exists arule A « Ay,..., A, in m such that 4; € X}. Let Y = TF ().
By definition Y = lim,, o, Y.

For every atom A € Y, let p(A) denote the smallest integer k such that for all 0 < ¢ < k, A ¢ ¥; and for
all t > k, A €Y;. (Notice that the existence of p(A4) is guaranteed because Ty, is a monotonic, fix-point
operator.)

We prove (*) by induction over p(trans(ng,t1,t2)).

Base: p(trans(ng,t1,t2)) = 0. Then 71 contains a rule of the form trans(n,, t1,t2) <. Because ¢ # null,
we know that trans(ng,t1,t2) < comes from a rule r of the form (109), (110), or (116).

e r is of the form (109). So, ¢ is some action a, i.e., action(a) and occ(a,t) both belong to X.
Further, to = t; + 1. Because of Corollary 5.1 we know that a is executable in s, (X) and s, (X) €
®(a, st,(X)). Since s¢(M) = s¢(X) for every ¢, we have that s;, (M) a ss, (M) is a trace of q.

e 1 is of the form (110). Then q¢ = ¢,t> = t; = ¢, where ¢ is a formula and hf(ng,t) is in X. By
Theorem 3, ¢ holds in s¢(X). Again, because s;(M) = s:(X), so s¢(M) is a trace of g.

e 7 is of the form (116). Then, t1 = t2, while(ng, ¢, p1) € X, and hf(ng,t1) ¢ X. That is, ¢ is the
program “while ¢ do p;” and ¢ does not holds in s;, (M). Thus, s;, (M) is a trace of q.

Step: Assume that we have proved (*) for p(trans(ng,t1,t2)) < k. We need to prove it for the case
p(trans(ng,t1,t2)) = k + 1.

Because trans(ng,t1,t2) is in Ty, (Yy), there is some rule trans(ng, t1,t2) < A1,... Ay in 7 such that
all Ay,... A, are in Y. From the construction of 7y, we have the following cases:

e r is a rule of the form (111). Then, there exists g¢i,q2,t such that proc(ng,ng,ng) €
X, and trans(ng,ti,t') € Y, and trans(ng,,t'.ts). Hence, p(trans(ng . ti,t')) < k and
p(trans(ng,,t',t2)) < k. By inductive hypothesis, sy (M)as, st,41(M)...ap_1s¢ (M) is a trace
of 1 and sp (M)ap spy1(M) ... aw,—18t, (M) is a trace of ga. Since proc(ng,ngi,ng,) € X we know
that ¢ = q1; g2 By definition, sy, (M)as, st,41(M) ... ar,—151,(M) is a trace of q.

e 7 is a rule of the form (112). Then, choiceAction(n,) is in X. So, g is a choice program,
say ¢ = 1 | q2... | q. In addition, there exists 1 < j < [ such that in(ny,n,) € X and
trans(ng,,t1,t2) € Yi. By the definition of p, p(trans(q;,t1,t2)) < k. By inductive hypothesis,
sty (M)ag, s¢,41(M) ... ag,—151,(M) is a trace of g;. By Definition 5, it is also a trace of .

e 7 is a rule of the form (113). Then, by the construction of m;, there exists ¢, ¢, g2 such
that if(ng,ng,ng,,ng,) € X, hf(ng,t1) € X, and trans(ng,,t1,t2) € Y;. Thus ¢ is the pro-
gram “if ¢ then g¢; else ¢»” and p(trans(ng,,t1,t2)) < k. Again, by inductive hypothesis,
st (M)ag, s¢,41(M) ... ag, _18:,(M) is a trace of ¢;. Because of Theorem 3, ¢ holds in s¢, (M).
Hence, st (M)ag, s¢,41 (M) ... ai,—15t, (M) is a trace of q.

