
Answer Set Programming

• Christian Anger

• Kathrin Konczak

• Thomas Linke

• Torsten Schaub

1

Resources

Course material

• http://www.cs.uni-potsdam.de/wv/lehre/

• http://www.cs.uni-potsdam.de/~torsten/asp/

Systems

• dlv http://www.dbai.tuwien.ac.at/proj/dlv/

• noMoRe http://www.cs.uni-potsdam.de/~linke/nomore/

• smodels http://www.tcs.hut.fi/Software/smodels/

• plp http://www.cs.uni-potsdam.de/~torsten/plp/

• nlp http://www.cs.uni-potsdam.de/~torsten/nlp/

2

Roadmap

• Overview and Introduction

• Modeling

• Extensions: Disjunctive and Nested logic programs

• Extensions: Cardinality and Weight Constraints

• Algorithms and Systems: Smodels

• Algorithms and Systems: noMoRe

• Extensions: Negation and Preferences

• Applications: Configuration

• Applications: Actions and Planning

• Applications: Agents

• Miscellaneous: Dowling/Gallier Algorithm, Fitting’s and Well-founded Semantics,

Complexity. . .

3

Problem solving versus Programming

Problem

Representation

Solution

Output

?
-

6

Modeling Interpretation

Computation

4

Wanted

An approach to modeling and solving AI problems!

For instance,

• Planning,

• Diagnosis,

• Configuration,

• Combinatorics,

• Puzzles and Games,

• . . .

5

A solution

Answer Set Programming!

Basic Idea

• Encode problem (class+instance) as a set of rules

• Read off solutions from answer sets of the rules

6

Roots

• Algorithm = Logic + Control (Kowalski, 1979)

• Logic as a programming language

➥ Prolog (Colmerauer, Kowalski)

• Related fields

– Logic Programming (of course)

– Nonmonotonic Reasoning

– Deductive Databases

– Constraint Programming

• Current killer application

➥ NASA’s space shuttle

7

Motivation

Prolog (Programming in logic) is great, it’s almost declarative!

To see this, consider

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z),above(Z,Y).

and compare it to

above(X,Y) :- above(Z,Y),on(X,Z).

above(X,Y) :- on(X,Y).

An interpretation in classical logic amounts to

∀xy(on(x, y) ∨ ∃z(on(x, z) ∧ above(z, y))→ above(x, y))

8

Motivation (ctd)

Prolog offers negation as failure via operator not.

For instance,

info(a).

ask(X) :- not info(X).

cannot be captured by

info(a) ∧ ∀x(¬info(x)→ ask(x))

but by appeal to Clark’s completion by

∀x(x = a↔ info(x)) ∧ ∀x(¬info(x)↔ ask(x))

⇐⇒ info(a) ∧ ∀x(x 6= a↔ ask(x))

9

Motivation (ctd)

Clark’s completion is sometimes too syntactical.

Consider

• p :- p yields p↔ p

• p :- not p yields p↔ ¬p

• Or even more complex yet analogous situations!

10

Answer Set Programming

• Basic idea

• Syntax

• Semantics

• Examples

• Variables and grounding

• Integrity constraints

• An algorithm

11

Answer Set Programming: Basic idea

✘ View rules as constraints on models.

For instance, given a rule

c← a, not b

then each model X must satisfy

if a ∈ X and b 6∈ X, then c ∈ X .

➥ Models are closed under rules (informally!).

✘ Circumscribe models.

For instance, prefer model

∅ to {a, c} to {a, c, d} .

➥ Consider only minimal models containing justifiable atoms

(informally!).

☞ Such models are called answer sets (or initially: stable models).

12

Problem solving in Answer Set Programming

Problem

Logic Program

Solution(s)

Answer sets

?
-

6

Modeling Interpretation

Computation

13

Normal logic programs

• A (normal) rule, r, is an ordered pair of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not An,

where n ≥ m ≥ 0, and each Ai (0 ≤ i ≤ n) is a atom.

• A (normal) logic program is a finite set of rules.

