
Going places - notes on a modular development of knowledge about travel

Michael Gelfond
Computer Science Department

Texas Tech University
Lubbock, TX 79409 USA

{mgelfond }@cs.ttu.edu

Abstract

The paper presents a formalization of a comparatively simple
traveling story. The emphasis is on the development and im-
plementation of a library of knowledge modules needed for
axiomatization of journey - a movement of a group of objects
from one place (the origin) to another (the destination). The
movement should be able to follow a predefined route, and to
achieve its goal even in the presence of natural interruptions,
e.g. unexpected stops. We outline a languageM for defining
knowledge modules and for assembling them into a coherent
knowledge base in CR-Prolog - an extension of Answer Set
Prolog capable of encoding rare events. The formalization
generalizes theory of action by introducing a notion of activ-
ity - a sequence of intended actions which can be interrupted
by unexpected and unplanned events. The notion of journey
presented in the paper is a special case of a more general no-
tion of activity.

Introduction
The paper presents a formalization of a comparatively sim-
ple traveling story. The emphasis is on the development and
implementation of a library knowledge modules needed for
axiomatization of journey - a movement of a group of ob-
jects from one place (the origin) to another (the goal). The
movement should be able to follow a predefined route, and to
achieve its goal even in the presence of natural interruptions,
e.g. unexpected stops. For simplicity we will be mainly, in-
terested in whereabouts of various objects at different stages
of the journey. The following example will be used to illus-
trate the proposed methodology.

Example
Consider the following story:John and Mary decided to go
on a trip from El Paso to Dallas. On the way they planned
to stop in Lubbock to pick up Bill.
1. What is the planned trajectory of the participants?
2. Where do we expect them to be after the trip?
3. Would they visit1 Carlsbad?

Since people normally follow their plans, it is safe to assume
that the pair would leave El Paso and follow their planned

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1We understand visit as ”spending time at a place with a certain
intent”. Hence one can pass through a town without visiting it.

trajectory: El Paso,en route, Lubbock,en route, Dallas. Bill
will be in Lubbock at the time of his friends arrival and then
change his position (first toen routeand next to Dallas). The
answer to the last two questions are thereforein Dallas and
no.

Suppose now thatafter departure from El Paso Mary and
John made an unplanned stop in Carlsbad to see the cav-
erns.

Despite this unexpected event we assume that the original
intention persists, and hence after the unplanned stop the
journey will continue as planned. The new trajectory for
the pair is El Paso,en route, Carlsbad,en route, Lubbock,
en route, Dallas with Bill joining at the last leg of the jour-
ney. The answer to second question is unchanged while that
to the third one is nowyes.

To obtain these answers we need a logical language capable
of reasoning about defaults and (unexpected) exceptions to
defaults, as well as reasoning about intentions, and effects of
actions. Our language of choice is CR-Prolog (Balduccini &
Gelfond 2003b) which is an extension of Answer Set Prolog
(ASP) (Gelfond & Lifschitz 1991) - the language of logic
programs with two negations and disjunction under the an-
swer set semantics. We believe CR-Prolog to be superior to
the original ASP because of its ability of dealing gracefully
with unexpected exceptions to defaults. We assume that the
reader is familiar with the syntax and semantics of ASP. For
basic definitions and a comprehensive account of its use for
knowledge representation one may look at (Baral 2003). A
brief account of CR-Prolog will be given in the next section.

CR-Prolog
A program of (a relevant subset of) CR-Prolog is a pair con-
sisting of a signature and a collection of rules of the form:

l0 ← l1, . . . , ln, not ln+1, . . . , not lm (1)

and
r : l0 +- l1, . . . , ln, not ln+1, . . . , not lm (2)

wherel1, . . . , ln are literals, andr is a term representing the
name of the rule. Rules of type (1) and (2) are calledregular
andconsistency restoringrules (cr-rules) respectively. The
set of regular rules of cr-programΠ will be denoted byΠr;
the set of cr-rules ofΠ will be denoted byΠcr. By α(r) we

denote a regular rule obtained from a consistency restoring
rule r by replacing +- by←; α is expanded in a standard
way to a setR of cr-rules.

A minimal (with respect to set theoretic inclusion) collection
R of cr-rules ofΠ such thatΠr∪α(R) is consistent (i.e. has
an answer set) is called anabductive supportof Π.

A setA is called ananswer setof Π if it is an answer set of
a regular programΠr ∪ α(R) for some abductive supportR
of Π.

Example: Consider a programP

p(X) :- not ab(X).
ab(1).
q(2).
s(X) :- p(X),q(X).
r(X) : ab(X) +-.

The program includes a default with an exception,1, a par-
tial definition ofs in terms ofp andq, and consistency restor-
ing rule which acknowledges the possible existence of un-
known exceptions to the default. Since normally such a pos-
sibility is ignored the answer set of the program consists of
its facts and atomsp(2), s(2).