e ris arule of the form (114). Similarly to the above, there exist i f(ng, ng,ng,, ng,) € X, hf(ng, t1) €
X, and trans(ng,,t1,t2) € Yi. This means that p(trans(ng,,t1,t2)) < k. Hence, by inductive
hypothesis and Theorem 3, s;, (M)as, st,41 (M) ... as, 15, (M) is a trace of g2 and ¢ is false in
st, (M), which mean that s;, (M)ay, st,+1(M) ... a,—15t,(M) is a trace of “if ¢ then ¢ else ¢o”,
i.e., a trace of q.
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e ris arule of the form (115). This implies that there exist a formula ¢, a program ¢; and a time point
t' > t1 such that while(ng, ng,ng ) € X and hf(ng,t1) € X, trans(ng, ,t1,t') and trans(ng, t',t2)
are in Y. It follows that ¢ is the program “while ¢ do ¢;”. Furthermore, ¢ holds in s;, (M), and
St,(M)ag, s¢,41 (M) .. ap—15p (M) is a trace of ¢; and sy (M)ap spy1(M) ... ar,—15:,(M) is a trace
of q. By Definition 5, this implies that s¢, (M)as, s, 41 (M) ... ary,—151, (M) is a trace of q.

e 7 arule of the form is (117). Then, choiceArgs(ng) is in X and g has the form pick(Z, f(£), ¢ (%)).
trans(ng,ti,t2) € Y implies that there exists a #. such that hf(nggz,),t1) € X and
trans(ng, (z.),t1,t2) € Yi. By the definition of p, p(trans(ng,,ti,t2)) < k. By induction,
St (M)ag, s, 41 (M) ... agy—15t, (M) is a trace of program ¢; (Z.). Together with the fact that f(Z,.)
holds in s¢,, we conclude that s, (M)ag, s¢,41 (M) ... ag, 15, (M) is a trace of q.

The above cases prove the inductive step for (*). The lemma follows immediately since trans(n,,0,n)
belongs to M. 0

To prove the reverse of Lemma 5, we define a function p that maps each program ¢ into an integer u(q)
that reflects the complexity of ¢ (or the number of nested operators in q). u(g) is defined recursively over
the construction of ¢ as follows.

e For ¢ = ¢ and ¢ is a formula, or ¢ = a and a is an action, u(q) = 0.

e For g =q1;q2 or g = if ¢ then ¢ else g2, u(q) =1+ p(q1) + u(ge).

Forg=q | ...| qm, u(q) =1+ max{u(g;)|i=1,...,m}.

For ¢ = while ¢ do qi, pu(q) =1+ p(q1).

e For ¢ = pick(Z, f(£),q(%)), plg) = 1 + max{u(q(Z.)) | . is a ground instantiation of #'}.
It is worth noting that u(q) is always defined for well-defined programs.

Lemma 6 Let (D,?) be a consistent action theory, p be a program, and seaq ... Sp—1ay, be a trace of p.
Then 1T has an answer set M such that

e occ(a;,t) € M for0<i<n-—1,

o s; = s¢(M) for every 0 <t <mn, and

e trans(n,,0,n) € M.
Proof. We prove the lemma by constructing an answer set of IIZ that satisfies the conditions of the
lemma. Similar to the proof of Lemma 5, we split I} using U = lit(x) U r(p). Further, M is an
answer set of 17 iff M = X UY where X is an answer set of by(II}) and Y is an answer set of

71 = ey(ITX\ by (1), X), which is the program consisting of the rules (109)-(118) with the corresponding
conditions.

Because spag . ..ap—15y is a trace of p, it is a trajectory in D. By Corollary 5.2, we know that = has an
answer set X' that satisfies the two conditions:

e occ(a;,t) € X' for 0 <i<n-—1and

o sy = 5¢(X") for every 0 <t < n.

Because r(p) consists of only rules and atoms encoding the program p, it is easy to see that there exists
an answer set X of m U r(p) such that X' C X. Clearly, X also satisfies the two conditions:

43



e occ(a;,t) € X for 0 <i<n—1and

o sy = 5¢(X) for every 0 < t < m.

Since m is a positive program we know that 7; has a unique answer set, say Y. From the splitting
theorem, we have that M = X UY is an answer set of IIL. Because s;(X) = s;(M), M satisfies the first
two conditions of the lemma. It remains to be shown that M also satisfies the third condition of the
lemma. We prove this by proving a stronger conclusion:

(*) If ¢ is a program occurring in p, and there exists two integers t; and #¢; such that
sty (M)ag, .. .agy—15t,(M) is a trace of g then trans(ng, ti,t2) € M. (the states s;(M) = s;
see above — and the actions a; are defined as in the Lemma’s statement)

We prove (*) by induction over u(q), the complexity of the program g.