• Notation

head(r) = A0

body(r) = {A1, . . . , Am, not Am+1, . . . , not An}

body+(r) = {A1, . . . , Am}

body−(r) = {Am+1, . . . , An}

• A program is called basic if body−(r) = ∅ for all its rules.

14

Answer sets

Basic programs

• A set of atoms X is closed under a basic program Π iff

for any r ∈ Π, head(r) ∈ X whenever body+(r) ⊆ X.

• The smallest set of atoms which is closed under a basic

program Π is denoted by Cn(Π).

Normal programs

• The reduct, ΠX , of a program Π relative to a set X of atoms is

defined by

ΠX = {head(r)← body+(r) | r ∈ Π and body−(r) ∩X = ∅}.

• A set X of atoms is an answer set of a program Π if Cn(ΠX) = X

15

A closer look at ΠX

In other words, given a set of atoms X from Π,

ΠX is obtained from Π by deleting

1. each rule having a not A in its body with A ∈ X

and then

2. all negative atoms of the form not A

in the bodies of the remaining rules.

16

Some “logical” remarks

• Basic programs are also referred as definite clauses

• Definite clauses are disjunctions with exactly one positive atom

➥ A0 ∨ ¬A1 ∨ · · · ∨ ¬Am

• Horn clauses are clauses with at most one positive atom

➥ Every definite clause is a Horn clause but not vice versa

• Every set of Horn clauses has a (unique) smallest model.

• This smallest model is the intended semantics of a set of Horn

clauses.

☞ Given a basic program Π, Cn(Π) corresponds to the smallest model

of the set of definite clauses corresponding to Π.

17

Another “logical” remark

Answer sets versus (minimal) models

• Program {a← not b} has answer set {a}.

• Clause a ∨ b (being equivalent to a← ¬b)

– has models {a}, {b}, and {a, b},

– among which {a} and {b} are minimal.

☞ The negation-as-failure operator not makes a difference!

18

A first example

Π = {p← p, q ← not p}

X Π ΠX Cn(ΠX)

∅ p ← p

q ← not p

p ← p

q ←

{q}

{p} p ← p

q ← not p

p ← p ∅

{q} p ← p

q ← not p

p ← p

q ←

{q}

{p, q} p ← p

q ← not p

p ← p ∅

19

A second example

Π = {p← not q, q ← not p}

X Π ΠX Cn(ΠX)

∅ p ← not q

q ← not p

p ←

q ←

{p, q}

{p} p ← not q

q ← not p

p ← {p}

{q} p ← not q

q ← not p q ←

{q}

{p, q} p ← not q

q ← not p

∅

20

A third example

Π = {p← not p}

X Π ΠX Cn(ΠX)

∅ p ← not p p ← {p}

{p} p ← not p ∅

☞ A program may have zero, one, or multiple answer sets!

21

A closer look at Cn

Inductive characterization

Let Π be a basic program and X a set of atoms.

• The immediate consequence operator TΠ is defined as follows:

TΠX = {head(r) | r ∈ Π and body(r) ⊆ X}

• Iterated applications of TΠ are written as T j
Π for j ≥ 0,

where T 0
ΠX = X and T i

ΠX = TΠT i−1
Π X for i ≥ 1.

Theorem Cn(Π) =
⋃

i≥0 T i
Π∅ for any basic program Π.

Proposition X ⊆ Y implies TΠX ⊆ TΠY for any basic program Π.

➥ In other words, TΠ is monotone.