Suppose now that the program is expanded by a new atom,
-s(2). The regular part of the new program has no answer
set. The cr-rule solves the problem by assuming that2 is
a previously unknown exception to the default. The result-
ing answer set consists of the program facts and the atom
ab(2). The experimental system,crmodels(Kolvekal 2004),
computes answer sets of programs of CR-Prolog. It can be
downloaded from

http://krlab.cs.ttu.edu/˜marcy/crmodels/

It is also useful to download the output formatting program
mkatomsfrom

http://krlab.cs.ttu.edu/˜marcy/mkatoms/

To run a program of CR-Prolog one can store it in a file, say,
F and type the command line

crmodels F | mkatoms

Even though the above programP is syntactically and se-
mantically correct,crmodelswill, unfortunately, be unable
to accept it as a correct input. To make it work one needs to
either ground the variables in the cr-rule replacing it by

r(1) : ab(1) +-.
r(2) : ab(2) +-.

or use the input language of Lparse - a version of ASP im-
plemented in an answer set solver Smodels (Niemela & Si-
mons 2000). In particular we are required to define the types
of variables used in the names of cr-rules. In our case this
can be done by statements

const n = 2.
object(1..n).
#domain object(X).

which guarantee that the variableX takes on values from
the set{1, . . . , n} with n = 2.

Building the Library (actionand atomic move)
We start with the development of several library modules
which may be used to describe behavior of agents in dy-
namic domains. The underlying model of such a domain is
given by a transition diagram. Its states are sets of fluents,
i.e. (possibly partial) functions of time-steps, and its arcs
are labeled by actions. Paths of the diagram correspond to
all possible trajectories of the dynamic domain. We briefly
outline a language,M, for defining knowledge modules and
assembling them into a coherent knowledge base. Work on
design and implementation ofM is in its initial stage. The
language is mentioned primarily in a hope to stress the need
for such languages and to elicit comments. Our long term
goal is to build a library of classes written inM and orga-
nized into a hierarchy.

Syntactically class definition ofM is of the form:

class class_name : type
body

The first line indicates the position of the class in the class
hierarchy. Thebodyconsists of two parts: the class’ signa-
ture and the class’ axioms. As our first example we define
a classaction which contains the ASP representation of the
inertia axiom (Hayes & McCarthy 1969) and the basic ax-
ioms for intended actions.

Action

class action : top
signature
sorts: step,action,fluent,range(fluent).
holds(range(fluent), fluent, step).
occurs(self, step).
intend(self, step).
defined(fluent,step).
start, end : self --> step.
next(step,step).

The namesstep, action, fluent and range of uninterpreted
sorts are followed by the list of relations used by the ax-
ioms of the class. Sorts of parameters of a predicate sym-
bol are listed in parentheses. Every time an instancea of
classaction is createdselfwill be replaced bya. Intuitively,
holds(y, f(x), i) says that at stepi, fluent f(x) has value
y; statementoccurs(a, i) says that actiona was executed at
stepi; intend(a, i) states that at stepi the agent came to a
decision to execute actiona. (Note that in accordance with
the theory of intentions from (Baral & Gelfond 2005) this
implies thata will be actually executed as soon as possible).
Statementdefined(f, i) holds if fluentf is defined at step
i; next(i1, i2) indicates thati1 immediately followsi2.

The second part of the class definition starts with the word
axioms, and is followed by the list of axioms of the class.

axioms
#domain step(I;I1;I2).
#domain fluent(F;F1;F2).
#domain action(A;A1;A2).

Thedomainstatements above define sorts of variables used
in the axioms of the class. (As mentioned before this syn-
tax is borrowed from Smodels and is understood by CR-
Prolog). Thedomainaxioms are needed only to make the
resulting program runnable on a grounding program Lparse,
and hence on CR-Prolog. It is worth noting that the nec-
essary typing information is present in the signature part of
the definition and can be, in the future, used by a ground-
ing program incorporated inM. This may lead to a better
grounding schema which makes these axioms unnecessary.
The details of this will be discussed in a future paper onM.
We also have theinertia axiomwhich says that things nor-
mally stay as they are:

holds(Y,F,I1) :-
next(I1,I),
range(Y,F),
defined(F,I1),
holds(Y,F,I),
not -holds(Y,F,I1).

Note thatrange(Y, F) anddefined(F, I1) guarantee that
Y belongs to the range of fluentF which is defined onI1.
Next we include basic axioms forintended actions(Baral &
Gelfond 2005):

occurs(A,I) :-
intend(A,I),
not -occurs(A,I).

intend(A,I1) :-
next(I1,I),
intend(A,I),
-occurs(A,I),
not -intend(A,I1).

The first axiom says that normally the agent does not pro-
crastinate in acting on his intentions. The second ensures
that unrealized intentions persist. We also need auxiliary
axioms:

-holds(Y1,F,I) :-
range(Y1,F),
range(Y2,F),
holds(Y2,F,I),
Y1 != Y2.

start(A,I) :-
occurs(A,I).

end(A,I+1) :-
occurs(A,I).

and

-occurs(A,I2) :-
occurs(A,I1),
neq(I1,I2).

which state that fluents are functions, that execution of ac-
tions take exactly one step, and that action names stand
for particular occurrences of actions. The last requirement
should be contrasted to the treatment of names in many
other action formalisms, which allow histories of the form
occurs(a, 1), occurs(a, 2). Herea names an action class
whose instances are specified by the second parameter of

occurs. In our formalism such a history will be inconsis-
tent. We believe that the disadvantage of the necessity to
introduce multiple names will be offset by the comparative
simplicity in dealing with sequences of actions.

This class can be easily extended by, say, allowing non-
inertial fluents, continuous as well as discrete processes, etc.
But we hope that this comparatively simple class is sufficient
to illustrate our methodology.