Base: u(g) = 0. There are only two cases:

e ¢ = ¢ for some formula ¢, and hence, by Definition 5, we have that ¢, —t; = 0. It follows from the
assumption that s;, (M) is a trace of g that s;, (M) satisfies ¢. By Theorem 3, hf(ng,t1) € X, and
hence, we have that trans(ng,t1,t1) € Y (because of rule (110)).

e ¢ = a where a is an action. Again, by Definition 5, we have that t, = ¢; + 1. From the assumption
that s¢, (M)ay, s, (M) is a trace of ¢ we have that a;, = a. Thus, occ(a,t1) € M. By rule (109) of
1, we conclude that trans(a,t1,t2) € Y, and thus, trans(a,ti,t2) € M.

The above two cases prove the base case.

Step: Assume that we have proved (*) for every program ¢ with u(q) < k. We need to prove it for the
case u(q) = k + 1. Because u(g) > 0, we have the following cases:

e ¢ = ¢1;q2. By Definition 5, there exists t', t; < t' < ta, such that sz as, ...sy¢ is a trace of g1 and
Sprayp ... St, is atrace of go. Because u(q1) < p(q) and p(g2) < u(q), by inductive hypothesis, we have
that trans(ng, ,t1,t') € M and trans(ng,,t',t2) € M. q¢ = q1; g2 implies proc(ng,ng,,ng,) € M. By
rule (111), trans(ng, t1,t2) must be in M.

© ¢g=qi|...|¢. Again, by Definition 5, s, a4, ... as,—15+, i a trace of some g;. Since u(g;) < p(q),
by inductive hypothesis, we have that trans(ng;,t1,t2) € M. Because of rule (112), trans(ng, t1,t2)
isin M.

e g =1if ¢ then ¢ else ¢,. Consider two cases:

— ¢ holds in s¢,. This implies that s¢, (M)ay, ... at, 15, (M) is a trace of ;. Because of Theorem
3, hf(ng,t1) € M. Since pu(q1) < p(q), trans(ng, ,t1,t2) € M by inductive hypothesis. Thus,
according to rule (113), trans(ng, t1,t2) must belong to M.

— ¢ does not holds in s;,. This implies that s;, (M)ay, .. .ap,—15:, (M) is a trace of go. Because
of Theorem 3, hf(ng,t1) does not hold in M. Since u(q1) < p(q), trans(ng,,t1,t2) is in M by
inductive hypothesis. Thus, according to rule (114), trans(ng, t1,t2) € M.

e ¢ = while ¢ do ¢;. We prove this case by induction over the length of the trace, to — t;.

— Base: ty — t; = 0. This happens only when ¢ does not hold in s (M). As such, because of
rule (116), trans(ng, t1,t2) is in M. The base case is proved.
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— Step: Assume that we have proved the conclusion for this case for 0 < ¢ty — t; < [. We will
show that it is also correct for to — ¢t; = 1. Since to —t; > 0, we conclude that ¢ holds in s,
and there exists t; < t' < to such that sy as, ...sp is a trace of ¢ and spayp ... s, is a trace
of g. We have u(q1) < u(q), t' —t1 <ty —t; and t5 —t' < t5 —t; = [. By inductive hypothesis,
trans(ng, ,t1,t') and trans(ng,t',t2) are in M. By Theorem 3, hf(ng,t1) is in M and from
the rule (115), trans(ng,t1,t2) is in M.

e g = pick(Z, f(£),q1(Z)). So, there exists Z., such that f(Z.) holds in s;, and the trace of ¢ is a
trace of ¢ (Z.). Since u(q:1(Z.)) < p(q), we have that trans(ng, (z.),t1,t2) € M. This, together with
the fact that choiceArgs(ng,ny(z.),nq,(7.)) € 7(p) and hf(ng,t1) € M (Theorem 3), and the rule
(117) imply that trans(ng,t1,t2) is in M.

