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Logic programming

Logic program

day ← not night.
night ← not day.

play_violin ← day.
play_piano ← night.

Stable models
M1 = {day, play_violin}
M2 = {night, play_piano}
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Evolving Logic Programs (EVOLP)

• language based on logic programming
• intended for dynamic environments (e.g. multiagent systems)
• syntax is the same as the syntax of logic programs



EVOLP – Example

P =


write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.



Time Program Event Model
1

P ∅ {write_thesis, assert(tired)}

2

{tired.} ∅ {tired, drink_coffee, assert(not tired)}

3

{not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}
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EVOLP – How it works

Evolution stable model
PnP3P2

P

E1 M1

P2 P2 = {r | assert(r) ∈ M1}E2 M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn
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What is all this good for?

• shows that EVOLP can be, in fact, translated into traditional logic
programming (and how)

• shows its semantics from a different perspective
• provides a simple, straight-foward way to implement it



Results of the thesis

• definition of the transformation
• proofs of its correctness and completeness
• an implementation of propositional EVOLP



How big is the transformed program?

For an input program P and an event sequence E = (E1, E2, . . . , En) over
the universe U we have:
• transformed program is built of 2n|U| atoms (at most)
• lower bound for the size of the transformed program:

|PE | ≥ n|P|+
n∑

k=1

|Ek|

• upper bound for the size of the transformed program:

|PE | ≤
7
2

(
|P|n

3 + 5n
6

+
n∑

k=1

|Ek|
(

(n− k)3 + 5(n− k)
6

+ 1
))

+ n|U|

• upper bound if input programs contain no nested asserts:

|PE | ≤
7
2

(
|P|n

2 + n
2

+
n∑

k=1

|Ek|(n− k + 1)

)
+ n|U|
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Future work

• extensions of the existing implementation:
• variable support
• support for arithmetic predicates
• ...

• a different, more direct implementation that could be used on-line



Thank you

Thank you.
Are there any questions?
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