There are three operations which can be applied to a classC
ofM. It can be

1. refined to define a new, more specific class,C0;

2. inherited by some other class,C1;

3. used to create a particular instance,c of C.

To illustrate the first two operations we use the classaction
to define a new class,atomic move.

Atomic Move

An actionatomic movechanges locations of its participants
from the action’s origin to its destination. Instances of
atomic movemay be supplied with a set of possible loca-
tions, the destination and the origin of the move, and the
moves participants. Here is the definition:

class atomic_move : action
signature

sorts: location, object.
origin, dest : self --> location.
participant(object,self).
fluent loc : self+object --> location.

The first line ensures that classatomic moveinherits the
signature and the axioms of classaction. It has additional
sorts, location and object. Functionsorigin and dest
map the move into the corresponding locations. Relation
participant lists the objects (people and things) involved
in the move;loc(x) is a fluent which gives the position of
a participantx before and after the move. We also find it
convenient to define fluentloc(m) for atomic movem. The
fluent is defined at two time points - the start and the end
of the execution ofm. The atomic move,m, changes its
position from the origin to the destination.

Now we define the axioms ofatomicmove.

axioms
#domain object(O;O1;O2).
#domain location(L;L1;L2).
#domain atomic_move(M;M1;M2).

The first three statements define the new sorted variables.
Axiom

action(M).

says that atomic moves are actions. Axioms

fluent(loc(O)). range(L,loc(O)).
fluent(loc(M)). range(L,loc(M)).

define the corresponding fluents and their ranges. Axioms

defined(loc(M),I) :-
start(M,I).

defined(loc(M),I) :-
end(M,I).

-defined(loc(M),I) :-
not defined(loc(M),I).

defined(loc(O),I).

define the domains of fluents. They state that fluentloc(M)
is defined at the beginning and the end of the execution of
move, while fluentloc(O) is defined at any step of a pos-
sible trajectory of the domain. Note that these axioms pop-
ulate sortsfluent, range(fluent)andaction which were left
uninterpreted in the classaction.

The next statement represents logic programming encoding
of dynamic causal law for an atomic move. Recall that in ac-
tion languages (see for instance (Gelfond & Lifschitz 1998)
dynamic causal law is a statement of the form

a causesf if p (3)

which says that ifa were executed in a state satisfying con-
ditions fromp thenf will be true in a successor state ofa.
The statement
holds(Y,loc(M),I1) :-

next(I1,I),
range(Y,loc(M)),
occurs(M,I),
dest(Y,M).

is a direct translation of the corresponding causal law which
says that the atomic move is always successful, i.e. moves
m to its destination.

Locations of the participants of an atomic movem are de-
termined by the location ofm. In action languages this is
expressed by a state constraint - statement of the form

f if p (4)

which says that every state of the domain satisfying con-
ditions fromp also satisfiesf . The constraint determining
locations of objects has the form:
loc(O) = Y if participant(O, M), loc(M) = Y .
The logic programming translation of this constraint looks
as follows:
holds(Y,loc(O),I) :-

range(Y,loc(M)),
participant(O,M),
holds(Y,loc(M),I).

The next statement represents an executability condition for
atomic moveM . It says that one cannot move to its current
location.
-occurs(M,I) :-

dest(L,M),
holds(L,loc(M),I).

We also need the collection ofinitialization axioms. These
axioms are not needed for the description of successor states
of atomic move. Their role is to ensure that a given scenario
(collection of observations and occurrences of actions at par-
ticular time steps) defines correct collection of trajectories of
the diagram.

1 {holds(X,loc(O),1) : location(X)} 1.
holds(L,loc(M),I) :-

occurs(M,I),
origin(L,M).

moved(O,I) :-
participant(O,M),
occurs(M,I).

:- next(I1,I),
participant(O,M),
holds(L1,loc(O),I),
holds(L2,loc(O),I1),
L1 != L2,
not moved(O,I).

-holds(L,loc(M),I) :-
occurs(M,I),
dest(L,M).

The first initialization axiom is written in the input language
of Lparse. Informally its ground instance for objecto can be
viewed as a shorthand for

(i) a disjunction

holds(l1, loc(o), 1) or . . . or holds(ln, loc(o), 1)

where{l1, . . . , ln} is the range ofloc(o);

(ii) constraints

:- holds(li, loc(o), 1), holds(lj , loc(o), 1)

for everyli 6= lj .

The axioms ensures that in the initial state every object of
the domain has a unique position. Of course if this position
is unknown the formalization may (correctly) have multiple
models. To understand the need for the second initializa-
tion axiom consider a scenario represented by the statement
occurs(a, 1) wherea is an atomic move with a participant
o and originl. Without the connection between the origin
of the move and positions of its participant the program will
have multiple models containingholds(li, loc(o), 1) for ev-
ery possible initial locationli of o. The connection estab-
lished by the second axiom eliminates all the models except
the one containingholds(l, loc(o), 1), which corresponds to
the correct trajectory. The need for the next two axioms is il-
lustrated by the scenarioholds(l1, loc(o), 1), occurs(a, 2).
It is easy to check that, sinceholds(l, loc(o), 2) derived by
the second initialization axiom defeats the inertia, the pro-
gram will have an answer set containing a ”non-existent”
trajectory in whicho miraculously changes its position from
l1 to l. The third and fourth initialization axioms eliminate
this possibility2.