The above cases prove the inductive step of (*). The conclusion of the lemma follows. O

We now prove the Theorem 6.

Theorem 6 Let (D,?) be a consistent action theory and p be a program. Then,

(i) for every answer set M of I with occ(a;,i) € M fori € {0,...,n — 1}, so(M)ag...an 15,(M)
is a trace of p; and

(i) if sgag...a, 18, is a trace of p then there exists an answer set M of II! such that s; = s;(M)
and occ(a;,i) € M for j € {0,...,n} and i € {0,...,n —1}.

Proof. (i) follows from Lemma 5 and (ii) follows from Lemma 6. i

Appendix A.4 - Proof of Theorem 7

Let p now be a general program. To prove Theorem 7, we will extend the Lemmas 5-6 to account for
general programs. Similarly to the proofs of Lemmas 5-6, we will split TN by the set U = lit(7) Ur(p).
Thus M is an answer set of TN iff M = X UY where X is an answer set of 7 Ur(p) and Y is an
answer set of the program ey (TN \ b (MHTN) X') which consists of the rules of program m; (with the
difference that a program is now a general program) and the program mo which consists of the following
rules:

trans(N,Ti,T2) <+ not nok(N,Ti,T>). (119)
(if htn(N, S,C) € X)
1{begin(N, I,Ts,T,,T>) : between(Ts,T1,T5)}1  « trans(N,Ti,T»). (120)
(if htn(N, S, C) € X, in(I,S) € X)
H{end(N, I,T53,T1,T>) : between(Ts,T1,T2)}1 <« trans(N,Th,T>). (121)
(if htn(N, S, C) € X, in(I,S) € X)
used(N, T, T, T2) <+ begin(N,I,B,Ti,T>2),end(N,I,E,T:,T>), (122)
B<T<E.
(if htn(N, S,C) € X, in(I,S) € X)
not_used(N,T,Ti,T>) <+ not used(N,T,Ti,T>). (123)
overlap(N, T, T\,T>) <« begin(N,I,B1,T\,T>),end(N, I, E:, T\, T>), (124)

begin(N, Iz,Bz,Tl,Tz),e'lld(N, Ig,Ez,Tl,TQ),
B <T<E,By<T< E».
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nok(N, T17T2)

TLOk(N, Tl,TQ)

TLOk(N, Tl,TQ)

nok(N, T17T2)

nok(N, T17T2)

nok(N, T17T2)

TLOk(N, Tl,TQ)

nok(N, T17T2)

(if htn(N, S,C) € X, in(I,S) € X, in(I2,S) € X)

Ts > Ty, begin(N, I, Ts, Ti, Ty), end(N, I, Ts, T, To125)
(if htn(N, S, C) € X, in(I,S) € X)

Ty < Ty, begin(N, I, Ts, T1, T»), end(N, I, Ty, Ty, T}126)
not trans(I,Ts,T4).

(if htn(N, S, C) € X, in(I,S) € X)

Ty <T <T»,notused(N,T,T1,T5). (127)
(if htn(N, S,C) € X)

Ty < T < T, overlap(N, T, Ty, T>). (128)
(if htn(N, S,C) € X)

begin(N, I, B1,Ti,T>), (129)
begin(N, I>, By, T1,T5),

B > B».

(if htn(N, S,C) € X, in(I1,S) € X, in(L, S) € X,
in(0,C) € X, order(0,I1,1I) € X))

end(N, I, By, T1, Ty), (130)
begin(N, I>, By, T1,T>), E1 < T3 < Ba.

(if htn(N, S,C) € X, in(L,S) € X, in(I2,S) € X,
in(0,C) € X, maintain(O, F,I,,I,) € X,

and hf(F,Ts) ¢ X)

begin(N, I, B,T1,Ty),end(N, I, E, Ty, Ts), (131)
(if htn(N, S, C) € X, in(I,S) € X,

in(0, C) € X, precondition(O,F,I) € X

and hf(F,B) ¢ X)

begin(N, I, B,T1,Ty),end(N, I, E, Ty, Ts). (132)
(if htn(N, S,C) € X, in(1,S) € X,

in(0, C) € X, postcondition(O, F,I) € X,

and hf(F,E) ¢ X)

Let m be the program consisting of the above set of rules. Thus ey (ITHTN \ by (TTHTN) X)) = mp U 7a.
We will continue to use the complexity of program defined in the last appendix and extend it to allow
the HTN-construct by adding the following to the definition of u(q).

e For g = (S,0), u(g) = 1+ Xpesu(p).

