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Evolving Logic Programs (EVOLP)

e language based on logic programming
¢ intended for dynamic environments (e.g. multiagent systems)

e syntax is the same as the syntax of logic programs



write_thesis < not tired.
drink_coffee « tired,not no_coffee.
P= buy_coffee «— tired, no_coffee.
assert(tired) < write_thesis.
assert(not tired) < drink_coffee.
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What is all this good for?

e shows that EVOLP can be, in fact, translated into traditional logic
programming (and how)
e shows its semantics from a different perspective

e provides a simple, straight-foward way to implement it



o definition of the transformation
e proofs of its correctness and completeness

e an implementation of propositional EVOLP
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How big is the transformed program?

For an input program P and an event sequence £ = (Ej, Ea, . ..

the universe &/ we have:
e transformed program is built of 2n|l{| atoms (at most)
¢ lower bound for the size of the transformed program:

n
[Pe| > n|P| 4+ |Exl
k=1
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e upper bound for the size of the transformed program:

n n ~ 3 n—
Pe| < = <|P R +Z\Ek|<( k)JgS( k>+1>>+n|ll|

e upper bound if input programs contain no nested asserts:
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o extensions of the existing implementation:
e variable support

e support for arithmetic predicates
o ..

o a different, more direct implementation that could be used on-line
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