Answer Set Programming

- Christian Anger
- Kathrin Konczak
- Thomas Linke
- Torsten Schaub

Resources

Course material

- http://www.cs.uni-potsdam.de/wv/lehre/
- http://www.cs.uni-potsdam.de/~torsten/asp/

Systems

- dlv http://www.dbai.tuwien.ac.at/proj/dlv/
- noMoRe http://www.cs.uni-potsdam.de/~1inke/nomore/
- smodels http://www.tcs.hut.fi/Software/smodels/
- plp http://www.cs.uni-potsdam.de/~torsten/plp/
- nlp http://www.cs.uni-potsdam.de/~torsten/nlp/

Roadmap

- Overview and Introduction
- Modeling
- Extensions: Disjunctive and Nested logic programs
- Extensions: Cardinality and Weight Constraints
- Algorithms and Systems: Smodels
- Algorithms and Systems: noMoRe
- Extensions: Negation and Preferences
- Applications: Configuration
- Applications: Actions and Planning
- Applications: Agents
- Miscellaneous: Dowling/Gallier Algorithm, Fitting's and Well-founded Semantics, Complexity. . .

Problem solving versus Programming

Wanted

An approach to modeling and solving AI problems!

For instance,

- Planning,
- Diagnosis,
- Configuration,
- Combinatorics,
- Puzzles and Games,

A solution

Answer Set Programming!

Basic Idea

- Encode problem (class+instance) as a set of rules
- Read off solutions from answer sets of the rules

Roots

- Algorithm $=$ Logic + Control (Kowalski, 1979)
- Logic as a programming language
\Leftrightarrow Prolog (Colmerauer, Kowalski)
- Related fields
- Logic Programming (of course)
- Nonmonotonic Reasoning
- Deductive Databases
- Constraint Programming
- Current killer application
\Leftrightarrow NASA's space shuttle

Motivation

Prolog (Programming in logic) is great, it's almost declarative!

To see this, consider

```
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z),above(Z,Y).
```

and compare it to

```
above(X,Y) :- above(Z,Y),on(X,Z).
    above(X,Y) :- on(X,Y).
```

An interpretation in classical logic amounts to

$$
\forall x y(o n(x, y) \vee \exists z(o n(x, z) \wedge \operatorname{above}(z, y)) \rightarrow \operatorname{above}(x, y))
$$

Motivation (ctd)

Prolog offers negation as failure via operator not.

For instance,

```
info(a).
ask(X) :- not info(X).
```

cannot be captured by

$$
\operatorname{info}(a) \wedge \forall x(\neg \operatorname{info}(x) \rightarrow \operatorname{ask}(x))
$$

but by appeal to Clark's completion by

$$
\begin{aligned}
& \forall x(x=a \leftrightarrow \operatorname{info}(x)) \wedge \forall x(\neg \operatorname{info}(x) \leftrightarrow \operatorname{ask}(x)) \\
\Longleftrightarrow \quad & \operatorname{info}(a) \wedge \forall x(x \neq a \leftrightarrow \operatorname{ask}(x))
\end{aligned}
$$

Motivation (ctd)

Clark's completion is sometimes too syntactical.
Consider

- p :- p yields $p \leftrightarrow p$
- $\mathrm{p}:-$ not p yields $p \leftrightarrow \neg p$
- Or even more complex yet analogous situations!

Answer Set Programming

- Basic idea
- Syntax
- Semantics
- Examples
- Variables and grounding
- Integrity constraints
- An algorithm

Answer Set Programming: Basic idea

\mathbf{x} View rules as constraints on models.
For instance, given a rule

$$
c \leftarrow a, \text { not } b
$$

then each model X must satisfy

$$
\text { if } a \in X \text { and } b \notin X \text {, then } c \in X
$$

\Leftrightarrow Models are closed under rules (informally!).
x Circumscribe models.
For instance, prefer model

$$
\emptyset \text { to }\{a, c\} \text { to }\{a, c, d\} .
$$

\Leftrightarrow Consider only minimal models containing justifiable atoms (informally!).

Such models are called answer sets (or initially: stable models).

Problem solving in Answer Set Programming

Normal logic programs

- A (normal) rule, r, is an ordered pair of the form

$$
A_{0} \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n},
$$

where $n \geq m \geq 0$, and each $A_{i}(0 \leq i \leq n)$ is a atom.

- A (normal) logic program is a finite set of rules.
- Notation

$$
\begin{aligned}
\operatorname{head}(r) & =A_{0} \\
\operatorname{body}(r) & =\left\{A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n}\right\} \\
\operatorname{body}^{+}(r) & =\left\{A_{1}, \ldots, A_{m}\right\} \\
\operatorname{body}^{-}(r) & =\left\{A_{m+1}, \ldots, A_{n}\right\}
\end{aligned}
$$

- A program is called basic if $\operatorname{body}^{-}(r)=\emptyset$ for all its rules.

Answer sets

Basic programs

- A set of atoms X is closed under a basic program Π iff for any $r \in \Pi$, head $(r) \in X$ whenever $b o d y^{+}(r) \subseteq X$.
- The smallest set of atoms which is closed under a basic program Π is denoted by $C n(\Pi)$.

Normal programs

- The reduct, Π^{X}, of a program Π relative to a set X of atoms is defined by

$$
\Pi^{X}=\left\{\operatorname{head}(r) \leftarrow \operatorname{body}^{+}(r) \mid r \in \Pi \text { and } \operatorname{bod}^{-}(r) \cap X=\emptyset\right\} .
$$

- A set X of atoms is an answer set of a program Π if $C n\left(\Pi^{X}\right)=X$

A closer look at Π^{X}

In other words, given a set of atoms X from Π,
Π^{X} is obtained from Π by deleting

1. each rule having a not A in its body with $A \in X$ and then
2. all negative atoms of the form not A in the bodies of the remaining rules.

Some "logical" remarks

- Basic programs are also referred as definite clauses
- Definite clauses are disjunctions with exactly one positive atom
$\Leftrightarrow A_{0} \vee \neg A_{1} \vee \cdots \vee \neg A_{m}$
- Horn clauses are clauses with at most one positive atom
\Rightarrow Every definite clause is a Horn clause but not vice versa
- Every set of Horn clauses has a (unique) smallest model.
- This smallest model is the intended semantics of a set of Horn clauses.

Given a basic program $\Pi, C n(\Pi)$ corresponds to the smallest model of the set of definite clauses corresponding to Π.

Another "logical" remark

Answer sets versus (minimal) models

- Program $\{a \leftarrow$ not $b\}$ has answer set $\{a\}$.
- Clause $a \vee b$ (being equivalent to $a \leftarrow \neg b$)
- has models $\{a\},\{b\}$, and $\{a, b\}$,
- among which $\{a\}$ and $\{b\}$ are minimal.

The The negation-as-failure operator not makes a difference!

A first example

$$
\Pi=\{p \leftarrow p, q \leftarrow \operatorname{not} p\}
$$

X	Π			Π^{X}			$C n\left(\Pi^{X}\right)$
\emptyset	$\begin{array}{ll} p & \leftarrow p \\ q & \leftarrow \operatorname{not} p \end{array}$				\leftarrow	p	$\{q\}$
				q	\leftarrow		
$\{p\}$	$\begin{aligned} p & \leftarrow p \\ q & \leftarrow \operatorname{not} p \end{aligned}$			p	\leftarrow	p	\emptyset
$\{q\}$	$\begin{array}{ll} p p & \leftarrow p \\ q & \leftarrow \operatorname{not} p \end{array}$				\leftarrow	p	$\{q\}$
\{p,q\}	$\begin{array}{ll} p & \leftarrow p \\ q & \leftarrow \operatorname{not} p \end{array}$			p	\leftarrow	p	\emptyset

A second example

$$
\Pi=\{p \leftarrow \operatorname{not} q, q \leftarrow \operatorname{not} p\}
$$

X	Π			Π^{X}		$C n\left(\Pi^{X}\right)$
\emptyset	p	\leftarrow	not q	p	\leftarrow	$\{p, q\}$
	q	\leftarrow	not p	q	\leftarrow	
$\{p\}$	p	\leftarrow	not q	p	\leftarrow	$\{p\}$
	q	\leftarrow	not p			
$\{q\}$	p	\leftarrow	not q			$\{q\}$
			not p	q	-	
$\{p, q\}$	p	\leftarrow	not q			\emptyset

A third example

$$
\Pi=\{p \leftarrow \operatorname{not} p\}
$$

A A program may have zero, one, or multiple answer sets!

A closer look at $C n$

Inductive characterization

Let Π be a basic program and X a set of atoms.

- The immediate consequence operator T_{Π} is defined as follows:

$$
T_{\Pi} X=\{\operatorname{head}(r) \mid r \in \Pi \text { and } \operatorname{bod} y(r) \subseteq X\}
$$

- Iterated applications of T_{Π} are written as T_{Π}^{j} for $j \geq 0$, where $T_{\Pi}^{0} X=X$ and $T_{\Pi}^{i} X=T_{\Pi} T_{\Pi}^{i-1} X$ for $i \geq 1$.

Theorem $C n(\Pi)=\bigcup_{i \geq 0} T_{\Pi}^{i} \emptyset$
Proposition $X \subseteq Y$ implies $T_{\Pi} X \subseteq T_{\Pi} Y$
\Rightarrow In other words, T_{Π} is monotone.
for any basic program Π.
for any basic program Π.

Let's iterate T_{Π}

$$
\begin{aligned}
& \Pi=\{p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v\} \\
& \\
& T_{\Pi}^{0} \emptyset=\emptyset \\
& T_{\Pi}^{1} \emptyset=\{p, q\}=T_{\Pi} T_{\Pi}^{0} \emptyset=T_{\Pi}(\emptyset) \\
& T_{\Pi}^{2} \emptyset=\{p, q, r\}=T_{\Pi} T_{\Pi}^{1} \emptyset=T_{\Pi}(\{p, q\}) \\
& T_{\Pi}^{3} \emptyset=\{p, q, r, t\}=T_{\Pi} T_{\Pi}^{2} \emptyset=T_{\Pi}(\{p, q, r\}) \\
& T_{\Pi}^{4} \emptyset=\{p, q, r, t, s\}=T_{\Pi} T_{\Pi}^{3} \emptyset=T_{\Pi}(\{p, q, r, t\}) \\
& T_{\Pi}^{5} \emptyset=\{p, q, r, t, s\}=T_{\Pi} T_{\Pi}^{4} \emptyset=T_{\Pi}(\{p, q, r, t, s\}) \\
& T_{\Pi}^{6} \emptyset=\{p, q, r, t, s\}=T_{\Pi} T_{\Pi}^{5} \emptyset=T_{\Pi}(\{p, q, r, t, s\})
\end{aligned}
$$

In fact, $C n(\Pi)=\{p, q, r, t, s\}$ is the smallest fixpoint of T_{Π}. That is, $T_{\Pi}\{p, q, r, t, s\}=\{p, q, r, t, s\}$ and $T_{\Pi} X \neq X$ for every $X \subseteq\{p, q, r, t, s\}$.

Programs with Variables

Let Π be a logic program.
Herbranduniverse U^{Π} : Set of constants in Π
Herbrandbase B^{Π} : Set of (variable-free) atoms constructible from U^{Π} We usually denote this as \mathcal{A}.

Ground Instances of $r \in \Pi$: Set of variable-free rules obtained by replacing all variables in r by elements from U^{Π} :

$$
\operatorname{ground}(r)=\left\{r \theta \mid \theta: \operatorname{var}(r) \rightarrow U^{\Pi}\right\}
$$

where $\operatorname{var}(r)$ stands for the set of all variables occuring in r;
θ is a (ground) substitution.
Ground Instantiation of Π

$$
\operatorname{ground}(\Pi)=\{\operatorname{ground}(r) \mid r \in \Pi\}
$$

An example

$$
\begin{aligned}
\Pi & =\{r(a, b) \leftarrow, r(b, c) \leftarrow, t(X, Y) \leftarrow r(X, Y)\} \\
U^{\Pi} & =\{a, b, c\} \\
B^{\Pi} & =\left\{\begin{array}{rlll}
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), \\
t(a, a), t(a, b), t(a, c), t(b, b), t(b, b), t(b, c), t(c, b), t(c, b), t(c, c)
\end{array}\right\} \\
\operatorname{ground}(\Pi) & =\left\{\begin{array}{rlllll}
r(a, b) & \leftarrow \\
r(b, c) & \leftarrow & , \\
t(a, a) & \leftarrow & r(a, a), & t(b, a) & \leftarrow & r(b, a), \\
t(a, b) & \leftarrow & t(c, a) & \leftarrow & \leftarrow(a, b), & t(b, b) \\
t(a, a), \\
t(a, c) & \leftarrow & r(a, c), & t(b, c) & \leftarrow & r(b, b), \\
t(c, c), & t(c, c) & \leftarrow & \leftarrow r(c, c)
\end{array}\right\}
\end{aligned}
$$

Answer sets of programs with Variables

Let Π be a normal logic program with variables.

We define a set X of (ground) atoms as answer set of Π if $C n\left(\operatorname{ground}(\Pi)^{X}\right)=X$.

Programs with Integrity Constraints

Purpose Integrity constraints eliminate unwanted candidate solutions Syntax An integrity constraints is of the form

$$
\leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n}
$$

$$
\text { where } n \geq m \geq 1 \text {, and each } A_{i}(1 \leq i \leq n) \text { is a atom. }
$$

Example \leftarrow monitor(21in), graphics(evil)
Implementation For a new symbol x, map

$$
\begin{aligned}
& \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n} \\
\mapsto \quad x & \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n}, \text { not } x
\end{aligned}
$$

Another example $\Pi=\{p \leftarrow$ not $q, q \leftarrow$ not $p\}$

$$
\begin{aligned}
& \text { versus } \Pi^{\prime}=\{p \leftarrow \operatorname{not} q, q \leftarrow \operatorname{not} p, \leftarrow p\} \\
& \text { versus } \Pi^{\prime \prime}=\{p \leftarrow \operatorname{not} q, q \leftarrow \operatorname{not} p, \leftarrow \text { not } p\}
\end{aligned}
$$

A first glance at algorithmics

Global parameters: Logic program Π and its set of atoms \mathcal{A} :

```
answerset 
    1. (X,Y)\leftarrow\mp@subsup{propagation}{\Pi}{}(X,Y)
    2. if (X\capY)\not=\emptyset then fail
    3. if }(X\cupY)=\mathcal{A}\mathrm{ then return(X)
    4. Select }A\in\mathcal{A}\(X\cupY
    5. answerset}\mp@subsup{|}{\Pi}{}(X\cup{A},Y
    6. answerset }\mp@subsup{|}{\Pi}{}(X,Y\cup{A}
```

- (X, Y) is supposed to be a 3-valued model such that $X \subseteq Z$ and $Y \cap Z=\emptyset$ for any answer set Z of Π.
- Key operations: propagation $n_{\Pi}(X, Y)$ and 'Select $A \in \mathcal{A} \backslash(X \cup Y)$ '
- Worst case complexity: $\mathcal{O}\left(2^{|\mathcal{A}|}\right)$

Modeling and Interpreting

Problem \mapsto Logic Program

For solving a problem class P for a problem instance I, encode

1. the problem instance I as a set of facts $C(I)$ and
2. the problem class P as a set of rules $C(P)$,
such that the solutions to P for I can be (polynomially) extracted from the answer sets of $C(P) \cup C(I)$.

n-colorability of graphs

Problem instance \mathbf{A} graph (V, E).
Problem class Assign each vertex in V one of n colors such that no two vertexes in V connected by an edge in E have the same color.

3-colorability of graphs

n-colorability of graphs

with $n=3$

$C(I)$	$\begin{array}{cc} \operatorname{vertex}(1) & \leftarrow \\ \operatorname{vertex}(2) & \leftarrow \\ \operatorname{vertex}(3) & \leftarrow \end{array}$	$\begin{array}{lc} \hline \text { edge }(1,2) & \leftarrow \\ \text { edge }(2,3) & \leftarrow \\ \text { edge(3,1) } & \leftarrow \end{array}$
$C(P)$	$\operatorname{color}(r) \leftarrow$ colored (V, C) othercolor (V,C)	```color(b) \leftarrow color(g) } ~not othercolor(V,C), vertex(V),color(C) \leftarrow colored(V,C'), C\not=C', vertex(V),color(C),color(C') \leftarrow edge(V,U),color(C), colored(V,C),colored(U,C)```
Answer set	\{ colored(1,r), col	ored (2,b), colored (3,g), .. \}

n-colorability of graphs

with $n=3$

```
C(I) vertex(1). vertex(2). vertex(3).
    edge(1,2). edge(2,3). edge(3,1).
C(P) color(r). color(b). color(g).
colored(V,C) :- not othercolor(V,C),
    vertex(V),color(C).
othercolor(V,C) :- colored(V,C1), C != C1,
    vertex(V),color(C),color(C1).
    :- edge(V,U),color(C),
    colored(V,C),colored(U,C).
```


Let it run!

```
torsten@belle-ile 507 > lparse 3color.lp | smodels 0
smodels version 2.25. Reading...done
Answer: 1
Stable Model: colored(3,g) othercolor(2,g) othercolor(1,g)
othercolor(3,b) colored(2,b) othercolor(1,b) othercolor(3,r)
othercolor(2,r) colored(1,r) color(g) color(b) color(r)
edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2) vertex(1)
```


Here's the rest!

```
Answer: 2
Stable Model: colored(3,g) othercolor(2,g) othercolor(1,g) othercolor(3,b)
othercolor(2,b) colored(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 3
Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) colored(3,b)
othercolor(2,b) othercolor(1,b) othercolor(3,r) othercolor(2,r) colored(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 4
Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) colored(3,b)
othercolor(2,b) othercolor(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 5
Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) othercolor(3,b)
othercolor(2,b) colored(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 6
Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) othercolor(3,b)
colored(2,b) othercolor(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
False
```


And finally some statistics!

```
Duration: 0.010
Number of choice points: 5
Number of wrong choices: 5
Number of atoms: 28
Number of rules: 45
Number of picked atoms: 42
Number of forced atoms: 0
Number of truth assignments: 347
Size of searchspace (removed): 9 (0)
```


Basic Methodology

Generate and Test (or: Guess and Check) approach

Generator Generate potential candidates answer sets
(typically through non-deterministic constructs)
Tester Eliminate non-valid Candidates
(typically through integrity constraints)

Satisfiability

Problem instance A propositional formula ϕ.
Problem class Is there an assigment of propositional variables to true and false such that a given forumla ϕ is true.

Satisfiability

Consider formula $(a \vee \neg b) \wedge(\neg a \vee b)$.

Generator	Tester	
a	$\leftarrow \operatorname{not} \hat{a}$	$\leftarrow \operatorname{not} a, b$
\hat{a}	$\leftarrow \operatorname{not} a$	$\leftarrow a, \operatorname{not} b$
b	$\leftarrow \operatorname{not} \hat{b}$	

Answer set

$$
\begin{aligned}
& A_{1}=\{a, b\} \\
& A_{2}=\{\hat{a}, \hat{b}\}
\end{aligned}
$$

n-Queens Problem

A solution to $n=4$:

n-Queens in answer set programming

$q(X, Y)$ gives the legal positions of the queens ${ }^{\text {a }}$

$$
\begin{aligned}
q(X, Y) & \leftarrow \operatorname{not} \neg q(X, Y) \\
\neg q(X, Y) & \leftarrow \operatorname{not} q(X, Y) \\
& \leftarrow q(X, Y), q\left(X^{\prime}, Y\right), X \neq X^{\prime} \\
& \leftarrow q(X, Y), q\left(X, Y^{\prime}\right), Y \neq Y^{\prime} \\
& \leftarrow q(X, Y), q\left(X^{\prime}, Y^{\prime}\right),\left|X-X^{\prime}\right|=\left|Y-Y^{\prime}\right|, X \neq X^{\prime}, Y \neq Y^{\prime} \\
& \leftarrow \operatorname{not} \operatorname{hasq}(X) \\
\operatorname{hasq}(X) & \leftarrow q(X, Y)
\end{aligned}
$$

[^0]
n-Queens

(in the smodels language)

```
q(X,Y) :- d(X), d(Y), not negq(X,Y).
negq(X,Y) :- d(X), d(Y), not q(X,Y).
:- d(X), d(Y), d(X1), q(X,Y), q(X1,Y), X1 != X.
:- d(X), d(Y), d(Y1), q(X,Y), q(X,Y1), Y1 != Y.
:- d(X), d(Y), d(X1), d(Y1), q(X,Y), q(X1,Y1),
    X != X1, Y != Y1, abs (X - X1) == abs (Y - Y1).
    :- d(X), not hasq(X).
hasq(X) :- d(X), d(Y), q(X,Y).
d(1..queens).
```


n-Queens in answer set programming

(in disjunctive logic programming)

$$
\begin{aligned}
q(X, Y) \vee \neg q(X, Y) & \leftarrow \\
& \leftarrow q(X, Y), q\left(X^{\prime}, Y\right), X \neq X^{\prime} \\
& \leftarrow q(X, Y), q\left(X, Y^{\prime}\right), Y \neq Y^{\prime} \\
& \leftarrow q(X, Y), q\left(X^{\prime}, Y^{\prime}\right),\left|X-X^{\prime}\right|=\left|Y-Y^{\prime}\right|, X \neq X^{\prime}, Y \neq Y^{\prime} \\
& \leftarrow \operatorname{not} \operatorname{has} q(X) \\
\operatorname{hasq}(X) & \leftarrow q(X, Y)
\end{aligned}
$$

n-Queens in answer set programming

(in nested logic programming)

$$
q(X, Y) \vee \operatorname{not} q(X, Y) \leftarrow
$$

$$
\begin{aligned}
& \leftarrow q(X, Y), q\left(X^{\prime}, Y\right), X \neq X^{\prime} \\
& \leftarrow q(X, Y), q\left(X, Y^{\prime}\right), Y \neq Y^{\prime} \\
& \leftarrow q(X, Y), q\left(X^{\prime}, Y^{\prime}\right),\left|X-X^{\prime}\right|=\left|Y-Y^{\prime}\right|, X \neq X^{\prime}, Y \neq Y^{\prime} \\
& \leftarrow \operatorname{not} \operatorname{hasq}(X) \\
\operatorname{hasq}(X) & \leftarrow q(X, Y)
\end{aligned}
$$

n-Queens (ctd)

(in the smodels language with cardinality constraints)

$$
\begin{aligned}
& 1\{q(X, Y)\} 1 \leftarrow d(X) \\
& 1\{q(X, Y)\} 1 \leftarrow d(Y)
\end{aligned}
$$

$$
\leftarrow q(X, Y), q\left(X^{\prime}, Y^{\prime}\right),\left|X-X^{\prime}\right|=\left|Y-Y^{\prime}\right|, X \neq X^{\prime}, Y \neq Y^{\prime}
$$

$$
\begin{array}{cc}
d(1) & \leftarrow \\
& \vdots \\
& \vdots(n) \\
& \leftarrow
\end{array}
$$

n-Queens (ctd)

(in the smodels language with cardinality constraints)

```
1 { q(X,Y) : d(Y) } 1 :- d(X).
1 {q(X,Y) : d(X) } 1 :- d(Y).
```

:- $d(X), d(Y), d(X 1), d(Y 1), q(X, Y), q(X 1, Y 1), X!=X 1, Y!=Y 1$,
$\operatorname{abs}(\mathrm{X}-\mathrm{X} 1)==\operatorname{abs}(\mathrm{Y}-\mathrm{Y} 1)$.
d(1.. queens).

And the Performance ... ?

```
torsten@belle-ile 506 > lparse -c queens=20 queens2.lp | smodels
smodels version 2.25. Reading...done
Answer: 1
Stable Model: d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10) d(11) d(12)
d(13) d(14) d(15) d(16) d(17) d(18) d(19) d(20) q(1,16) q(2,13) q(3,6) q(4,3)
q(5,15) q(6,19) q(7,1) q(8,4) q(9,9) q(10,11) q(11,8) q(12,10) q(13,17)
q(14,2) q(15,20) q(16,18) q(17,7) q(18,5) q(19,14) q(20,12)
True
Duration: 37.810
Number of choice points: 1471
Number of wrong choices: 1464
Number of atoms: 501
Number of rules: 10100
Number of picked atoms: 304305
Number of forced atoms: 14604
Number of truth assignments: 3111768
Size of searchspace (removed): 400 (0)
```


Planning

in the Blocksworld

Initial situation

Goal situation

Initial Situation

```
const grippers=2.
const lasttime=3.
```

block(1..6).
\% DEFINE
on $(1,2,0)$.
on (2, table, 0).
on $(3,4,0)$.
on (4, table, 0).
on $(5,6,0)$.
on (6, table, 0).

Goal Situation

```
% TEST
:- not on(3,2,lasttime).
:- not on(2,1,lasttime).
:- not on(1,table,lasttime).
:- not on(6,5,lasttime).
:- not on(5,4,lasttime).
:- not on(4,table,lasttime).
```


Planning in the Blocksworld I

GENERATE

time (0..lasttime).
location(B) :- block(B).
location(table).
\% GENERATE
\{ move(B,L,T) : block(B) : location(L) \} grippers :- time(T), $\mathrm{T}<$ lasttime.

Planning in the Blocksworld II

DEFINE

```
% effect of moving a block
on(B,L,T+1) :- move(B,L,T),
    block(B), location(L), time(T), T<lasttime.
```

\% inertia
on(B,L,T+1) :- on(B,L,T), not neg_on(B,L,T+1),
location(L), block(B), time(T), $\mathrm{T}<$ lasttime.
\% uniqueness of location
neg_on(B,L1,T) :- on(B,L,T), L!=L1,
block(B), location(L), location(L1), time(T).

Planning in the Blocksworld III

TEST

```
% neg_on is the negation of on
:- on(B,L,T), neg_on(B,L,T),
    block(B), location(L), time(T).
% two blocks cannot be on top of the same block
:- 2 { on(B1,B,T) : block(B1) },
    block(B), time(T).
% a block can't be moved unless it is clear
:- move(B,L,T), on(B1,B,T),
    block(B), block(B1), location(L), time(T), T<lasttime.
% a block can't be moved onto a block that is being moved also
:- move(B,B1,T), move(B1,L,T),
    block(B), block(B1), location(L), time(T), T<lasttime.
```


The Plan

```
torsten@hoedic 538 > lparse blocks.lp | smodels
smodels version 2.25. Reading...done
Answer: 1
Stable Model: move(1,table,0) move(3,table,0)
    move(2,1,1) move(5,4,1)
    move(3,2,2) move(6,5,2)
Duration: 0.050
Number of choice points: 0
Number of wrong choices: 0
Number of atoms: 507
Number of rules: 3026
Number of picked atoms: 24
Number of forced atoms: 13
Number of truth assignments: 944
Size of searchspace (removed): 0 (0)
```


Action description languages

zB. \mathcal{A} (Gelfond \& Lifschitz, 1990)

$$
\begin{array}{ccc}
\text { move }(b, l) & \text { causes } & \text { on }(b, l) \\
& \text { inertial } & \text { on }(b, l)
\end{array}
$$

represents

```
% effect of moving a block
on(B,L,T+1) :- move(B,L,T),
    block(B), location(L), time(T), T<lasttime.
```

\% inertia
on(B,L,T+1) :- on(B,L,T), not neg_on(B,L,T+1),
location(L), block(B), time(T), $\mathrm{T}<$ lasttime.

Configuration

```
    computer(desktop) \leftarrow
{ hard-drive(ide), hard-drive(scsi) }}\leftarrowcomputer(x
    keyboard(us)\vee keyboard(german) \leftarrow computer (x)
    controller(scsi) }\leftarrow hard-drive(scsi
    \leftarrow monitor(21in) ^ graphics(evil)
```

(Syrjänen, 99) describes a Configurator for Corel Linux!

Disjunctive Iogic programs

- Syntax
- Semantics
- Examples

Disjunctive Iogic programs

- A disjunctive rule, r, is an ordered pair of the form

$$
A_{1} ; \ldots ; A_{m} \leftarrow A_{m+1}, \ldots, A_{n}, \text { not } A_{n+1}, \ldots, \text { not } A_{o}
$$

where $o \geq n \geq m \geq 0$, and each $A_{i}(0 \leq i \leq o)$ is a atom.

- A disjunctive logic program is a finite set of disjunctive rules.
- (Generalized) Notation

$$
\begin{aligned}
\operatorname{head}(r) & =\left\{A_{1}, \ldots, A_{m}\right\} \\
\operatorname{body}(r) & =\left\{A_{m+1}, \ldots, A_{n}, \text { not } A_{n+1}, \ldots, \text { not } A_{o}\right\} \\
\operatorname{body}^{+}(r) & =\left\{A_{m+1}, \ldots, A_{n}\right\} \\
\operatorname{body}^{-}(r) & =\left\{A_{n+1}, \ldots, A_{o}\right\}
\end{aligned}
$$

- A program is called positive if $b o d y^{-}(r)=\emptyset$ for all its rules.