22

Let’s iterate TΠ

Π = {p←, q ←, r ← p, s← q, t, t← r, u← v}

T 0
Π∅ = ∅

T 1
Π∅ = {p, q} = TΠT 0

Π∅ = TΠ(∅)

T 2
Π∅ = {p, q, r} = TΠT 1

Π∅ = TΠ({p, q})

T 3
Π∅ = {p, q, r, t} = TΠT 2

Π∅ = TΠ({p, q, r})

T 4
Π∅ = {p, q, r, t, s} = TΠT 3

Π∅ = TΠ({p, q, r, t})

T 5
Π∅ = {p, q, r, t, s} = TΠT 4

Π∅ = TΠ({p, q, r, t, s})

T 6
Π∅ = {p, q, r, t, s} = TΠT 5

Π∅ = TΠ({p, q, r, t, s})

In fact, Cn(Π) = {p, q, r, t, s} is the smallest fixpoint of TΠ. That is,

TΠ{p, q, r, t, s} = {p, q, r, t, s} and TΠX 6= X for every X ⊆ {p, q, r, t, s}.

23

Programs with Variables

Let Π be a logic program.

Herbranduniverse UΠ: Set of constants in Π

Herbrandbase BΠ: Set of (variable-free) atoms constructible from UΠ

☞ We usually denote this as A.

Ground Instances of r ∈ Π : Set of variable-free rules obtained by

replacing all variables in r by elements from UΠ:

ground(r) = {rθ | θ : var(r)→ UΠ}

where var(r) stands for the set of all variables occuring in r;

θ is a (ground) substitution.

Ground Instantiation of Π

ground(Π) = {ground(r) | r ∈ Π}

24

An example

Π = { r(a, b)←, r(b, c)←, t(X, Y)← r(X, Y) }

UΠ = {a, b, c}

BΠ =

r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c),

t(a, a), t(a, b), t(a, c), t(b, b), t(b, b), t(b, c), t(c, b), t(c, b), t(c, c)

ground(Π) =

r(a, b) ← ,

r(b, c) ← ,

t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c, a) ← r(c, a),

t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c, b) ← r(c, b),

t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c, c) ← r(c, c)

25

Answer sets of programs with Variables

Let Π be a normal logic program with variables.

We define a set X of (ground) atoms as an answer set of Π

if Cn(ground(Π)X) = X .

26

Programs with Integrity Constraints

Purpose Integrity constraints eliminate unwanted candidate solutions

Syntax An integrity constraints is of the form

← A1, . . . , Am, not Am+1, . . . , not An,

where n ≥ m ≥ 1, and each Ai (1 ≤ i ≤ n) is a atom.

Example ←monitor(21in),graphics(evil)

Implementation For a new symbol x, map

← A1, . . . , Am, not Am+1, . . . , not An

7→ x ← A1, . . . , Am, not Am+1, . . . , not An, not x

Another example Π = {p← not q, q ← not p}

versus Π′ = {p← not q, q ← not p, ← p}

versus Π′′ = {p← not q, q ← not p, ← not p}

27

A first glance at algorithmics

Global parameters: Logic program Π and its set of atoms A:

answersetΠ(X, Y)
1. (X, Y)← propagationΠ(X, Y)

2. if (X ∩ Y) 6= ∅ then fail

3. if (X ∪ Y) = A then return(X)

4. Select A ∈ A \ (X ∪ Y)

5. answersetΠ(X ∪ {A}, Y)

6. answersetΠ(X, Y ∪ {A})

• (X, Y) is supposed to be a 3-valued model such that X ⊆ Z and

Y ∩ Z = ∅ for any answer set Z of Π.

• Key operations: propagationΠ(X, Y) and ’Select A ∈ A \ (X ∪ Y)’

• Worst case complexity: O(2|A|)

28

Modeling and Interpreting

Problem

Logic Program

Solution(s)

Answer sets

?
-

6

Modeling Interpretation

Computation

29

Problem 7→ Logic Program

For solving a problem class P for a problem instance I ,

encode

1. the problem instance I as a set of facts C(I) and

2. the problem class P as a set of rules C(P),

such that the solutions to P for I can be (polynomially) extracted

from the answer sets of C(P) ∪C(I).

30

n-colorability of graphs

Problem instance A graph (V, E).

Problem class Assign each vertex in V one of n colors such that no

two vertexes in V connected by an edge in E have the same color.

