Comenius University, Bratislava

Martin Slota

Supervisors: Jan Sefranek, Jodo Alexandre Leite

March 30, 2007

«4O>» «Fr « =

=

Faculty of Mathematics, Physics and Informatics

«E

>

DA

© Introduction

Logic programming

Evolving logic programs

® Transformational semantics for EVOLP

«O>» «Fr «=r «=)»

DA

© Introduction

Logic programming

Evolving logic programs

® Transformational semantics for EVOLP

«O>» «Fr «=r «=)»

DA

day <« not night.

night < not day.
play_violin — day.

play_piano «— night.

(O Fr 4= <

o>

day <« not night.

night < not day.
play_violin — day.

play_piano «— night.

M, = {day,play_violin}

M, = {night, play_piano}

(O Fr 4= <

o>

Evolving Logic Programs (EVOLP)

e language based on logic programming
¢ intended for dynamic environments (e.g. multiagent systems)

e syntax is the same as the syntax of logic programs

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee «— tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) < drink_coffee.

«O» «Fr o«

DA

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.

Time| Program Event Model

AW

EVOLP — Example

Time

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.

Program Event Model

AW

P

EVOLP — Example

Time

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.

Program Event Model

AW

P 0

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.
Time| Program Event Model
1 P 0 {write_thesis, assert(tired) }

DN B W

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.
Time| Program Event Model
1 P 0 {write_thesis, assert(tired) }
{tired.}

AW

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.
Time| Program Event Model
1 P 0 {write_thesis, assert(tired) }
{tired.} 0

AW

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.

assert(tired) < write_thesis.

assert(not tired) «— drink_coffee.

Time| Program Event Model
1 P 0 {write_thesis, assert(tired) }
{tired.} 0 {tired, drink_coffee, assert(not tired)}

DN B W

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.

assert(tired) < write_thesis.

assert(not tired) «— drink_coffee.

Time| Program Event Model
1 P 0 {write_thesis, assert(tired) }
{tired.} 0 {tired, drink_coffee, assert(not tired)}

AW

{not tired.}

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.

assert(tired) < write_thesis.

assert(not tired) «— drink_coffee.

Time| Program Event Model
1 P 0 {write_thesis, assert(tired) }
{tired.} 0 {tired, drink_coffee, assert(not tired)}
{not tired.} | {no_coffee}

AW

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.

Time| Program Event Model

1 P 0 {write_thesis, assert(tired) }
{tired.} 0 {tired, drink_coffee, assert(not tired)}
{not tired.} | {no_coffee} | {no_coffee, write_thesis, assert(tired) }

DN B W N

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.

Time| Program Event Model
1 P 0 {write_thesis, assert(tired) }
2 {tired.} 0 {tired, drink_coffee, assert(not tired)}
3 | {not tired.} | {no_coffee} | {no_coffee, write_thesis, assert(tired)}
4 {tired.}
5

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.

Time| Program Event Model

1 P 0 {write_thesis, assert(tired) }
{tired.} 0 {tired, drink_coffee, assert(not tired)}
{not tired.} | {no_coffee} | {no_coffee, write_thesis, assert(tired)}

{tired.} | {no_coffee}

AW

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.

Time| Program Event Model

1 P 0 {write_thesis, assert(tired) }
{tired.} 0 {tired, drink_coffee, assert(not tired)}

{not tired.} | {no_coffee} | {no_coffee, write_thesis, assert(tired) }
{tired.} | {no_coffee} {tired, no_coffee, buy_coffee}

DN B W N

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.
Time| Program Event Model

1 P 0 {write_thesis, assert(tired) }
2 {tired.} 0 {tired, drink_coffee, assert(not tired)}
3 | {not tired.} | {no_coffee} | {no_coffee, write_thesis, assert(tired)}
4 {tired.} | {no_coffee} {tired, no_coffee, buy_coffee}
5 0

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.
Time| Program Event Model

1 P 0 {write_thesis, assert(tired) }
2 {tired.} 0 {tired, drink_coffee, assert(not tired)}
3 | {not tired.} | {no_coffee} | {no_coffee, write_thesis, assert(tired)}
4 {tired.} | {no_coffee} {tired, no_coffee, buy_coffee}
5 0 0

EVOLP — Example

write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee — tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) «— drink_coffee.
Time| Program Event Model

1 P 0 {write_thesis, assert(tired) }
2 {tired.} 0 {tired, drink_coffee, assert(not tired)}
3 | {not tired.} | {no_coffee} | {no_coffee, write_thesis, assert(tired)}
4 {tired.} | {no_coffee} {tired, no_coffee, buy_coffee}
5 0 0 {tired, drink_coffee, assert(not tired)}