Answer sets

Positive programs

- A set of atoms X is closed under a positive program Π iff for any $r \in \Pi$, head $(r) \cap X \neq \emptyset$ whenever $\operatorname{bod}^{+}(r) \subseteq X$.
- The set of all \subseteq-minimal sets of atoms being closed under a positive program Π is denoted by $\min _{\subseteq}(\Pi)$.

Disjunctive programs

- The reduct, Π^{X}, of a disjunctive program Π relative to a set X of atoms is defined by

$$
\Pi^{X}=\left\{\operatorname{head}(r) \leftarrow \operatorname{body}^{+}(r) \mid r \in \Pi \text { and } \operatorname{body}^{-}(r) \cap X=\emptyset\right\} .
$$

- A set X of atoms is an answer set of a disjunctive program Π if $X \in \min _{\subseteq}\left(\Pi^{X}\right)$.

A "positive" example

$$
\Pi=\left\{\begin{array}{lll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
$$

- The sets $\{a, b\},\{a, c\}$, and $\{a, b, c\}$ are closed under Π.
- We have $\min _{\subseteq}(\Pi)=\{\{a, b\},\{a, c\}\}$.

3-colorability revisited

An example with variables

$$
\begin{aligned}
\Pi & =\left\{\begin{array}{ll}
a(1,2) & \leftarrow \\
b(X) ; c(Y) & \leftarrow a(X, Y), \text { not } c(Y)
\end{array}\right\} \\
\operatorname{ground}(\Pi) & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow \\
b(1) ; c(1) & \leftarrow a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow a(2,2), \text { not } c(2)
\end{array}\right\}
\end{aligned}
$$

Clearly, for every answer set X of Π, we have $a(1,2) \in X$ and $\{a(1,1), a(2,1), a(2,2)\} \cap X=\emptyset$.

An example with variables

$$
\operatorname{ground}(\Pi)^{X}=\left\{\begin{array}{ll}
a(1,2) & \leftarrow \\
b(1) ; c(1) & \leftarrow a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow a(2,2), \text { not } c(2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), b(1)\}$.
- We get $\min _{\subseteq}\left(\operatorname{ground}(\Pi)^{X}\right)=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}$.
- X is an answer set of Π because $X \in \min _{\subseteq}\left(\operatorname{ground}(\Pi)^{X}\right)$

An example with variables

$$
\operatorname{ground}(\Pi)^{X}=\left\{\begin{array}{ll}
a(1,2) & \leftarrow \\
b(1) ; c(1) & \leftarrow a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow a(2,2), \text { not } c(2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), c(2)\}$.
- We get $\min _{\subseteq}\left(\operatorname{ground}(\Pi)^{X}\right)=\{\{a(1,2)\}\}$.
- X is no answer set of Π because $X \notin \min _{\subseteq}\left(\operatorname{ground}(\Pi)^{X}\right)$.

Nested Iogic programs

- Syntax
- Semantics
- Examples

Nested logic programs

- Formulas are formed from
- propositional atoms and
- \top and \perp
using
- negation-as-failure (not),
- conjunction (,), and
- disjunction (;).
- A nested rule, r, is an ordered pair of the form $F \leftarrow G$ where F and G are formulas.
- A nested program is a finite set of rules.
- Notation: $h e a d(r)=F$ and $\operatorname{body}(r)=G$.

Satisfaction relation

- The satisfaction relation $X \models F$ between a set of atoms and a formula F is defined recursively as follows:

$$
\begin{array}{ll}
-X \models F & \text { if } F \in X \text { for an atom } F \\
-X \models \top, & \\
-X \not \models \perp, & \\
-X \models(F, G) & \text { if } X \models F \text { and } X \models G, \\
-X \models(F ; G) & \text { if } X \models F \text { or } X \models G, \\
-X \models \operatorname{not} F & \text { if } X \not \models F .
\end{array}
$$

- A set of atoms X satisfies a nested program Π, written $X \models \Pi$, iff for any $r \in \Pi, X \models \operatorname{head}(r)$ whenever $X \models \operatorname{body}(r)$.
- The set of all \subseteq-minimal sets of atoms satisfying program Π is denoted by $\min _{\subseteq}(\Pi)$.

Reduct

- The reduct F^{X} of a formula F relative to a set X of atoms is defined recursively as follows:

$$
\begin{aligned}
& -F^{X}=F \quad \text { if } F \text { is an atom or } \top \text { or } \perp, \\
& -(F, G)^{X}=\left(F^{X}, G^{X}\right), \\
& -(F ; G)^{X}=\left(F^{X} ; G^{X}\right), \\
& -(\text { not } F)^{X}= \begin{cases}\perp & \text { if } X \models F \\
\top & \text { otherwise }\end{cases}
\end{aligned}
$$

- The reduct, Π^{X}, of a nested program Π relative to a set X of atoms is defined by

$$
\Pi^{X}=\left\{\operatorname{head}(r)^{X} \leftarrow \operatorname{body}(r)^{X} \mid r \in \Pi\right\} .
$$

- A set X of atoms is an answer set of a nested program Π if $X \in \min _{\subseteq}\left(\Pi^{X}\right)$.

Two examples

- $\Pi_{1}=\{(p ;$ not $p) \leftarrow\}$
- For $X=\emptyset$, we get $\Pi_{1}^{\emptyset}=\{(p ; \top) \leftarrow\}$ and $\min _{\subseteq}\left(\Pi_{1}^{\emptyset}\right)=\{\emptyset\}$.
- For $X=\{p\}$, we get $\Pi_{1}^{\{p\}}=\{(p ; \perp) \leftarrow\}$ and $\min _{\subseteq}\left(\Pi_{1}^{\{p\}}\right)=\{\{p\}\}$.
- $\Pi_{2}=\{p \leftarrow$ not not $p\}$
- For $X=\emptyset$, we get $\Pi_{2}^{\emptyset}=\{p \leftarrow \perp\}$ and $\min _{\subseteq}\left(\Pi_{2}^{\emptyset}\right)=\{\emptyset\}$.
- For $X=\{p\}$, we get $\Pi_{2}^{\{p\}}=\{p \leftarrow \top\}$ and $\min _{\subseteq}\left(\Pi_{2}^{\{p\}}\right)=\{\{p\}\}$.
- In general,
- $F \leftarrow G$, not not $H \quad$ is equivalent to $\quad F$; not $H \leftarrow G$
$-F ; \operatorname{not}$ not $G \leftarrow H \quad$ is equivalent to $\quad F \leftarrow \operatorname{not} G, H$
- not not not F is equivalent to not F
\Rightarrow Intuitionistic Logic HT (Heyting, 1930)

Some more examples

$$
\begin{aligned}
& \Pi_{3}=\{p \leftarrow(q, r) ;(\text { not } q, \text { not } s)\} \\
& \Pi_{4}=\{(p ; \text { not } p),(q ; \text { not } q),(r ; \text { not } r) \leftarrow\} \\
& \Pi_{5}=\{(p ; \text { not } p),(q ; \text { not } q),(r ; \text { not } r) \leftarrow, \perp \leftarrow p, q\}
\end{aligned}
$$

Implementation

nlp http://www.cs.uni-potsdam.de/~torsten/nlp

Language extensions

- Choice rules
- Cardinality constraints
- Weight constraints
- Semantics by embedding in Nested logic programs

Choice rules

Idea Choices over subsets
Syntax

$$
\left\{A_{1}, \ldots, A_{m}\right\} \leftarrow A_{m+1}, \ldots, A_{n}, \text { not } A_{n+1}, \ldots, \text { not } A_{o}
$$

Informal meaning If the body is satisfied in an answer set, then any subset of $\left\{A_{1}, \ldots, A_{m}\right\}$ can be included in the answer set.

Example The program $\Pi=\{\{a\} \leftarrow b, b \leftarrow\}$ has two answer sets: $\{b\}$ and $\{a, b\}$.

Implementation smodels

Cardinality constraints

Syntax A cardinality constraint is of the form $l\left\{A_{1}, \ldots, A_{m}\right\} u$
Informal meaning A cardinality constraint is satisfied in an answer set X, if the number of atoms from $\left\{A_{1}, \ldots, A_{m}\right\}$ satisfied in X is between l and u (inclusive).

More formally, if $l \leq\left|\left\{A_{1}, \ldots, A_{m}\right\} \cap X\right| \leq u$.
Conditions $\quad l\left\{A_{1}, \ldots, A_{m}: A_{m+1}, \ldots, A_{n}\right\} u$
where A_{m+1}, \ldots, A_{n} are often used for type definitions of variables occurring in A_{1}, \ldots, A_{m}.

Implementation smodels

n-colorability revisited

with $n=3$

C (I)	$\operatorname{vertex}(1)$ \leftarrow edge(1,2) \leftarrow $\operatorname{vertex}(2)$ \leftarrow edge(2,3) \leftarrow vertex(3) \leftarrow edge(3,1) \leftarrow
$C(P)$	$\begin{aligned} & \hline \operatorname{color}(\mathrm{r}) \leftarrow \quad \operatorname{color}(\mathrm{b}) \leftarrow \\ & \text { color }(\mathrm{g}) \leftarrow \\ & 1\{\operatorname{colored}(\mathrm{~V}, \mathrm{C}): \operatorname{color}(\mathrm{C})\} 1 \leftarrow \\ & \text { vertex }(\mathrm{V}) \\ & \leftarrow \\ & \quad \text { edge }(\mathrm{V}, \mathrm{U}), \operatorname{color}(\mathrm{C}), \\ & \operatorname{colored}(\mathrm{V}, \mathrm{C}), \operatorname{colored}(\mathrm{U}, \mathrm{C}) \end{aligned}$
Answer set	$\{\operatorname{colored}(1, r)$, colored $(2, b)$, colored $(3,9), \ldots\}$

Further extensions

Weight constraints

Syntax $l\left\{A_{1}: w_{1}, \ldots, A_{m}: w_{m}\right\} u$
Informal meaning A weight constraint is satisfied in an answer set X, if $l \leq \Sigma_{A_{i} \in X} w_{i} \leq u$.

Implementation smodels
Optimization
Syntax minimize $\left\{A_{1}: w_{1}, \ldots, A_{m}: w_{m}\right\}$
Implementation smodels

Further extensions (cont'd)

Weak integrity constraints
Syntax $: \sim A_{1}, \ldots, A_{m}$, not A_{m+1}, \ldots, not $A_{n}[w: l]$
Informal meaning

1. minimize the sum of weights of violated constraints in the highest level;
2. minimize the sum of weights of violated constraints in the next lower level;
3. etc

Implementation dlv

Embedding in nested logic programs

For formulas F, F_{1}, \ldots, F_{n}, define

- $\leftarrow F$ as $\perp \leftarrow F$
- $\left\{F_{1} \ldots, F_{n}\right\}^{c}$ as $\left(F_{1} ;\right.$ not $\left.F_{1}\right), \ldots,\left(F_{n} ;\right.$ not $\left.F_{n}\right)$
\Leftrightarrow corresponds to choice over subsets (see above)

For example,

$$
\Pi=\left\{\begin{array}{rll}
\{p, q\}^{c} & \leftarrow & \\
& \leftarrow p, q
\end{array}\right\} \text { stands for }\left\{\begin{array}{rll}
(p ; \operatorname{not} p),(q ; \text { not } q) & \leftarrow & \\
& \perp & \leftarrow p, q
\end{array}\right\}
$$

Embedding in nested logic programs (ctd)

For formulas F_{1}, \ldots, F_{n}, define

- $l\left\{F_{1}, \ldots, F_{n}\right\}$ as

$$
\bigvee_{1 \leq i_{1}<\ldots i_{l} \leq n}\left(F_{i_{1}}, \ldots, F_{i_{l}}\right)
$$

- $\left\{F_{1}, \ldots, F_{n}\right\} u \quad$ as $\operatorname{not}\left(u+1\left\{F_{1}, \ldots, F_{n}\right\}\right)$
- $l\left\{F_{1}, \ldots, F_{n}\right\} u \quad$ as $\left(l\left\{F_{1}, \ldots, F_{n}\right\}\right),\left(\left\{F_{1}, \ldots, F_{n}\right\} u\right)$

An example

$$
\Pi=\left\{\begin{array}{rll}
\{p, q, r\}^{c} & \leftarrow & \\
& \leftarrow & 2\{p, q, r\} \\
& \leftarrow & \{p, q, r\} 0
\end{array}\right\}
$$

$$
\text { stands for } \quad\left\{\begin{aligned}
(p ; \operatorname{not} p) & \leftarrow \\
(q ; \operatorname{not} q) & \leftarrow \\
(r ; n o t r) & \leftarrow \\
\perp & \leftarrow(p, q) ;(p, r) ;(q, r) \\
\perp & \leftarrow \operatorname{not}(p ; q ; r),
\end{aligned}\right\}
$$

Answer sets ? $\{p\},\{q\}$, and $\{r\}$!

Embedding in nested logic programs (ctd)

For formulas F_{1}, \ldots, F_{n}, define

- $l\left\{F_{1}, \ldots, F_{n}\right\}^{c} \quad$ as $\left(\left\{F_{1}, \ldots, F_{n}\right\}^{c}, l\left\{F_{1}, \ldots, F_{n}\right\}\right)$
- $\left\{F_{1}, \ldots, F_{n}\right\}^{c} u$ as $\left(\left\{F_{1}, \ldots, F_{n}\right\}^{c},\left\{F_{1}, \ldots, F_{n}\right\} u\right)$
- $l\left\{F_{1}, \ldots, F_{n}\right\}^{c} u$ as $\left(\left\{F_{1}, \ldots, F_{n}\right\}^{c}, l\left\{F_{1}, \ldots, F_{n}\right\} u\right)$
\Rightarrow corresponds to cardinality constraints (see above)
The program

$$
1\{p, q, r\}^{c} 1 \leftarrow
$$

has the same answer sets as the previous one.

A closer look
$1\{p, q, r\} 2 \leftarrow \quad$ versus $\quad 1\{p, q, r\}^{c} 2 \leftarrow$
$1\{p, q, r\} 2 \leftarrow$
$=(1\{p, q, r\}),(\{p, q, r\} 2) \leftarrow$
$=(p ; q ; r)$, not $(3\{p, q, r\}) \leftarrow$
$=(p ; q ; r), \operatorname{not}(p, q, r) \leftarrow$
$1\{p, q, r\}^{c} 2 \leftarrow$
$=1\{p, q, r\} 2,\{p, q, r\}^{c} \leftarrow$
$=(p ; q ; r)$, not $(p, q, r),((p ; n o t p),(q ;$ not $q),(r ;$ not $r)) \leftarrow$

A closer look (ctd)

$$
\begin{aligned}
& (1 \quad\{p, q, r\} 2 \leftarrow)^{X} \\
& \quad=(1\{p, q, r\} 2)^{X} \leftarrow \\
& \quad=(p ; q ; r)^{X},(\operatorname{not}(p, q, r))^{X} \leftarrow \\
& \quad=(p ; q ; r),(\operatorname{not}(p, q, r))^{X} \leftarrow \\
& \left(1\{p, q, r\}^{c} 2 \leftarrow\right)^{X} \\
& \quad=\left(1\{p, q, r\}^{c} 2\right)^{X} \leftarrow \\
& \quad=\left(1\{p, q, r\} 2,\{p, q, r\}^{c}\right)^{X} \leftarrow \\
& \quad=(1\{p, q, r\} 2)^{X},\left(\{p, q, r\}^{c}\right)^{X} \leftarrow \\
& \quad=(p ; q ; r),(\operatorname{not}(p, q, r))^{X},\left(\left(p ;(\operatorname{not} p)^{X}\right),\left(q ;(\operatorname{not} q)^{X}\right),\left(r ;(\operatorname{not} r)^{X}\right)\right) \leftarrow
\end{aligned}
$$

A closer look (ctd)

$$
\begin{aligned}
& \text { Consider } X=\{p, q\} \\
& \qquad \begin{aligned}
&(1\{p, q, r\} 2 \leftarrow)^{\{p, q\}} \\
&=(p ; q ; r),(\operatorname{not}(p, q, r))^{\{p, q\}} \leftarrow \\
&=(p ; q ; r), \top \leftarrow \\
&=(p ; q ; r) \leftarrow \\
&\left(1\{p, q, r\}^{c} 2 \leftarrow\right)^{\{p, q\}} \\
&=(p ; q ; r),(\operatorname{not}(p, q, r))^{\{p, q\}},\left(\left(p ;(\text { not } p)^{\{p, q\}}\right),\right. \\
&\left.\left(q ;(n o t q)^{\{p, q\}}\right),\left(r ;(\operatorname{not} r)^{\{p, q\}}\right)\right) \leftarrow \\
&=(p ; q ; r), \top,((p ; \perp),(q ; \perp),(r ; \top)) \leftarrow \\
&=(p ; q ; r),(p, q) \leftarrow \\
&=(p, q) \leftarrow
\end{aligned}
\end{aligned}
$$

What about. .. ?

$$
s \leftarrow 1\{p, q, r\} 2 \quad \text { versus } \quad s \leftarrow 1\{p, q, r\}^{c} 2
$$

Enjoy your exercise $\smile!$

Usage in lparse and smodels

In lparse and smodels,

- rule bodies may include

$$
\begin{aligned}
& -l\left\{F_{1}, \ldots, F_{n}\right\} \\
& -\quad\left\{F_{1}, \ldots, F_{n}\right\} u \\
& -l\left\{F_{1}, \ldots, F_{n}\right\} u
\end{aligned}
$$

- rule heads may include

$$
\begin{array}{ll}
-\quad\left\{F_{1}, \ldots, F_{n}\right\}^{c} \\
-l\left\{F_{1}, \ldots, F_{n}\right\}^{c} \\
- & \left\{F_{1}, \ldots, F_{n}\right\}^{c} u \\
-l\left\{F_{1}, \ldots, F_{n}\right\}^{c} u
\end{array}
$$

- but dropping superscript ${ }^{c}$
- For instance, '\{p,q,r\} :- \{p,q,r\} 2’ stands for $\{p, q, r\}^{c} \leftarrow\{p, q, r\} 2$.

Algorithms \& Systems: The Smodels approach

- Approximation
- Expansion
- Backtracking search

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U such that $L \subseteq X \subseteq U$.
$\Leftrightarrow L$ and U constitute lower and upper bounds on X.
$\Leftrightarrow L$ and $(\mathcal{A} \backslash U)$ describe a 3-valued model of the program.

Properties Let X be an answer set of normal logic program Π.

- If $L \subseteq X$, then $X \subseteq C n\left(\Pi^{L}\right)$.
- If $X \subseteq U$, then $C n\left(\Pi^{U}\right) \subseteq X$.
- If $L \subseteq X \subseteq U$, then $L \cup C n\left(\Pi^{U}\right) \subseteq X \subseteq U \cap C n\left(\Pi^{L}\right)$.

Approximating answer sets (ctd)

Second Idea

Iterate

- Replace L by $L \cup C n\left(\Pi^{U}\right)$
- Replace U by $U \cap C n\left(\Pi^{L}\right)$
until L and U do not change anymore.

Observations

- At each iteration step
- L becomes larger (or equal)
- U becomes smaller (or equal)
- $L \subseteq X \subseteq U$ is invariant for every answer set X of Π
- If $L \nsubseteq U$, then Π has no answer set!
- If $L=U$, then L is an answer set of Π.

The basic expand algorithm

expand (L, U)
repeat

$$
\begin{aligned}
& L^{\prime} \leftarrow L \\
& U^{\prime} \leftarrow U \\
& L \leftarrow L^{\prime} \cup C n\left(\Pi^{U^{\prime}}\right) \\
& U \leftarrow U^{\prime} \cap C n\left(\Pi^{L^{\prime}}\right)
\end{aligned}
$$

if $L \nsubseteq U$ then return
until $L=L^{\prime}$ and $U=U^{\prime}$
Π is a global parameter!

Let's expand!

$$
\Pi=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \text { not } c \\
d \leftarrow b, \text { not } e \\
e \leftarrow \text { not } d
\end{array}\right\}
$$

	L^{\prime}	$C n\left(\Pi^{U^{\prime}}\right)$	L	U^{\prime}	$C n\left(\Pi^{L^{\prime}}\right)$	U
1	\emptyset	$\{a\}$	$\{a\}$	$\{a, b, c, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$
2	$\{a\}$	$\{a, b\}$	$\{a, b\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$
3	$\{a, b\}$	$\{a, b\}$	$\{a, b\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$

\Leftrightarrow We have $\{a, b\} \subseteq X$ and $(\mathcal{A} \backslash\{a, b, d, e\}) \cap X=(\{c\} \cap X)=\emptyset$ for every answer set X of Π.

The basic expand algorithm (ctd)

expand

- tightens the approximation on answer sets
- is answer set preserving
- amounts to the well-founded semantics of a program (see following lectures)

Let's expand with d !

$$
\Pi=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \text { not } c \\
d \leftarrow b, \text { not } e \\
e \leftarrow \operatorname{not} d
\end{array}\right\}
$$

	L^{\prime}	$C n\left(\Pi^{U^{\prime}}\right)$	L	U^{\prime}	$C n\left(\Pi^{L^{\prime}}\right)$	U
1	$\{d\}$	$\{a\}$	$\{a, d\}$	$\{a, b, c, d, e\}$	$\{a, b, d\}$	$\{a, b, d\}$
2	$\{a, d\}$	$\{a, b, d\}$				
3	$\{a, b, d\}$					

$\Leftrightarrow\{a, b, d\}$ is an answer set X of Π.

Let's expand with "not d " !

$$
\Pi=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \text { not } c \\
d \leftarrow b, \text { not } e \\
e \leftarrow \text { not } d
\end{array}\right\}
$$

	L^{\prime}	$C n\left(\Pi^{U^{\prime}}\right)$	L	U^{\prime}	$C n\left(\Pi^{L^{\prime}}\right)$	U
1	\emptyset	$\{a, e\}$	$\{a, e\}$	$\{a, b, c, e\}$	$\{a, b, d, e\}$	$\{a, b, e\}$
2	$\{a, e\}$	$\{a, b, e\}$				
3	$\{a, b, e\}$					

$\Leftrightarrow\{a, b, e\}$ is an answer set X of Π.

The basic smodels algorithm

smodels(L, U)

```
expand(L,U)
if L\not\subsetU then return
if L}=U\mathrm{ then exit with L
A\leftarrow\operatorname{select}(U\backslashL)
smodels(L\cup{A},U)
smodels(L,U\{A})
```

Call: smodels (\emptyset, \mathcal{A}) where \mathcal{A} is the set of all atoms in Π

The basic smodels algorithm (ctd)

- Backtracking search building a binary search tree
- Choice points on atoms
- A node in the search tree corresponds to a 3-valued model
- The search space is pruned by
- making one choice at a time by appeal to a heuristics (select)
- the set of remaining choices is reduced and conflicts are detected (expand)
- Low level implementation using Dowling-Gallier-type data structures (see following lectures)

Outer system architecture

Two-phase implementation

1. lparse: Grounding (and handling of "special definitions")
2. smodels: Answer set computation for ground programs

Running smodels:
UNIX> lparse demo.lp | smodels
More info:

- http://www.tcs.hut.fi/Software/smodels/
- lparse --help or smodels --help
- Try in particular lparse -t and smodels 0

What's inside real smodels?

expand in smodels

- is based on propagation rules
- uses furthermore back-propagation
- generalizes the well-founded semantics
smodels in smodels
- is enhanced by lookahead (see next slide)
- uses smart heuristics

Lookahead

- Given a program Π, an atom A, and sets of atoms L and U
- if expand $(L \cup\{A\}, U$) yields a conflict, then delete A from U
- if expand $(L, U \backslash\{A\})$ yields a conflict, then add A to L
- Moreover, lookahead is used for determining the next atom A to select (from $U \backslash L$ in the smodels algorithm).
That is, provided that

$$
\begin{aligned}
& \text { - } u^{+}=|U \backslash L| \text { after expand }(L \cup\{A\}, U) \text { and } \\
& \text { - } u^{-}=|U \backslash L| \text { after expand }(L, U \backslash\{A\})
\end{aligned}
$$

then

$$
h(A)=2^{u^{+}}+2^{u^{-}}
$$

Select an atom A with a minimal value of $h(A)$

Some remarks on lparse

- lparse accepts only domain-restricted programs
- In a program, predicates are (automatically) partitioned into
- domain predicates
* no choices
* no recursion "through" negation-as-failure
- non-domain predicates
* all others
- A rule is domain-restricted if each of its variables appears in a positive domain predicate in its body.
- A program is domain-restricted if every rule is domain-restricted.

Examples for domain predicates

- Facts

```
- vertex(1). vertex(2). vertex(3).
- edge(1,2). edge(2,3). edge(3,1).
- color(1). color(2). color(3).
```

- Non-recursive rules
- two-edge(X,Y) :- edge(X,Z), edge(Z,Y), not edge(X,Y).
- Recursive rules
- path (X, Y) :- edge (X,Y).
- path (X, Y) :- edge (X, Z), path (Z, Y), vertex (Z).

Examples for domain-restricted rules

```
colored(V,r) :- not colored(V,b), not colored(V,g),
    vertex(V)
colored(V,b) :- not colored(V,r), not colored(V,g),
    vertex(V)
colored(V,g) :- not colored(V,r), not colored(V,b),
    vertex(V)
    :- edge(V,U), colored(V,C),colored(U,C),
        color(C).
```


Domain-restricted programs

- Rules defining domain predicates have a single answer set.

This answer set can be computed very efficiently through database techniques.

- Domain-restricted programs are grounded in two-steps:

1. Evaluate domain predicates;
2. Generate for each rule with variables a set of ground instances that are compatible with the evaluation of domain predicates.

- Also, certain built-ins are supported. For instance,
- d(0..n)
$-\operatorname{odd}(X+1):-d(X), X<n$, not odd(X).
where n is either explicitly provided in the program by means of const $\mathrm{n}=n$ or supplied through the command line option $-\mathrm{c} \mathrm{n}=n$ to lparse.

Algorithms \& Systems: The noMoRe approach

- Exemplary proceeding
- Formal devices
- Coloring sequences

Motivation

Goal Characterize the computation of answer sets of logic programs.
Approach Use rule dependency graphs (RDGs) and their colorings.
Inspiration Proof theory, in particular, SLD derivations.
Outcome A series of operational characterizations of answer sets in terms of operators on partial colorings.