Formalizing the Story
The library consisting of classesactionandatomicmovecan
be used to create instances of actions, and knowledge bases

2Admittedly this solution of the problem seems to be overly
complex. There is a simpler and more elegant solution but it re-
quires extension of the language of action theories by new predi-
cate symbols for observations in the style of (Balduccini & Gelfond
2003a). We plan to investigate this approach in our future work.

containing information about these instances. To illustrate
this let us consider a simplified description of the first leg
of the journey described in our main story:John and Mary
went from El Paso to Lubbock. The statement describes an
action movewith clearly specified origin, destination, and
participants. Here is a logical representation,P1, of this
story inM:

knowledge_base P1
include ’library’
instance a : atomic_move

origin = el_paso
dest = lubbock
participant(mary)
participant(john).

regular part
const n = 2.
step(1..n).
next(I+1,I) :- I < n.
occurs(a,1).

A knowledge base ofM consists of three parts: theli-
brary of classes, the set ofinstancesof classes from this
library, and theregular part - collection of rules of CR-
Prolog. We assume that the library ofP1 contains classes
actionandatomicmove. Instancea is defined as an instance
of atomicmove by Mary and John from El Paso to Lubbock.
Note that for simplicity statements in the body of the defini-
tion ofa omit the second parametera of the functions,origin
anddestinationand predicate symbolparticipant. The first
three statements of the regular part ofP1 (written in the input
language of Lparse) define two consecutive steps,1 and2.
The last sentence says that instancea of atomicmove occurs
at step1. A not yet existent implementation ofM will take
a knowledge baseP1, extract definitions ofatomic moveand
action from the library, and create a logic program,M(P1)
consisting of:

1. Direct translation of the body of instancea into the lan-
guage ofatomic move:

atomic_move(a).
origin(el_paso,a).
dest(lubbock,a).
participant(mary,a).
participant(john,a).

2. The list of atoms describing (previously uninterpreted)
sortslocationandobjectof atomic move:

location(lubbock).
location(el_paso).
object(mary).
object(john).

3. Axioms from classesactionandatomic move.

4. Regular rules ofP1.

Note that the information necessary for forming the lists
from (1) and (2) can be extracted fromP1 and the signa-
ture parts of classesactionandatomic move. The resulting
program contains no uninstantiated sort.

To display the locations of participants before and after the
move we may use the rules:

loc(O,Y,I) :-
range(Y,loc(O)),
holds(Y,loc(O),I).

hide. show loc(O,Y,I).

To run the program one can store it in a file, say,F and type

crmodels F | mkatoms

The program will display

loc(john,el_paso,1)
loc(john,lubbock,2)
loc(mary,el_paso,1)
loc(mary,lubbock,2)

To better understand our formalization of intended actions
from the classaction it may be instructive to look at pro-
gramsQ1 and Q2. Q1 is obtained by replacing the rule
occurs(a, 1) of P1 by

intend(a,1).

ProgramQ2 is obtained by replacingconst n = 2 and
occurs(a, 1) of P1 by

const n = 3.
intend(a,1).
-occurs(a,1).

To display occurrences ofa we add rules:

o(A,I) :-
occurs(A,I).

show o(A,B).

Note that the output ofQ1 is o(a, 1) - the intended action
occurred immediately. The output ofQ2 is o(a, 2) - inten-
tion to performa which could not be realized at1 persisted,
anda occurred at2.

Building the Library (Sequences)
In this section we introduce a few more simple classes which
will be used in our formalization of the traveling story.

In addition to single actions we often need to represent se-
quences of actions, and even sequences of such sequences,
etc. The standard list operator[] of classical Prolog allows
simple and elegant representation of such objects. This rep-
resentation however leads to infinite Herbrand universe of
the program which rules out reasoning with current answer
set solvers. As a result sequences = 〈s1, . . . , sk〉 inM will
be represented by the collection of atoms of the form

length(k,s).
index(1..k).
component(sj,j,s)

where1 ≤ j ≤ k. (We will of course assume that compo-
nentssj ’s of s are defined before thes.) Now we are ready
to expand our library by a new class,sequenceof basic ele-
ments, sequences of basic elements, etc.

Sequence

class sequence(element)
signature
sorts : index
component(sequence+element,index,sequence)
length : self --> index
axioms
#domain index(K;K1;K2).
sequence(X) :-

component(Y,K,X).

The class defines sequences constructed from the basic el-
ements, i.e. instances of the classelement. If a1, a2, and
a3 are basic elements, then sequencess1 = 〈a2, a3〉, s2 =
〈a1, s1〉, etc. are instances of the classsequence(element).
To create an instance of this class one has to have a library
classelementwhose axioms will be added to the axioms of
sequence(element). It maybe useful to expand the latter ax-
ioms by defining various operations on sequences but we
will not discuss this possibility here. The next class will be
useful for formalizing our travel story which can be seen as
a sequence of actions.

Action Sequence

The classaction sequenceis built by setting the parameter
elementof the classsequenceto actionand by adding addi-
tional axioms defining the execution of an action sequence
and the notion of its intended execution.

class action_sequence : sequence(action)
signature
occurs(action_sequence,step)
intend(action_sequence,step)
start, end : action_sequence --> step
axioms
#domain action_sequence(S;S1;S2).
sequence(S).
element(A).
element(S).
#domain element(V;V1;V2).