Q>

Q>

Q>

<o <F

a

Q>

P2 S {r | aSSert(r) c Ml}

«O> <Fr <=r <=

o>

P2 S {r | aSSert(r) c Ml}

«O> <Fr <=r <=

o>

P2 S {r | aSSert(r) c Ml}

«O> <Fr <=r <=

o>

P2 S {r | aSSert(r) c Ml}

«O> <Fr <=r <=

o>

P2 S {r | aSSert(r) c Ml}

(O Fr 4= <

o>

® [

.-Pz ’ .-Mz Py = {r| assert(r) € M}

«O> <Fr <=r <=

o>

P2 S {r | aSSert(r) c Ml}

(O Fr 4= <

o>

&

-M2 Py, = {r | aSSert(r) c Ml}
(] Py=(r]assen(r) e Mz}

-

«O> <Fr <=r <=

o>

Py = {r| assert(r) € My}
o _

«O» «F»r «=)» «

DA

PZ - {r | aSSert(r) c Ml}

[

«O> < Fr <= <

o>

-

P2 S {r | aSSert(r) c Ml}

() I

.
3

[

&

.

(O Fr 4= <

o>

® [

Py = {r | assert(r) € M1}
Py ={r | assert(r) € Mo}

[

—{#.] Pa={rlasser(r) €M}

(O Fr 4= <

o>

[Evolution stable model)

—

Py = {r | assert(r) € M;}

.
[
.

opgelele
= EEE

«40O0>» «Fr «=)»r» «

DA

© Introduction

Logic programming

Evolving logic programs

® Transformational semantics for EVOLP

«O>» «Fr «=r «=)»

DA

[Evolving logic program] [Events) [Evolution stable models]

A4O0>» «Fr «=)» «=)>» = Q>

[Evolving logic program] [Events) [Evolution stable models]

Transformation

DA

Transformational semantics for EVOLP

[EVOIVing logic program] [Events) [Evolution stable models]

Transformation

[Logic Program]

Transformational semantics for EVOLP

[EVOIVing logic program] [Events) [Evolution stable models]

Transformation

[Logic Program]

l Stable models l

Transformational semantics for EVOLP

[EVOIVing logic program] (Events) [Evolution stable models]

Transformation

[Logic Program]

Stable models

Transformational semantics for EVOLP

[EVOIVing logic program] (Events) [Evolution stable models]

Transformation

[Logic Program]

Stable models Transformation

What is all this good for?

e shows that EVOLP can be, in fact, translated into traditional logic
programming (and how)
e shows its semantics from a different perspective

e provides a simple, straight-foward way to implement it

o definition of the transformation
e proofs of its correctness and completeness

e an implementation of propositional EVOLP

«O>» «Fr «=r «=)»

DA

How big is the transformed program?

For an input program P and an event sequence £ = (Ej, Ea, . ..

the universe &/ we have:
e transformed program is built of 2n|l{| atoms (at most)
¢ lower bound for the size of the transformed program:

n
[Pe| > n|P| 4+ |Exl
k=1

,E,) over

How big is the transformed program?

For an input program P and an event sequence £ = (Ey, E, . .., E,) over
the universe &/ we have:

e transformed program is built of 2n|l{| atoms (at most)

¢ lower bound for the size of the transformed program:

n
[Pe| > n|P| 4+ |Exl
k=1

e upper bound for the size of the transformed program:
n

7 345 — k)P +5(n—k
’P5’§2<|Pn —16- n+Z‘Ek|<(n) _'6_ (n)—|—1>>+n|l/l|
k=1

How big is the transformed program?

For an input program P and an event sequence £ = (Ey, E, . .., E,) over
the universe &/ we have:

e transformed program is built of 2n|l{| atoms (at most)

¢ lower bound for the size of the transformed program:

n
[Pe| > n|P| 4+ |Exl
k=1

e upper bound for the size of the transformed program:

n n ~ 3 n—
Pe| < = <|P R +Z\Ek|<(k)JgS(k>+1>>+n|ll|

e upper bound if input programs contain no nested asserts:

n+n
Pe| < 5 <|P| 5 +Z|Ek|n—k+ >)+nlul

k=1

o extensions of the existing implementation:
e variable support

e support for arithmetic predicates
o ..

o a different, more direct implementation that could be used on-line

«O>» «Fr «=r «=)»

DA

Q>

	Outline
	Introduction
	Logic programming
	Evolving logic programs

	Transformational semantics for EVOLP