31

3–colorability of graphs

C(I) vertex(1) ← edge(1,2) ←

vertex(2) ← edge(2,3) ←

vertex(3) ← edge(3,1) ←

C(P) colored(V,r) ← not colored(V,b), not colored(V,g),

vertex(V)

colored(V,b) ← not colored(V,r), not colored(V,g),

vertex(V)

colored(V,g) ← not colored(V,r), not colored(V,b),

vertex(V),color(C)

← edge(V,U),

colored(V,C),colored(U,C)

Answer set { colored(1,r), colored(2,b), colored(3,g), . . . }

32

n-colorability of graphs
with n = 3

C(I) vertex(1) ← edge(1,2) ←

vertex(2) ← edge(2,3) ←

vertex(3) ← edge(3,1) ←

C(P) color(r) ← color(b) ← color(g) ←

colored(V,C) ← not othercolor(V,C),

vertex(V),color(C)

othercolor(V,C) ← colored(V,C’), C6=C’,

vertex(V),color(C),color(C’)

← edge(V,U),color(C),

colored(V,C),colored(U,C)

Answer set { colored(1,r), colored(2,b), colored(3,g), . . . }

33

n–colorability of graphs
with n = 3

C(I) vertex(1). vertex(2). vertex(3).

edge(1,2). edge(2,3). edge(3,1).

C(P) color(r). color(b). color(g).

colored(V,C) :- not othercolor(V,C),

vertex(V),color(C).

othercolor(V,C) :- colored(V,C1), C != C1,

vertex(V),color(C),color(C1).

:- edge(V,U),color(C),

colored(V,C),colored(U,C).

34

Let it run!

torsten@belle-ile 507 > lparse 3color.lp | smodels 0

smodels version 2.25. Reading...done

Answer: 1

Stable Model: colored(3,g) othercolor(2,g) othercolor(1,g)

othercolor(3,b) colored(2,b) othercolor(1,b) othercolor(3,r)

othercolor(2,r) colored(1,r) color(g) color(b) color(r)

edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2) vertex(1)

35

Here’s the rest!

Answer: 2

Stable Model: colored(3,g) othercolor(2,g) othercolor(1,g) othercolor(3,b)

othercolor(2,b) colored(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

Answer: 3

Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) colored(3,b)

othercolor(2,b) othercolor(1,b) othercolor(3,r) othercolor(2,r) colored(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

Answer: 4

Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) colored(3,b)

othercolor(2,b) othercolor(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

Answer: 5

Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) othercolor(3,b)

othercolor(2,b) colored(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

Answer: 6

Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) othercolor(3,b)

colored(2,b) othercolor(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

False

36

And finally some statistics!

Duration: 0.010

Number of choice points: 5

Number of wrong choices: 5

Number of atoms: 28

Number of rules: 45

Number of picked atoms: 42

Number of forced atoms: 0

Number of truth assignments: 347

Size of searchspace (removed): 9 (0)

37

Basic Methodology

Generate and Test (or: Guess and Check) approach

Generator Generate potential candidates answer sets

(typically through non-deterministic constructs)

Tester Eliminate non-valid Candidates

(typically through integrity constraints)

38

Satisfiability

Problem instance A propositional formula φ.

Problem class Is there an assigment of propositional variables to true

and false such that a given forumla φ is true.

39

Satisfiability

Consider formula (a ∨ ¬b) ∧ (¬a ∨ b).

Generator Tester Answer set

a ← not â
â ← not a

b ← not b̂
b̂ ← not b

← not a, b

← a, not b

A1 = {a, b}

A2 = {â, b̂}

40

n-Queens Problem

A solution to n = 4 :

Q

Q

Q

Q

41

n-Queens in answer set programming

q(X, Y) gives the legal positions of the queensa

q(X, Y) ← not¬q(X, Y)

¬q(X, Y) ← not q(X, Y)

← q(X, Y), q(X ′, Y), X 6= X ′

← q(X, Y), q(X, Y ′), Y 6= Y ′

← q(X, Y), q(X ′, Y ′), |X −X ′| = |Y − Y ′|, X 6= X ′, Y 6= Y ′

← not hasq(X)

hasq(X) ← q(X, Y)

aregard ¬q(X, Y) as an indepenedant auxiliary atom

42

n-Queens
(in the smodels language)

q(X,Y) :- d(X), d(Y), not negq(X,Y).

negq(X,Y) :- d(X), d(Y), not q(X,Y).