Axioms

occurs(V,I) :-
occurs(S,I),
component(V,1,S).

occurs(V2,I1) :-
occurs(S,I),
component(V2,K+1,S),
component(V1,K,S),
end(V1,I1).

say that execution of an action sequenceS at stepI implies
execution atI of its first component, and that execution of
the(K + 1)’th component ofS starts immediately after the
end of the execution of itsK ’th component. Similarly, the
next two axioms propagate intentions from execution of se-
quences to executions of its component.

intend(V,I) :-
intend(S,I),
component(V,1,S).

intend(V2,I1) :-
intend(S,I),

component(V2,K+1,S),
component(V1,K,S),
end(V1,I1).

Finally we define beginning and end of the execution of a
sequenceS and the step when the intent to executeS was
formed.

start(S,I) :-
occurs(S,I).

end(S,I) :-
length(N,S),
component(V,N,S),
end(V,I).

start_intent(S,I) :-
intend(S,I).

Formalizing the Story (continued)
Now we show how to use the newly created library to for-
malize the first part of our traveling story. We will do it by
creating an instance of action sequence,m, consisting of two
consecutive moves,a1 anda2.

knowledge_base P2
include ’library’
instance a1 : atomic_move

origin = el_paso
dest = lubbock
participant(mary).
participant(john).

instance a2 : atomic_move
origin = lubbock
dest = dallas
participant(mary).
participant(john).
participant(bob).

instance m : action_sequence
const k = 2.
index(1..k).
component(a1,1,m).
component(a2,2,m).

regular part
const n = 2.
step(1..n).
next(I+1,I) :- I < n.
occurs(m,1).

The programM(P2) consists of axioms from the library
classes and collection of facts

% instance a2 : atomic_move
atomic_move(a1).

origin(el_paso,a1).
dest(lubbock,a1).
participant(mary,a1).
participant(john,a1).

% instance a2 : atomic_move
atomic_move(a2).

origin(lubbock,a2).
dest(dallas,a2).
participant(mary,a2).
participant(john,a2).

participant(bob,a2).
% instance m : action_sequence
action_sequence(m).

const k = 2.
index(1..k).
length(k,m).
component(a1,1,m).
component(a2,2,m).

% Sorts extracted from instances
location(lubbock).
location(el_paso).
location(dallas).
object(mary).
object(john).
object(bob).
% Regular part
const n = 3.
step(1..n).
next(I+1,I) :- I < n.
intend(m,1).

The output of this program is

loc(bob,lubbock,1)
loc(john,el_paso,1)
loc(mary,el_paso,1)
o(a1,1)
loc(bob,lubbock,2)
loc(john,lubbock,2)
loc(mary,lubbock,2)
o(a2,2)
loc(bob,dallas,3)
loc(john,dallas,3)
loc(mary,dallas,3)

which is the trajectory described by the first part of our trav-
eling story. It is not clear however how to elegantly expand
this formalization by the information from the second part
of the story. Our theory of intention for action sequences
does not appear to be sufficiently elaboration tolerant to al-
low the intervention of unplanned actions. The classactivity
introduced in the next section will be used to remedy the
situation.

Building the Library (Activity)
A new class,activity, is a specialization of the classac-
tion sequence. It allows for unplanned, unexpected ac-
tions. The signature ofactivity contains two types of
actions: planned and possible. Actions used in rela-
tion component(a, k, s) inherited fromaction sequenceare
planned. The statement is now read as ”a is thek-th planned
action of activitys”. A new relation,possible act(a, s) says
thata is a possible unplanned action which can be unexpect-
edly executed by (participants of)s. This would allow us to
represent planned trip El Paso, Lubbock, Dallas as well as
an unexpected visit to Carlsbad. A relationact of(a, s) is
satisfied by the union of planned and possible actions ofs.

Activity

class activity : action_sequence
signature

possible_act(action,self)
act_of(action,self)

axioms
action_sequence(X) :-

activity(X).
planned_act(A,S) :-

component(A,K,S).
planned_act(A,S2) :-

component(S1,K,S2),
planned_act(A,S1).

act_of(A,J) :-
planned_act(A,J).

act_of(A,J) :-
possible_act(A,J).

The first five axioms define two of the new relations. The
information about possible actions will be supplied by the
definition of the corresponding activity instance. The next
axiom is a substantial addition to the formalization of inten-
tions contained inaction sequence. It says thatno intended
action remains at the end of the activity.

:- intend(A,n).

To satisfy this constraint the activity may use its possible
actions. This is expressed by the only consistency-restoring
rule of this formalization:

r(A,I):occurs(A,I) +- possible_act(A,S).

In the next section we use the new class to formalize the
notion of journey.

Building the Library (Journey)
A journeyor a trip is an activity which is allowed to have
many participants who may join and leave it at any reason-
able stepi. The journey may follow complex routes and stop
in unplanned places. To formalize the notion of journey we
first expand our library by new classes:depart arrive, em-
bark anddisembark. We start with definingdepartandar-
rive which can be viewed as specializations ofatomicmove.

Depart

class depart : atomic_move
axioms

#domain depart(D;D1;D2).
atomic_move(D).
dest(en_route,D).

Arrive

class arrive : atomic_move
axioms

#domain arrive(Arr;Arr1;Arr2).
atomic_move(Arr).
origin(en_route,Arr).
-occurs(Arr,I) :-

-holds(en_route,loc(Arr),I).