Notice that every literal of the program 7 U 3 has the first parameter as a program'?. Hence, we can
associate u(q) to each literal u of 7’ where g is the first parameter of u. For instance, u(trans(q,t;,t2)) =
w(q) or p(nok(q,t1,t2)) = u(q) etc.. Since we will continue using splitting theorem in our proofs, the

following observation is useful.

Observation 5.2 The two cardinality constraint rules (54) and (55) can be replaced by the following

normal logic program rules:

begin(N,I,T,T\,T>) <« hitn(S,C),in(I,S),trans(N,T:,T>),
Ty <T < T3 <Ts,not nbegin(N,I,T,T\,T>).
nbegin(N,I,T, T, T2) <« hin(S,C),in(1,S),trans(N,Ti,T>),

17More precisely, a program name.
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T1 S T S TQ,Tl S T3 S TQ,T ;ﬁ T3,begin(N,I,T3,T1,T2).
occur(N, I, T\, T>) <+ htn(S,C),in(I,S), Ty <T < T, begin(N,I1,T,T:,T>).
«— htn(S,0),in(1,S),trans(N,Th,T>), not occur(N, I,T1,T5).

That is, let T be the program obtained from m U my by replacing the rules (54)-(55) with the above set
of rules. Then, M is an answer set of my Uy iff M' = M U {occur(N,1,Ty,T) | begin(N,I,T,T,,T>) €
M for some T' < T < Ty} U {nbegin(N,I,T'T',T5) | T # T', Th < T,T7" < Ty such that
begin(N,I1,T,T,,T>) € M} is an answer set of 7*.

The next lemma generalizes Lemma 5.

Lemma 7 Let q be a general program, Y be an answer set of the program er(ILHTN \ by (IIHTN) | X)

(i.e. program m Ums), and t1,ty be two time points such that ¢ # null and trans(ng, t1,t2) € Y. Then,
St. (M)ag, 8t,401 (M) .. az, 18, (M) is a trace of ¢ where M = X UY.

Proof. Let 7' = m Umy and Uy, = {u | u € lit(n"), p(u) < k}.
From observation 5.2, we know that we can use the splitting theorem on 7'. It is easy to see that (U)3°

is a splitting sequence of «’. From the finiteness of 7’ and the splitting sequence theorem, we have that
Y =, Y; where

1. Yp is an answer set of the program by, (7') and

2. for every integer i, Yiy1 is an answer set for ey, (bu,, (') \ bu, (7'),U;<; ¥5)-

We prove the lemma by induction over u(q).

Base: u(q) = 0. From trans(ng,ti,t2) € Y, we have that trans(ng,ti,t2) € Yp. It is easy to
see that by, (n') consists of all the rules of 7 whose program has level 0. It follows from Lemma 5
st, (M)ag, st 41(M) ... ap,—151, (M) is a trace of g. The base case is proved.

Step: Assume that we have proved the lemma for u(q) = k. We prove it for u(q) = k + 1. From the
fact that trans(ng,t1,t2) € M and p(n,) = k + 1 we have that trans(ng,t1,t2) € Y41 where Yi4q is an
answer set of the program ey, (bu,,, (7') \bu, ("), U, <4 Y&) which consists of rules of the form (119)-(132)
and (111)-(117) whose program has the level k + 1, i.e., u(N) = k + 1. Because trans(ng, t1,t2) € Y we
know that there exists a rule that supports trans(ng,t1,t2). Let r be such a rule. There are following
cases:

e 7 is a rule of the form (111)-(117), the argument is similar to the argument using in the inductive
step for the corresponding case in Lemma 5. Notice a minor difference though: in Lemma 5, we do
not need to use u(q).