Examplary proceeding

```
r}1: penguin(tweety) 
r}2:\quadbird(tweety) 
r}\mp@subsup{r}{3}{}:\quadflies(tweety) \leftarrow\operatorname{bird}(tweety),not \negflies(tweety
r}\mp@subsup{\mp@code{A}}{2}{:}\quad\neg\mathrm{ flies(tweety) }\leftarrow\mathrm{ penguin(tweety), not flies(tweety).
```

Propagation

Propagation

Propagation

Choice
Rabladingset exeractivorm

Examplary proceeding

$$
\begin{array}{rrl}
r_{1}: & \text { penguin }(\text { tweety }) & \leftarrow \\
r_{2}: & \text { bird }(\text { tweety }) & \leftarrow \\
r_{3}: & \text { flies }(\text { tweety }) & \leftarrow \text { bird(tweety }), \text { not } \neg \text { flies }(\text { tweety }) \\
r_{4}: & \neg \text { flies }(\text { tweety }) & \leftarrow \text { penguin(tweety }) \text {, not flies(tweety }) .
\end{array}
$$

$$
\left.X_{2}=\{\text { penguin }(\text { tweety }), \text { bird(tweety }), \neg \text { flies }(\text { tweety })\right\}
$$

Formal devices in a nutshell

Graphs The rule dependency graph $\left(\Pi, E_{0}, E_{1}\right)$ of program Π is a
labeled directed graph with

$$
\begin{align*}
& E_{0}=\left\{\left(r, r^{\prime}\right) \mid r, r^{\prime} \in \Pi, \text { head }(r) \in \operatorname{body}^{+}\left(r^{\prime}\right)\right\} \tag{0-edges}\\
& E_{1}=\left\{\left(r, r^{\prime}\right) \mid r, r^{\prime} \in \Pi, \text { head }(r) \in \operatorname{body}^{-}\left(r^{\prime}\right)\right\} \tag{1-edges}
\end{align*}
$$

Colorings are partial functions $C: \Pi \rightarrow\{\oplus, \ominus\}$;
\Leftrightarrow Admissible colorings are colorings characterizing answer sets;
Operators are partial functions $\mathcal{O}: \mathbb{C} \rightarrow \mathbb{C}$;
Coloring sequences $\left(C^{i}\right)_{0 \leq i \leq n}$;
\Leftrightarrow Successful coloring sequences enjoy

- C^{0} is the "empty" coloring
- $\mathcal{O}: C^{i} \mapsto C^{i+1}$ for $0 \leq i \leq n$ and some operator \mathcal{O}
- C^{n} is some admissible coloring

Rule dependency graph

- The rule dependency graph (RDG)

$$
\left(\Pi, E_{0}, E_{1}\right)
$$

of program Π, also written as Γ_{Π}, is a labeled directed graph with

$$
\begin{array}{ll}
E_{0}=\left\{\left(r, r^{\prime}\right) \mid r, r^{\prime} \in \Pi, \text { head }(r) \in \operatorname{body}^{+}\left(r^{\prime}\right)\right\} & \text { (0-edges); } \\
E_{1}=\left\{\left(r, r^{\prime}\right) \mid r, r^{\prime} \in \Pi, \text { head }(r) \in \operatorname{body}^{-}\left(r^{\prime}\right)\right\} & \text { (1-edges) } .
\end{array}
$$

An example

- Consider $\Pi=\left\{r_{1}, \ldots, r_{6}\right\}$, where

$$
\begin{aligned}
& r_{1}: \quad p \leftarrow \\
& r_{2}: \quad b \leftarrow p \\
& r_{3}: f \leftarrow b \text {, not } f^{\prime} \\
& r_{4}: f^{\prime} \leftarrow p, \text { not } f \\
& r_{5}: \quad b \leftarrow m \\
& r_{6}: \quad x \leftarrow f, f^{\prime}, \text { not } x
\end{aligned}
$$

- The RDG of Π is given as follows:

$$
\Gamma_{\Pi}=\left(\Pi,\left\{\begin{array}{c}
\left(r_{1}, r_{2}\right),\left(r_{1}, r_{4}\right),\left(r_{2}, r_{3}\right), \\
\left(r_{3}, r_{6}\right),\left(r_{4}, r_{6}\right),\left(r_{5}, r_{3}\right)
\end{array}\right\},\left\{\left(r_{3}, r_{4}\right),\left(r_{4}, r_{3}\right),\left(r_{6}, r_{6}\right)\right\}\right)
$$

An example (ctd)

- Consider $\Pi=\left\{r_{1}, \ldots, r_{6}\right\}$, where

$$
\begin{aligned}
& r_{1}: \quad p \leftarrow \\
& r_{2}: \quad b \leftarrow p \\
& r_{3}: \quad f \leftarrow b, \operatorname{not} f^{\prime} \\
& r_{4}: \quad f^{\prime} \leftarrow p, \operatorname{not} f \\
& r_{5}: b \leftarrow m \\
& r_{6}: \quad x \leftarrow f, f^{\prime}, \operatorname{not} x
\end{aligned}
$$

- The RDG of Π is graphically given as:

Coloring

- A coloring C of Γ_{Π} is a mapping $C: \Pi \rightarrow\{\oplus, \ominus\}$.
- Define

$$
C_{\oplus}=\{r \mid C(r)=\oplus\} \quad \text { and } \quad C_{\ominus}=\{r \mid C(r)=\ominus\} .
$$

We often identify a coloring C with the pair $\left(C_{\oplus}, C_{\ominus}\right)$.

- If C is total, $\left(C_{\oplus}, C_{\ominus}\right)$ is a binary partition of Π.

That is, $\Pi=C_{\oplus} \cup C_{\ominus}$ and $C_{\oplus} \cap C_{\ominus}=\emptyset$.

- A partial coloring C induces a pair (C_{\oplus}, C_{\ominus}) of sets such that $C_{\oplus} \cup C_{\ominus} \subseteq \Pi$ and $C_{\oplus} \cap C_{\ominus}=\emptyset$.

Coloring (ctd)

- For comparing partial colorings, C and C^{\prime}, define

$$
C \sqsubseteq C^{\prime} \quad \text { if } \quad C_{\oplus} \subseteq C_{\oplus}^{\prime} \text { and } C_{\ominus} \subseteq C_{\ominus}^{\prime} .
$$

- The "empty" coloring (\emptyset, \emptyset) is the \sqsubseteq-smallest coloring.
- Accordingly, define

$$
C \sqcup C^{\prime} \quad \text { as } \quad\left(C_{\oplus} \cup C_{\oplus}^{\prime}, C_{\ominus} \cup C_{\ominus}^{\prime}\right) .
$$

- We denote the set of all partial colorings of a $R D G \Gamma_{\Pi}$ by $\mathbb{C}_{\Gamma_{\Pi}}$. Or simply \mathbb{C} if Γ_{Π} is clear from the context.

An example

- If C is a coloring of Γ_{Π}, we call the pair $\left(\Gamma_{\Pi}, C\right)$ a colored RDG.
- For example, "coloring" the RDG of the previous program Π with

$$
C=\left(\left\{r_{1}, r_{2}\right\}, \quad\left\{r_{6}\right\}\right)=\left(C_{\oplus}, C_{\ominus}\right)
$$

yields the following colored graph.

Colorings representing answer sets

Given a logic program Π along with its $R D G$.
Then, for every answer set X of Π, define a unique admissible coloring C of Γ as

$$
C=\left(R_{\Pi}(X), \Pi \backslash R_{\Pi}(X)\right)
$$

where

$$
R_{\Pi}(X)=\left\{r \in \Pi \mid \operatorname{bod} y^{+}(r) \subseteq X \text { and } b o d y^{-}(r) \cap X=\emptyset\right\}
$$

Auxiliary concepts

Let $\Gamma=\left(\Pi, E_{0}, E_{1}\right)$ be the $R D G$ of logic program Π and C be a partial coloring of Γ.

For $r \in \Pi$, define:

1. r is supported in (Γ, C), if $\operatorname{bod} y^{+}(r) \subseteq\left\{\operatorname{head}\left(r^{\prime}\right) \mid\left(r^{\prime}, r\right) \in E_{0}, r^{\prime} \in C_{\oplus}\right\}$;
2. r is unsupported in (Γ, C), if $\left\{r^{\prime} \mid\left(r^{\prime}, r\right) \in E_{0}\right.$, head $\left.\left(r^{\prime}\right)=q\right\} \subseteq C_{\ominus}$ for some $q \in$ body $^{+}(r)$;
3. r is blocked in (Γ, C), if $r^{\prime} \in C_{\oplus}$ for some $\left(r^{\prime}, r\right) \in E_{1}$;
4. r is unblocked in (Γ, C), if $r^{\prime} \in C_{\ominus}$ for all $\left(r^{\prime}, r\right) \in E_{1}$.

Whenever C is total, a rule is unsupported (or unblocked) iff it is not supported (or not blocked, respectively).

Auxiliary concepts (ctd)

Let Γ be the RDG of program Π and C be a partial coloring of Γ. We define

1. $S(\Gamma, C)=\{r \in \Pi \mid r$ is supported in $(\Gamma, C)\}$;
2. $\bar{S}(\Gamma, C)=\{r \in \Pi \mid r$ is unsupported in $(\Gamma, C)\}$;
3. $B(\Gamma, C)=\{r \in \Pi \mid r$ is blocked in $(\Gamma, C)\}$;
4. $\bar{B}(\Gamma, C)=\{r \in \Pi \mid r$ is unblocked in $(\Gamma, C)\}$.

An example (ctd)

- Consider the sets obtained regarding the above colored RDG.
- We get:

$$
\begin{aligned}
& -S\left(\Gamma_{\Pi}, C\right)=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\} \\
& -\bar{S}\left(\Gamma_{\Pi}, C\right)=\left\{r_{5}\right\} \\
& -B\left(\Gamma_{\Pi}, C\right)=\emptyset \\
& -\bar{B}\left(\Gamma_{\Pi}, C\right)=\left\{r_{1}, r_{2}, r_{5}, r_{6}\right\}
\end{aligned}
$$

Rules like $r_{1}=p \leftarrow$ or $r_{5}=b \leftarrow m$ must be distinguished through their "inner" structure!

Relation to answer sets

Let C be the admissible coloring of Γ corresponding to answer set X of Π.

For $r \in \Pi$, we have

1. $r \in S(\Gamma, C)$ iff $b o d y^{+}(r) \subseteq X$;
2. $r \in \bar{S}(\Gamma, C)$ iff $\operatorname{bod}^{+}(r) \nsubseteq X$;
3. $r \in B(\Gamma, C)$ iff $\operatorname{body}^{-}(r) \cap X \neq \emptyset$;
4. $r \in \bar{B}(\Gamma, C)$ iff $\operatorname{body}^{-}(r) \cap X=\emptyset$.

Relation to answer sets (ctd)

Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.

If C is admissible, we have for the corresponding answer set X of Π that

1. $S(\Gamma, C) \cap \bar{B}(\Gamma, C)=R_{\Pi}(X)$;
2. $\bar{S}(\Gamma, C) \cup B(\Gamma, C)=\Pi \backslash R_{\Pi}(X)$.

For every answer set X of Π with

$$
C_{\oplus} \subseteq R_{\Pi}(X) \quad \text { and } \quad C_{\ominus} \subseteq \Pi \backslash R_{\Pi}(X)
$$

we have that

$$
\text { 1. } S(\Gamma, C) \cap \bar{B}(\Gamma, C) \subseteq R_{\Pi}(X) \text {; }
$$

2. $\bar{S}(\Gamma, C) \cup B(\Gamma, C) \subseteq \Pi \backslash R_{\Pi}(X)$.

Propagation operator \mathcal{P}

Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.

- Define

$$
\mathcal{P}_{\Gamma}: \mathbb{C} \rightarrow \mathbb{C}
$$

as

$$
\mathcal{P}_{\Gamma}(C)=C \sqcup(S(\Gamma, C) \cap \bar{B}(\Gamma, C), \bar{S}(\Gamma, C) \cup B(\Gamma, C))
$$

- A partial coloring C is closed under \mathcal{P}_{Γ}, if $C=\mathcal{P}_{\Gamma}(C)$.

Propagation operator \mathcal{P} (ctd)

- Define

$$
\mathcal{P}_{\Gamma}^{*}: \mathbb{C} \rightarrow \mathbb{C}
$$

where $\mathcal{P}_{\Gamma}^{*}(C)$ is

- the \sqsubseteq-smallest partial coloring
- containing C and
- being closed under \mathcal{P}_{Γ}.
- Alternatively, we have

$$
\mathcal{P}_{\Gamma}^{*}(C)=\bigsqcup_{i<\omega} P^{i}(C)
$$

where

1. $P^{0}(C)=C$ and
2. $P^{i+1}(C)=\mathcal{P}_{\Gamma}\left(P^{i}(C)\right)$ for $i<\omega$.

An example

$$
\begin{aligned}
r_{1}: p \leftarrow & \left.r_{3}: f \leftarrow b, \text { not } f^{\prime} \quad \begin{array}{rl}
r_{5}: b & \leftarrow \\
r_{2}: b \leftarrow p & r_{4}: f^{\prime} \leftarrow p, \text { not } f \quad r_{6}: x
\end{array}\right) \\
& \\
\mathcal{P}_{\Gamma}((\emptyset, \emptyset)) & =\left(\emptyset, f^{\prime}, \text { not } x\right. \\
& =\left(\left\{r_{1}\right\},\left\{r_{5}\right\}\right) \\
\mathcal{P}_{\Gamma}\left(\left(\left\{r_{1}\right\},\left\{r_{5}\right\}\right)\right) & =\left(\left\{r_{1}\right\},\left\{r_{5}\right\}\right) \sqcup\left(\left\{r_{1}, r_{2}, r_{4}\right\} \cap\left\{r_{1}, r_{2}, r_{5}\right\},\left\{r_{5}\right\} \cup \emptyset\right) \\
& =\left(\left\{r_{1}, r_{2}\right\},\left\{r_{5}\right\}\right) \\
\mathcal{P}_{\Gamma}\left(\left(\left\{r_{1}, r_{2}\right\},\left\{r_{5}\right\}\right)\right) & =\left(\left\{r_{1}, r_{2}\right\},\left\{r_{5}\right\}\right) \sqcup\left(\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\} \cap\left\{r_{1}, r_{2}, r_{5}\right\},\left\{r_{5}\right\} \cup \emptyset\right) \\
& =\left(\left\{r_{1}, r_{2}\right\},\left\{r_{5}\right\}\right)
\end{aligned}
$$

Hence, we obtain $\mathcal{P}_{\Gamma}^{*}((\emptyset, \emptyset))=\left(\left\{r_{1}, r_{2}\right\},\left\{r_{5}\right\}\right)$.

Propagation operator \mathcal{U}

- Originally, \mathcal{U} is defined in graph-theoretical terms by means of the so-called "support graph". ${ }^{\text {a }}$
- Alternative definition:

Define $\mathcal{U}_{\Gamma}: \mathbb{C} \rightarrow \mathbb{C}$ as

$$
\mathcal{U}_{\Gamma}(C)=\left(C_{\oplus}, C_{\ominus} \cup\left\{r \mid \operatorname{body}^{+}(r) \nsubseteq C n\left(\left(\Pi \backslash C_{\ominus}\right)^{\emptyset}\right)\right\}\right) .
$$

- For instance, for $\Pi=\{p \leftarrow q, q \leftarrow p\}$, we obtain

$$
\mathcal{U}_{\Gamma}((\emptyset, \emptyset))=(\emptyset,\{p \leftarrow q, q \leftarrow p\}),
$$

which is not obtainable through \mathcal{P}_{Γ}.

[^1]
Choice operators

Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.

- For $\circ \in\{\oplus, \ominus\}$, define $\mathcal{C}_{\Gamma}^{\circ}: \mathbb{C} \rightarrow \mathbb{C}$ as

1. $\mathcal{C}_{\Gamma}^{\oplus}(C)=\left(C_{\oplus} \cup\{r\}, C_{\ominus}\right) \quad$ for some $r \in \Pi \backslash\left(C_{\oplus} \cup C_{\ominus}\right)$;
2. $\mathcal{C}_{\Gamma}^{\ominus}(C)=\left(C_{\oplus}, C_{\ominus} \cup\{r\}\right) \quad$ for some $r \in \Pi \backslash\left(C_{\oplus} \cup C_{\ominus}\right)$.

- For $\circ \in\{\oplus, \ominus\}$, define $\mathcal{D}_{\Gamma}^{\circ}: \mathbb{C} \rightarrow \mathbb{C}$ as

1. $\mathcal{D}_{\Gamma}^{\oplus}(C)=\left(C_{\oplus} \cup\{r\}, C_{\ominus}\right) \quad$ for some $r \in S(\Gamma, C) \backslash\left(C_{\oplus} \cup C_{\ominus}\right)$;
2. $\mathcal{D}_{\Gamma}^{\ominus}(C)=\left(C_{\oplus}, C_{\ominus} \cup\{r\}\right) \quad$ for some $r \in S(\Gamma, C) \backslash\left(C_{\oplus} \cup C_{\ominus}\right)$.

All operators at a glance

- \mathcal{P} and \mathcal{P}^{*} :
- deterministic
- provide basic forward propagation
- \mathcal{P}^{*} computes the closure under \mathcal{P}
- \mathcal{P}^{*} amounts to closure under Fitting's operator (see below)
$-\mathcal{P}$ is reflexive, monotonic, and answer set preserving
- \mathcal{U} and \mathcal{V} :
- deterministic
- allow for detecting unsupported rules
- \mathcal{V} is an incremental variant of \mathcal{U}
- ($\mathcal{P U})^{*}$ amounts to well-founded semantics (see below)
$-\mathcal{U}$ is reflexive, idempotent, monotonic, and answer set preserving

All operators at a glance (ctd)

- \mathcal{N} :
- deterministic
- colors all uncolored rules with \ominus
- Formally: $\mathcal{N}_{\Gamma}(C)=\left(C_{\oplus}, \Pi \backslash C_{\oplus}\right)$.
- \mathcal{C}° and \mathcal{D}° for $\circ \in\{\oplus, \ominus\}$:
- nondeterministic
- choose a rule and color it, either with \oplus or \ominus
- \mathcal{D}° is restricted to choosing supported rules only

Operational answer set characterization I

Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ
iff
there exists a sequence $\left(C^{i}\right)_{0 \leq i \leq n}$ with the following properties:

1. $C^{0}=(\emptyset, \emptyset)$;
2. $C^{i+1}=\mathcal{C}_{\Gamma}^{\circ}\left(C^{i}\right)$ for some $\circ \in\{\oplus, \ominus\}$ and $0 \leq i<n$;
3. $C^{n}=\mathcal{P}_{\Gamma}\left(C^{n}\right)$;
4. $C^{n}=\mathcal{U}_{\Gamma}\left(C^{n}\right)$;
5. $C^{n}=C$.

Operational answer set characterization II

Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ
iff
there exists a sequence $\left(C^{i}\right)_{0 \leq i \leq n}$ with the following properties:

1. $C^{0}=(\mathcal{P U})_{\Gamma}^{*}((\emptyset, \emptyset))$;
2. $C^{i+1}=(\mathcal{P U})_{\Gamma}^{*}\left(\mathcal{C}_{\Gamma}^{\circ}\left(C^{i}\right)\right)$ for some $\circ \in\{\oplus, \ominus\}$ and $0 \leq i<n$;
3. $C^{n}=C$.

A coloring sequence according to II

$$
\begin{aligned}
& r_{1}: p \leftarrow \\
& r_{3}: \quad f \leftarrow b, \text { not } f^{\prime} \\
& r_{5}: b \leftarrow m \\
& r_{2}: b \leftarrow p \\
& r_{4}: \quad f^{\prime} \leftarrow p, \text { not } f \\
& r_{6}: x \leftarrow f, f^{\prime}, \text { not } x
\end{aligned}
$$

Operational answer set characterization V

Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ
iff
there exists a sequence $\left(C^{i}\right)_{0 \leq i \leq n}$ with the following properties:

1. $C^{0}=\mathcal{P}_{\Gamma}^{*}((\emptyset, \emptyset))$;
2. $C^{i+1}=\mathcal{P}_{\Gamma}^{*}\left(\mathcal{D}_{\Gamma}^{\circ}\left(C^{i}\right)\right)$ where $\circ \in\{\oplus, \ominus\}$ and $0 \leq i<n-1$;
3. $C^{n}=\mathcal{N}_{\Gamma}\left(C^{n-1}\right)$;
4. $C^{n}=\mathcal{P}_{\Gamma}\left(C^{n}\right)$;
5. $C^{n}=C$.

This is the basic strategy of the noMoRe system!

Summary of operational characterizations

	Formation Process	Check	Properties	Properties Prefix sequences
I	$\left[\mathcal{C}_{\Gamma}^{\circ}\right]^{k}$	$\mathcal{P}_{\Gamma}, \mathcal{U}_{\Gamma}$	1-5	1-3
II	$\left[(\mathcal{P U})_{\Gamma}^{*} \circ \mathcal{C}_{\Gamma}^{\circ}\right]^{k} \circ(\mathcal{P U})_{\Gamma}^{*}$	-	1-7	1-3,5-7
II^{+}	$\left[(\mathcal{P U})_{\Gamma}^{*} \circ \mathcal{C}_{\Gamma}^{\oplus}\right]^{k} \circ(\mathcal{P U})_{\Gamma}^{*}$	-	1-7	1-3,5-7
II^{-}	$\left[(\mathcal{P U})_{\Gamma}^{*} \circ \mathcal{C}_{\Gamma}^{\ominus}\right]^{k} \circ(\mathcal{P U})_{\Gamma}^{*}$	-	1-7	1-3,5-7
III^{+}	$\mathcal{U}_{\Gamma} \circ \mathcal{P}_{\Gamma}^{*} \circ\left[\mathcal{C}_{\Gamma}^{\oplus}\right]^{k}$	-	1-5	1-3,5
III^{-}	$\mathcal{P}_{\Gamma}^{*} \circ\left[\mathcal{C}_{\Gamma}^{\ominus}\right]^{k}$	-	1-5	1-3,5
IV	$\mathcal{N}_{\Gamma} \circ\left[\mathcal{D}_{\Gamma}^{\circ}\right]^{k}$	\mathcal{P}_{Γ}	1-5,8	1-3,5,8
IV ${ }^{+}$	$\mathcal{N}_{\Gamma} \circ\left[\mathcal{D}_{\Gamma}^{\oplus}\right]^{k}$	\mathcal{P}_{Γ}	1-5,8-9	1-3,5,8-9
\checkmark	$\mathcal{N}_{\Gamma} \circ\left[\mathcal{P}_{\Gamma}^{*} \circ \mathcal{D}_{\Gamma}^{\circ}\right]^{k} \circ \mathcal{P}_{\Gamma}^{*}$	\mathcal{P}_{Γ}	1-8	1-3,5-8
V^{+}	$\mathcal{N}_{\Gamma} \circ\left[\mathcal{P}_{\Gamma}^{*} \circ \mathcal{D}_{\Gamma}^{\oplus}\right]^{k} \circ \mathcal{P}_{\Gamma}^{*}$	\mathcal{P}_{Γ}	1-9	1-3,5-9
VI	$\left[(\mathcal{P V})_{\Gamma}^{*} \circ \mathcal{D}_{\Gamma}^{\circ}\right]^{k} \circ(\mathcal{P V})_{\Gamma}^{*}$	-	1-8	1-3,5-8
VI ${ }^{+}$	$\left[(\mathcal{P V})_{\Gamma}^{*} \circ \mathcal{D}_{\Gamma}^{\oplus}\right]^{k} \circ(\mathcal{P V})_{\Gamma}^{*}$	-	1-9	1-3,5-9
VI^{-}	$\left[(\mathcal{P V})_{\Gamma}^{*} \circ \mathcal{D}_{\Gamma}^{\ominus}\right]^{k} \circ(\mathcal{P V})_{\Gamma}^{*}$	-	1-8	1-3,5-8

The noMoRe system

- System architecture
- Coloring strategy and algorithm
- Visualizing color sequences
- Extensions
- Future development

System architecture

System architecture of the non-monotonic reasoning system noMoRe.

Computing answer sets

Computation of answer sets (in general) consists of

1. deterministic part: extends a partial (answer set) graph coloring in a reasonable way as much as possible. Only consistent operations are performed. For example, facts have to be in the answer set.
2. non-deterministic part: extends a partial (answer set) graph coloring, which cannot be extended deterministicly, in a systematic (possibly inconsistent) way. For example, a rule ($a \leftarrow$ not a) must be considered as applied and non-applied.
see definitions of the different operators and results on coloring sequences
the non-deterministic part is subject of heuristics
see the smodels algorithm including expand

The basic coloring strategy of noMoRe

Recall the basic strategy of the noMoRe system:
Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
Then, C is an admissible coloring of Γ
iff
there exists a sequence $\left(C^{i}\right)_{0 \leq i \leq n}$ with the following properties:

1. $C^{0}=\mathcal{P}_{\Gamma}^{*}((\emptyset, \emptyset))$;
2. $C^{i+1}=\mathcal{P}_{\Gamma}^{*}\left(\mathcal{D}_{\Gamma}^{\circ}\left(C^{i}\right)\right)$ where $\circ \in\{\oplus, \ominus\}$ and $0 \leq i<n-1$;
3. $C^{n}=\mathcal{N}_{\Gamma}\left(C^{n-1}\right)$;
4. $C^{n}=\mathcal{P}_{\Gamma}\left(C^{n}\right)$;
5. $C^{n}=C$.

How to implement this strategy?

Implementation: Main algorithm I

code simplified, but very close to the implementation

```
    a_color( Col ) :- % Col is modified during computation
    pre_color(Col,CP),
    !,
    color_cp(CP,Col),
    color_rest(Col).
pre_color( Col, CP ) :-
    facts(Fs),q_facts(QF),
    color_all_1(Fs,Col,QF,CP1),
    loops_1(L1),
    color_all_0(L1,Col,CP1,CP).
```


Implementation: Main algorithm II

```
color_cp( CP, Col ) :-
    heuristic_choose(Node,CP,CP1,Col),!,
    ( Node = no -> true;
            ( cp(Node,Col,[],NewCPs),
                        ord_union(NewCPs,CP1,CP2),
                        color_cp(CP2,Col)
            )).
cp( Node, Col, CP1, CP2 ) :-
        col_1(Node,Col,CP1,CP2).
cp( Node, Col, CP1, CP2 ) :-
        col_0(Node,Col, CP1,CP2).
```


Implementation: Main algorithm III

Missing predicates

- color_rest(Col) is true iff all uncolored nodes can be colored \ominus wrt Col and we obtain an admissible coloring (see operator- \mathcal{N}_{Γ}).
- color_all_1(Set,Col,InCP,OutCP) is true iff all nodes in Set can be colored \oplus wrt Col where OutCP is InCP plus new possible choices (color_all_0\4 analog).
- facts\1, q_facts $\backslash 1$ and loop_1\1 give the respective rules. Examples
- q_facts(h :- not b) is true (no positive body)
- loop_1(h :- a, not, b, not h) is true (self-blocking)
- heuristic_choose (Node, InCP, OutCP, Col) is true iff Node is some heuristically chosen rule out of InCP; OutCP contains remaining possible choices.
- col_1\1 and col_0 1 color a node \oplus or \ominus, respectively, and propagate the new coloring. If propagation fails col_1/0 fails!!

Implementation: Main algorithm IV

```
col_1( Node, Col, CP1, CP2 ) :-
    arg(Node,Col,C),
    ((C == 1) -> CP1=CP2;
        (C == u ->
            setarg(Node,Col,1),
            prop_1(Node,Col,CP1,CP2),
            show(Node,1,Col)
        );fail
    )).
```

How to compute prop_1/4 and prop_0/4?

Implementation: Propagation I

Recall coloring sequence formation: $C^{i+1}=\mathcal{P}_{\Gamma}^{*}\left(\mathcal{D}_{\Gamma}^{\circ}\left(C^{i}\right)\right)$ where $\circ \in\{\oplus, \ominus\}$.

- For efficiency operators \mathcal{P} and \mathcal{D} are mixed together in the actual implementation.
- Propagation is performed as local as possible. That is, whenever a node is colored, its color is propagated to the direct successors of that node.
- No need for global computation of $S(\Gamma, C), \bar{S}(\Gamma, C), B(\Gamma, C)$ and $\bar{B}(\Gamma, C)$.
- Next possible choices are computed online during propagation.
- Propagation is performed recursively until no more nodes can be colored by propagation.

Implementation: Propagation II

Let C be a partial coloring of Γ_{Π} (Π logic program) and let $u \in \Pi$ be some uncolored node wrt C. We have the following (local) forward propagation cases:

1. $\operatorname{prop}(\oplus \xrightarrow{1} \mathrm{u}) \mapsto(\oplus \xrightarrow{1} \ominus)$ no condition
2. $\operatorname{prop}(\oplus \xrightarrow{0} \mathrm{u}) \mapsto(\oplus \xrightarrow{0} \oplus)$ if $\mathrm{u} \in S(\Gamma, C) \cup \bar{B}(\Gamma, C)$
3. $\operatorname{prop}(\ominus \xrightarrow{1} \mathrm{u}) \mapsto(\ominus \xrightarrow{1} \oplus)$ if $\mathrm{u} \in S(\Gamma, C) \cup \bar{B}(\Gamma, C)$
4. $\operatorname{prop}(\ominus \xrightarrow{0} \mathrm{u}) \mapsto(\ominus \xrightarrow{0} \ominus)$ if $\mathrm{u} \in \bar{S}(\Gamma, C)$
prop_1 $\backslash 4$ calls cases 1. and 2. whereas prop_0 44 calls cases 3. and 4.
if $\operatorname{prop}(\oplus \xrightarrow{0} \mathrm{u}) \mapsto(\oplus \xrightarrow{0} \oplus)$ fails since $\mathrm{u} \in S(\Gamma, C)$ but $\mathrm{u} \notin \bar{B}(\Gamma, C)$, then
u is collected as a new choice.

Propagation: $\operatorname{prop}(\oplus \xrightarrow{1} \mathbf{u}) \mapsto(\oplus \xrightarrow{1} \ominus)$

Condition: no

Propagation: $\operatorname{prop}(\oplus \xrightarrow{0} \mathbf{u}) \mapsto(\oplus \xrightarrow{0} \oplus)$

Condition: $r \in S(\Gamma, C) \cup \bar{B}(\Gamma, C)$

r is new possible choice!!