Now a simple movem from locationl1 to locationl2 can
be represented by an action sequence which consists of de-
parting l1 and arriving atl2. The intent of performingm
will, under normal circumstances lead to the corresponding

departure and arrival. By expandingm with a set of possi-
ble actions we can turn it into activity. Now, in contrast to
atomic move,m can be interrupted by, say, unexpected stop
at some locationl3. In this case we expect the intention to
persist and the trip to departl3 and to arrive atl2.

Our journey will normally start with actionembarkand end
with action disembark. (Of course some participants will
be able to embark and disembark while the journey is in
progress). The following terminology will be useful for
defining embarkand disembark: if e is an action of, say,
John and Mary embarking on a tripm then John and Mary
areparticipantsof e andm is its target. We will also need
a fluentis participant(o,m) which holds at stepi if, at i,
objecto is a participant of tripm. Clearly, execution ofe
causes the fluentis participant(john, m) to become true.

Embark

class embark : action
target(self,activity)
participant(object,self)
fluent is_participant :

object * self --> boolean

Note that the (not yet developed) implementation ofM will
make sure thatembarkinherits axioms ofactivity.

axioms
#domain embark(E;E1;E2).
action(E).
fluent(is_participant(O,V)).
range(true,is_participant(O,V)).
range(false,is_participant(O,V)).

The above mentioned causal law has the form

holds(true,is_participant(O,V),I1) :-
next(I1,I),
occurs(E,I),
target(V,E),
participant(O,E).

The time span of the new fluent is given by

defined(is_participant(O,V),I) :-
start(V,I1),
end(V,I2),
I1 <= I, I <= I2.

-defined(is_participant(O,V),I) :-
not defined(is_participant(O,V),I).

We also have two executability conditions:

-occurs(E,I) :-
target(V,E),
holds(en_route,loc(V),I).

-occurs(E,I1) :-
target(V,E),
next(I2,I1),
holds(L1,loc(V),I2),
participant(O,E),
holds(L2,loc(O),I1),
L1 != L2.

To save space we’ll omit a similar definition ofdisembark.

Journey

By a journey we mean an activity consisting of atomic
movesdepart and arrive, and actionsembarkand disem-
bark. For simplicity assume that

1. at stepi of the journey no actions are performed at differ-
ent locations;

2. atomic moves of the journey have no explicitly specified
participants. Participation in the journey is fully con-
trolled by actionsembarkanddisembark.

3. During the life of a journey at least one of its actions is
performed at each time-step.

class journey : activity
axioms
#domain journey(J;J1;J2).
activity(J).

We start with axioms defining a fluentloc(J).

fluent(loc(J)).
range(L,loc(J)).
defined(loc(J),I) :-

start(J,I1),
end(J,I2),
I1 <= I, I <= I2.

-defined(loc(J),I) :-
not defined(loc(J),I).

The next axiom is a state constraint which defines the loca-
tion of a journey in terms of locations of actions which hap-
pen during its life span (Assumption2 above insures consis-
tency of this definition).

holds(Y,loc(J),I) :-
act_of(A,J),
range(Y,loc(A)),
holds(Y,loc(A),I).

The next axiom relates locations of two consecutive actions.

holds(Y,loc(A2),In) :-
next(In,I),
range(Y,loc(A1)),
range(Y,loc(A2)),
start(J,I1),
end(J,I2),
I1 <= I, I < I2,
occurs(A1,I),
occurs(A2,In),
holds(Y,loc(A1),In).

It says that if an activity actionA1 ends at locationY then
the next activity action,A2, starts atY . Next we have the
state constraint which says that participants share their loca-
tion with the journey,

holds(Y,loc(O),I) :-
range(Y,loc(J)),
holds(true,is_participant(O,J),I),
holds(Y,loc(J),I).

and rules representing constraints (1) - (3) we imposed on
our journeys.

Constraint 1:

:- act_of(X1,J),
act_of(X2,J),
occurs(X1,I),
occurs(X2,I),
holds(L1,loc(X1),I),
holds(L2,loc(X2),I),
neq(L1,L2).

Constraint 2:

:- act_of(M,J),
participant(O,M).

Constraint 3:

something_happend(I) :-
occurs(A,I).

:- act_of(X1,J),
act_of(X2,J),
occurs(X1,I),
next(I1,I),
next(I2,I1),
occurs(X2,I2),
not something_happend(I1).

Formalizing the story
Now we show how the classjourneycan be used to represent
our original traveling story.

knowledge_base Q
include ’library’

We start with creating instances of relevant actions.

instance d(L) : depart
origin = L

instance a(L) : arrive
dest = L

instance m : journey
const k = 6
index(1..6)
component(e1,1,m).
component(d(el_paso),2,m)
component(a(lubbock),3,m)
component(e2,4,m)
component(d(lubbock),5,m)
component(a(dallas),6,m)
possible_act(a(L),m)
possible_act(d(L),m)

instance e1 : embark
target(m,e1).
participant(mary,e1)
participant(john,e1)

instance e2 : embark
target(m,e2)
participant(bob,e2)

Running this program together with a regular part

const n = 9.
intend(m,1).

will output the first intended trajectory. To save space we
only show the output for Mary and Bob.

loc(bob,lubbock,1) loc(mary,el_paso,1)
o(e1,1)
loc(mary,el_paso,2) loc(bob,lubbock,2)
o(d(el_paso),2)
loc(mary,en_route,3) loc(bob,lubbock,3)
o(a(lubbock),3)
loc(mary,lubbock,4) loc(bob,lubbock,4)
o(e2,4)
loc(mary,lubbock,5) loc(bob,lubbock,5)
o(d(lubbock),5)
loc(mary,en_route,6) loc(bob,en_route,6)
o(a(dallas),6)
loc(mary,dallas,7) loc(bob,dallas,7)

The unintended stop in Carlsbad can be represented by sim-
ply expanding the regular part by

occurs(a(carlsbad),3).