e 7 is a rule of the form (119), which implies that ¢ = (S,C) for some set of programs S and set
of constraints C. By definition of answer sets, we know that nok(ng,t1,t2) & Yi41. Furthermore,
because of the rules (120) and (121), the fact that trans(ng,ti,¢2) € Yiy1 and the definition of
weight constraint rule, we conclude that for each ¢; € S there exists two numbers j, and je,
t1 < b, je <tz such that begin(ng, ng,, js, t1,t2) € Yiq1 and end(ng,ng;, je. t1,t2) € Yiq1. Because
of rule (126), we conclude that trans(ng,, ji, je) € U;<; Yi. Otherwise, we have that nok(ng, t1,t2) €
Yi+1, and hence, trans(ng,t1,t2) € Y1, which is a contradiction. By definition of u(g), we have
that pu(g;) < p(g). Thus, by inductive hypothesis, we can conclude that: for every ¢; € S, there
exists two numbers jy and je, t1 < i, je < t2, 55, (M)a;, ...a;, 155, (M) is a trace of g;.
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Furthermore, rules (122)-(128) imply that the set {j | g; € S} creates a permutation of {1,...,]S|}
that satisfies the first condition of Definition 7.

Consider now an ordering g;, < ¢;, in C. This implies that the body of rule (129) will be satisfied
if j», > jp, which would lead to trans(ng,t1,t2) ¢ Yi+1. Again, this is a contradiction. Hence,
we must have jp, < jp, that means that the permutation {jy | ¢; € S} also satisfies the second
condition of Definition 7.

Similarly, using (130)-(132) we can prove that the permutation {4, | g; € S} also satisfies the third
and fourth conditions of Definition 7.

It follows from the above arguments that s¢, (M)ay, ... a, 15, (M) is a trace of ¢). The inductive
step is proved for this case.

The above cases prove the inductive step. This concludes the lemma. O

In the next lemma, we generalize the Lemma 6.

trace of p. Then, there is an answer set M of IHTN such that s;(M) = s; and occ(a;,i) € M and
trans(ny,0,n) € M.

Lemma 8 Let (D,?) be a consistent action theory, p be a general program, and Spag ...an_ 15, be a

Proof. Based on our discussion on splitting IT#7TN using lit(7) U r(q) and the fact that sgag .. .a, 15,
is also a trace in D, we know that there exists an answer set X of = U r(p) such that s;(X) = s; and

occ(a;,i) € X. Thus, it remains to be shown that there exists an answer set Y of ' = m U my such that

trans(np,0,n) € Y. Similar to the proof of Lemma 7, we use (U)° as a splitting sequence of 7' where

Ur = {u|u € lit(r'), p(u) < k}. From the splitting sequence theorem, we have that Y = |J;~ Y; where

1. Yy is an answer set of the program by, (') and

2. for every integer i, Yj11 is an answer set for ey, (bu,,. (7') \ bu, (7'), U, <; Y5)-

We prove the lemma by induction over p(g). Similar to Lemma 6, we prove this by proving a stronger
conclusion:

(*) There exists an answer set Y = [J;~ Y; of ©' such that for every program g # null occurring in p,
5¢,0¢, - - - Gy, 154, 18 a trace of ¢ iff trans(ng,t1,t2) € Y, (). (the states s; and the actions a; are
defined as in the Lemma’s statement)

We will prove (*) by induction over u(q).

Base: pu(g) = 0. Similar to the base case in Lemma 6 .

Step: Assume that we have proved (*) for u(q) < k. We need to prove (*) for u(q) = k + 1. We will
construct an answer set of 7* = ey, (bu, ., (') \ by, (7'), U<, Y&) such that for every program g occurring

in p with u(q) =k + 1, if s¢, a4, ... azy—151, is a trace of ¢ then trans(ng, t1,t2) € Yit1.

Let Y41 be the set of atoms defined as follows.

e For every program g with u(q) = k + 1, if ¢ is not of the form (S,C) and st as, ... ag,—151, is a
trace of ¢, Y41 contains trans(ng,t1,t2).