Propagation: $\operatorname{prop}(\ominus \xrightarrow{1} \mathbf{u}) \mapsto(\ominus \xrightarrow{1} \oplus)$

Condition: $r \in S(\Gamma, C) \cup \bar{B}(\Gamma, C)$

Propagation: $\operatorname{prop}(\ominus \xrightarrow{0} \mathbf{u}) \mapsto(\ominus \xrightarrow{0} \ominus)$

Condition: $r \in \bar{S}(\Gamma, C)$

Implementation: Backward propagation I

Let C be a partial coloring of Γ_{Π} (Π logic program) and let $u \in \Pi$ be some uncolored node wrt C. We have the following (local) backward propagation cases:

1. $\operatorname{bprop}(\oplus \stackrel{1}{\leftarrow} \mathrm{u}) \mapsto(\oplus \stackrel{1}{\leftarrow} \ominus)$ no condition
2. bprop $(\oplus \stackrel{0}{\leftarrow} \mathrm{u}) \mapsto(\oplus \stackrel{0}{\leftarrow} \oplus)$ if first node is in $\bar{B}(\Gamma, C)$ and only u is responsible for supporting the first one
3. $\operatorname{bprop}(\ominus \stackrel{1}{\leftarrow} \mathrm{u}) \mapsto(\ominus \stackrel{1}{\leftarrow} \oplus)$ if first node is in $S(\Gamma, C)$ and only u is responsible for blocking the first one
4. $\operatorname{bprop}(\ominus \stackrel{0}{\leftarrow} \mathrm{u}) \mapsto(\ominus \stackrel{0}{\leftarrow} \ominus)$ if first node is in $\bar{B}(\Gamma, C)$ and only u is responsible for non-supporting the first one
backward propagation is only necessary for choices and 1-loops and it works recursively.

Backward propagation II

For backward propagation we have to look at partial mappings $C: \Pi \mapsto\{\ominus, \oplus,+\}$ for graph coloring.

All + colored nodes have to be colored \oplus in order to end with an admissible coloring.

Backward propagation: $\operatorname{bprop}(\oplus \stackrel{1}{\leftarrow} \mathbf{u}) \mapsto(\oplus \stackrel{1}{\leftarrow} \ominus)$

Condition: no

Backward propagation: $\operatorname{bprop}(\oplus \stackrel{0}{\leftarrow} \mathbf{u}) \mapsto(\oplus \stackrel{0}{\leftarrow} \oplus)$

Condition: $r^{\prime} \in \bar{B}(\Gamma, C)$

Backward propagation: $\operatorname{bprop}(\ominus \stackrel{1}{\leftarrow} \mathbf{u}) \mapsto(\ominus \stackrel{1}{\leftarrow} \oplus)$

Condition: $r^{\prime} \in S(\Gamma, C)$

Backward propagation: $\operatorname{bprop}(\ominus \stackrel{0}{\leftarrow} \mathbf{u}) \mapsto(\ominus \stackrel{0}{\leftarrow} \ominus)$

Condition: $r^{\prime} \in \bar{B}(\Gamma, C)$

Backward propagation: Jumping

$$
\begin{aligned}
r_{a} & =a \leftarrow \text { not } a, \text { not } b, \text { not } d \\
r_{b} & =b \leftarrow \text { not } c \\
r_{c} & =c \leftarrow \text { not } b \\
r_{d} & =d \leftarrow \text { not } e \\
r_{e} & =e \leftarrow \text { not } d
\end{aligned}
$$

Backward propagation: Experiments

	noMoRe			smodels	
backprop	no	yes	yes	with	
jumping	no without)				
ham_k_7	14335	14335	2945	4814	(34077)
ham_k_8	82200	82200	24240	688595	(86364)
ind_cir_20	539	317	$276 *$	276	(276)
ind_cir_30	9266	5264	$4609 *$	4609	(4609)
p1_Step4	-	464	176	7	(69)
p2_step6	-	13654	3779	75	(3700)
col4×4	27680	27680	7811	7811	(102226)
col5×5	-	-	580985	580985	$(2.3 \mathrm{Mil})$
queens4	84	84	5	1	(11)
queens5	326	326	13	9	(34)

Visualizing color sequences: An example

noMoRe has an interface to the graph drawing tool daVinci, which gives animated coloring sequences

r_{1}	$:$	b	\leftarrow	
r_{2}	$:$	f	\leftarrow	b, not f^{\prime}
r_{3}	$:$	f^{\prime}	\leftarrow	p, not f
r_{4}	$:$	p	\leftarrow	
r_{5}	$:$	w	\leftarrow	b

Visualizing color sequences: An example

Extension: Transformations

for dependency graphs

Transformations: An example

$r_{1}: a \leftarrow$ not $b . \quad r_{2}: \quad b \leftarrow \operatorname{not} a$.
$r_{3}: \quad c \leftarrow a . \quad r_{4}: \quad c \leftarrow b . \quad r_{5}: d \leftarrow c$.

no normal program with same answer sets corresponds to the transformed graph.

Extension: Syntax

By suitable generalization of RDGs noMoRe is able to deal with (ground) normal nested logic programs, that is, rule of the form

$$
\begin{equation*}
h_{1}, \ldots, h_{k} \leftarrow B_{1} ; \ldots ; B_{n} \tag{1}
\end{equation*}
$$

where each B_{i} is a conjunction of default literals ("normal" body).

- $p(a)$ and $q(a, b)$ are propositional atoms
- conjunction and disjunction are allowed as in rule (1), for example
- a normal rule $p(a) \leftarrow b$, not c is represented by $\mathrm{p}(\mathrm{a}):-\mathrm{b}$, not c .
- a nested rule $a, b \leftarrow(c$, not $d) ;(e)$ is represented by a,b :- (c, not d); (e).
- a integrity constraint $\leftarrow p, q$ is represented by :- p, q.
- lines beginning with a \% are regarded as a comment lines

Extension: Transformations

for logic programs

- all rules $\Pi_{\varphi} \subseteq \Pi$ with head φ are transformed to one rule $\varphi \leftarrow B_{1} ; \ldots ; B_{n}$ where $\operatorname{body}\left(\Pi_{\varphi}\right)=\left\{B_{1}, \ldots, B_{n}\right\}$.
- all rules $\Pi_{\phi} \subseteq \Pi$ with body ϕ are transformed to one rule $h_{1}, \ldots, h_{n} \leftarrow \phi$ where head $\left(\Pi_{\phi}\right)=\left\{h_{1}, \ldots, h_{n}\right\}$.

Observe, that this program transformations can be applied since noMoRe is able to deal with normal nested programs.
noMoRe +十

- C++ implementation

Extensions and future development

- heuristics for choices
- more transformations
- preferences between rules
- extension to disjunctive programs

Classical Negation \neg

- Motivation
- Semantics
- Translation

Motivation

- Given a set X, the difference among not a and $\neg a$ amounts to:

$$
a \notin X \quad \text { versus } \quad \neg a \in X
$$

- Example

$$
\begin{aligned}
\text { cross } & \leftarrow \text { not train } & \text { cross } \leftarrow \neg \text { train } \\
X & =\{\text { cross }\} & X=\emptyset
\end{aligned}
$$

- Two- versus Three-valued-interpretation of answer sets

For instance, given $\mathcal{A}=\{a, b\}$ and $X=\{a\}$,

- b is false under a two-valued interpretation of X and
- b is undefined under a three-valued interpretation of X.

Literals

- A literal L is an atom A or its negation $\neg A$.
- Two literals A and $\neg A$ are said to be complementary.
- A set of literals is inconsistent, if it contains a complementary pair of literals, and consistent otherwise.
- A set of literals is logically closed if it is consistent or if it equals the set of all literals.

Extended logic programs

- An extended rule, r, is an ordered pair of the form

$$
L_{0} \leftarrow L_{1}, \ldots, L_{m}, \text { not } L_{m+1}, \ldots, \text { not } L_{n}
$$

where $n \geq m \geq 0$, and each $L_{i}(0 \leq i \leq n)$ is a literal.

- An extended logic program is a finite set of extended rules.
- Notations

$$
\begin{aligned}
\operatorname{head}(r) & =L_{0} \\
\operatorname{body}(r) & =\left\{L_{1}, \ldots, L_{m}, \text { not } L_{m+1}, \ldots, \text { not } L_{n}\right\} \\
\operatorname{body}^{+}(r) & =\left\{L_{1}, \ldots, L_{m}\right\} \\
\operatorname{body}^{-}(r) & =\left\{L_{m+1}, \ldots, L_{n}\right\}
\end{aligned}
$$

- A program is called basic if $\operatorname{bod}^{-}(r)=\emptyset$ for all its rules.

Answer sets

- The smallest set of atoms which is logically closed and closed under a basic program Π is denoted by $C n(\Pi)$.
- A set X of atoms is an answer set of a program Π if $C n\left(\Pi^{X}\right)=X$.

Back to normal logic programs

- Define $\mathcal{A}^{\prime}=\left\{A^{\prime} \mid A \in \mathcal{A}\right\}$.
- The mapping norm between extended and normal logic programs is defined recursively as follows:

$$
\begin{aligned}
& -\operatorname{norm}(A)=A \quad \text { if } A \text { is an atom, } \\
& -\operatorname{norm}(\neg A)=A^{\prime} \quad \text { if } A \text { is an atom, } \\
& -\operatorname{norm}(\operatorname{not} L)=\operatorname{not} \operatorname{norm}(L) \quad \text { if } L \text { is a literal, } \\
& -\operatorname{norm}(X)=\{\operatorname{norm}(L) \mid L \in X\} \quad \text { if } X \text { is a set, } \\
& -\operatorname{norm}(\Pi)=\{\operatorname{norm}(\operatorname{head}(r)) \leftarrow \operatorname{norm}(\operatorname{body}(r)) \mid r \in \Pi\}
\end{aligned}
$$

plus the set Π_{\perp} of contradiction rules
$-A \leftarrow B, B^{\prime}$
$-A^{\prime} \leftarrow B, B^{\prime}$
for all distinct pairs A, B of atoms in \mathcal{A}.

Properties of norm

- For any basic program Π,

$$
\operatorname{norm}(C n(\Pi))=C n\left(\operatorname{norm}(\Pi) \cup \Pi_{\perp}\right)
$$

- Let Π be an extended logic program and let X be a set of literals. Then, we have that X is an answer set of Π iff $\operatorname{norm}(X)$ is an answer set of norm $(\Pi) \cup \Pi_{\perp}$.
- Let Π be an extended logic program and let X be a consistent set of literals. Then, we have that
X is an answer set of Π iff $\operatorname{norm}(X)$ is an answer set of norm (Π).

An example

$$
\Pi=\left\{\begin{array}{l}
p \leftarrow \text { not } q \\
q \leftarrow \operatorname{not} p \\
\neg p
\end{array}\right\} \quad \operatorname{norm}(\Pi) \cup \Pi_{\perp}=\left\{\begin{array}{l}
p \leftarrow n o t q \\
q \leftarrow \operatorname{not} p \\
p^{\prime}
\end{array}\right\} \cup\left\{\begin{array}{l}
p \leftarrow q, q^{\prime} \\
p^{\prime} \leftarrow q, q^{\prime} \\
q \leftarrow p, p^{\prime} \\
q^{\prime} \leftarrow p, p^{\prime}
\end{array}\right\}
$$

- Π has answer set $\{q, \neg p\}$
- $\operatorname{norm}(\Pi) \cup \Pi_{\perp}$ has answer set $\left\{q, p^{\prime}\right\}$
- $\operatorname{norm}(\Pi)$ has two answer sets $\left\{q, p^{\prime}\right\}$ and $\left\{p, p^{\prime}\right\}$

Preferences

- Motivation
- Semantics
- Compilation

Motivation

The notion of preference in commonsense reasoning is pervasive.
For instance,

- in buying a car, one may prefer certain features over others;
- in scheduling, meeting some deadlines may be more important than meeting others;
- in legal reasoning, laws are subject to higher principles, like lex superior or lex posterior, which are themselves subject to "higher higher" principles;
- etc etc...

Legal reasoning

The challenge!
"A person wants to find out if her security interest in a certain ship is perfected. She currently has possession of the ship. According to the Uniform Commercial Code (UCC, §9-305) a security interest in goods may be perfected by taking possession of the collateral. However, there is a federal law called the Ship Mortgage Act (SMA) according to which a security interest in a ship may only be perfected by filing a financing statement. Such a statement has not been filed. Now the question is whether the UCC or the SMA takes precedence in this case. There are two known legal principles for resolving conflicts of this kind. The principle of Lex Posterior gives precedence to newer laws. In our case the UCC is newer than the SMA. On the other hand, the principle of Lex Superior gives precedence to laws supported by the higher authority. In our case the SMA has higher authority since it is federal law."
(Gordon, 1993)

Legal reasoning

Our solution in "ordered logic programming"

```
    perfected :- name(ucc), possession, not neg perfected.
neg perfected :- name(sma), ship, neg finstatement, not perfected.
possession. ship. neg finstatement.
(Y < X) :- name(lex_posterior(X,Y)), newer(X,Y), not neg (Y < X).
(X < Y) :- name(lex_superior(X,Y)), state_law(X), federal_law(Y), not neg (X < Y).
newer(ucc,sma). federal_law(sma). state_law(ucc).
(lex_posterior(X,Y) < lex_superior(X,Y)).
```


What type of preference?

Different (often dependent) options:

- Preferences on rules (versus preferences on literals or preferences on answer sets)
- Selection function on the set of answer sets (versus possible modification of answer sets)
- Complexity within NP (versus complexity beyond NP)

How to express preferences?

Static preferences: Use an external order $<$.
Ordered logic program: $(\Pi,<)$
where Π is a logic program over \mathcal{L} and
< is a strict partial order over Π;
Dynamic preferences: Use a special-purpose predicate \prec.
Ordered logic program: Π
where Π is a logic program over $\mathcal{L} \cup\{\prec\}$ containing rules expressing that \prec is a strict partial order.

Every statically ordered program can be expressed as a dynamically ordered one.

An example

Consider the following ordered logic program ($\Pi,<$) with $\Pi=\left\{r_{1}, r_{2}, r_{3}\right\}$

$$
\begin{array}{rrrrr}
r_{1}: & \neg a & \leftarrow & \text { and } & \\
r_{2}: & b & \leftarrow \neg a, \text { not } c & \\
r_{3}: & c & \leftarrow \operatorname{not} b &
\end{array}
$$

This program has two standard answer sets,

$$
\{\neg a, b\} \quad \text { and } \quad\{\neg a, c\}
$$

among which the green one is preferred.

How to define preferred answer sets?

for statically ordered logic programs

Let $(\Pi,<)$ be an ordered program and let X be an answer set of Π.
Then, X is $<-$ preserving, if X is either inconsistent, or else there exists an enumeration $\left\langle r_{i}\right\rangle_{i \in I}$ of $R_{\Pi}(X)$ such that for all $i, j \in I$ we have that:

1. $\operatorname{bod} y^{+}\left(r_{i}\right) \subseteq\left\{\operatorname{head}\left(r_{j}\right) \mid j<i\right\} ;$ and
2. if $r_{i}<r_{j}$, then $j<i$; and
3. if $r_{i}<r^{\prime}$ and $r^{\prime} \in \Pi \backslash R_{\Pi}(X)$, then
(a) body ${ }^{+}\left(r^{\prime}\right) \nsubseteq X$ or
(b) $\operatorname{body}^{-}\left(r^{\prime}\right) \cap\left\{h e a d\left(r_{j}\right) \mid j<i\right\} \neq \emptyset$.

Recall: $R_{\Pi}(X)=\left\{r \in \Pi \mid \operatorname{bod}^{+}(r) \subseteq X\right.$ and $\left.\operatorname{body}^{-}(r) \cap X=\emptyset\right\}$.

An example

Consider the statically ordered logic program

$$
(\Pi,<)=\left(\left\{r_{1}, r_{2}, r_{3}\right\},\left\{r_{3}<r_{2}\right\}\right)
$$

with

$$
\begin{aligned}
r_{1} & =\neg a \leftarrow \\
r_{2}=b & \leftarrow \neg a, \text { not } c \\
r_{3}=c & \leftarrow \text { not } b
\end{aligned}
$$

The (standard) program Π has two answer sets:

1. $\{\neg a, b\}$ is $<-$ preserving; $\left\langle r_{1}, r_{2}\right\rangle$ satisfies (1) and (2).
2. $\{\neg a, c\}$ is not $<-$ preserving, since $\left\langle r_{1}, r_{3}\right\rangle$ violates (3b).

Implementation

for dynamically ordered Iogic programs

Idea
Translate a logic program Π with preference information into a regular logic program $\mathcal{T}(\Pi)$ such that answers to $\mathcal{T}(\Pi)$ respect the preferences in Π.

Plan

1. Extend the language for expressing preference
2. Add axioms encoding specific preference handling strategies

(Dynamically) ordered logic programs

An ordered logic program is an extended logic program over a propositional language \mathcal{L},
containing the following pairwise disjoint categories:

- a set N of terms serving as names for rules;
- a set \mathcal{A} of regular (propositional) atoms of a program; and
- a set \mathcal{A}_{\prec} of preference atoms $s \prec t$, where $s, t \in N$ are names.

For each ordered program Π, we require a bijective function $n(\cdot)$ assigning to each rule $r \in \Pi$ a name $n(r) \in N$.

To simplify our notation, we write

- n_{r} instead of $n(r)$ or n_{i} instead of $n_{r_{i}}$ and
- $t: r$ instead of $t=n(r)$.

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:
$\operatorname{ap}\left(n_{r}\right)$ signifies that rule r is applicable wrt X, that is,

- $b o d y^{+}(r) \subseteq X$ and
- body ${ }^{-}(r) \cap X=\emptyset$.
$\mathrm{bl}\left(n_{r}\right)$ signifies that rule r is blocked wrt X, that is, either
- body ${ }^{+}(r) \nsubseteq X$ or
- body ${ }^{-}(r) \cap X \neq \emptyset$.
ok $\left(n_{r}\right)$ signifies that it is "ok" to consider rule r

2. Provide axioms that guarantee a consideration of rules that is in accord with the underlying preference information, that is, $n_{r} \prec n_{r^{\prime}}$ enforces that ok $\left(n_{r^{\prime}}\right)$ is derivable "before" ok $\left(n_{r}\right)$
3. Specify what it means that a rule "has been considered"

Translating ordered Iogic programs

Let $\Pi=\left\{r_{1}, \ldots, r_{k}\right\}$ be an ordered logic program over \mathcal{L}.
Let \mathcal{L}^{\star} be the language obtained from \mathcal{L} by adding, for each $r, r^{\prime} \in \Pi$, new pairwise distinct propositional atoms

- $\operatorname{ap}\left(n_{r}\right)$,
- $\mathbf{b l}\left(n_{r}\right)$,
- ok $\left(n_{r}\right)$, and
- $\operatorname{rdy}\left(n_{r}, n_{r^{\prime}}\right)$.

Then, the logic program $\mathcal{T}(\Pi)$ over \mathcal{L}^{\star} contains the following rules, (shown on the next slide)

Translating ordered logic programs (ctd)

For each $r \in \Pi$, where $L^{+} \in \operatorname{bod} y^{+}(r), L^{-} \in \operatorname{bod}^{-}(r)$, and $r^{\prime}, r^{\prime \prime} \in \Pi$:

$$
\begin{aligned}
& a_{1}(r): \quad h e a d(r) \leftarrow \operatorname{ap}\left(n_{r}\right) \\
& a_{2}(r): \quad \operatorname{ap}\left(n_{r}\right) \leftarrow \operatorname{ok}\left(n_{r}\right), \operatorname{body}(r) \\
& b_{1}(r, L): \quad \mathrm{bl}\left(n_{r}\right) \leftarrow \operatorname{ok}\left(n_{r}\right), \operatorname{not} L^{+} \\
& b_{2}(r, L): \quad \mathrm{bl}\left(n_{r}\right) \leftarrow \operatorname{ok}\left(n_{r}\right), L^{-} \\
& c_{1}(r): \quad \operatorname{ok}\left(n_{r}\right) \leftarrow \operatorname{rdy}\left(n_{r}, n_{r_{1}}\right), \ldots, \operatorname{rdy}\left(n_{r}, n_{r_{k}}\right) \\
& c_{2}\left(r, r^{\prime}\right): \quad \operatorname{rdy}\left(n_{r}, n_{r^{\prime}}\right) \leftarrow \operatorname{not}\left(n_{r} \prec n_{r^{\prime}}\right) \\
& c_{3}\left(r, r^{\prime}\right): \quad \operatorname{rdy}\left(n_{r}, n_{r^{\prime}}\right) \quad \leftarrow \quad\left(n_{r} \prec n_{r^{\prime}}\right), \operatorname{ap}\left(n_{r^{\prime}}\right) \\
& c_{4}\left(r, r^{\prime}\right): \quad \operatorname{rdy}\left(n_{r}, n_{r^{\prime}}\right) \leftarrow\left(n_{r} \prec n_{r^{\prime}}\right), \mathrm{bl}\left(n_{r^{\prime}}\right) \\
& t\left(r, r^{\prime}, r^{\prime \prime}\right): \quad n_{r} \prec n_{r^{\prime \prime}} \quad \leftarrow \quad n_{r} \prec n_{r^{\prime}}, n_{r^{\prime}} \prec n_{r^{\prime \prime}} \\
& a s\left(r, r^{\prime}\right): \quad \neg\left(n_{r^{\prime}} \prec n_{r}\right) \quad \leftarrow \quad n_{r} \prec n_{r^{\prime}}
\end{aligned}
$$

An(other) example

Consider the following ordered logic program $\Pi=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$:

$$
\begin{array}{rlrlr}
r_{1} & = & \neg a & \leftarrow \\
r_{2} & = & b & \leftarrow \neg a, \text { not } c \\
r_{3} & = & c & \leftarrow \operatorname{not} b \\
r_{4} & = & n_{3} \prec n_{2} & \leftarrow \operatorname{not} d
\end{array}
$$

where n_{i} denotes the name of rule $r_{i}(i=1, \ldots, 4)$.
This program has two answer sets, $\left\{\neg a, b, n_{3} \prec n_{2}\right\}$ and $\left\{\neg a, c, n_{3} \prec n_{2}\right\}$.

Only the first one, $\left\{\neg a, b, n_{3} \prec n_{2}\right\}$, preserves its contained preference, given by $n_{3} \prec n_{2}$.

Properties

Let $(\Pi,<)$ be an ordered logic program and X a set of literals.
Soundness and correctness
X is a <-preserving answer set of Π
iff
$X=Y \cap \mathcal{L}$ for some answer set Y of $\mathcal{T}\left(\Pi \cup\left\{\left(n_{r} \prec n_{r^{\prime}}\right) \leftarrow \mid r<r^{\prime}\right\}\right)$.
\Leftrightarrow One-to-one correspondence (actually holds).

Selection

If Y is an answer set of $\mathcal{T}\left(\Pi \cup\left\{\left(n_{r} \prec n_{r^{\prime}}\right) \leftarrow \mid r<r^{\prime}\right\}\right)$, then $Y \cap \mathcal{L}$ is an answer set of Π.

Implementation

plp http://www.cs.uni-potsdam.de/~ ${ }^{\text {torsten/plp }}$

- Front-end to dlv and smodels
- Ordered logic programs
- with preferences (everywhere)

$$
\text { eg. } \quad n_{17} \prec n_{42} \leftarrow n_{17} \prec n_{34}, \text { not }\left(n_{42} \prec n_{34}\right)
$$

- with variables

$$
\text { eg. } \quad n_{1}(x) \prec n_{2}(y) \leftarrow p(y), \operatorname{not}(x=c)
$$

- with disjunctive preferences

$$
\text { eg. } \quad\left(r_{2} \prec r_{42}\right) \vee\left(r_{4} \prec r_{42}\right) \leftarrow \neg a
$$

The example ran through plp

Ordered logic program $\Pi=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$:

$$
\begin{array}{rlrlr}
r_{1} & = & \neg a & \leftarrow \\
r_{2} & = & b & \leftarrow \neg a, \text { not } c \\
r_{3} & = & c & \leftarrow \operatorname{not} b \\
r_{4} & = & n_{3} \prec n_{2} & \leftarrow \operatorname{not} d
\end{array}
$$

becomes
neg a.
b :- name (n2), neg a, not c.
$c:-$ name (n3), not b.
(n3 < n2) :- not d.

The outcome

```
neg_a.
b :- ap(n2).
ap(n2) :- ok(n2), neg_a, not c.
bl(n2) :- ok(n2), not neg_a.
bl(n2) :- ok(n2), c.
c :- ap(n3).
ap(n3) :- ok(n3), not b.
bl(n3) :- ok(n3), b.
prec(n3, n2) :- not d.
ok(N) :- name(N), rdy(N, n2), rdy(N, n3).
rdy(N, M) :- name(N), name(M), not prec(N, M).
rdy(N, M) :- name(N), name(M), prec(N, M), ap(M).
rdy(N, M) :- name(N), name(M), prec(N, M), bl(M).
neg_prec(M, N) :- name(N), name(M), prec(N, M).
prec(N, M) :- name(N), name(M), name(0),
prec(N, O), prec(O,M).
false :- a, neg_a. false :- b, neg_b. false :- c, neg_c. false :- d, neg_d.
false :- name(N), name(M), prec(N, M), neg_prec(N, M).
name(n3). name(n2).
```


Computing preferred answer sets

```
?- lp2dlv('Examples/example').
yes
?- dlv('Examples/example').
dlv [build BEN/Apr 5 2000 gcc 2.95.2 19991024 (release)]
{name(n2), name(n3), neg_a, ok(n2), rdy(n2,n2), rdy(n2,n3), rdy(n3,n3),
    prec(n3,n2), neg_prec(n2,n3), ap(n2), b, rdy(n3,n2), ok(n3), bl(n3)}
yes
?- dlv('Examples/example',nice).
dlv [build BEN/Apr 5 2000 gcc 2.95.2 19991024 (release)]
{neg_a, b}
yes
?-
```


Sokoban - Initial Information

- initial_at(X,Y)
- square (X,Y)
- initial_box(X,Y)
- target_square(X,Y)

Sokoban - Beginning and End

```
time(1..n).
at(X, Y, 1) :-
    initial_at(X, Y).
has_box(X, Y, 1) :-
    initial_box(X, Y).
% In the end, all target squares must have boxes:
compute { has_box(X, Y, n +1) : target_square(X, Y) }.
```


Sokoban - Has Box I

```
% A box ends where it is pushed to
has_box(X, Y, I+1) :-
    move_to(X, Y, I),
    move_square(X, Y),
    time(I).
```

\% A box moves away when pushed
-has_box (X, Y, I+1) :-
push(X, Y, Dir, I),
time(I),
has_neighbor(X, Y, Dir).

Sokoban - Has Box II

```
% A box stays at a place if not pushed
has_box(X, Y, I+1) :-
    not -has_box(X, Y, I+1),
    has_box(X, Y, I),
    time(I),
    move_square(X, Y).
```

\% A box may not be pushed onto another
:- has_box (X, Y, I),
move_to (X, Y, I),
move_square (X, Y),
time(I).

Sokoban - Has Box III

```
% A box may not be pushed over another
    :- has_box(X_2, Y_2, I),
    push(X_1, Y_1, Dir, I),
    move_to(X_3, Y_3, I),
    time(I),
    same_segment(X_1, Y_1, X_2, Y_2, Dir),
    same_segment(X_2, Y_2, X_3, Y_3, Dir).
```


Sokoban - Move to

\% A box ends at exactly one position along the push direction
1 \{ move_to(X_2, Y_2, I) : same_segment(X_1, Y_1, X_2, Y_2, Dir) \} 1 :push(X_1, Y_1, Dir, I),
has_neighbor(X_1, Y_1, Dir),
time(I), $\mathrm{I}<\mathrm{n}$.

Sokoban - Pushing Boxes I

```
% A box may be pushed if it can be pushed:
{ push(X, Y, Dir, I) } :-
    can_push(X, Y, Dir, I),
    has_box(X, Y, I),
    has_neighbor(X, Y, Dir),
    possible_box(X, Y, I),
    time(I).
% No two boxes may be pushed at one time
    :- 2 { push(X, Y, Dir, I) :
        move_square(X, Y) :
        direction(Dir) },
    time(I).
```


Sokoban - Pushing Boxes II

\% A box can be pushed in a direction if the worker can reach it and
$\%$ there is space immediately behind the box
can_push(X, Y, east, I) :-
has_box (X, Y, I),
move_square (X, Y ; X+1, Y),
square ($\mathrm{X}-1, \mathrm{Y}$),
not has_box (X-1, Y, I),
not has_box (X+1, Y, I),
reachable(X-1, Y, I),
possible_box(X, Y, I),
time(I).

Sokoban - Moving Boxes

```
% We only try to move to places from where there is a route to a
% target location:
move_square(X, Y) :-
    square(X, Y),
    has_target_route(X, Y).
has_target_route(X, Y) :-
    target_square(X, Y).
has_target_route(X, Y) :-
    square(X, Y ; X+1, Y; X-1, Y),
    has_target_route(X+1, Y).
```

usw.

Sokoban - Reachable

```
% The worker can reach all places that are not blocked.
reachable(X, Y, I) :-
    square(X, Y),
    time(I),
    at(X, Y, I).
reachable(X+1, Y, I) :-
    square(X, Y ; X+1, Y),
    time(I),
    reachable(X, Y, I),
    not has_box(X+1, Y, I).
```

USW.