Now the output will be

loc(bob,lubbock,1) loc(mary,el_paso,1)
o(e1,1)
loc(mary,el_paso,2) loc(bob,lubbock,2)
o(d(el_paso),2)
loc(mary,en_route,3) loc(bob,lubbock,3)
o(a(carlsbad),3)
loc(mary,carlsbad,4) loc(bob,lubbock,4)
o(d(carlsbad),4)
loc(mary,en_route,5) loc(bob,lubbock,5)
o(a(lubbock),5)
loc(mary,lubbock,6) loc(bob,lubbock,6)
o(e2,6)
loc(mary,lubbock,7) loc(bob,lubbock,7)
o(d(lubbock),7)
loc(mary,en_route,8) loc(bob,en_route,8)
o(a(dallas),8)
loc(mary,dallas,9) loc(bob,dallas,9)

Note that the unexpected stop in Carlsbad happened when
the journey,m, was intending to arrive in Lubbock. After
finding itself on the ground in Carlsbad it ”tries” to perform
the next intended actiona(lubbock). Since arrival is exe-
cutable only if the trip isen routethis cannot be done. Hence
the trip first performs the actiond(carlsbad) ”found” by the
consistency restoring rule of the classactivity.

The computation performed by the program takes a consid-
erable amount of time. The example above took almost a
minute to run. The performance can be substantially im-
proved by improving the efficiency ofcrmodels. (There is
some ongoing work in this direction). Another source of in-
efficiency is the size of a grounding program. We hope that
this can be reduced by supplyingM with a smart grounding
mechanism independent of Lparse. Note also that if pro-
gramQ were written in a fully developed and implemented
M the sorts, e.g.location andobjectwould be computed
automatically. More importantly the program would be able

to save the writer a substantial amount of time by warning
him about a number of errors caused by misspelled names,
missing parameters, change of parameters’ order, etc.

Discussion
In this paper

1. We introduced an ASP based theory, say,A of activity -
a sequence of intended actions together with a collection
of possible events which can interfere with the agent’s in-
tentions.A includes ASP axioms describing the effects of
actions and action sequences. In addition it contains a new
theory of intentions which expands the one described in
(Baral & Gelfond 2005).A allows us to reason about the
behavior of agent(s) performing an intended activity (even
in the presence of possible unexpected interruptions).

2. We used the theory of activity to formalize the notion of a
journey, i.e. the act of traveling from one place to another.
A journey normally has many participants who may join
and/or leave it at any reasonable stepi. It may follow
complex routes and stop in unplanned places.

3. We used the example of building axioms ofjourney to
illustrate our methodology of using ASP for formalizing
common-sense knowledge.

4. The axioms were used to formalize a simple example of a
journey with an unexpected stop.

5. We also outlined the basic idea of the languageM for
defining knowledge modules and assembling them into a
coherent knowledge base. Since the language is in the be-
ginning stages of its development our description is rather
informal. We hope however that it may give some useful
insight into the basic features of the language.

The axioms of the classjourneyhave grown from those of
the travel module presented in (Baral, Gelfond, & Scherl
2004). The structure of formalization however is substan-
tially improved and generalized. It is based on a simple, but
hopefully useful, notion of activity3. The use of CR-Prolog
for formulating the theory of intentions is new. It allows
the journey to resume attempts to achieve its intended goals
after the unexpected interruptions.

A number of formal languages and techniques were used
in the past to accurately formalize various traveling stories.
(see for instance (Lifschitz 2000), (Mueller 2004) among
others). The former uses the formalism from (Giunchiglia
et al. 2004) while the later is based on Circumscriptive
Event Calculus from (Shanahan 1995). In these and other
cases the emphasis and the techniques used were substan-
tially different from those presented in this paper. There is
also a number of proposals for extensions of the ASP Pro-
log and/or action languages which provide means for mod-
ular development of larger programs. many of them address
problems similar to those confronted byM. The language,
DLT, suggested in (Calimeriet al. 2004) expands ASP with
templates. The existing implementation is built on top of the

3I borrowed the term from C. Baral who seems to use it in a
substantially more general way.

powerful answer set solver DLV (Calimeriet al. 2002). A
template

#template max[p(1)](1) {
exceeded(X) :- p(X), p(Y), Y > X.
max(X) :- p(X), not exceeded(X).
}

of DLT is defining ”the predicatemax, intended to compute
the maximum value over the domain of a generic predicate
p”. The next two rules

:- max[w(*)](X), X > 100.
:- max[v(*)](X), X > 50.

say that no number satisfying propertyw can be greater than
100 and no number satisfying propertyv can be greater than
100. A sophisticated matching algorithm translates a pro-
gramP1 in DLT into the corresponding ASP programP1.
The part ofM presented in this paper seems to address
problems somewhat orthogonal to those dealt with in DLT.
We are more interested in providing a simple mechanism for
organizing modules (especially those needed for reasoning
about dynamic domains) into a hierarchy, and in using this
hierarchy for building knowledge bases. It seems that the
reuse of rules similar to those defined in the DLT template
maxcan be achieved by reifying properties of the original
language. A macro, say,

#reify(p)

occurring in a knowledge base will be replaced by

is_a(X,p) :- p(X)

The general definition ofmaxwill be given by rules

exceeded(X,S) :-
is_a(X,S),
is_a(Y,S),
Y > X.

max(X,S) :-
is_a(X,S),
not exceeded(X,S).