:- d(X), d(Y), d(X1), q(X,Y), q(X1,Y), X1 != X.

:- d(X), d(Y), d(Y1), q(X,Y), q(X,Y1), Y1 != Y.

:- d(X), d(Y), d(X1), d(Y1), q(X,Y), q(X1,Y1),

X != X1, Y != Y1, abs(X - X1) == abs(Y - Y1).

:- d(X), not hasq(X).

hasq(X) :- d(X), d(Y), q(X,Y).

d(1..queens).

43

n-Queens in answer set programming
(in disjunctive logic programming)

q(X, Y) ∨ ¬q(X, Y) ←

← q(X, Y), q(X ′, Y), X 6= X ′

← q(X, Y), q(X, Y ′), Y 6= Y ′

← q(X, Y), q(X ′, Y ′), |X −X ′| = |Y − Y ′|, X 6= X ′, Y 6= Y ′

← not hasq(X)

hasq(X) ← q(X, Y)

44

n-Queens in answer set programming
(in nested logic programming)

q(X, Y) ∨ not q(X, Y) ←

← q(X, Y), q(X ′, Y), X 6= X ′

← q(X, Y), q(X, Y ′), Y 6= Y ′

← q(X, Y), q(X ′, Y ′), |X −X ′| = |Y − Y ′|, X 6= X ′, Y 6= Y ′

← not hasq(X)

hasq(X) ← q(X, Y)

45

n-Queens (ctd)
(in the smodels language with cardinality constraints)

1 { q(X, Y) } 1 ← d(X)

1 { q(X, Y) } 1 ← d(Y)

← q(X, Y), q(X ′, Y ′), |X −X ′| = |Y − Y ′|, X 6= X ′, Y 6= Y ′

d(1) ←
...

d(n) ←

46

n-Queens (ctd)
(in the smodels language with cardinality constraints)

1 { q(X,Y) : d(Y) } 1 :- d(X).

1 { q(X,Y) : d(X) } 1 :- d(Y).

:- d(X), d(Y), d(X1), d(Y1), q(X,Y), q(X1,Y1), X!=X1, Y!=Y1,

abs(X-X1) == abs(Y-Y1).

d(1..queens).

47

And the Performance . . . ?

torsten@belle-ile 506 > lparse -c queens=20 queens2.lp | smodels

smodels version 2.25. Reading...done

Answer: 1

Stable Model: d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10) d(11) d(12)

d(13) d(14) d(15) d(16) d(17) d(18) d(19) d(20) q(1,16) q(2,13) q(3,6) q(4,3)

q(5,15) q(6,19) q(7,1) q(8,4) q(9,9) q(10,11) q(11,8) q(12,10) q(13,17)

q(14,2) q(15,20) q(16,18) q(17,7) q(18,5) q(19,14) q(20,12)

True

Duration: 37.810

Number of choice points: 1471

Number of wrong choices: 1464

Number of atoms: 501

Number of rules: 10100

Number of picked atoms: 304305

Number of forced atoms: 14604

Number of truth assignments: 3111768

Size of searchspace (removed): 400 (0)

48

Planning
in the Blocksworld

1

2

3

4

5

6

6

5

4

3

2

1

Initial situation Goal situation

49

Initial Situation

const grippers=2.

const lasttime=3.

block(1..6).

% DEFINE

on(1,2,0).

on(2,table,0).

on(3,4,0).

on(4,table,0).

on(5,6,0).

on(6,table,0).

50

Goal Situation

% TEST

:- not on(3,2,lasttime).

:- not on(2,1,lasttime).

:- not on(1,table,lasttime).

:- not on(6,5,lasttime).

:- not on(5,4,lasttime).

:- not on(4,table,lasttime).