Sokoban - Has Neighbor

\% When squares have neighbors:
has_neighbor (X, Y, east) :-
move_square(X, Y ; X +1, Y).
usw.

Sokoban - Improvements I

```
% Check if goal is reached:
goal(I) :-
    { not has_box(X, Y, I) : target_square(X, Y) } 0,
    time(I).
% Do not push after goal is reached:
    :- 1 {move_to(X, Y, I) : move_square(X, Y) },
    time(I),
    goal(I).
```


Sokoban - Improvements II

```
% The final move has to be to a target square:
1 { move_to(X_2, Y_2, n) : same_segment(X_1, Y_1, X_2, Y_2, Dir) :
    target_square(X_2, Y_2) } 1 :-
    push(X_1, Y_1, Dir, n),
    has_neighbor(X_1, Y_1, Dir).
% A box may not be pushed twice to the same direction:
    :- push_dir(Dir, I),
    move_to(X, Y, I),
    push(X, Y, Dir, I),
    has_neighbor(X, Y, Dir),
    time(I).
```


Sokoban - Improvements III

\% no immediate undoing of a move, if reachable doesn't change :- push(X, Y, west, I),
push_dir(east, I),
move_to(X, Y, I+1),
time(I), $\mathrm{I}<\mathrm{n}$,
has_neighbor (X, Y, west),
reachable(X-2, Y, I).
usw.

Sokoban - Improvements IV

```
% Don't push two boxes adjacent each other along the edge.
    :- edge_pair(X_1, Y_1, X_2, Y_2),
    time(I),
    has_box(X_1, Y_1, I),
    has_box(X_2, Y_2, I).
edge_pair(X, Y, X+1, Y) :-
    move_square(X, Y ; X+1, Y),
    not target_square(X, Y),
    not target_square(X+1, Y),
    not square(X, Y-1),
    not square(X+1, Y-1).
```

usw.

Sokoban - Improvements V

```
% Don't push three boxes into a L-turn:
    :- { target_square(X_1, Y_1),
            target_square(X_2, Y_2),
            target_square(X_3, Y_3) } 2,
    l_turn(X_1, Y_1, X_2, Y_2, X_3, Y_3),
    time(I),
    has_box(X_1, Y_1,I),
    has_box(X_2, Y_2,I),
    has_box(X_3, Y_3,I).
l_turn(X,Y, X+1, Y, X+1, Y+1) :-
    move_square(X, Y ; X+1, Y ; X+1, Y+1),
    not square(X+1, Y).
```


Sokoban - Improvements VI

```
% Don't form a 4-box square:
    :- move_square(X, Y),
        move_square(X+1,Y),
    move_square(X+1, Y+1),
    move_square(X, Y+1),
    time(I),
    not target_square(X, Y),
    not target_square(X+1,Y),
    not target_square(X+1, Y+1),
    not target_square(X, Y+1),
    has_box(X, Y, I),
    has_box(X+1, Y, I),
    has_box(X+1, Y+1, I),
    has_box(X, Y+1, I).
```


Sokoban - Improvements VII

```
% Treat first two moves special because we know what moves are possible:
possible_box(X, Y, 1) :- initial_box(X, Y).
possible_box(X_2, Y_2, 2) :-
    same_segment(X_1, Y_1, X_2, Y_2, Dir),
    move_square(X_2, Y_2),
    initial_box(X_1, Y_1).
possible_box(X, Y, 2) :-
    initial_box(X, Y).
possible_box(X, Y, I) :-
    time(I), I >= 3,
    move_square(X, Y).
```


What is a configuration problem?

Product: consists of different components (configuration objects) that interact in complex ways

Configuration model: collection of objects and relationships between them

Constraints: restrict allowed object combinations in the model
Configuration: set of objects of the configuration model
Configuration process: find a configuration that satisfies given user requirements in a given configuration model

Classes of configurations

Valid configuration: satisfies all constraints of the configuration model Suitable configuration: is a valid configuration satisfying all user requirements

Optimal configuration: is a suitable configuration satisfying some optimal criteria

Debian GNU/Linux System

The Debian configuration model can be divided in two parts:

1. a database that stores information about the packages and their relations as facts;
2. a set of inference rules that construct the valid configurations using the facts stored in the database.

Database

package(P) software package P
depends $\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right)$ package P_{1} depends on package P_{2} (package P_{1} cannot be used if P_{2} is not installed)
conflicts $\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right)$ package P_{1} will not operate if P_{2} is installed
recommends $\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right)$ package P_{2} enhances the functionality of package P_{1} in a significant way

Debian GNU/Linux System

Database

```
package(mail-reader }\mp@subsup{}{1}{}
package(mail-reader 2)
package(mail-extension)
package(mail-transport-agent)
depends(mail-reader }\mp@subsup{\mp@code{I}}{1}{\prime}\mathrm{ mail-transport-agent)
depends(mail-reader 2, mail-transport-agent)
depends(mail-extension, mail-reader }\mp@subsup{}{1}{}
conflicts(\mp@subsup{mail-reader }{1}{\prime},\mp@subsup{mail-reader }{2}{})
recommends(mail-reader }\mp@subsup{1}{1}{\prime}\mathrm{ mail-extension)
```


Inference Rules

in(\mathbf{P}) package P is chosen to be in the configuration
justified(\mathbf{P}) package P has some reasons to be in the configuration user-exclude(\mathbf{P}), user-include(\mathbf{P}) representation of user requirements

Debian GNU/Linux System

Inference Rules

$$
\begin{aligned}
\{\operatorname{in}(P)\} & \leftarrow \operatorname{package}(P), j u s t i f i e d(P) \\
& \leftarrow \operatorname{in}\left(P_{1}\right), \operatorname{depends}\left(P_{1}, P_{2}\right), \operatorname{not} \operatorname{in}\left(P_{2}\right) \\
& \leftarrow \operatorname{conflicts}\left(P_{1}, P_{2}\right), \operatorname{in}\left(P_{1}\right), \operatorname{in}\left(P_{2}\right) \\
& \leftarrow \operatorname{user}-\operatorname{include}(P), \operatorname{not} \operatorname{in}(P) \\
& \leftarrow \operatorname{user-exclude}(P), \operatorname{in}(P) \\
\text { justified }(P) & \leftarrow \operatorname{user-include}(P) \\
\operatorname{justified}\left(P_{2}\right) & \leftarrow \operatorname{depends}\left(P_{1}, P_{2}\right), \operatorname{in}\left(P_{1}\right) \\
\operatorname{justified}\left(P_{2}\right) & \leftarrow \operatorname{recommends}\left(P_{1}, P_{2}\right), \operatorname{in}\left(P_{1}\right)
\end{aligned}
$$

Suitable configurations

Given a Debian configuration model $C M$, a set U of user requirements, and a stable model M of $C M \cup U$, a Debian configuration C_{M} is a set of packages

$$
C_{M}=\{P \mid i n(P) \in M\}
$$

Debian GNU/Linux System

Logic program

```
package(mailreader1). depends(mailreader1,mailtransportagent).
package(mailreader2). depends(mailreader2,mailtransportagent).
package(mailextension). depends(mailextension,mailreader1).
package(mailtransportagent). recommends(mailreader1,mailextension).
conflicts(mailreader1,mailreader2).
{ in(P) } :- package(P), justified(P).
    :- in(P1), depends(P1,P2), not in(P2).
    :- conflicts(P1,P2),in(P1),in(P2).
    :- userinclude(P), not in(P).
    :- userexclude(P), in(P).
justified(P) :- userinclude(P).
justified(P2) :- depends(P1,P2), in(P1).
justified(P2) :- recommends(P1,P2), in(P1).
userinclude(mailreader1).
hide. show in(X).
```


Debian GNU/Linux System

Stable models

```
smodels version 2.27. Reading...done
Answer: 1
Stable Model: in(mailtransportagent) in(mailreader1)
Answer: 2
Stable Model: in(mailtransportagent) in(mailextension) in(mailreader1)
```


Debian GNU/Linux System

Logic program

```
package(mailreader1). depends(mailreader1,mailtransportagent).
package(mailreader2).
package(mailextension).
package(mailtransportagent). recommends(mailreader1,mailextension).
conflicts(mailreader1,mailreader2).
{ in(P) } :- package(P), justified(P).
    :- in(P1), depends(P1,P2), not in(P2).
    :- conflicts(P1,P2),in(P1),in(P2).
    :- userinclude(P), not in(P).
    :- userexclude(P), in(P).
justified(P) :- userinclude(P).
justified(P2) :- depends(P1,P2), in(P1).
justified(P2) :- recommends(P1,P2), in(P1).
userinclude(mailreader2).
hide. show in(X).
```


Debian GNU/Linux System

Stable models

```
smodels version 2.27. Reading...done
```

Answer: 1
Stable Model: in(mailtransportagent) in(mailreader2)

Debian GNU/Linux System

Logic program

```
package(mailreader1). depends(mailreader1,mailtransportagent).
package(mailreader2). depends(mailreader2,mailtransportagent).
package(mailextension). depends(mailextension,mailreader1).
package(mailtransportagent). recommends(mailreader1,mailextension).
conflicts(mailreader1,mailreader2).
{ in(P) } :- package(P), justified(P).
    :- in(P1), depends(P1,P2), not in(P2).
    :- conflicts(P1,P2),in(P1),in(P2).
    :- userinclude(P), not in(P).
    :- userexclude(P), in(P).
justified(P) :- userinclude(P).
justified(P2) :- depends(P1,P2), in(P1).
justified(P2) :- recommends(P1,P2), in(P1).
userinclude(mailextension).
userinclude(mailreader2).
```

No stable models!

Diagnostic Model

Unsatisfiable requirements are diagnosed using a diagnostic model.
The diagnostic model is constructed from the configuration model by adding a new set of atoms that represent the possible error conditions.

The diagnostic output also explains why each problematic component was included in the configuration.

The constraint are modified in such way that the diagnostic model will always have at least one stable model.

Diagnostic Model

New atoms

missing(\mathbf{P}), in-conflict $\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right)$ denote error conditions
needs-reason(\mathbf{P}) mark the packages that are in some way part of the problem and thus needs an explanation
user-selected(\mathbf{P}), needs $\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right)$ explain why certain packages were taken into the configuration

Diagnosis

Given a Debian configuration model $D M$ and a set U of user requirements, a diagnosis D is a four-tuple $D=\left(M, E_{M}, P_{M}, R_{M}\right)$, where

1. M is a stable model of $D M \cup U$;
2. E_{M} is the error set

$$
E_{M}=\{\operatorname{missing}(P) \in M\} \cup\left\{\text { in-conflict }\left(P_{1}, P_{2}\right) \in M\right\} ;
$$

3. P_{M} is the problem set

$$
P_{M}=\{P \mid \text { needs-reason }(P) \in M\} ; \text { and }
$$

4. R_{M} is the explanation set

$$
R_{M}=\{u s e r-\operatorname{selected}(P) \in M\} \cup\left\{\text { needs }\left(P_{1}, P_{2}\right) \in M\right\} .
$$

Modifying configuration models

We want that the diagnosis contains only those packages that have to be in there so that it will be as small as possible.

Thus, remove rule

$$
\{\operatorname{in}(P)\} \leftarrow \operatorname{package}(P), \text { justified }(P)
$$

In addition, this ensures that no false alarms are caused by adding unnecessary recommended packages in the configuration.

Missing Packages

Error set

$\operatorname{missing}(P)$ denote that some package in the configuration depends on P but for some reason P is not in the configuration.

Rule $\leftarrow \operatorname{in}\left(P_{1}\right)$, depends $\left(P_{1}, P_{2}\right)$, not $i n\left(P_{2}\right)$ is replaced by:

$$
\begin{aligned}
\operatorname{in}\left(P_{2}\right) & \leftarrow \operatorname{in}\left(P_{1}\right), \text { depends }\left(P_{1}, P_{2}\right), \operatorname{package}\left(P_{2}\right) \\
\operatorname{missing}\left(P_{2}\right) & \leftarrow \operatorname{in}\left(P_{1}\right), \text { depends }\left(P_{1}, P_{2}\right), \text { not package }\left(P_{2}\right)
\end{aligned}
$$

The first rule ensures that existing packages are added to the model, the second rule marks non-existing packages as missing.

In addition, it may be the case that a package the user included is not available. Hence, rule $\leftarrow u s e r-i n c l u d e(P)$, not $\operatorname{in}(P)$ is replaced by:

$$
\begin{aligned}
\operatorname{in}(P) & \leftarrow \text { user-include }(P), \operatorname{package}(P) \\
\text { missing }(P) & \leftarrow \text { user-include }(P), \text { not package }(P)
\end{aligned}
$$

Conflicts

Error set

in-conflict $\left(P_{1}, P_{2}\right)$ is used to model conflicts. in-conflict $\left(P_{1}, P_{2}\right)$ is true when P_{1} and P_{2} conflict with each other and they both have to be in the configuration.

We replace rule $\leftarrow \operatorname{conflicts}\left(P_{1}, P_{2}\right), \operatorname{in}\left(P_{1}\right), \operatorname{in}\left(P_{2}\right)$ with

$$
\operatorname{in-conflict}\left(P_{1}, P_{2}\right) \leftarrow \operatorname{conflicts}\left(P_{1}, P_{2}\right), \operatorname{in}\left(P_{1}\right), \operatorname{in}\left(P_{2}\right) .
$$

To handle the case where the user wants to leave out a package that some other package needs, we replace the rule $\leftarrow \operatorname{in}(P)$, user-exclude (P) with

$$
\text { in-conflict }(P, \text { user-exclude }) \leftarrow i n(P), \text { user-exclude }(P) .
$$

Justifications

needs-reason (P) marks the packages we want to justify.
We add the rules

$$
\begin{aligned}
\text { needs-reason }(P) & \leftarrow \text { missing }(P) \\
\text { needs-reason }\left(P_{1}\right) & \leftarrow \operatorname{in-conflict}\left(P_{1}, P_{2}\right), \operatorname{package}\left(P_{1}\right) \\
\text { needs-reason }\left(P_{2}\right) & \leftarrow \operatorname{in-conflict}\left(P_{1}, P_{2}\right), \operatorname{package}\left(P_{2}\right) \\
\text { needs-reason }\left(P_{1}\right) & \leftarrow \operatorname{depends}\left(P_{1}, P_{2}\right), \text { needs-reason }\left(P_{2}\right), \operatorname{in}\left(P_{1}\right)
\end{aligned}
$$

user-selected (P) is true when the user chose P to be in the configuration. needs $\left(P_{1}, P_{2}\right)$ is true if P_{2} was included because P_{1} depends on it. The justifications can be modeled with the following rules:

$$
\begin{aligned}
\text { user-selected }(P) & \leftarrow \text { needs-reason }(P), \text { user-include }(P) \\
\text { needs }\left(P_{1}, P_{2}\right) & \leftarrow \text { needs-reason }\left(P_{2}\right), \operatorname{depends}\left(P_{1}, P_{2}\right), \operatorname{in}\left(P_{1}\right)
\end{aligned}
$$

Debian GNU / Linux System

```
            in(P)}\mp@subsup{P}{2}{})\leftarrow\quadin(\mp@subsup{P}{1}{}),\mathrm{ depends ( }\mp@subsup{P}{1}{},\mp@subsup{P}{2}{}),\mathrm{ package ( }\mp@subsup{P}{2}{}
            missing(P2) \leftarrow in( (P1),depends( P
    in-conflict ( }\mp@subsup{P}{1}{},\mp@subsup{P}{2}{})\leftarrow\operatorname{conflicts( }\mp@subsup{P}{1}{},\mp@subsup{P}{2}{}),in(\mp@subsup{P}{1}{}),in(\mp@subsup{P}{2}{}
in-conflict(P,user-exclude) }\leftarrow in(P),user-exclude(P
            in (P) \leftarrow user-include (P), package (P)
            missing}(P)\leftarrowuser-include(P), not package (P
            justified (P) \leftarrow user-include (P)
            justified (P2) \leftarrow depends(P
            justified (P2) \leftarrow recommends( (P1, P
    needs-reason}(P)\leftarrow\operatorname{missing}(P
    needs-reason ( }\mp@subsup{P}{1}{})\leftarrow\mathrm{ in-conflict ( }\mp@subsup{P}{1}{},\mp@subsup{P}{2}{})\mathrm{ , package ( }\mp@subsup{P}{1}{}
    needs-reason (P2) \leftarrow in-conflict ( }\mp@subsup{P}{1}{},\mp@subsup{P}{2}{})\mathrm{ , package ( }\mp@subsup{P}{2}{}
    needs-reason ( }\mp@subsup{P}{1}{})\leftarrow\mathrm{ depends (P1, P
    user-selected }(P)\leftarrow\mathrm{ needs-reason ( }P)\mathrm{ ,user-include (P)
```


Stable Models

User requirements:
userinclude(mailextension). userinclude(mailreader 2).

```
package(mailreader1).
package(mailreader2).
package(mailextension).
package(mailtransportagent).
```

conflicts(mailreader1, mailreader2).

Stable Models

User requirements:
userinclude(mailextension). userinclude(mailreader 2).
Stable Model: userinclude(mailreader2) userinclude(mailextension)
needs(mailextension,mailreader1)
in(mailreader1)
in(mailextension)
in(mailtransportagent)
in(mailreader2)
needsreason(mailreader1)
needsreason(mailreader2)
needsreason(mailextension)
userselected(mailreader2)
userselected(mailextension)
inconflict(mailreader1, mailreader2)

Debian GNU / Linux System

Diagnosis

Error set:

$$
E=\left\{\text { in-conflict }\left(\text { mail-reader }_{1}, \text { mail-reader }_{2}\right)\right\}
$$

Problem set:

$$
P=\left\{\text { mail-reader }_{1}, \text { mail-reader }_{2}, \text { mail-extension }\right\}
$$

Explanation set:

$$
R=\left\{\begin{array}{l}
\text { user-selected }\left(\text { mail-reader }_{2}\right), \\
\text { user-selected }(\text { mail-extension }), \\
\text { needs }(\text { mail-extension,mail-reader }
\end{array} \text {) }\right\} \text {. }
$$

Stable Models

User requirements:
userinclude(mailreader2).

Stable Model: in(mailtransportagent) in(mailreader2)

$$
E=P=R=\emptyset
$$

Configuration of a PC

A computer is configured using the following configuration model:

- a mass-memory \{IDEdisk,SCSIdisk, floppydrive\},
- a keyboard \{GermanlayoutKB,UKlayoutKB\},
- a processor $\{P I I, P I I I\}$,
- a motherboard $\{A T X, I 820\}$,
- a graphics card gcard.

The following dependencies must be respected:

- SCSI disk requires an SCSI controller \{SCSIcontroller\},
- $\{P I I\}$ is incompatible with $I 820$ and $\{P I I I\}$ with $A T X$,
- graphics card is needed, if motherboard contains none, $\{A T X\}$ contains one, $\{I 820\}$ does not.

Configuration Rule Language (CRL)

Rules are of the form
$a_{1} \theta \ldots \theta a_{l} \leftarrow b_{1}, \ldots, b_{m}$, not c_{1}, \ldots not c_{n}
where $\theta \in\{\mid, \oplus\}, a_{1}, \ldots, a_{n}, b_{1}, \ldots b_{m}, c_{1}, \ldots c_{n}$ are atoms.
We have two types of disjunction:
|: "normal or"
\oplus : exclusive or

Configuration model of a PC

computer \leftarrow
IDEdisk \mid SCSIdisk \mid floppydrive \leftarrow computer
GermanlayoutKB \oplus UKlayoutKB \leftarrow computer
PII \oplus PIII \leftarrow computer
ATX \oplus I820 \leftarrow computer
SCSIcontroller \leftarrow SCSIdisk
$\leftarrow P I I, I 820$
$\leftarrow P I I I, A T X$
gcard \leftarrow not gcardinmb
gcardinmb $\leftarrow A T X$

Satisfaction

A configuration C satisfies a set of rules R in $\mathbf{C R L}(C \models R)$ iff

1. If $a_{1}|\ldots| a_{l} \leftarrow b_{1}, \ldots, b_{m}$, not c_{1}, \ldots not c_{n},
$\left\{b_{1}, \ldots, b_{m}\right\} \subseteq C$ and $\left\{c_{1}, \ldots, c_{n}\right\} \cap C=\emptyset$, then $\left\{a_{1}, \ldots a_{l}\right\} \cap C \neq \emptyset$.
2. If $a_{1} \oplus \ldots \oplus a_{l} \leftarrow b_{1}, \ldots, b_{m}$, not c_{1}, \ldots not c_{n},
$\left\{b_{1}, \ldots, b_{m}\right\} \subseteq C$ and $\left\{c_{1}, \ldots, c_{n}\right\} \cap C=\emptyset$, then for exactly one $a \in\left\{a_{1}, \ldots a_{l}\right\}, a \in C$.

Computation of configurations

Given a configuration C and a set of rules R, we denote by R^{C} the set of rules

$$
\begin{aligned}
\left\{a_{i} \leftarrow b_{1}, \ldots b_{m}:\right. & a_{1} \theta \ldots \theta a_{l} \leftarrow b_{1}, \ldots, b_{m}, \text { not } c_{1}, \ldots \text { not } c_{n} \in R, \\
& \theta \in\{\mid, \oplus\}, a_{i} \in C, 1 \leq i \leq l, \\
& \left.\left\{c_{1}, \ldots, c_{n}\right\} \cap C=\emptyset\right\} \cup \\
\left\{a \leftarrow b_{1}, \ldots b_{m}:\right. & a \leftarrow b_{1}, \ldots, b_{m}, \text { not } c_{1}, \ldots \text { not } c_{n} \in R, \\
& \left.\left\{c_{1}, \ldots, c_{n}\right\} \cap C=\emptyset\right\} .
\end{aligned}
$$

The least model of R^{C} is denoted by $M M\left(R^{C}\right)$.
The configuration is R-valid iff $C=M M\left(R^{C}\right)$ and $C \models R$.

Configuration of a PC

```
    computer }
IDEdisk|SCSIdisk | floppydrive }\leftarrow computer
GermanlayoutKB\oplusUKlayoutKB}\leftarrow computer
        PII\oplusPIII }\leftarrow computer
        ATX\oplusI820 \leftarrow computer
        SCSIcontroller }\leftarrow SCSIdis
        \leftarrow PII,I820
        \leftarrow ~ P I I I , ~ A T X ~
        gcard}\leftarrow not gcardinmb
        gcardinmb }\leftarrow AT
        GermanlayoutKB}
    C1 = {computer,SCSIdisk,U KlayoutK B, PII, PIII, gcard }
```

Configuration C_{1} is not R -valid.

Configuration of a PC

$$
\begin{aligned}
\text { computer } & \leftarrow \\
\text { IDEdisk } \mid \text { SCSIdisk } \mid \text { floppydrive } & \leftarrow \text { computer } \\
\text { GermanlayoutKB } \oplus \text { UKlayoutKB } & \leftarrow \text { computer } \\
\text { PII } \oplus P I I I & \leftarrow \text { computer } \\
\text { ATX } \oplus \text { I820 } & \leftarrow \text { computer } \\
\text { SCSIcontroller } & \leftarrow \text { SCSIdisk } \\
& \leftarrow \text { PII, I820 } \\
& \leftarrow \text { PIII, ATX } \\
\text { gcard } & \leftarrow \text { not gcardinmb } \\
\text { gcardinmb } & \leftarrow \text { ATX } \\
\text { GermanlayoutKB } & \leftarrow
\end{aligned}
$$

Configuration C_{2} is not R-valid.

Configuration of a PC

$$
\begin{aligned}
\text { computer } & \leftarrow \\
\text { IDEdisk } \mid \text { SCSIdisk } \mid \text { floppydrive } & \leftarrow \text { computer } \\
\text { GermanlayoutKB } \oplus \text { UKlayoutKB } & \leftarrow \text { computer } \\
\text { PII } \oplus P I I I & \leftarrow \text { computer } \\
\text { ATX } \oplus \text { I820 } & \leftarrow \text { computer } \\
\text { SCSIcontroller } & \leftarrow \quad \text { SCSIdisk } \\
& \leftarrow \text { PII, I820 } \\
& \leftarrow \text { PIII, ATX } \\
\text { gcard } & \leftarrow \text { not gcardinmb } \\
\text { gcardinmb } & \leftarrow \quad \text { ATX } \\
\text { GermanlayoutKB } & \leftarrow
\end{aligned}
$$

Configuration of a PC

$C_{3} \models R$
Reduct $R^{C_{3}}$:

computer	\leftarrow
SCSIdisk	\leftarrow computer
GermanlayoutKB	\leftarrow computer
PII	\leftarrow computer
ATX	\leftarrow computer
SCSIcontroller	\leftarrow SCSIdisk
	\leftarrow PII, I820
	\leftarrow PIII, ATX
gcardinmb	$\leftarrow A T X$

GermanlayoutKB \leftarrow
$M M\left(R^{C_{3}}\right)=C_{3}$.
Configuration C_{3} is R -valid.

Relationship to logic programming semantics

Let R be a set of rules in CRL. Let f, f^{\prime} be atoms not appearing in R.
Include $f^{\prime} \leftarrow$ not f^{\prime}, f.
For each rule $a_{1}|\ldots| a_{l} \leftarrow b_{1}, \ldots, b_{m}$, not c_{1}, \ldots not c_{n} we include a rule

$$
f \leftarrow b_{1}, \ldots, b_{m}, \text { not } c_{1}, \ldots \text { not } c_{n}, \hat{a_{1}}, \ldots, \hat{a_{l}}
$$

and for all $i=1, \ldots, l$, two rules

$$
a_{i} \leftarrow \operatorname{not} \hat{a_{i}}, b_{1}, \ldots, b_{m}, \text { not } c_{1}, \ldots \text { not } c_{n} \text { and } \hat{a_{i}} \leftarrow \text { not } a_{i}
$$

where $\hat{a_{1}}, \ldots, \hat{a_{l}}$ are new atoms.
For each rule $a_{1} \oplus \ldots \oplus a_{l} \leftarrow b_{1}, \ldots, b_{m}$, not c_{1}, \ldots not c_{n} we additionally include

$$
f \leftarrow b_{1}, \ldots, b_{m}, \text { not } c_{1}, \ldots \text { not } c_{n}, a^{\prime}, a^{\prime \prime}
$$

where $a^{\prime}=a_{i}$ and $a^{\prime \prime}=a_{j}$ for some $i, j, 1 \leq i<j \leq l$.

Configuration of a PC

translation of the rules

computer \longleftarrow
stays unchanged.