48



e For every program ¢ with u(q) = k+ 1, ¢ = (S,C), and sy ay, -..a1,—154, is a trace of g. By
definition, there exists a permutation {ji,...,jjs/} of {1,...,|S|} satisfying the conditions (a)-(d)
of Item 8 (Definition 7). Cousider such a permutation. To simplify the notation, let us denote the
begin- and end-time of a program ¢; € S in the trace of ¢ by b; and e;, respectively, i.e., sp,ap; .. . s¢;

J
is a trace of ¢;. Then, Yi41 contains trans(ng,ti,t2) and the following atoms:

1. begin(ng,ng;,b;,t1,t) for every ¢; € S,
2. end(ng,ng; . ej, t1,t2) for every g; € S, and

3. used(ng,t,t1,ts) for for every ¢; € S and b; <t <e; .

e Y., does not contain any other atoms except those mentioned above.

It is easy to see that Yy satisfies (*) for every program ¢ with u(q) = k£ + 1. Thus, we need to show
that Yy is indeed an answer set of 7. First, we prove that Y, is closed under (7r+)2/+1. We consider
the following cases:

e 7 is a rule of the form (111). Obviously, if 7 belongs to (7r+)i/+1, then ¢ = ¢1;¢» and there exists a

t1 <t < s such that trans(nyg, ,t1,1') and trans(ng,, ', t2) belong to U, <, Yi because u(q1) < u(q)
and pu(g2) < wp(q). By inductive hypothesis, s; as, ...sp is a trace of ¢; and spap ...s:, is a
trace of ¢a. By Definition 5, st a4, ...st, is a trace of ¢. By construction of Y;y; we have that
trans(ng,t1,t2) € Yg41. This shows that Y1, is closed under r. Similar arguments conclude that
Yi+1 is closed under the rule of the form (112)-(117).

e ris arule of the form (119) of ()}, |. Then, ¢ = (S, C) and by construction of Yy 11, if s¢,ay, ... s,
is a trace of ¢ then we have trans(ng,t1,t2) € Yiyp1. Thus. Yjiq is closed under the rules of the
form (119) too.

e 7 is a rule of the form (120) and (121). Y4, is also closed under r because whenever
trans(ng,t1,t2) € Yiy1, we now that there is a trace sgay, ...s1, of ¢, and hence, by Defini-
tion 7, we conclude the existence of the begin- and end-time points b; and e; of g;, respectively.
By construction of Y;41, we have that begin(ng,ngy,,b;,t1,t2) and end(ng,ng; . e;.t1,t2) belong to
Y41 and for each g;, there is a unique atom of this form in Y}, ;. Hence, Y} is closed under rules
of the form (120) and (121).

e 7 is a rule of the form (123)-(132). The construction of Yj;; ensures that the body of r is not
satisfied by Yi11, and hence, Y; 41 is closed under r.

e ris a rule of the form (122). Because used(ng,t,t1,t2) belongs to Yi41 for every ¢, t1 <t < 5. we
have that Y4 is closed under r too.

The conclusion that Yy, is closed under (7r+)z/+1 follows from the above cases.

To complete the proof, we need to show that Yy, is minimal. Assume the contrary, there exists a proper
subset Y’ of Yj41 such that Y is closed under (7%)Ys+1. Let u € Y;11 \ Y. Since u € Y41, we have the
following cases:

e u is the head of a rule of the form (111)-(117). By definition of 7", we know that a rule of this
form belongs to « ™ iff its body is empty. Thus, from the closeness of Y’ we have that v € Y. This
contradicts the fact that u ¢ Y.

e u is the head of a rule of the form (119). Similar to the above case, we can conclude that u € Y’
which again contradicts the fact that u ¢ Y.
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e u is the head of a rule r of the form (120). Because of u € Yj11 we conclude that trans(ng,t1,t2) €
Yi+1. The above case concludes that trans(ng,t1,t2) € Y'. Since the body of r is true, we
conclude that there exists some ¢; € S such that Y’ does not contain an atom of the form
begin(ng,ng,,b;,t1,t2). Thus, Y' is not closed under . This contradicts the assumption that
Y is closed under (7F)Ye+1,

e u is the head of a rule r of the form (121). Similar to the above case, we can prove that it violates
the assumption that Y is closed under (7+)Ye+1,

e u is the head of a rule r of the form (122). Because u € Yj 1 we know that the body of r is satisfied
by Y41, and hence, r belongs to (7+)Ys+1. Again, because of the closeness of Y, we conclude that
u € Y' which violates the assumption that u ¢ Y.

