
Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

Transformational semantics for
Evolving Logic Programs

Martin Slota

Supervisors: Ján Šefránek, João Alexandre Leite

March 30, 2007

Outline

1 Introduction
Logic programming
Evolving logic programs

2 Transformational semantics for EVOLP

Introduction

1 Introduction
Logic programming
Evolving logic programs

2 Transformational semantics for EVOLP

Logic programming

Logic program

day ← not night.
night ← not day.

play_violin ← day.
play_piano ← night.

Stable models
M1 = {day, play_violin}
M2 = {night, play_piano}

Logic programming

Logic program

day ← not night.
night ← not day.

play_violin ← day.
play_piano ← night.

Stable models
M1 = {day, play_violin}
M2 = {night, play_piano}

Evolving Logic Programs (EVOLP)

• language based on logic programming
• intended for dynamic environments (e.g. multiagent systems)
• syntax is the same as the syntax of logic programs

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model
1

P ∅ {write_thesis, assert(tired)}

2

{tired.} ∅ {tired, drink_coffee, assert(not tired)}

3

{not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1

P ∅ {write_thesis, assert(tired)}

2

{tired.} ∅ {tired, drink_coffee, assert(not tired)}

3

{not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P

∅ {write_thesis, assert(tired)}

2

{tired.} ∅ {tired, drink_coffee, assert(not tired)}

3

{not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅

{write_thesis, assert(tired)}

2

{tired.} ∅ {tired, drink_coffee, assert(not tired)}

3

{not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2

{tired.} ∅ {tired, drink_coffee, assert(not tired)}

3

{not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.}

∅ {tired, drink_coffee, assert(not tired)}

3

{not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅

{tired, drink_coffee, assert(not tired)}

3

{not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3

{not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3 {not tired.}

{no_coffee} {no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3 {not tired.} {no_coffee}

{no_coffee, write_thesis, assert(tired)}

4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3 {not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}
4

{tired.} {no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3 {not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}
4 {tired.}

{no_coffee} {tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3 {not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}
4 {tired.} {no_coffee}

{tired, no_coffee, buy_coffee}

5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3 {not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}
4 {tired.} {no_coffee} {tired, no_coffee, buy_coffee}
5

∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3 {not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}
4 {tired.} {no_coffee} {tired, no_coffee, buy_coffee}
5 ∅

∅ {tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3 {not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}
4 {tired.} {no_coffee} {tired, no_coffee, buy_coffee}
5 ∅ ∅

{tired, drink_coffee, assert(not tired)}

EVOLP – Example

P =

write_thesis ← not tired.
drink_coffee ← tired, not no_coffee.

buy_coffee ← tired, no_coffee.
assert(tired) ← write_thesis.

assert(not tired) ← drink_coffee.

Time Program Event Model

1 P ∅ {write_thesis, assert(tired)}
2 {tired.} ∅ {tired, drink_coffee, assert(not tired)}
3 {not tired.} {no_coffee} {no_coffee, write_thesis, assert(tired)}
4 {tired.} {no_coffee} {tired, no_coffee, buy_coffee}
5 ∅ ∅ {tired, drink_coffee, assert(not tired)}

EVOLP – How it works

Evolution stable model
PnP3P2

P

E1 M1

P2 P2 = {r | assert(r) ∈ M1}E2 M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3P2

PE1

M1

P2 P2 = {r | assert(r) ∈ M1}E2 M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3P2

PE1

M1

P2 P2 = {r | assert(r) ∈ M1}E2 M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3P2

PE1 M1

P2 P2 = {r | assert(r) ∈ M1}E2 M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2 M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}E2

M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3

P2 P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}E2

M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3

P2 P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}E2 M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2

M2

P3 P3 = {r | assert(r) ∈ M2}

E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2

M2

P3 P3 = {r | assert(r) ∈ M2}E3

M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
Pn

P3

P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2

M2

P3 P3 = {r | assert(r) ∈ M2}E3

M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
Pn

P3

P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2

M2

P3 P3 = {r | assert(r) ∈ M2}E3 M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
PnP3P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2

M2

P3 P3 = {r | assert(r) ∈ M2}

E3

M3

Pn Pn = {r | assert(r) ∈ Mn−1}

En Mn

EVOLP – How it works

Evolution stable model
PnP3P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2