Configuration of a PC

translation of the rules

```
f}\leftarrow~not \mp@subsup{f}{}{\prime},
            IDEdisk| SCSIdisk| floppydrive }\leftarrow\mathrm{ computer
```



```
            IDEdisk}\leftarrow not IDEdisk',computer
            IDEdisk'}\leftarrow~not IDEdisk
            SCSIdisk }\leftarrow\mathrm{ not SCSIdisk', computer
    SCSIdisk'
    floppydrive }\leftarrow\mathrm{ not floppydrive',}\mathrm{ ,computer
    floppydrive}\mp@subsup{}{}{\prime}\leftarrow\mathrm{ not floppydrive
```


Configuration of a PC

translation of the rules

GermanlayoutK $B \oplus$ U Klayout $K B \leftarrow$ computer

$$
\begin{aligned}
f & \leftarrow \text { computer, GermanlayoutK } B^{\prime}, U \text { KlayoutK } B^{\prime} \\
\text { GermanlayoutKB } & \leftarrow \text { not GermanlayoutK } B^{\prime}, \text { computer } \\
\text { GermanlayoutKB' } & \leftarrow \text { not GermanlayoutKB } \\
\text { UKlayoutKB } & \leftarrow \text { not UKlayoutK } B^{\prime}, \text { computer } \\
\text { UKlayoutKB } & \leftarrow \text { not UKlayoutKB } \\
f & \leftarrow \text { computer, GermanlayoutKB,UKlayoutKB }
\end{aligned}
$$

Configuration of a PC

```
computer.
fp :- not fp, f.
f :- computer, nidedisk, nscsidisk, nfloppydrive.
idedisk :- not nidedisk, computer.
nidedisk :- not idedisk.
scsidisk :- not nscsidisk, computer.
nscsidisk :- not scsidisk.
floppydrive :- not nfloppydrive, computer.
nfloppydrive :- not floppydrive.
f:- computer, ngermanlayoutKB, nuklayoutKB.
germanlayoutKB :- not ngermanlayoutKB, computer.
ngermanlayoutKB :- not germanlayoutKB.
uklayoutKB :- not nuklayoutKB, computer.
nuklayoutKB :- not uklayoutKB
f :- computer, germanlayoutKB, uklayoutKB.
f:- computer, npII, npIII.
pII :- not npII, computer.
npII :- not pII.
pIII :- not npIII, computer.
npIII :- not pIII.
f :- computer, pII, pIII.
scsicontroller :- scsidisk.
:- pII, i820.
:- pIII, atx.
gcard :- not gcardinmb.
gcardinmb :- atx.
germanlayoutKB.
hide.
show computer,
idedisk,scsidisk,floppydrive,germanlayoutKB,uklayoutKB,pII,pIII,atx,i820,scsicontroller,gcard,gcardinmb.
```


Configuration of a PC

```
smodels version 2.27. Reading...done
Answer: 1
Stable Model: gcard i820 pIII germanlayoutKB idedisk computer
Answer: 2
Stable Model: gcard scsicontroller scsidisk i820 pIII germanlayoutKB idedisk computer
Answer: 3
Stable Model: gcard scsicontroller scsidisk i820 pIII germanlayoutKB floppydrive idedisk computer
Answer: 4
Stable Model: gcard i820 pIII germanlayoutKB floppydrive idedisk computer
Answer: 5
Stable Model: gcard i820 pIII germanlayoutKB floppydrive computer
Answer: 6
Stable Model: gcard scsicontroller scsidisk i820 pIII germanlayoutKB floppydrive computer
Answer: 7
Stable Model: gcard scsicontroller scsidisk i820 pIII germanlayoutKB computer
Answer: 8
Stable Model: gcardinmb atx scsicontroller scsidisk pII germanlayoutKB computer
Answer: 9
Stable Model: gcardinmb atx pII germanlayoutKB idedisk computer
Answer: 10
Stable Model: gcardinmb atx scsicontroller scsidisk pII germanlayoutKB idedisk computer
Answer: 11
Stable Model: gcardinmb atx scsicontroller scsidisk pII germanlayoutKB floppydrive idedisk computer
Answer: 12
Stable Model: gcardinmb atx scsicontroller scsidisk pII germanlayoutKB floppydrive computer
Answer: 13
Stable Model: gcardinmb atx pII germanlayoutKB floppydrive computer
Answer: 14
Stable Model: gcardinmb atx pII germanlayoutKB floppydrive idedisk computer
```


References

1. T. Syrjänen: A rule-based formal model for software configuration, 1999,
2. T. Soininen: An approach to knowledge representation and reasoning for product configuration tasks, 2000,
3. T. Syrjänen: Including diagnostic information in configuration models, 2000,
4. T. Soininen, I. Niemelä: Developing a declarative rule language for applications in product configuration, 1999.

Action languages

- Transition Systems
- Action language \mathcal{A}
- Action language \mathcal{C}

Action signatures

An action signature consists of three nonempty sets:

- a set V of value names,
- a set F of fluent names, and
- a set A of action names.

Intuitively, any "fluent" has a specific "value" in any "state of the world". An "action", if executed in some state, leads to a "resulting" state.

Transition systems

A transition system $\langle S, V, R\rangle$ of an action signature $\langle\mathbf{V}, \mathbf{F}, \mathbf{A}\rangle$ consists of

1. a set S,
2. a function V from $\mathbf{F} \times S$ into \mathbf{V}, and
3. a subset R of $S \times \mathbf{A} \times S$.

The elements of S are called states.
$V(P, s)$ is the value from P in s.

Transitions

A transition is any triple $\left\langle s, A, s^{\prime}\right\rangle \in R$, where s^{\prime} is a result of the execution of A in s.
A is executable in s if there is at least one such s^{\prime}.
A is deterministic in s if there is at most one such s^{\prime}.
An action signature $\langle\mathbf{V}, \mathbf{F}, \mathbf{A}\rangle$ is propositional if its value names are the truth values of classical logic: $\mathbf{V}=\{f, t\}$.

A transition system is propositional if its signature is propositional.

Transition graph

A transition system can be thought of as a labeled directed graph.

- States are the vertices,
- transitions $\left\langle s, A, s^{\prime}\right\rangle \in R$ are represented as edges from s to s^{\prime} labeled with A.

Example

Doors

> Fluents $:\{$ closed $\}$ Actions $:\{$ opendoor $\}$ States $: \begin{aligned} & s_{1}=\{\text { closed }\} \\ & \\ & s_{2}=\{\neg \text { closed }\}\end{aligned}$

Transitions: $\left\langle s_{1}, a, s_{2}\right\rangle$

$$
\left\langle s_{2}, a, s_{2}\right\rangle
$$

Example

Fluents: $\{p, q, r\}$
Actions: $\{a, b\}$
States: $s_{1}=\{\neg p, \neg q, \neg r\}$
$s_{2}=\{p, q, \neg r\}$
$s_{3}=\{p, \neg q, r\}$

Transitions: $\left\langle s_{1}, a, s_{1}\right\rangle$

$$
\left\langle s_{1}, b, s_{2}\right\rangle
$$

$$
\left\langle s_{1}, b, s_{3}\right\rangle
$$

$$
\left\langle s_{2}, a, s_{3}\right\rangle
$$

Example

Fluents : $\{p, q\}$
Actions : $\{a\}$
States: $s_{1}=\{p, q\}$

$$
\begin{aligned}
& s_{2}=\{\neg p, q\} \\
& s_{3}=\{p, \neg q\} \\
& s_{4}=\{\neg p, \neg q\}
\end{aligned}
$$

Transitions: $\left\langle s_{1}, a, s_{1}\right\rangle$

$$
\begin{aligned}
& \left\langle s_{2}, a, s_{1}\right\rangle \\
& \left\langle s_{3}, a, s_{3}\right\rangle \\
& \left\langle s_{4}, a, s_{3}\right\rangle
\end{aligned}
$$

Action language \mathcal{A}

Let $\langle\{f, t\}, \mathbf{F}, \mathbf{A}\rangle$ be a propositional action signature.
A proposition is an expression of the form

A causes L if F

where A is an action name, L is a literal and F is a conjunction of literals.

If F is true then if F can be dropped.
An action description is a set of propositions.

Action language \mathcal{A}

Let $\langle\{f, t\}, \mathbf{F}, \mathbf{A}\rangle$ be a propositional action signature. Let D be an action description in \mathcal{A}.

The transition system $\langle S, V, R\rangle$ described by D is defined as follows:

- S is the set of all interpretations of \mathbf{F},
- $V(P, s)=s(P)$,
- R is set of transitions $\left\langle s, A, s^{\prime}\right\rangle$ such that

$$
E(A, s) \subseteq s^{\prime} \subseteq E(A, s) \cup s
$$

where $E(A, s)=\{L \mid A$ causes L if F in D, s satisfies $F\}$ are the effects of A executed in s.

Example

Fluents: $\{p, q\}$ Actions : $\{a\}$
Propositions: a causes p
States: $s_{1}=\{p, q\}$
$s_{2}=\{\neg p, q\}$
$s_{3}=\{p, \neg q\}$
$s_{4}=\{\neg p, \neg q\}$

Transitions: $\left\langle s_{1}, a, s_{1}\right\rangle$

$$
\begin{aligned}
& \left\langle s_{2}, a, s_{1}\right\rangle \\
& \left\langle s_{3}, a, s_{3}\right\rangle \\
& \left\langle s_{4}, a, s_{3}\right\rangle
\end{aligned}
$$

Effects of a executed in s_{i} are $\{p\}$ for all $i \in\{0, \ldots, 4\} . E(A, s) \subseteq s^{\prime} \subseteq E(A, s) \cup s$ holds for all transitions $\left\langle s, a, s^{\prime}\right\rangle$.

Example

Fluents : $\{p, q\}$

$$
\text { Actions : }\{a\}
$$

Propositions: a causes p if q

$$
\text { States: } \begin{aligned}
s_{1} & =\{p, q\} \\
s_{2} & =\{\neg p, q\} \\
s_{3} & =\{p, \neg q\} \\
s_{4} & =\{\neg p, \neg q\}
\end{aligned}
$$

Transitions: $\left\langle s_{1}, a, s_{1}\right\rangle$

$$
\begin{aligned}
& \left\langle s_{2}, a, s_{1}\right\rangle \\
& \left\langle s_{3}, a, s_{3}\right\rangle \\
& \left\langle s_{4}, a, s_{4}\right\rangle
\end{aligned}
$$

$E\left(a, s_{1}\right)=E\left(a, s_{2}\right)=\{p\}, E\left(a, s_{3}\right)=E\left(a, s_{4}\right)=\emptyset . E(A, s) \subseteq s^{\prime} \subseteq E(A, s) \cup s$ holds for all transitions $\left\langle s, a, s^{\prime}\right\rangle$.

Action language \mathcal{C}

- A state formula is a propositional combination of fluent names.
- A formula is a propositional combination of fluent names and elementary action names.
- A static law is an expression of the form
caused F if G
where F, G are state formulas.
- A dynamic law is an expression of the form
caused F if G after U
where F, G are state formulas and U is a formula.
- An action description is a set of static and dynamic laws.

Action language \mathcal{C}

A formula F is caused in a transition $\left\langle s, a, s^{\prime}\right\rangle$ if it is
(i) the head of a static law

$$
\text { caused } F \text { if } G
$$

such that s^{\prime} satisfies G, or
(ii) the head of a dynamic law
caused F if G after U
such that s^{\prime} satisfies G and $s \cup a$ satisfies U.
A transition $\left\langle s, a, s^{\prime}\right\rangle$ is causally explained by D if there is only one s^{\prime} that satisfies all formulas caused in this transition.

Action language \mathcal{C}

Let D be an action description in \mathcal{C}.
The transition system $\langle S, V, R\rangle$ described by D is as follows:
(i) S is the set of all interpretations s of \mathbf{F} such that for every

$$
\text { caused } F \text { if } G
$$

in D, s satisfies F if s satisfies G,
(ii) $V(P, s)=s(P)$,
(iii) R is the set of transitions $\left\langle s, A, s^{\prime}\right\rangle$ which are causally explained in D.

Example

Doors

Action: $\{$ OpenDoor $\}$ open a springloaded door
Fluents: $\{$ Closed $\}$
Action description:

```
caused Closed if Closed,
caused \(\neg\) Closed if True after OpenDoor
```

States: $\{\neg$ Closed, Closed $\}$
Transitions (all causally explained):

$$
\begin{aligned}
& \langle\neg \text { Closed }, \neg \text { OpenDoor, Closed }\rangle, \\
& \langle\text { Closed, } \neg \text { OpenDoor }, \text { Closed }\rangle, \\
& \langle\neg \text { Closed, OpenDoor }, \neg \text { Closed }\rangle, \\
& \langle\text { Closed, } \text { OpenDoor }, \neg \text { Closed }\rangle .
\end{aligned}
$$

Shortcuts

A causes F if G
inertial F
inertial $F_{1}, \ldots F_{n}$
always F
nonexecutable A if F
default F if G
exogenous F
A causes F if G inertial F
inertial $F_{1}, \ldots F_{n}$ always F nonexecutable A if F default F if G exogenous F
stands for caused F if True after $G \wedge A$,
stands for caused F if F after F,
stands for inertial $F_{i}(1 \leq i \leq n)$,
stands for caused False if $\neg F$,
stands for caused False after $F \wedge A$,
stands for caused F if $F \wedge G$
stands for caused F if F.

Translation to extended logic programs

Consider timesteps $t=0, \ldots, T$
(i) caused F if $L_{1} \wedge \ldots \wedge L_{m}$ is translated to

$$
F(t) \leftarrow \operatorname{not} \neg L_{1}(t), \ldots, \text { not } \neg L_{m}(t),
$$

(ii) caused F if $L_{1} \wedge \ldots \wedge L_{m}$ after L_{m+1}, \ldots, L_{n} is translated to $F(t+1) \leftarrow$ not $\neg L_{1}(t+1), \ldots$, not $\neg L_{m}(t+1), L_{m+1}(t), \ldots, L_{n}(t)$,
(iii) for all fluents B at time step 0 or for action names:

$$
\begin{aligned}
& \neg B \leftarrow \operatorname{not} B \\
& B \leftarrow \text { not } \neg B .
\end{aligned}
$$

Example

Doors

default Closed,
OpenDoor causes \neg Closed
stands for
caused Closed if Closed,
caused \neg Closed if True after OpenDoor
(i) Closed $(t) \leftarrow$ not $\neg \operatorname{Closed}(t)$
(ii) $\neg \operatorname{Closed}(t+1) \leftarrow$ OpenDoor (t)
(iii) $\quad \operatorname{Closed}(0) \leftarrow$ not $\neg \operatorname{Closed}(0)$
$\neg \operatorname{Closed}(0) \leftarrow \operatorname{not} \operatorname{Closed}(0)$
(iii) OpenDoor $(t) \leftarrow$ not $\neg \operatorname{OpenDoor}(t)$
\neg OpenDoor $(t) \leftarrow$ not OpenDoor (t)

Example

Doors

```
    time(0..1).
    closed(T) :- not -closed(T),time(T).
-closed(T1) :- openDoor(T),time(T),T1 = T+1,time(T1).
    closed(0) :- not -closed(0).
-closed(0) :- not closed(0).
    openDoor(T):- not -openDoor(T),time(T).
-openDoor(T):- not openDoor(T),time(T).
```


Example

Doors

```
Answer: 1
Stable Model: closed(0) openDoor(0) -closed(1)
Answer: 2
Stable Model: -closed(0) openDoor(0) -closed(1)
Answer: 3
Stable Model: -closed(0) -openDoor(0) closed(1)
Answer: 4
Stable Model: closed(0) -openDoor(0) closed(1)
```


Example

Monkey\& Bananas

A monkey wants a bunch of bananas, hanging from the ceiling. To get the bananas the monkey must push a box to the empty place under the bananas and then climb on top of the box.

Fluents: for $x \in\{$ Monkey, Bananas, Box $\}$
$\operatorname{Loc}(x)$,
HasBananas, OnBox

Actions: for $l \in\left\{L_{1}, L_{2}, L_{3}\right\}$
Walk(l), PushBox(l),ClimbOn,ClimbOff,GraspBananas

Example

Monkey\& Bananas

caused Loc (Bananas $)=l$ if HasBananas \wedge Loc $($ Monkey $)=l$
caused $\operatorname{Loc}($ Monkey $)=l$ if $O n B o x \wedge \operatorname{Loc}(B o x)=l$

Walk(l) causes Loc (Monkey) $=l$
nonexecutable $W a l k(l)$ if $\operatorname{Loc}($ Monkey $)=l$
nonexecutable W alk (l) if $O n B o x$

PushBox (l) causes $\operatorname{Loc}(B o x)=l$
PushBox (l) causes Loc (Monkey) $=l$
nonexecutable $\operatorname{PushBox}(l)$ if $\operatorname{Loc}($ Monkey $)=l$
nonexecutable PushBox(l) if OnBox
nonexecutable PushBox (l) if $\operatorname{Loc}($ Monkey $) \neq \operatorname{Loc}(B o x)$

Example

Monkey\& Bananas

ClimbOn causes OnBox
nonexecutable ClimbOn if OnBox
nonexecutable ClimbOn if $\operatorname{Loc}($ Monkey $) \neq \operatorname{Loc}(B o x)$

ClimbOff causes \neg OnBox nonexecutable ClimbOff if \neg OnBox

GraspBananas causes HasBananas
nonexecutable GraspBananas if HasBananas
nonexecutable GraspBananas if \neg OnBox
nonexecutable GraspBananas if Loc(Monkey) $\neq \operatorname{Loc}($ Bananas $)$

Example

Monkey\& Bananas

nonexecutable $W a l k(l) \wedge P u s h B o x(l)$
nonexecutable $W a l k(l) \wedge C l i m b O n$
nonexecutable PushBox $(l) \wedge$ ClimbOn
nonexecutable ClimbOff \wedge GraspBananas
exogenous c
inertial c
\% for every action constant c
\% for every simple fluent constant c

Example
 Monkey\& Bananas

Initial situation:

- loc(bananas,I1,0), loc(monkey,I2,0), loc(box,I3,0)

Solution:

- walk $(13,0)$
- walk(I3,0) causes loc(monkey,13,1)
- pushBox $(11,1)$
- pushBox $(11,1)$ causes $\operatorname{loc}(b o x, I 1,2)$
- pushBox(I1,1) causes loc(monkey,I1,2)
- climbOn(2)
- climbOn(2) causes onBox(3)
- graspBananas(3)
- graspBananas(3) causes hasBananas(4)

Monkey\& Bananas with $\mathrm{DLV}^{\mathcal{K}}$

$\mathrm{DLV}^{\mathcal{K}}$ is a planning system, which provides an implementation of action language \mathcal{K} as a front-end of the DLV system.

More information and download of the Monkey \& Bananas example on:
http://www.dbai.tuwien.ac.at/proj/dlv/K/

monkey.dl

```
%% Background Knowledge
object(box).
object(monkey).
object(bananas).
```


monkey.plan

```
fluents: loc(0,L) requires object(0), #int(L).
    onBox.
    hasBananas.
actions: walk(L) requires #int(L).
    pushBox(L) requires #int(L).
    climbBox.
    graspBananas.
```


monkey.plan

always: caused loc(monkey,L) after walk(L).
caused -loc(monkey,L) after walk(L1), loc(monkey,L), L<>L1.
executable walk(L) if not onBox.
caused loc (monkey,L) after pushBox(L).
caused loc (box,L) after pushBox(L).
caused -loc(monkey,L) after pushBox(L1), loc(monkey,L), L<>L1. caused -loc(box,L) after pushBox(L1), loc(box,L), L<>L1. executable pushBox(L) if loc(monkey,L1), loc(box,L1), not onBox. caused onBox after climbBox.
executable climbBox if not onBox, loc(monkey,L), loc(box,L).
caused hasBananas after graspBananas.
executable graspBananas if onBox, loc(monkey,L), loc(bananas,L).
inertial loc ($0, L$).
inertial onBox.
inertial hasBananas.

monkey.plan

```
initially: loc(monkey,2).
    loc(box,3).
    loc(bananas,1).
noConcurrency.
goal: hasBananas ? (4)
```


Solutions

```
bash-2.05b$ dlv -FP -N=4 monkeyK.plan monkeyK.dl
DLV [build BEN/May 23 2004 gcc 2.95.4 20011002 (Debian prerelease)]
STATE 0: loc(box,3), loc(monkey,2), loc(bananas,1)
ACTIONS: walk(3)
STATE 1: loc(monkey,3), loc(box,3), -loc(monkey,2), loc(bananas,1)
ACTIONS: pushBox(1)
STATE 2: loc(monkey,1), -loc(monkey,3), -loc(box,3), loc(bananas,1), loc(box,1)
ACTIONS: climbBox
STATE 3: onBox, loc(monkey,1), loc(bananas,1), loc(box,1)
ACTIONS: graspBananas
STATE 4: loc(monkey,1), loc(bananas,1), loc(box,1), onBox, hasBananas
PLAN: walk(3); pushBox(1); climbBox; graspBananas
Check whether that plan is secure (y/n)? y
The plan is secure.
Search for other plans (y/n)? y
bash-2.05b$
```


Meta-interpreting Logic Programs

A logic program can be encoded for and interpreted by a generic meta-interpreter.

A representation $F(\Pi)$ of a logic program Π is a set of facts.
These facts are combined with a generic logic program $\Pi_{I_{\alpha}}$ such that

$$
\mathcal{A S}(\Pi)=\left\{\pi(A) \mid A \in \mathcal{A S}\left(F(\Pi) \cup \Pi_{I_{\alpha}}\right)\right\}
$$

where π is a "simple projection function".

Representation

of a logic program

We translate Π into $F(\Pi)$ as follows:

1. For every rule

$$
L_{0} \leftarrow L_{1}, \ldots L_{m}, \text { not } L_{m+1}, \ldots \text { not } L_{n}
$$

of $\Pi, F(\Pi)$ contains the facts:

$$
\begin{array}{rrrr}
\operatorname{rule}(r) . & \text { head }\left(L_{0}, r\right) . & p b l\left(L_{1}, r\right) . & \ldots \\
n b l\left(L_{m+1}, r\right) . & \ldots & \operatorname{nbl}\left(L_{m}, r\right) . \\
& n b l\left(L_{n}, r\right) .
\end{array}
$$

where r is a unique rule identifier.
2. For each pair of complementary literals $L, \neg L$ in Π we add the fact $\operatorname{compl}(L, \neg L)$.

Example

bird \& penguin

(1) peng.
(2) bird.
(3) \neg flies \leftarrow not flies, peng.
(4) flies \leftarrow not \neg flies, bird.
$F(\Pi): \quad r u l e\left(r_{1}\right) . \quad$ head $\left(\right.$ peng,$\left.r_{1}\right)$.
rule $\left(r_{2}\right)$. head $\left(b i r d, r_{2}\right)$.
rule $\left(r_{3}\right)$. head(negflies, $\left.r_{3}\right)$.
$p b l\left(p e n g, r_{3}\right) . n b l\left(f l i e s, r_{3}\right)$.
rule $\left(r_{4}\right)$. head (flies, $\left.r_{4}\right)$
$p b l\left(b i r d, r_{4}\right) . n b l\left(n e g f l i e s, r_{4}\right)$.
and compl(flies, negflies).

Basic Meta-interpreter program

$i n _A S(X)$ is true if literal X is in an answer set of Π.

$$
\begin{aligned}
i n_{-} A S(X) \leftarrow \text { head }(X, R), & \text { pos_body_true }(R) \\
& \text { not } \text { neg_body_false }(R) .
\end{aligned}
$$

Basic Meta-interpreter program

The positive part of the body is true, if all its literals are in the answer set.

If there are no positive literals, the positive body is trivially true.

$$
\begin{aligned}
\text { pos_body_exists }(R) & \leftarrow p b l(X, R) . \\
\text { pos_body_true }(R) & \leftarrow \text { rule }(R), \text { not pos_body_exists }(R) .
\end{aligned}
$$

Basic Meta-interpreter program

If positive literals exists, we proceed iteratively. We use DLV's built-in total order on constants for defining successor relation on positive body literals of each rule, and to identify the first and the last literal of a positive rule body in this total order.

Auxiliary relations:

$$
\begin{aligned}
\text { pbl_inbetween }(X, Y, R) & \leftarrow p b l(X, R), p b l(Y, R), p b l(Z, R), X<Z, Z<Y . \\
p b l _n o t l a s t(X, R) & \leftarrow p b l(X, R), p b l(Y, R), X<Y . \\
\text { pbl_notfirst }(X, R) & \leftarrow p b l(X, R), p b l(Y, R), Y<X .
\end{aligned}
$$

Basic Meta-interpreter program

The positive body is true up to some positive body literal (wrt the built-in order):

$$
\begin{aligned}
\text { pos_body_true_upto }(R, X) \leftarrow & \text { pbl }(X, R), \text { not pbl_notfirst }(X, R), \text { in_AS(X). } \\
\text { pos_body_true_upto }(R, X) \leftarrow & \text { pos_body_true_upto }(R, Y), p b l(X, R), \\
& \text { in_AS(X),Y<X,not pbl_inbetween }(Y, X, R) . \\
\text { pos_body_true }(R) \leftarrow & \text { pos_body_true_upto }(R, X), \\
& \text { not pbl_notlast }(X, R) .
\end{aligned}
$$

Basic Meta-interpreter program

The negative part of a body is false, if one of its literals is in the answer set.

$$
n e g_{-} b o d y_{-} f a l s e(R) \leftarrow \operatorname{nbl}(X, R), i n_{-} A S(X)
$$

Each answer set is consistent:

$$
\leftarrow \operatorname{compl}(X, Y), i n _A S(X), i n _A S(Y) .
$$

Each answer set A of $\Pi_{I_{\alpha}} \cup F(\Pi)$ represents an answer set A^{\prime} of Π, where $\pi(A)=A^{\prime}$ and

$$
\pi(A)=\left\{l \mid i n_{-} A S(l) \in A\right\} .
$$

Meta-interpreter

```
in_AS(X) :- head(X,R), pos_body_true(R), not neg_body_false(R).
pos_body_exists(R) :- pbl(X,R).
pos_body_true(R) :- rule(R), not pos_body_exists(R).
pbl_inbetween(X,Y,R) :- pbl(X,R), pbl(Y,R), pbl(Z,R), X < Z, Z < Y.
pbl_notlast(X,R) :- pbl(X,R), pbl(Y,R), X < Y.
pbl_notfirst(X,R) :- pbl(X,R), pbl(Y,R), Y < X.
pos_body_true_upto(R,X) :- pbl(X,R), not pbl_notfirst(X,R), in_AS(X).
pos_body_true_upto(R,X) :- pos_body_true_upto(R,Y), pbl(X,R),
                                    in_AS(X), Y < X, not pbl_inbetween(Y,X,R).
pos_body_true(R) :- pos_body_true_upto(R,X), not pbl_notlast(X,R).
neg_body_false(R) :- nbl(X,R), in_AS(X).
:- compl(X,Y), in_AS(X), in_AS(Y).
```


Example

bird \& penguin

```
rule(r1). head(peng,r1).
rule(r2). head(bird,r2).
rule(r3). head(negflies,r3).
    pbl(peng,r3). nbl(flies,r3).
rule(r4). head(flies,r4).
    pbl(bird,r4). nbl(negflies,r4).
compl(flies,negflies).
bash-2.05b$ dlv -filter=in_AS metainterpreterAS.pl
DLV [build BEN/Apr 12 2002 gcc 2.95.3 20010315 (SuSE)]
{in_AS(peng), in_AS(bird), in_AS(flies)}
{in_AS(peng), in_AS(bird), in_AS(negflies)}
```


Crossing a river

canCross \leftarrow boat, not leaking
canCross \leftarrow boat,leaking,hasBucket

We observe somebody crossing the river with a boat. How can we explain that?

Abduction

An abduction problem is a triple $\langle\Pi, \mathcal{H}, \mathcal{O}\rangle$, where

- Π is a logic program,
- \mathcal{H} is a set of facts, referred to as hypotheses, and
- \mathcal{O} is a set of atoms, referred to as observations.

A set $\Delta \subseteq \mathcal{H}$ is an explanation of \mathcal{O} wrt Π if all answer sets of $\Pi \cup \Delta$ contain \mathcal{O}.

An explanation Δ_{1} is minimal if for every other explanation Δ_{2} of \mathcal{O} $\Delta_{2} \not \subset \Delta_{1}$ holds.

We call Δ a single explanation if $|\Delta|=1$.

Crossing a river

Explanations

- $\Pi=\left\{\begin{array}{ll}\text { canCross } & \leftarrow \text { boat, not leaking } \\ \text { canCross } & \leftarrow \text { boat, leaking, hasBucket }\end{array}\right\}$
- Hypotheses: $\mathcal{H}=\{$ boat,leaking, hasBucket $\}$.
- Observation: canCross
- Explanations:

1. $\{b o a t\}$
2. \{boat,hasBucket\}
3. \{boat, leaking, hasBucket\}

- Only boat is a minimal (and single) explanation.

Running DLV

- canCross.dl
canCross :- boat, not leaking.
canCross :- boat, leaking, hasBucket.
- canCross.hyp
boat.
leaking.
hasBucket.
- canCross.obs
canCross.

Running DLV

Computing all explanations:
bash-2.05b\$ dlv -FD canCross.dl canCross.hyp canCross.obs
DLV [build BEN/May 232004 gcc 2.95 .420011002 (Debian prerelease)]

Diagnosis: boat leaking hasBucket
Diagnosis: boat
Diagnosis: boat hasBucket

Computing single explanations:
bash-2.05b\$ dlv -FDsingle canCross.dl canCross.hyp canCross.obs DLV [build BEN/May 232004 gcc 2.95 .420011002 (Debian prerelease)]

Diagnosis: boat

Further Semantics

- Completion
- Supported Models
- Fitting semantics
- Well-founded semantics

Completion

Let Π be a basic normal logic program.
Then, Π^{*} is a set of rules obtained from Π as follows:

- Replace each rule $A \leftarrow$ with $A \leftarrow$ true
- If an atom A is not the head of a rule in Π, then add the rule $A \leftarrow$ false.
$\Pi^{* *}$ is obtained from Π^{*} as follows:
- Replace each rule $A_{0} \leftarrow A_{1}, \ldots A_{n}$ with $A_{0} \leftarrow\left(A_{1} \wedge \ldots \wedge A_{n}\right)$.
- Next, replace all rules $A \leftarrow B_{1}, \ldots, A \leftarrow B_{m}$ with the same head by $A \leftarrow\left(B_{1} \vee \ldots \vee B_{m}\right)$.

We obtain the program completion of Π by replacing each occurrence of \leftarrow by \equiv.