51

Planning in the Blocksworld I
GENERATE

time(0..lasttime).

location(B) :- block(B).

location(table).

% GENERATE

{ move(B,L,T) : block(B) : location(L) } grippers :- time(T),

T<lasttime.

52

Planning in the Blocksworld II
DEFINE

% effect of moving a block

on(B,L,T+1) :- move(B,L,T),

block(B), location(L), time(T), T<lasttime.

% inertia

on(B,L,T+1) :- on(B,L,T), not neg_on(B,L,T+1),

location(L), block(B), time(T), T<lasttime.

% uniqueness of location

neg_on(B,L1,T) :- on(B,L,T), L!=L1,

block(B), location(L), location(L1), time(T).

53

Planning in the Blocksworld III
TEST

% neg_on is the negation of on

:- on(B,L,T), neg_on(B,L,T),

block(B), location(L), time(T).

% two blocks cannot be on top of the same block

:- 2 { on(B1,B,T) : block(B1) },

block(B), time(T).

% a block can’t be moved unless it is clear

:- move(B,L,T), on(B1,B,T),

block(B), block(B1), location(L), time(T), T<lasttime.

% a block can’t be moved onto a block that is being moved also

:- move(B,B1,T), move(B1,L,T),

block(B), block(B1), location(L), time(T), T<lasttime.

54

The Plan

torsten@hoedic 538 > lparse blocks.lp | smodels

smodels version 2.25. Reading...done

Answer: 1

Stable Model: move(1,table,0) move(3,table,0)

move(2,1,1) move(5,4,1)

move(3,2,2) move(6,5,2)

Duration: 0.050

Number of choice points: 0

Number of wrong choices: 0

Number of atoms: 507

Number of rules: 3026

Number of picked atoms: 24

Number of forced atoms: 13

Number of truth assignments: 944

Size of searchspace (removed): 0 (0)

55

Action description languages
zB. A (Gelfond & Lifschitz, 1990)

move(b,l) causes on(b,l)

inertial on(b,l)

represents

% effect of moving a block

on(B,L,T+1) :- move(B,L,T),

block(B), location(L), time(T), T<lasttime.

% inertia

on(B,L,T+1) :- on(B,L,T), not neg_on(B,L,T+1),

location(L), block(B), time(T), T<lasttime.

56

Configuration

computer(desktop) ←

{ hard-drive(ide),hard-drive(scsi) } ← computer(x)

keyboard(us) ∨ keyboard(german) ← computer(x)

controller(scsi) ← hard-drive(scsi)

← monitor(21in) ∧ graphics(evil)

(Syrjänen, 99) describes a Configurator for Corel Linux!

57

Disjunctive logic programs

• Syntax

• Semantics

• Examples

58

Disjunctive logic programs

• A disjunctive rule, r, is an ordered pair of the form

A1 ; . . . ; Am ← Am+1, . . . , An, not An+1, . . . , not Ao,

where o ≥ n ≥ m ≥ 0, and each Ai (0 ≤ i ≤ o) is a atom.

• A disjunctive logic program is a finite set of disjunctive rules.

• (Generalized) Notation

head(r) = {A1, . . . , Am}

body(r) = {Am+1, . . . , An, not An+1, . . . , not Ao}

body+(r) = {Am+1, . . . , An}

body−(r) = {An+1, . . . , Ao}

• A program is called positive if body−(r) = ∅ for all its rules.

59

Answer sets

Positive programs

• A set of atoms X is closed under a positive program Π iff

for any r ∈ Π, head(r) ∩X 6= ∅ whenever body+(r) ⊆ X.

• The set of all ⊆-minimal sets of atoms being closed under a

positive program Π is denoted by min⊆(Π).

Disjunctive programs

• The reduct, ΠX , of a disjunctive program Π relative to a set X

of atoms is defined by

ΠX = {head(r)← body+(r) | r ∈ Π and body−(r) ∩X = ∅}.

• A set X of atoms is an answer set of a disjunctive program Π if

X ∈ min⊆(ΠX).