The above cases imply that Y’ is not closed under (7+)Ys+1. Thus, our assumption that Y;,; is not
minimal is incorrect. Together with the closeness of Yj11, we have that Y11 is indeed an answer set of
7. The inductive step is proved since Yy, satisfies (*) for every program ¢ with p(q) = k + 1. This
proves the lemma. O

Theorem 7 Let (D,?) be a consistent action theory and p be a general program. Then,
(i) for every answer set M of YN with occ(a;,i) € M fori € {0,...,n—1}, so(M)ag . ..an_15,(M)
is a trace of p; and
(ii) if soag...an_15, is a trace of p then there exists an answer set M of ITZTN guch that sj = s;(M)

and occ(a;,i) € M for j € {0,...,n} and i € {0,...,n — 1} and trans(n,,0,n) € M.

Proof. (i) follows from Lemma 7 and (ii) follows from Lemma 8. i

Appendix B - Splitting Theorem

Let r be a rule
ag < A1, ...y @y, NOE A1y - - -5 Ay

By head(r), body(r), and lit(r) we denote ag, {a1,. .., an}, and {ag, a1, ...,an,}, respectively. pos(r) and

3 3

neg(r) denote the set {ay,...,a,} and {am41,-..,an}, respectively.

For a program II over the language LP, a set of literals of LP, A, is a splitting set of II if for every rule
r € II, r is of the form if head(r) € A then lit(r) C A.

Let A be a splitting set of II. The bottom of II relative to A, denoted by b4 (II), is the program consisting
of all rules r € II such that the head of r belongs to A.

Given a splitting set A for II, and a set X of literals from lit(b(I1)), the partial evaluation of 11 by X with
respect to A, denoted by e 4 (II, X), is the program obtained from II as follows. For each rule r € TI\ b4 (II)
such that

1. pos(r)N A C X;

2. neg(r) N A is disjoint from X;

there is a rule r' in e 4 (I, X) such that

a0



1. head(r') = head(r) , and
2. pos(r') = pos(r) \ A,
3. neg(r') = neg(r) \ A.

Let A be a splitting set of II. A solution to I with respect to A is a pair (X,Y’) of set of literals satisfying
the following two properties:

1. X is an answer set of by (II);

2. Y is an answer set of e4(IT \ b4 (II), X);

3

3. X UY is consistent.
The splitting set theorem is as follows.

Theorem 8 (Splitting Set Theorem, [27]) Let A be a splitting set for a program II. A set A of
literals is a consistent answer set of Il iff A = X UY for some solution (X,Y) to Il with respect to A. O

A sequence is a family whose index set is an initial segment of ordinals {« | @ < p}. A sequence (Ay)a<p
of sets is monotone if A, C Ag whenever a < 3, and continuous if, for each limit ordinal a < p,

Aa=U, 0 Ay

A splitting sequence for a program II is a nonempty, monotone, and continuous sequence (Aa)a<u of
splitting sets of II such that lit(Il) =J__, A

a<lp Tar

Let (Ag)a<y be a splitting sequence of the program II. A solution to I with respect to A is a sequence
(Ea)a<y of set of literals satisfying the following conditions.

1. Eq is an answer set of the program b4, (II);

2. for any a such that o +1 < p, Eq41 is an answer set for ea, (ba,, (II) \ ba, (I1), U, <, £5);

3. For any limit ordinal a < u, E, = 0;

4. U, <, Ey is consistent.
The splitting set theorem is generalized for splitting sequence next.

Theorem 9 (Splitting Sequence Theorem, [27]) Let A = (Ay)a<u be a splitting sequence of the
program 1. A set of literals E is a consistent answer set of Il iff E = Ua<u E, for some solution
(Ea)a<p to II with respect to A. |
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