Example

Completion

					a	\leftarrow	true
	a	\leftarrow					
					b	\leftarrow	a
	b	\leftarrow	a				
Π.	c	\leftarrow	a	I*	c	\leftarrow	a
					c	\leftarrow	b
	c	\leftarrow	b				
	d	\leftarrow	c, e		d	\leftarrow	
					e	\leftarrow	false
	a	\leftarrow	true		a	三	true
	b	\leftarrow	a		b	\equiv	a
$\Pi^{* *}$	c	\leftarrow	$(a \vee b)$	Completion of Π :	c	\equiv	$(a \vee b)$
	d	\leftarrow	$(c \wedge e)$		d	\equiv	$(c \wedge e)$
	e	\leftarrow	false		e	\equiv	false

2-valued models

- truth-values: \{true, false\},
- representation: $\langle T, F\rangle$, where T is the set of all true atoms and F is the set of all false atoms,
- $T \cap F=\emptyset$,
- $T \cup F$ is the set of all atoms.

Supported models

A supported model for a (basic) normal logic program Π is a (2-valued) Herbrand model in which all equivalences of the completion of Π are true.

Example

Supported model

Completion of Π :

$$
\begin{aligned}
a & \equiv \text { true } \\
b & \equiv a \\
c & \equiv(a \vee b) \\
d & \equiv(c \wedge e) \\
e & \equiv \text { false }
\end{aligned}
$$

The supported model of Π is $\langle\{a, b, c\},\{d, e\}\rangle$.

Including negation as failure

Π :

$$
\begin{aligned}
& q \longleftarrow \operatorname{not} p \\
& p \longleftarrow \operatorname{not} x, \operatorname{not} q
\end{aligned}
$$

Completion of Π :

$$
\begin{aligned}
q & \equiv \neg p \\
p & \equiv(\neg x \wedge \neg q) \\
x & \equiv \text { false }
\end{aligned}
$$

3-valued models

- truth-values: $\{$ true, false,\perp \},
- representation: $\langle T, F\rangle$, where T is the set of all true atoms and F is the set of all false atoms,
- $T \cap F=\emptyset, T \cap \perp=\emptyset, F \cap \perp=\emptyset$,
- $T \cup F \cup \perp$ is the set of all atoms.

For $\left\langle T_{1}, F_{1}\right\rangle$ and $\left\langle T_{2}, F_{2}\right\rangle$ we define $\left\langle T_{1}, F_{1}\right\rangle \leq\left\langle T_{2}, F_{2}\right\rangle$ if $T_{1} \subseteq T_{2}$ and $F_{1} \subseteq F_{2}$.

Fitting Operator

Let Π be a normal logic program. The mapping Φ_{Π} is defined as follows:

$$
\Phi_{\Pi}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle
$$

where for all atoms A we have:
(i) $A \in T^{\prime}$ if there is a rule $A \leftarrow A_{1}, \ldots, A_{m}$, not A_{m+1}, \ldots not A_{n} such that $\left\{A_{1}, \ldots, A_{m}\right\} \subseteq T$ and $\left\{A_{m+1}, \ldots A_{n}\right\} \subseteq F$,
(ii) $A \in F^{\prime}$ if for all rules $A \leftarrow A_{1}, \ldots, A_{m}$, not A_{m+1}, \ldots not A_{n} either $\left\{A_{1}, \ldots, A_{m}\right\} \cap F \neq \emptyset$ or $\left\{A_{m+1}, \ldots, A_{n}\right\} \cap T \neq \emptyset$,
(iii) $A \in \perp$ otherwise.

Example

$\Pi:$

$$
\begin{aligned}
a & \leftarrow \\
b & \leftarrow a \\
c & \leftarrow \operatorname{not} a \\
d & \leftarrow b, c
\end{aligned}
$$

Given 3-valued model $\langle\{a\}, \emptyset\rangle$, then $\Phi_{\Pi}\langle\{a\}, \emptyset\rangle=\langle\{a, b\},\{c\}\rangle$.

Properties of Φ_{Π}

Let Π be a normal logic program.

- Operator Φ_{Π} is monotonic, that is

$$
\left\langle T_{1}, F_{1}\right\rangle \leq\left\langle T_{2}, F_{2}\right\rangle \text { implies } \Phi_{\Pi}\left\langle T_{1}, F_{1}\right\rangle \leq \Phi_{\Pi}\left\langle T_{2}, F_{2}\right\rangle .
$$

- Φ_{Π} has a least fixpoint.

Fitting semantics

$$
\begin{aligned}
\Phi_{\Pi}^{0} & =\langle\emptyset, \emptyset\rangle \\
\Phi_{\Pi}^{i+1} & =\Phi_{\Pi}\left(\Phi_{\Pi}^{i}\right) \\
\Phi_{\Pi}^{\omega} & =\cup_{i<\omega}\left\{\Phi_{\Pi}^{i}\right\}
\end{aligned}
$$

The least fixpoint of Φ_{Π}, denoted by Φ_{Π}^{ω}, supplies the Fitting semantics.

Example

Fitting

$$
\begin{aligned}
& \Pi=\left\{\begin{array}{llll}
r & \leftarrow & s & \leftarrow \\
t & \leftarrow \operatorname{ra} & u & \leftarrow \operatorname{not} t \\
p & \leftarrow \operatorname{not} p, \operatorname{not} q & a & \leftarrow \\
b & \leftarrow a & &
\end{array}\right\} \\
& \Phi_{\Pi}^{0}=\langle\emptyset, \emptyset\rangle \\
& \Phi_{\Pi}^{1}=\langle\{r, s\},\{q\}\rangle \\
& \Phi_{\Pi}^{2}=\langle\{r, s, t\},\{q\}\rangle \\
& \Phi_{\Pi}^{3}=\langle\{r, s, t\},\{q, u\}\rangle \\
& \Phi_{\Pi}^{4}=\Phi_{\Pi}^{3}
\end{aligned}
$$

Example

Fitting

$$
\begin{aligned}
& \Pi=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\} \\
& \Phi_{\Pi}^{0}=\langle\emptyset, \emptyset\rangle \\
& \Phi_{\Pi}^{1}=\langle\emptyset, \emptyset\rangle
\end{aligned}
$$

But, a and b never become true!
\Rightarrow : "Extension" of Fitting semantics: well-founded semantics

Unfounded sets

Let Π be a normal logic program.
A set of atoms \mathcal{A} is an unfounded set (of Π wrt $\langle T, F\rangle$) if each atom $A \in \mathcal{A}$ and for each rule $A \leftarrow A_{1}, \ldots A_{m}$, not A_{m+1}, \ldots not A_{n} one of the following conditions is satisfied:

1. either $\left\{A_{1}, \ldots, A_{m}\right\} \cap F \neq \emptyset$ or $\left\{A_{m+1}, \ldots, A_{n}\right\} \cap T \neq \emptyset$, or
2. there is an $0 \leq i \leq m$ such that $A_{i} \in \mathcal{A}$.

The greatest unfounded set (of Π wrt $\langle T, F\rangle$) is the union of all unfounded sets (of Π wrt $\langle T, F\rangle$).

Example

Unfounded sets

$$
\Pi=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
$$

Given $\langle\emptyset, \emptyset\rangle$,
the greatest unfounded set is $\{a, b\}$.

Unfounded sets

The mapping \mathcal{U}_{Π} is defined as follows:

$$
\mathcal{U}_{\Pi}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle
$$

where for all atoms A we have:
(i) $A \in T^{\prime}$ if $A \in T$,
(ii) $A \in F^{\prime}$ if A is in the greatest unfounded set (wrt Π and $\langle T, F\rangle$),
(iii) $A \in \perp$ otherwise.

Well-founded semantics

$$
\begin{aligned}
\mathcal{W}_{\Pi}^{0} & =\langle\emptyset, \emptyset\rangle \\
\mathcal{W}_{\Pi}^{i+1} & =\Phi_{\Pi}\left(\mathcal{W}_{\Pi}^{i}\right) \cup \mathcal{U}_{\Pi}\left(\mathcal{W}_{\Pi}^{i}\right) \\
\mathcal{W}_{\Pi}^{\omega} & =\cup_{i<\omega} \mathcal{W}_{\Pi}^{i}
\end{aligned}
$$

$\mathcal{W}_{\Pi}^{\omega}$ is the well-founded model of Π.
There always exists a well-founded model of Π.
If the well-founded model is total, then it is the unique stable model.
The well-founded model is a subset of every stable model.

Example

$$
\begin{aligned}
& \Pi=\left\{\begin{array}{lllll}
r & \leftarrow & \leftarrow & t \leftarrow r, s & u \leftarrow n o t t \\
p & \leftarrow \text { not } p, \operatorname{not} q & a \leftarrow b & b \leftarrow a
\end{array}\right\} \\
& \Phi_{\Pi}^{0}=\langle\emptyset, \emptyset\rangle \quad \cup \mathcal{U}_{\Pi}^{0}=\langle\emptyset, \emptyset\rangle \\
& \mathcal{W}_{\Pi}^{0}=\langle\emptyset, \emptyset\rangle \\
& \Phi_{\Pi}^{1}=\langle\{r, s\},\{q\}\rangle \\
& \cup \mathcal{U}_{\Pi}^{1}=\langle\emptyset,\{a, b\}\rangle \\
& \mathcal{W}_{\Pi}^{1}=\langle\{r, s\},\{q, a, b\}\rangle \\
& \Phi_{\Pi}^{2}=\langle\{r, s, t\},\{q, a, b\}\rangle \cup \mathcal{U}_{\Pi}^{2}=\langle\{r, s\},\{q, a, b\}\rangle \\
& \mathcal{W}_{\Pi}^{2}=\langle\{r, s, t\},\{q, a, b\}\rangle \\
& \Phi_{\Pi}^{3}=\langle\{r, s, t\},\{q, a, b, u\}\rangle \cup \mathcal{U}_{\Pi}^{3}=\langle\{r, s, t\},\{q, a, b, u\}\rangle \\
& \mathcal{W}_{\Pi}^{3}=\langle\{r, s, t\},\{q, a, b, u\}\rangle \\
& \mathcal{W}_{\Pi}^{4}=\mathcal{W}_{\Pi}^{3} \\
& \mathcal{W}_{\Pi}^{\omega}=\langle\{r, s, t\},\{q, u, a, b\}\rangle
\end{aligned}
$$

Relation to other systems

noMoRe:

Let Γ be the RDG of normal logic program Π.
$\mathcal{P}_{\Gamma}^{*}((\emptyset, \emptyset))$ corresponds to $\Phi_{\Pi}^{\omega}(\langle\emptyset, \emptyset\rangle)$, and
$\mathcal{U}_{\Gamma}(C)$ gives us the greatest unfounded set wrt Π and the 3 -valued model obtained from C.
$(\mathcal{P U})_{\Gamma}^{*}((\emptyset, \emptyset))$ gives us the well-founded model of Π.
smodels:
$\operatorname{expand}(\emptyset, \mathcal{A})$ gives well-founded model of Π, where \mathcal{A} is the set of all atoms in Π

Alternating fixpoint characterization

Let Π be a logic program and X be a set of atoms.

- Define $C_{\Pi}(X)=C n\left(\Pi^{X}\right)$.
- The fixpoints of $C_{\Pi}(X)$ are the answer sets of Π.
- $C_{\Pi}(X)$ is anti-monotonic. Hence, $C_{\Pi}\left(C_{\Pi}(X)\right)=C_{\Pi}^{2}(X)$ is monotonic.
- Define $A_{\Pi}(X)=C_{\Pi}^{2}(X)$.
- $\left\langle l f p A_{\Pi}(X), \operatorname{Atm} \backslash C_{\Pi}\left(l f p A_{\Pi}(X)\right)\right\rangle$ is the well-founded model of Π.

Example

Alternating fixpoint characterization

$$
\Pi=\left\{\begin{array}{llllllll}
r \leftarrow & s \leftarrow & t & \leftarrow & \leftarrow, s \quad u \leftarrow \operatorname{not} t \\
p & \leftarrow \operatorname{not} p, \operatorname{not} q & a \leftarrow b & b & \leftarrow & &
\end{array}\right\}
$$

$$
X=\{r, s, t\}
$$

$$
C n\left(\Pi^{\{r, s, t\}}\right)=\{r, s, t, p\} \quad C n\left(\Pi^{\{r, s, t, p\}}\right)=\{r, s, t\} \quad A_{\Pi}(X)=\{r, s, t\}=X
$$

$$
l f p A_{\Pi}(X)=\{r, s, t\}
$$

$$
C_{\Pi}\left(l f p A_{\Pi}(X)\right)=\{r, s, t, p\} \quad \text { Atm } \backslash C_{\Pi}\left(l f p A_{\Pi}(X)\right)=\{u, a, b, q\}
$$

Well-founded model: $\langle\{r, s, t\},\{q, u, a, b\}\rangle$

The Cmodels approach

For syntactically restricted (tight) programs answer sets and models of completion coincide.

Cmodels idea: use program completion to compute answer sets of tight programs.

- Completion
- Basic Davis-Putnam-Logemann-Loveland procedure for SAT
- Operation of Cmodels

Completion (Recapitulation)

Let Π be a normal logic program.
Then, Π^{*} is a set of rules obtained from Π as follows:

- Replace each rule $A \leftarrow$ with $A \leftarrow$ true.
- If an atom A is not the head of a rule in Π, then add $A \leftarrow$ false.
$\Pi^{* *}$ is obtained from Π^{*} as follows:
- Replace each occurence of not with \neg.
- Replace each rule $A_{0} \leftarrow A_{1}, \ldots A_{n}$ with $A_{0} \leftarrow\left(A_{1} \wedge \ldots \wedge A_{n}\right)$.
- Replace all rules $A \leftarrow B_{1}, \ldots, A \leftarrow B_{m}$ with same head A by $A \leftarrow\left(B_{1} \vee \ldots \vee B_{m}\right)$.

Finally, we obtain the program completion of Π by replacing each occurence of \leftarrow by \equiv.

Example

$$
\begin{aligned}
& p \leftarrow \operatorname{not} q \\
& \begin{aligned}
\eta: \quad & \leftarrow \operatorname{not} p \\
r & \leftarrow p \\
r & \leftarrow q
\end{aligned} \quad \Pi^{*}=\Pi \\
& p \leftarrow \neg q \quad p \equiv \neg q \\
& \Pi^{* *}: \quad q \leftarrow \neg p \quad \text { Completion of } \Pi: \quad q \equiv \neg p \\
& r \leftarrow(p \vee q) \\
& r \equiv(p \vee q)
\end{aligned}
$$

Satisfiability

Satisfiability problem (SAT)

Find an interpretation satisfying a given set of propositional formulas (or determine that this set is unsatisfiable).

We consider the (superficially) simpler problem of finding an interpretation satisfying a given set of clauses (that is, a propositional formula in CNF).

Propositional Satisfiability

- A literal is an atom or its negation.
- For any atom A the literals A and $\neg A$ are complementary to each other.
- For any literal L the literal complementary to L is denoted by \bar{L}.
- A clause is a (possibly empty) disjunction of literals. The empty clause is denoted by \perp.

Any formula can be transformed into an equivalent set of clauses.

Clausification

Let F be a formula.
Clausify (F)
eliminate all connectives from F except \neg, \wedge and \vee; distribute \neg over \wedge and \vee until it applies to atoms only; distribute \vee over \wedge until it applies to literals only; return the set of conjunctive terms of the resulting formula;

Clausification

We have

$$
\text { Clausify }(p \vee \neg(q \rightarrow r))=(p \vee q) \wedge(p \vee \neg r)
$$

Problem: Clausify (F) can be much longer than F; for instance if F is

$$
\left(p_{1} \wedge q_{1}\right) \vee \ldots \vee\left(p_{n} \wedge q_{n}\right) \text { then Clausify }(F) \text { consists of } 2^{n} \text { clauses. }
$$

Use alternative clausification.

Clausification with new atoms

Let F be a formula and let Γ be set of clauses (initially $\Gamma=\emptyset$).

Clausify ${ }^{\star}(F, \Gamma)$

```
if F}\mathrm{ is a conjunction of clauses }\mp@subsup{C}{1}{}\wedge\ldots\wedge\mp@subsup{C}{k}{
        then exit with {C }\mp@subsup{C}{1}{},\ldots,\mp@subsup{C}{k}{}}\cup\Gamma
    G\leftarrowa minimal (wrt subformulas) non-literal subformula of F;
    u\leftarrowa new atom;
    F}\mathrm{ result of replacing G in F by u;
    Clausify* (F,\Gamma Clausify (u\equivG));
```

Clausify $^{\star}(F, \emptyset)$ contains atoms not contained in F.

Example for Clausify ${ }^{\star}(F, \Gamma)$

Properties of Clausify ${ }^{\star}$

- F and Clausify $^{\star}(F, \emptyset)$ are not equivalent:

To see this consider

$$
F=p \vee \neg(q \rightarrow r)
$$

Clausify $^{\star}(F, \Gamma)=\left(p \vee \neg u_{0}\right) \wedge\left(\neg u_{0} \vee \neg q \vee r\right) \wedge\left(q \vee u_{0}\right) \wedge\left(\neg r \vee u_{0}\right)$

Let I be an interpretation s.t. $I(q)=I\left(u_{0}\right)=1$ and $I(p)=I(r)=0$. Then $I(F)=1$ but $I\left(\right.$ Clausify $\left.^{\star}(F, \Gamma)\right)=0$.

- Each model of F can be extended to "new" atoms such that Clausify ${ }^{\star}(F, \emptyset)$ will be satisfied (take $I\left(u_{0}\right)=0$).
- Each model of Clausify ${ }^{\star}(F, \emptyset)$ is a model of F when restricted to "old" atoms.

Example for Clausify ${ }^{\star}(F, \Gamma)$

F	Γ	G	u	Clausify $(u \equiv G)$
$\left(p_{1} \wedge q_{1}\right) \vee\left(p_{2} \wedge q_{2}\right)$	\emptyset	$p_{1} \wedge q_{1}$	u_{0}	$\left(\neg u_{0} \vee p_{1}\right) \wedge\left(\neg u_{0} \vee q_{1}\right) \wedge$ $\left(\neg p_{1} \vee \neg q_{1} \vee u_{0}\right)$
$u_{0} \vee\left(p_{2} \wedge q_{2}\right)$	Clausify $\left(u_{0} \equiv p_{1} \wedge q_{1}\right) \cup \Gamma$	$p_{2} \wedge q_{2}$	u_{1}	$\left(\neg u_{1} \vee p_{2}\right) \wedge\left(\neg u_{1} \vee q_{2}\right) \wedge$ $\left(\neg p_{2} \vee \neg q_{2} \vee u_{1}\right)$
$u_{0} \vee u_{1}$	Clausify $\left(u_{1} \equiv p_{2} \wedge q_{2}\right) \cup \Gamma$			

Clausify $^{\star}(F, \Gamma)=\left(u_{0} \vee u_{1}\right) \wedge$

$$
\begin{aligned}
& \left(\neg u_{0} \vee p_{1}\right) \wedge\left(\neg u_{0} \vee q_{1}\right) \wedge\left(\neg p_{1} \vee \neg q_{1} \vee u_{0}\right) \wedge \\
& \left(\neg u_{1} \vee p_{2}\right) \wedge\left(\neg u_{1} \vee q_{2}\right) \wedge\left(\neg p_{2} \vee \neg q_{2} \vee u_{1}\right)
\end{aligned}
$$

For $F=\left(p_{1} \wedge q_{1}\right) \vee \ldots \vee\left(p_{n} \wedge q_{n}\right)$ we have that Clausify ${ }^{\star}(F, \Gamma)$ has $(3 n+1)$ clauses.

This is small compared to 2^{n} clauses of Clausify (F) (take $n=5$).

Unit Clause Propagation

A unit clause is a clause that consists of a single literal.
If a set of clauses contains a unit clause, then it can be simplified using the fact that

- the set of clauses $\{F, F \vee G\}$ is equivalent to $\{F\}$ and
- the set of clauses $\{F, \neg F \vee G\}$ is equivalent to $\{F, G\}$.

A simplification step like this may create a new unit clause and that can make further simplifications possible.

This process is called unit propagation.

Unit Clause Propagation Procedure

UnitPropagation (Γ, U)
while there is a unit clause $\{L\}$ in Γ

$$
U \leftarrow U \cup\{L\}
$$

for every clause $C \in \Gamma$ do
if $L \in C$ then $\Gamma \leftarrow \Gamma \backslash\{C\}$
elsif $\bar{L} \in C$ then $\Gamma \leftarrow(\Gamma \backslash\{C\}) \cup\{C \backslash\{\bar{L}\}\}$
end
end

- Γ is a set of clauses;
- U is a consistent set of literals such that, for every $L \in U$, neither L nor \bar{L} occurs in any clause in Γ.

Some remarks

- During execution, Γ is simplified and U grows bigger.
- Upon termination, there are no unit clauses in Γ.
- To apply unit clause propagation to a set of clauses Γ_{0}, the procedure is invoked with $\Gamma=\Gamma_{0}$ and $U=\emptyset$.
- After every execution of the while-loop, $\Gamma \cup U$ remains equivalent to the original set of clauses Γ_{0}.

Example

For $\Gamma=\{p, \neg p \vee \neg q, \neg q \vee r\}$ apply Unit-Propagation.

This computation shows that $\Gamma=\{p, \neg p \vee \neg q, \neg q \vee r\}$ is equivalent to $\{p, \neg q\}$.

Each interpretation I with $I(p)=1$ and $I(q)=0$ is a model of Γ.

Another Example

For $\Gamma=\{p, p \vee q, \neg p \vee \neg q, q \vee r, \neg q \vee \neg r\}$ apply Unit-Propagation.

Interpretation I with $I(p)=I(r)=1$ and $I(q)=0$ is a model of Γ.

Properties of Unit-Propagation

There are two cases when unit clause propagation alone is sufficient for solving SAT for a set of clauses Γ_{0}.

For this, consider the values of Γ and U upon termination of Unit-Propagation $\left(\Gamma_{0}, \emptyset\right)$.

1. if Γ includes the empty clause, then Γ is unsatisfiable, and so is Γ_{0};
2. if $\Gamma=\emptyset$, then Γ_{0} is equivalent to U, which is a consistent set of literals.
A model of Γ_{0} can easily obtained from U.

Davis-Putnam-Logemann-Loveland Procedure

The DPLL procedure is an extension to unit clause propagation that allows for solving SAT in full generality.

Observation

For any set of formulas Γ and any formula F, the set of models of Γ is the union of the sets of models of $\Gamma \cup\{F\}$ and $\Gamma \cup\{\neg F\}$.

The DPLL procedure uses this fact to apply unit clause propagation (even) when Γ does not contain unit clauses.

The DPLL algorithm

DPLL($\Gamma, U)$
UnitPropagation(Γ, U)
if $\emptyset \in \Gamma$ then return
if $\Gamma=\emptyset$ then exit with a model of U
$A \leftarrow \boldsymbol{\operatorname { s e l } e c t}(\operatorname{atoms}(\Gamma))$
DPLL($\Gamma \cup\{A\}, U)$
$\operatorname{DPLL}(\Gamma \cup\{\bar{A}\}, U)$

- Γ is a set of clauses; U is a consistent set of literals such that, for every $L \in U$, neither L nor \bar{L} occurs in any clause in Γ (see above).
- atoms (Γ) returns the set of all atoms occuring in Γ,
- Initially, DPLL is invoked with $\Gamma=\Gamma_{0}$ and $U=\emptyset$.

Some remarks

- The return of the first if-statement indicates that $\Gamma \cup U$ is unsatisfiable.
- The exit in the second statement produces a model of $\Gamma \cup U$.

Example

Let $\Gamma=\{\neg p \vee q, \neg p \vee r, q \vee r, \neg q \vee \neg r\}$ be a set of clauses and apply DPLL.

	$\left[\begin{array}{l} \mathbf{D P L L}(\Gamma \cup\{p\}, U) \\ \text { UP gives } \emptyset \in \Gamma \text { hen } \end{array}\right.$	o model
$\begin{aligned} & \Gamma=\{\neg p \vee q, \neg p \vee r, q \vee r, \neg q \vee \neg r\} \\ & U=\emptyset \\ & \text { DPLL }(\Gamma, U) \\ & \text { UP leaves } \Gamma \text { and } U \text { unchanged } \end{aligned}$	DPLL($\Gamma \cup\{\neg p\}, U)$ UP gives $\begin{aligned} & \Gamma=\{q \vee r, \neg q \vee \neg r\} \\ & U=\{\neg p\} \\ & \text { select } q \end{aligned}$	DPLL $(\Gamma \cup\{q\}, U)$ UP gives $\Gamma=\emptyset$ $U=\{\neg p, q, \neg r\}$ is model $\mathbf{D P L L}(\Gamma \cup\{\neg q\}, U)$ UP gives $\begin{aligned} & \Gamma=\emptyset \\ & U=\{\neg p, \neg q, r\} \text { is model } \end{aligned}$

Operation of Cmodels

In the process of its operations, Cmodels

1. simplifies the given normal program,
2. verifies that the resulting program is tight,
3. forms the program completion and call a SAT solver to find its models.

Simplification

Let $A S(\Pi)$ denote the set of all answer sets of program Π.

- Two programs Π and Π^{\prime} are equivalent if $A S(\Pi)=A S\left(\Pi^{\prime}\right)$.

Many other different equivalence concepts were proposed in the literature!

Some Definitions

Define

- Atom(П)
- Atom $^{+}(\Pi)=\bigcap_{X \in A S(\Pi)} X$
- $\operatorname{Atom}^{-}(\Pi)=\operatorname{Atom}(\Pi) \backslash \bigcup_{X \in A S(\Pi)} X$ atoms not in any answer set of Π

Simplification

Any program Π of the form
Head \leftarrow Body, F.
Π^{\prime}
s.t. $F \in \operatorname{Atom}^{-}(\Pi)$ is equivalent to program
$\leftarrow F$.
Π^{\prime}

Simplification

Let Π be a program of the form
Head \leftarrow Body, not F.
Π^{\prime}

- If $F \in$ Atom $^{+}(\Pi)$ then Π is equivalent to program
\leftarrow not F.
Π^{\prime}
- If $F \in$ Atom $^{-}(\Pi)$ then Π is equivalent to program
$\leftarrow F$.
Head \leftarrow Body.
Π^{\prime}

Example

$$
\Pi=\begin{aligned}
& a \leftarrow b, \text { not } c . \\
& \\
& d \leftarrow \operatorname{not} a . \\
& c \leftarrow \operatorname{not} d .
\end{aligned}
$$

$A S(\Pi)=\{\{d\}\}$ implies Atom $^{+}(\Pi)=\{d\}$ and Atom $^{-}(\Pi)=\{a, b, c\}$.
According to (2) Π is equivalent to

$$
\begin{aligned}
& \leftarrow b . \\
\Pi^{\prime}= & d \leftarrow \operatorname{not} a . \\
& c \leftarrow \operatorname{not} d .
\end{aligned}
$$

$$
\text { Atom }^{+}\left(\Pi^{\prime}\right)=\text { Atom }^{+}(\Pi)=\{d\} \text { and } \text { Atom }^{-}\left(\Pi^{\prime}\right)=\text { Atom }^{-}(\Pi)=\{a, b, c\} .
$$

Example ctd

According to (3) Π^{\prime} is equivalent to

$$
\begin{aligned}
& \leftarrow b . \\
\Pi^{\prime \prime}= & d \leftarrow \operatorname{not} a . \\
& \leftarrow \operatorname{not} d .
\end{aligned}
$$

According to (4) $\Pi^{\prime \prime}$ is equivalent to

$$
\Pi^{\prime \prime \prime}=\begin{aligned}
& \leftarrow b \\
& \\
& d \leftarrow a \\
& \\
& \leftarrow \operatorname{not} d .
\end{aligned}
$$

Remark on Simplification

How to determine sets Atom $^{+}(\Pi)$ and Atom $^{-}(\Pi)$?

- for example, all facts of Π are in Atom $^{+}(\Pi)$
- for example, atoms $\{a \mid(\leftarrow a) \in \Pi\}$ are in Atom $^{-}(\Pi)$
- cmodels uses smodels procedures atmost and atleast to determine subsets of Atom $^{+}(\Pi)$ and Atom $^{-}(\Pi)$, respectively.
- In general, the WFM is part of any answer set.

Tight Programs

The positive dependency graph G of a normal logic program Π is a directed graph s.t.

1. the vertexes of G are the atoms occurring in Π
2. G has an edge from A to B if Π has a rule with head B that contains A in the positive part of the body.

A program is tight if its positive dependency graph has no cycles.

Example

$$
\Pi=\begin{array}{ll}
& p \leftarrow \text { not } p . \\
& p \leftarrow q . \\
& q \leftarrow p .
\end{array}
$$

The positive dependency graph of Π :

The graph has a cycle and thus Π is not tight.

Tightness

Before verifying tightness cmodels applies some further simplifications

- rules of the form $A \leftarrow \ldots, A, \ldots$ are deleted since this does not change answer sets and
- "inessential" vertexes are eliminated, for example atoms that do not occur in the head of a rule.