M2

P3 P3 = {r | assert(r) ∈ M2}

E3

M3

Pn Pn = {r | assert(r) ∈ Mn−1}En

Mn

EVOLP – How it works

Evolution stable model

Pn

P3P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2

M2

P3 P3 = {r | assert(r) ∈ M2}

E3

M3

Pn Pn = {r | assert(r) ∈ Mn−1}En

Mn

EVOLP – How it works

Evolution stable model

Pn

P3P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2

M2

P3 P3 = {r | assert(r) ∈ M2}

E3

M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

EVOLP – How it works

Evolution stable model
Pn

P3P2

P

E1

M1

P2 P2 = {r | assert(r) ∈ M1}

E2

M2

P3 P3 = {r | assert(r) ∈ M2}

E3

M3

Pn Pn = {r | assert(r) ∈ Mn−1}En Mn

Transformational semantics for EVOLP

1 Introduction
Logic programming
Evolving logic programs

2 Transformational semantics for EVOLP

Transformational semantics for EVOLP

Evolving logic program Events Evolution stable models

Transformation

Logic Program

Stable models Transformation

Transformational semantics for EVOLP

Evolving logic program Events Evolution stable models

Transformation

Logic Program

Stable models Transformation

Transformational semantics for EVOLP

Evolving logic program Events Evolution stable models

Transformation

Logic Program

Stable models Transformation

Transformational semantics for EVOLP

Evolving logic program Events Evolution stable models

Transformation

Logic Program

Stable models

Transformation

Transformational semantics for EVOLP

Evolving logic program Events Evolution stable models

Transformation

Logic Program

Stable models Transformation

Transformational semantics for EVOLP

Evolving logic program Events Evolution stable models

Transformation

Logic Program

Stable models Transformation

What is all this good for?

• shows that EVOLP can be, in fact, translated into traditional logic
programming (and how)

• shows its semantics from a different perspective
• provides a simple, straight-foward way to implement it

Results of the thesis

• definition of the transformation
• proofs of its correctness and completeness
• an implementation of propositional EVOLP

How big is the transformed program?

For an input program P and an event sequence E = (E1, E2, . . . , En) over
the universe U we have:
• transformed program is built of 2n|U| atoms (at most)
• lower bound for the size of the transformed program:

|PE | ≥ n|P|+
n∑

k=1

|Ek|

• upper bound for the size of the transformed program:

|PE | ≤
7
2

(
|P|n

3 + 5n
6

+
n∑

k=1

|Ek|
(

(n− k)3 + 5(n− k)
6

+ 1
))

+ n|U|

• upper bound if input programs contain no nested asserts:

|PE | ≤
7
2

(
|P|n

2 + n
2

+
n∑

k=1

|Ek|(n− k + 1)

)
+ n|U|

How big is the transformed program?

For an input program P and an event sequence E = (E1, E2, . . . , En) over
the universe U we have:
• transformed program is built of 2n|U| atoms (at most)
• lower bound for the size of the transformed program:

|PE | ≥ n|P|+
n∑

k=1

|Ek|

• upper bound for the size of the transformed program:

|PE | ≤
7
2

(
|P|n

3 + 5n
6

+
n∑

k=1

|Ek|
(

(n− k)3 + 5(n− k)
6

+ 1
))

+ n|U|

• upper bound if input programs contain no nested asserts:

|PE | ≤
7
2

(
|P|n

2 + n
2

+
n∑

k=1

|Ek|(n− k + 1)

)
+ n|U|

How big is the transformed program?

For an input program P and an event sequence E = (E1, E2, . . . , En) over
the universe U we have:
• transformed program is built of 2n|U| atoms (at most)
• lower bound for the size of the transformed program:

|PE | ≥ n|P|+
n∑

k=1

|Ek|

• upper bound for the size of the transformed program:

|PE | ≤
7
2

(
|P|n

3 + 5n
6

+
n∑

k=1

|Ek|
(

(n− k)3 + 5(n− k)
6

+ 1
))

+ n|U|

• upper bound if input programs contain no nested asserts:

|PE | ≤
7
2

(
|P|n

2 + n
2

+
n∑

k=1

|Ek|(n− k + 1)

)
+ n|U|

Future work

• extensions of the existing implementation:
• variable support
• support for arithmetic predicates
• ...

• a different, more direct implementation that could be used on-line

Thank you

Thank you.
Are there any questions?

	Outline
	Introduction
	Logic programming
	Evolving logic programs

	Transformational semantics for EVOLP