To place the limit on the size of integers satisfying property
w we say

#reify(w).
:- max(X,w),X > 100.

Similarly for v. The method lacks the power of the DLT
templates but it may be still interesting to see how far one
can go in the reuse of rules with this simple mechanism.
Another paper relevant to our work is (Gustafsson & Kvarn-
strom 2004), in which the authors investigate the applica-
bility of the object-oriented paradigm to modeling complex
dynamic domains. This work contains ideas which are in
many respect similar to that ofM. They have a hierarchy of
classes; theirmethodsare somewhat similar to ouraxioms;
there is an intuitive correspondence between ourinstances
and theirCall macro, etc. Of course, unlikeM, their system,
TAL-C, is based on Temporal Action Logic which causes
some differences in the approaches. We plan to further study
this work and see if some of its features and methodologi-
cal insights can be incorporated in our work. In particular

we are interested in the way they call methods over inter-
vals of time. Two papers, (Anwar, Baral, & Dzifcak 2006)
and (Lifschitz & Ren 2006), presented at this conference are
also closely related to our research. How much of this work
can be used in addition to (instead of) the features ofM
presented here is the subject of future research. In the au-
thor’s opinion much more experience is needed before the
community will be able to come up with a definite solu-
tion to the problem of structuring even comparatively simple
knowledge bases.

Acknowledgment
The author would like to thank Chitta Baral and Vladimir
Lifschitz for useful discussions on the subject of this paper,
and to one of the anonymous reviewers for drawing our at-
tention to the paper (Gustafsson & Kvarnstrom 2004). He is
also grateful to Nasa (contract NASA-NNG05GP48G) and
Arda for supporting this research.

References
Anwar, S.; Baral, C.; and Dzifcak, J. 2006. Macros, macro
calls and use of ensembles in modular answer set program-
ming. AAAI 2006 Spring Symposium Series. (to appear).

Balduccini, M., and Gelfond, M. 2003a. Diagnostic rea-
soning with A-Prolog.Journal of Theory and Practice of
Logic Programming (TPLP)3(4–5):425–461.

Balduccini, M., and Gelfond, M. 2003b. Logic Programs
with Consistency-Restoring Rules. In Doherty, P.; Mc-
Carthy, J.; and Williams, M.-A., eds.,International Sympo-
sium on Logical Formalization of Commonsense Reason-
ing, AAAI 2003 Spring Symposium Series, 9–18.

Baral, C., and Gelfond, M. 2005. Reasoning about In-
tended Actions. InProceedings of AAAI05, 689–694.

Baral, C.; Gelfond, M.; and Scherl, R. 2004. Using answer
set programming to answer complex queries. InProceed-
ings of Workshop on Pragmatics of Question Answering
at HLT-NAAC2004 (Human Language Technology - An-
nual Meeting for North American Association for Compu-
tational Linguistics).

Baral, C. 2003. Knowledge Representation, Reasoning,
and Declarative Problem Solving. Cambridge University
Press.

Calimeri, F.; Dell’Armi, T.; Eiter, T.; Faber, W.; Gottlob,
G.; Ianni, G.; Ielpa, G.; Koch, C.; Leone, N.; Perri, S.;
Pfeifer, G.; and Polleres, A. 2002. The DLV System. In
Flesca, S., and Ianni, G., eds.,Proceedings of the 8th Euro-
pean Conference on Artificial Intelligence (JELIA 2002).

Calimeri, F.; Ianni, G.; Ielpa, G.; Pietramala, A.; and San-
toro, M. 2004. A system with template answer set pro-
grams. InJelia06, 693–697.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing365–385.

Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on AI3(16):193–210.

Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories.Artificial
Intelligence153:105–140.
Gustafsson, J., and Kvarnstrom, J. 2004. Elaboration tol-
erance through object-orientation.Artificial Intelligence
153:239–285.
Hayes, P. J., and McCarthy, J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. In
Meltzer, B., and Michie, D., eds.,Machine Intelligence 4.
Edinburgh University Press. 463–502.
Kolvekal, L. 2004. Developing an Inference Engine for
CR-Prolog with Preferences. Master’s thesis, Texas Tech
University.
Lifschitz, V., and Ren, W. 2006. Toward a modular ac-
tion description language. AAAI 2006 Spring Symposium
Series. to appear.
Lifschitz, V. 2000. Missionaries and cannibals in the causal
calculator. InPrinciples of Knowledge Representation and
Reasoning: Proceedings of the 7th International Confer-
ence. 85–96.
Mueller, E. 2004. Understanding script-based stories us-
ing commonsense reasoning.Cognitive Systems Research
5(4):307–340.
Niemela, I., and Simons, P. 2000.Extending the Smodels
System with Cardinality and Weight Constraints. Logic-
Based Artificial Intelligence. Kluwer Academic Publish-
ers. 491–521.
Shanahan, M. 1995. A circumscriptive calculus of events.
Artificial Intelligence77:249–284.