Then cmodels verifies tightness by

1. building the positive dependency graph and
2. uses a standard depth first search algorithm to detect cycles.

Example

Let Π be the following program:

$$
\begin{aligned}
& a \leftarrow \text { not } b, \text { not } d . \\
& b \leftarrow \text { not } a, \text { not } c . \\
& c \leftarrow d . \\
& d \leftarrow c . \\
& f \leftarrow c, \text { not } f . \\
& c \leftarrow \operatorname{not} d, \text { not } a, \text { not } b . \\
& d \leftarrow \operatorname{not} c, \text { not } a, \text { not } b .
\end{aligned}
$$

Which answer sets?

Example

Π	Sim (Π)	Completion
$a \leftarrow$ not b, not d.	$a \leftarrow \operatorname{not} b$.	$a \equiv \neg b$
$b \leftarrow$ not a, not c.	$b \leftarrow$ not a.	$b \equiv \neg a$
$c \leftarrow d$.	$\leftarrow d$.	$\perp \equiv d$.
$d \leftarrow c$.	$\leftarrow c$.	$\perp \equiv c$.
$f \leftarrow c$, not f.	$\leftarrow c$.	
$c \leftarrow$ not d, not a, not b.	$c \leftarrow$ not a, not b.	$c \equiv \neg b \wedge \neg a$.
$d \leftarrow$ not c, not a, not b.	$d \leftarrow \operatorname{not} a, \operatorname{not} b$.	$d \equiv \neg b \wedge \neg a$.

Π is not tight, but $\operatorname{Sim}(\Pi)$ is tight.
$A S(\Pi)=\{\{a\},\{b\}\}$.

Detailed Operation of Cmodels

In the process of its operations, Cmodels

1. simplifies a given program generated from Iparse
2. turns it into a basic nested program
3. verifies that the resulting program is tight,
4. forms the program completion and call a SAT solver to find its models.

Iparse Programs

An output program of Iparse contains

- normal rules of the form

$$
A_{0} \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n}
$$

- choice rules of the form

$$
\left\{A_{1}, \ldots, A_{m}\right\} \leftarrow A_{m+1}, \ldots, A_{n}, \text { not } A_{n+1}, \ldots, \text { not } A_{k}
$$

- Weight constraint rules of the form

$$
A_{0} \leftarrow l\left\{A_{1}=w_{1}, \ldots, A_{m}=w_{m}\right\}
$$

where each A_{i} is an atom, and l (lower bound) and w_{j} (weights) are integers.

Basic Nested Programs

A basic nested program contains

- basic nested rules of the form

$$
A_{0} \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n}, \text { not not } A_{n+1}, \ldots, \text { not not } A_{k},
$$

where each A_{i} is an atom.

This is a special case of the concept of programs with nested expressions.

Observe that the definiton of tightness works for basic nested without changes.

Example: choice rules

The following Iparse program

$$
\begin{array}{ll}
\{p, q\} & \\
r \\
r & \leftarrow p \\
r & \leftarrow q
\end{array}
$$

is translated by cmodels into the following program with nested expressions:

$$
\begin{array}{ll}
p & \leftarrow \operatorname{not} \operatorname{not} p \\
q & \leftarrow \operatorname{not} \operatorname{not} q \\
r & \leftarrow p \\
r & \leftarrow q
\end{array}
$$

Simplification

Any Iparse program of the form
Head $\leftarrow L\{F=w$, Tail $\}$
Π^{\prime}
s.t. $F \in$ Atom $^{-}(\Pi)$ is equivalent to program

$$
\begin{equation*}
\leftarrow \quad F \tag{5}
\end{equation*}
$$

Head $\leftarrow L\{$ Tail $\}$
Π^{\prime}

Simplification

Let Π be a Iparse program of the form

$$
\text { Head } \leftarrow L\{\text { not } F=w, \text { Tail }\}
$$

Π^{\prime}

- If $F \in$ Atom $^{+}(\Pi)$ then Π is equivalent to program
\leftarrow not F.
Head $\leftarrow L\{$ Tail $\}$
Π^{\prime}
- If $F \in A^{-1}{ }^{-}(\Pi)$ then Π is equivalent to program
$\leftarrow F$.
Head $\leftarrow L-w\{$ Tail $\}$
Π^{\prime}

Example

Let Π be the following program:

$$
\begin{aligned}
& \{a\} \\
& c \leftarrow 4\{a=1, b=1, \text { not } d=2\}
\end{aligned}
$$

$A S(\Pi)=\{\{a\}, \emptyset\}$ implies Atom $^{+}(\Pi)=\emptyset$ and Atom $^{-}(\Pi)=\{b, c, d\}$.
According to (5) Π is equivalent to

$$
\begin{aligned}
& \{a\} \\
& \leftarrow b \\
& c \leftarrow 4\{a=1, \text { not } d=2\}
\end{aligned}
$$

Example ctd

Since Atom $^{-}(\Pi)=\{b, c, d\}$, according to (7) program

$$
\begin{aligned}
& \{a\} \\
& \leftarrow b \\
& c \leftarrow 4\{a=1, \text { not } d=2\}
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
& \{a\} \\
& \leftarrow b \\
& \leftarrow d \\
& c \leftarrow 2\{a=1\} .
\end{aligned}
$$

Example: Translation to Basic Nested Programs

The rule

$$
p \leftarrow 3\{q=3, r=2, s=2\}
$$

is translated to four simpler rules:

$$
\begin{aligned}
& p \leftarrow \operatorname{aux1} \\
& \operatorname{aux} 1 \leftarrow 3\{r=2, s=2\} \\
& p \leftarrow q, \operatorname{aux} 2 \\
& \operatorname{aux} 2 \leftarrow 0\{r=2, s=2\}
\end{aligned}
$$

aux1 is an abbreviation for $3\{r=2, s=2\}$ and
aux2 is an abbreviation for $0\{r=2, s=2\}$.
since $0\{r=2, s=2\}$ is always true aux2 can be dropped.

Example ctd

We obtain

$$
\begin{aligned}
& p \leftarrow \operatorname{aux} 1 \\
& \operatorname{aux} 1 \leftarrow 3\{r=2, s=2\} \\
& p \leftarrow q
\end{aligned}
$$

A similar step gives:

$$
\begin{aligned}
& p \leftarrow a u \times 1 \\
& \operatorname{aux} 1 \leftarrow \operatorname{aux3} \\
& \operatorname{aux3} \leftarrow 3\{s=2\} \\
& \operatorname{aux} 1 \leftarrow r, \operatorname{aux4} \\
& \operatorname{aux} 4 \leftarrow 1\{s=2\} \\
& p \leftarrow q
\end{aligned}
$$

aux3 is an abbreviation for $3\{s=2\}$ and
aux4 is an abbreviation for $1\{s=2\}$.

Example ctd

Since $3\{s=2\}$ is always false we obtain program

$$
\begin{aligned}
& p \leftarrow a u \times 1 \\
& \operatorname{aux} 1 \leftarrow r, a u \times 4 \\
& \operatorname{aux} 4 \leftarrow 1\{s=2\} \\
& p \leftarrow q
\end{aligned}
$$

Finally, we get the following program since $1\{s=2\}$ can be replaced by s :

$$
\begin{aligned}
& p \leftarrow a u \times 1 \\
& \operatorname{aux} 1 \leftarrow r, a u \times 4 \\
& \operatorname{aux} 4 \leftarrow s \\
& p \leftarrow q
\end{aligned}
$$

SAT for Horn Clauses and

Computation of the least Herbrand Modell

Clauses vs Rules:
The efficient DPLL algorithm for SAT can be further optimized if we restrict ourself to clauses with "direction".

We deal with definite programs, Horn clauses or rules.

- efficient procedure for SAT on Horn clauses
- efficient computation of the least Herbrand model
- naive algorithm
- optimized algorithm according to Dowling und Gallier (1984)
- application to ASP solvers

Horn-Klauseln (Erinnerung)

Eine aussagenlogische Horn-Klausel ist

- eine definite Programmklausel oder
- ein definites Ziel
eine Horn-Klausel hat folgende Form:
- A
- $\left[A, \neg B_{1}, \ldots, \neg B_{m}\right] \quad\left(A \leftarrow B_{1} \wedge \ldots \wedge B_{m}\right) \quad$ (definite Klausel kein Fakt)
- $\left[\neg B_{1}, \ldots, \neg B_{m}\right]\left(\leftarrow B_{1} \wedge \ldots \wedge B_{m}\right)$ (definites Ziel)

Horn-Klauseln und definite Programme unterscheiden sich nur durch definite Ziele

Beispiel

Betrachte folgende Menge von Horn-Klauseln:

A
$\neg A \vee B$
$\neg A \vee \neg B$

Horn-Klauseln können inkonsistent sein, aber
definite Programme (als Klauselmenge) sind immer konsistent.

Das Kleinste Herbrand-Modell (Erinnerung)

Sei \mathcal{P} ein definites aussagenlogisches Programm und I ein Interpretation.

$$
\begin{aligned}
& T_{\mathcal{P}}(I)=\left\{A \mid\left(A \leftarrow B_{1} \wedge \ldots \wedge B_{m}\right) \in \mathcal{P} \text { und }\left\{B_{1}, \ldots, B_{n}\right\} \subseteq I\right\} \\
& T_{\mathcal{P}} \uparrow 0=\emptyset \\
& T_{\mathcal{P}} \uparrow(n+1)=T_{\mathcal{P}}\left(T_{\mathcal{P}} \uparrow n\right) \quad(\text { für } n \in \mathbb{N})
\end{aligned}
$$

1 里

$$
\begin{aligned}
& T_{\mathcal{P}} \uparrow 1=\left\{A \mid\left(A \leftarrow B_{1} \wedge \ldots \wedge B_{m}\right) \in \mathcal{P} \text { und }\left\{B_{1}, \ldots, B_{n}\right\} \subseteq \emptyset\right\} \\
& T_{\mathcal{P}} \uparrow(n+1)=\left\{A \mid\left(A \leftarrow B_{1} \wedge \ldots \wedge B_{m}\right) \in \mathcal{P} \text { und }\left\{B_{1}, \ldots, B_{n}\right\} \subseteq T_{\mathcal{P}} \uparrow(n)\right\}
\end{aligned}
$$

Algorithmus 1 für definite Programme

Sei $\mathcal{P}=\left\{r_{1}, \ldots, r_{n}\right\}$ ein definites Programm, $\operatorname{Atm}(\mathcal{P})=\left\{A_{1}, \ldots, A_{m}\right\}$ die aussagenlogischen Variablen von \mathcal{P}, \vec{V} ein boolscher Vektor der Länge m und $c h$ eine boolsche Variable.
program algorithm1;
begin $c h:=t$;
for each $X \in \operatorname{Atm}(\mathcal{P})$ do $V(X):=f$ end for
for each $X \in \operatorname{Atm}(\mathcal{P})$ s.t. $X \in \mathcal{P}$ do $V(X):=t$ end for while ch do

$$
c h:=f
$$

for each $\left(A \leftarrow B_{1} \wedge \ldots \wedge B_{k}\right) \in \mathcal{P}$ do
if $\quad V\left(B_{1}\right)=t, \ldots, V\left(B_{k}\right)=t$ and $V(A)=f$ then $V(A):=t ; c h:=t ;$ $\mathcal{P}:=\mathcal{P} \backslash\left\{A \leftarrow B_{1} \wedge \ldots \wedge B_{k}\right\}$
end if
end for
end while
end
$M_{\mathcal{P}}=\{A \mid V(a)=t\}$ mit Komplexität $O\left(n^{2}\right)$.

Beispiel

Betrachte folgendes definite Programm (Ordnung nicht relevant):

A	$B \leftarrow A$
C	$D \leftarrow B \wedge C$
$E \leftarrow D \wedge F$	$F \leftarrow E$

$\Rightarrow V(A)=V(B)=V(C)=V(D)=V(E)=V(F)=V(G)=f ;$
$\Rightarrow V(A)=V(C)=t$
\Rightarrow 1. While-Loop: $V(B)=t ; \mathcal{P}:=\mathcal{P} \backslash\{B \leftarrow A\}$
\Rightarrow 2. While-Loop: $V(D)=t ; \mathcal{P}:=\mathcal{P} \backslash\{D \leftarrow B \wedge C\}$
\Leftrightarrow 3. While-Loop: keine weitern Änderungen

Algorithmus 1 für Horn-Klauseln

Sei $\mathcal{H}=\left\{r_{1}, \ldots, r_{n}\right\}$ ein definites Programm, $\operatorname{Atm}(\mathcal{H})=\left\{A_{1}, \ldots, A_{m}\right\}$ die aussagenlogischen Variablen, \vec{V} ein boolscher Vektor der Länge m und $c h$ und cons boolsche Variablen.
program algorithm1;
begin $c h:=t$; cons $:=t$;
for each $X \in \operatorname{Atm}(\mathcal{H})$ do $V(X):=f$ end for
for each $X \in \operatorname{Atm}(\mathcal{H})$ s.t. $X \in \mathcal{H}$ do $V(X):=t$ end for
while ch and cons do $c h:=f$;
for each $C \in \mathcal{H}$ and $c h$ do
if $C=\neg B_{1} \vee \ldots \vee \neg B_{k}$ and $V\left(B_{1}\right)=t, \ldots, V\left(B_{k}\right)=t$ then cons $:=f$
else
if $C=\left(A \vee \neg B_{1} \vee \ldots \vee \neg B_{k}\right)$ and $V\left(B_{1}\right)=t, \ldots, V\left(B_{k}\right)=t$ and $V(A)=f$ then
$V(A):=t ; c h:=t ;$
$\mathcal{H}:=\mathcal{H} \backslash C$
end if
end if
end for
end while end

Beispiel

Betrachte folgende Menge von Horn-Klauseln (Ordnung nicht relevant):

A
$\neg A \vee B$
$\neg A \vee \neg B$
$\Rightarrow \quad V(A)=V(B)=f$;
$\Rightarrow \quad V(A)=t$
\Rightarrow 1. While-Loop: $V(B)=t ; \mathcal{H}:=\mathcal{H} \backslash\{\neg A \vee B\}$
\Leftrightarrow 2. While-Loop: cons $=f$;
Inkonsistenz entdeckt!!
Komplexität $O\left(n^{2}\right)$

Optimierung von Algorithmus 1

Initial werden alle aussagenlogischen Variablen gleich f (false) gesetzt (wie bisher), aber es wird andere Datenstruktur verwendet.

- für jede Horn-Klausel $C \in \mathcal{H}$ wird ein Zähler eingeführt, dessen Wert die Anzahl der negativen Literale mit Wahrheitswert f (false) angibt (falls es keine negativen Literale in c gibt ist der Wert 0)
- eine Klausel C wird bearbeitet, wenn der Wert ihres Zählers 0 ist, d.h. für alle negativen Literale $\neg B \in C$ ist $B=t$ (true)
\Rightarrow das positive Literal $A \in C$ wird auf t (true) gesetzt sobald der Zähler von C null ist
- mit jeder aussagenlogischen Variabel B ist die Liste der Klauseln assoziiert, in denen B negative vorkommt
- ist ein positives Literal $A=t$ (true), werden die Zähler aller Klauseln in denen A negativ vorkommt um eins decrementiert

Algorithmus 2 für Horn-Klauseln

Sei $\mathcal{H}=\left\{r_{1}, \ldots, r_{n}\right\}$ ein definites Programm und $\operatorname{Atm}(\mathcal{H})=\left\{A_{1}, \ldots, A_{m}\right\}$ die aussagenlogischen Variablen, die in \mathcal{H} vorkommen.
program algorithm2;
type clause $=$ record $N: 1 \ldots n$; next $:^{\wedge}$ clause end;
type lit $=$ record val:boolean; clauselist $:^{\wedge}$ clause end;
type Hornclause $=$ array [1..m] of lit ;
type count $=$ array [1..n] of $0 \ldots m$;
var \mathcal{H} : Hornclause ; queue: q-type ;
num, poslit : count ; cons : boolean ;
begin
input (\mathcal{H});
init $(\mathcal{H}$, num, poslit, queue, new);
cons $:=t$;
sat $(\mathcal{H}$, num, poslit, queue, cons, new);
if cons then
print(assignment);
else
print(unsat);
end

Algorithmus 2 Initialisierung

Gegeben: \mathcal{H}
Initialisierung von num, poslit und cons (queue):

1. für alle Variablen $A \in \operatorname{Atm}(\mathcal{H})$ setzte

- A.val $:=f$ und
- A.clauselist $:=$ Liste aller $C \in \mathcal{H}$ mit $\neg A \in C$

2. für alle Klauseln $C \in \mathcal{H}$ setzte

- num $[C]:=$ Anzahl der negativen Literale in C und
- $\operatorname{poslit}[C]:= \begin{cases}A & \text { falls } A \text { positive in } C \\ 0 & \text { sonst (steht für false) }\end{cases}$

3. setzte queue $:=$ Liste aller Fakten, d.h. aller Klauseln ohne negative Literale
4. setzte cons $:=t$

Algorithmus 2 sat

```
program sat(\mathcal{H},num,poslit,queue,cons,new);
var c1,c2,old,new,next:1 ..n; \*\mathcal{H}={\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{n}{}}*\
    k:1 . m; \* Atm(\mathcal{H})={\mp@subsup{A}{1}{},\ldots,A,Am}}*
begin old:= new;
    While queue <> nil and cons do new:= 0;
    for i:=1 to old and cons do
        c1 := pop(queue); next := poslit(c1);
        for c2\in\mathcal{H[next].clauselist do num[c2]:= num[c2]-1;}
        if num[c2]=0 then k:= poslit[c2];
            if \mathcal{H}[k].val }\not=1\mathrm{ then
                if k<>0 then
                H[k].val:=t; queue := push(c2,queue); new := new + 1;
            else cons:=f;
    end if end if end if
    end for end for
    old:= new;
    end while end
```


Beispiel: Initialisierung

Betrachte folgende Horn-Klauseln:

$$
\begin{array}{lll}
c 1: A & c 2: & B \vee \neg A \equiv(B \leftarrow A) \\
c 3: & C \vee \neg A \vee \neg B \equiv(C \leftarrow A \wedge B) & c 4: \\
& & \neg B \vee \neg C \equiv(\leftarrow B \wedge C)
\end{array} \quad \begin{array}{lll}
\text { clauselist }(A)=\{c 2, c 3\} & \operatorname{poslit}(c 1)=A & \operatorname{poslit}(c 3)=C \\
\text { clauselist }(B)=\{c 3, c 4\} & \operatorname{poslit}(c 2)=B & \operatorname{poslit}(c 4)=0 \\
\text { clauselist }(C)=\{c 4\} & &
\end{array}
$$

Es gilt:

$$
\begin{array}{ll}
\text { partielles Modell }=\{A\} & \text { num }(c 1)=0 \\
\text { queue }=\{A\} & \text { num }(c 2)=1 \\
\text { cons }=t & \text { num }(c 3)=2 \\
& \text { num }(c 4)=2
\end{array}
$$

Beispiel: nach 1. While-Loop

$$
\begin{array}{lll}
c 1: A & c 2: & B \vee \neg A \equiv(B \leftarrow A) \\
c 3: \quad C \vee \neg A \vee \neg B \equiv(C \leftarrow A \wedge B) & c 4: & \neg B \vee \neg C \equiv(\leftarrow B \wedge C)
\end{array} \quad \begin{array}{lll}
\text { clauselist }(A)=\{c 2, c 3\} & \operatorname{poslit}(c 1)=A & \operatorname{poslit}(c 3)=C \\
\text { clauselist }(B)=\{c 3, c 4\} & \operatorname{poslit}(c 2)=B & \operatorname{poslit}(c 4)=0 \\
\text { clauselist }(C)=\{c 4\}
\end{array}
$$

Es gilt:

$$
\begin{array}{ll}
\text { partielles Modell }=\{A, B\} & \text { num }(c 1)=0 \\
\text { queue }=\{B\} & \operatorname{num}(c 2)=0 \\
\text { cons }=t & \text { num }(c 3)=1 \\
& \text { num }(c 4)=2
\end{array}
$$

Beispiel: nach 2. While-Loop

$$
\begin{array}{lll}
c 1: A & c 2: & B \vee \neg A \equiv(B \leftarrow A) \\
c 3: \quad C \vee \neg A \vee \neg B \equiv(C \leftarrow A \wedge B) & c 4: & \neg B \vee \neg C \equiv(\leftarrow B \wedge C)
\end{array} \begin{array}{lll}
\text { clauselist }(A)=\{c 2, c 3\} & \operatorname{poslit}(c 1)=A & \operatorname{poslit}(c 3)=C \\
\text { clauselist }(B)=\{c 3, c 4\} & \operatorname{poslit}(c 2)=B & \operatorname{poslit}(c 4)=0 \\
\text { clauselist }(C)=\{c 4\}
\end{array}
$$

Es gilt:

$$
\begin{array}{ll}
\text { partielles Modell }=\{A, B, C\} & \text { num }(c 1)=0 \\
\text { queue }=\{C\} & \text { num }(c 2)=0 \\
\text { cons }=t & \text { num }(c 3)=0 \\
& \text { num }(c 4)=1
\end{array}
$$

Beispiel: nach 3. While-Loop

$$
\begin{array}{lll}
c 1: A & c 2: & B \vee \neg A \equiv(B \leftarrow A) \\
c 3: & C \vee \neg A \vee \neg B \equiv(C \leftarrow A \wedge B) & c 4: \\
& \neg B \vee \neg C \equiv(\leftarrow B \wedge C) \\
\text { clauselist }(A)=\{c 2, c 3\} & \operatorname{poslit}(c 1)=A & \operatorname{poslit}(c 3)=C \\
\text { clauselist }(B)=\{c 3, c 4\} & \operatorname{poslit}(c 2)=B & \operatorname{poslit}(c 4)=0 \\
\text { clauselist }(C)=\{c 4\}
\end{array}
$$

Es gilt:

$$
\begin{array}{ll}
\text { partielles Modell }=\{A, B, C\} & \text { num }(c 1)=0 \\
\text { queue }=\{0\}(\text { false!! }) & \text { num }(c 2)=0 \\
\text { cons }=f(!!) & \text { num }(c 3)=0 \\
& \text { num }(c 4)=0
\end{array}
$$

Inkonsistenz entdeckt

Komplexität von Algorithmus 2

- Jede Horn Klausel $C \in \mathcal{H}$ kommt höchsten einmal in die queue; C kommt genau dann in die queue wenn alle ihre negativen Literale t (true) sind.
- Sobald eine Klausel $c 2$ bearbeitet wird, wird ihr positives Literal zu t (true), dass verhindert doppelte Behandlung von Klauseln.
- Wenn eine Klausel $c 1$ im While-Loop gelöscht wird, werden sofort alle Klauseln behandelt, die das positive Literal von $c 1$ negativ enthalten. Jedes negative Vorkommen einer Variable wird nur genau einmal betrachtet. Es gibt nur linear (in n der Anzahlder Klauseln) viele negative Vorkommen von aussagenlogischen Variablen.

Algorithmus 2 braucht $O(n)$ Schritte.
Für definite Programme berechnet Algorithmus 2 das kleinste
Herbrand Modell $M_{\mathcal{P}}$

How to Apply the Idea to ASP?

$$
\begin{array}{ll}
\text { Horn Clauses } & \text { normal rules } \\
a \leftarrow b_{1}, \ldots, b_{n} & a \leftarrow b_{1}, \ldots, b_{n}, \text { not } c_{1}, \ldots, \text { not } c_{k} \\
\leftarrow b_{1}, \ldots, b_{n} & \leftarrow b_{1}, \ldots, b_{n}, \text { not } c_{1}, \ldots, \text { not } c_{k}
\end{array}
$$

Remeber application condition for rule r wrt a set of atoms X

- r has to be supported, that is, $b o d y^{+}(r) \subseteq X$, and
- r has to be unblocked, that is, $b_{o d y}{ }^{-}(r) \cap X=\emptyset$.

Use tow counter for each rule, one for support and one for blockage.

Notions of Equivalence

Two programs Π_{1} and Π_{2} are

- (weakly) equivalent $\left(\Pi_{1} \equiv \Pi_{2}\right)$ if $A S\left(\Pi_{1}\right)=A S\left(\Pi_{2}\right)$.
- strongly equivalent $\left(\Pi_{1} \equiv_{s} \Pi_{2}\right)$ if $A S\left(\Pi_{1} \cup \Pi^{\prime}\right)=A S\left(\Pi_{2} \cup \Pi^{\prime}\right)$ for any program Π^{\prime}.
- uniformly equivalent $\left(\Pi_{1} \equiv_{u} \Pi_{2}\right)$ if $A S\left(\Pi_{1} \cup F\right)=A S\left(\Pi_{2} \cup F\right)$ for any set of facts F.

Example: $\Pi_{1}=\{a \vee b \leftarrow\}$ and $\Pi_{2}=\{a \leftarrow \operatorname{not} b, b \leftarrow \operatorname{not} a\}$

- $\Pi_{1} \equiv \Pi_{2}$ since $A S\left(\Pi_{1}\right)=\{\{a\},\{b\}\}=A S\left(\Pi_{2}\right)$
- $\Pi_{1} \equiv{ }_{u} \Pi_{2}$
- $\Pi_{1} \not \equiv_{s} \Pi_{2}$, e.g. $\Pi^{\prime}=\{a \leftarrow b, b \leftarrow a\}$

How to Show Strong Equivalence

- close relation to non-classical logic of here-and-there (Lifschitz, Pearce, Valverde)
- model-theoretic characterization (Turner)
- Let Π be a logic program and X, Y interpretations such that $X \subseteq Y$
- (X, Y) is an SE-model of Π if $Y \models \Pi$ and $X \models \Pi^{Y}$
- $M_{s}(\Pi)$ denotes the set of all SE-models of Π
$-\Pi_{1} \equiv_{s} \Pi_{2}$ iff $M_{s}\left(\Pi_{1}\right)=M_{s}\left(\Pi_{2}\right)$

How to Show Strong Equivalence (ctd.)

$$
\begin{aligned}
\text { Example: } \Pi_{1}= & \{a \vee b \leftarrow\} \text { and } \Pi_{2}=\{a \leftarrow \text { not } b, b \leftarrow \text { not } a\} \\
M_{s}\left(\Pi_{1}\right)= & \{(\{a\},\{a\}),(\{b\},\{b\}),(\{a\},\{a, b\}),(\{b\},\{a, b\}), \\
& (\{a, b\},\{a, b\})\} \\
M_{s}\left(\Pi_{2}\right)= & M_{s}\left(\Pi_{1}\right) \cup\{(\emptyset,\{a, b\})\}
\end{aligned}
$$

$M_{s}\left(\Pi_{1}\right) \neq M_{s}\left(\Pi_{2}\right)$ therefore $\Pi_{1} \not 三_{s} \Pi_{2}$

How to Show Uniform Equivalence

- model-theoretic characterization (Eiter, Fink)
- Let Π be a logic program and X, Y interpretations such that $X \subseteq Y$
- $(X, Y) \in M_{s}(\Pi)$ is an UE-model of Π if for every $\left(X^{\prime}, Y\right) \in M_{s}(\Pi)$ it holds that $X \subset X^{\prime}$ implies $X^{\prime}=Y$
- $M_{u}(\Pi)$ denotes the set of all UE-models of Π
$-\Pi_{1} \equiv_{u} \Pi_{2}$ iff $M_{u}\left(\Pi_{1}\right)=M_{u}\left(\Pi_{2}\right)$

How to Show Uniform Equivalence (ctd.)

$$
\begin{aligned}
& \text { Example: } \Pi_{1}=\{a \vee b \leftarrow\} \text { and } \Pi_{2}=\{a \leftarrow \text { not } b, b \leftarrow \text { not } a\} \\
& \qquad M_{s}\left(\Pi_{1}\right)=\{(\{a\},\{a\}),(\{b\},\{b\}),(\{a\},\{a, b\}),(\{b\},\{a, b\}), \\
& \qquad(\{a, b\},\{a, b\})\} \\
& M_{s}\left(\Pi_{2}\right)=M_{s}\left(\Pi_{1}\right) \cup\{(\emptyset,\{a, b\})\} \\
& X \subset X^{\prime} \text { implies } X^{\prime}=Y \text { does not hold e.g. for }\left(X^{\prime}, Y\right)=(\{a\},\{a\}) \\
& M_{u}\left(\Pi_{1}\right)=M_{u}\left(\Pi_{2}\right) \text { therefore } \Pi_{1} \equiv_{u} \Pi_{2}
\end{aligned}
$$

[^0]: ${ }^{\text {a regard }} \neg q(X, Y)$ as an indepenedant auxiliary atom

[^1]: ${ }^{\text {a }}$ Intuitively, support graphs constitute the graph-theoretical counterpart of Cn .