60

A “positive” example

Π =

a ←

b ; c ← a

• The sets {a, b}, {a, c}, and {a, b, c} are closed under Π.

• We have min⊆(Π) = { {a, b}, {a, c} }.

61

3-colorability revisited

C(I) vertex(1) ← edge(1,2) ←

vertex(2) ← edge(2,3) ←

vertex(3) ← edge(3,1) ←

C(P) colored(V,r); colored(V,b); colored(V,g) ← vertex(V)

← edge(V,U), colored(V,C), colored(U,C)

Answer set { colored(1,r), colored(2,b), colored(3,g), . . . }

62

An example with variables

Π =

a(1, 2) ←

b(X) ; c(Y) ← a(X, Y), not c(Y)

ground(Π) =

a(1, 2) ←

b(1) ; c(1) ← a(1, 1), not c(1)

b(1) ; c(2) ← a(1, 2), not c(2)

b(2) ; c(1) ← a(2, 1), not c(1)

b(2) ; c(2) ← a(2, 2), not c(2)

Clearly, for every answer set X of Π, we have a(1, 2) ∈ X

and {a(1, 1), a(2, 1), a(2, 2)} ∩X = ∅.

63

An example with variables

ground(Π)X =

a(1, 2) ←

b(1) ; c(1) ← a(1, 1), not c(1)

b(1) ; c(2) ← a(1, 2), not c(2)

b(2) ; c(1) ← a(2, 1), not c(1)

b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), b(1)}.

• We get min⊆(ground(Π)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }.

• X is an answer set of Π because X ∈ min⊆(ground(Π)X)

64

An example with variables

ground(Π)X =

a(1, 2) ←

b(1) ; c(1) ← a(1, 1), not c(1)

b(1) ; c(2) ← a(1, 2), not c(2)

b(2) ; c(1) ← a(2, 1), not c(1)

b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}.

• We get min⊆(ground(Π)X) = { {a(1, 2)} }.

• X is no answer set of Π because X 6∈ min⊆(ground(Π)X).

65

Nested logic programs

• Syntax

• Semantics

• Examples

66

Nested logic programs

• Formulas are formed from

– propositional atoms and

– ⊤ and ⊥

using

– negation-as-failure (not),

– conjunction (,), and

– disjunction (;).

• A nested rule, r, is an ordered pair of the form F ← G

where F and G are formulas.

• A nested program is a finite set of rules.

• Notation: head(r) = F and body(r) = G.

67

Satisfaction relation

• The satisfaction relation X |= F between a set of atoms and a

formula F is defined recursively as follows:

– X |= F if F ∈ X for an atom F

– X |= ⊤,

– X 6|= ⊥,

– X |= (F, G) if X |= F and X |= G,

– X |= (F ; G) if X |= F or X |= G,

– X |= not F if X 6|= F .

• A set of atoms X satisfies a nested program Π, written X |= Π, iff

for any r ∈ Π, X |= head(r) whenever X |= body(r).

• The set of all ⊆-minimal sets of atoms satisfying program Π is

denoted by min⊆(Π).

68

Reduct

• The reduct FX of a formula F relative to a set X of atoms is

defined recursively as follows:

– FX = F if F is an atom or ⊤ or ⊥,

– (F, G)X = (FX , GX),

– (F ; G)X = (FX ; GX),

– (not F)X =

⊥ if X |= F

⊤ otherwise

• The reduct, ΠX , of a nested program Π relative to a set X of

atoms is defined by

ΠX = {head(r)X ← body(r)X | r ∈ Π}.

• A set X of atoms is an answer set of a nested program Π if

X ∈ min⊆(ΠX).

69

Two examples

• Π1 = {(p ; not p)←}

– For X = ∅, we get Π∅
1 = {(p ;⊤)←} and min⊆(Π∅

1) = {∅}.

– For X = {p}, we get Π
{p}
1 = {(p ;⊥)←} and min⊆(Π

{p}
1) = {{p}}.

• Π2 = {p← not not p}

– For X = ∅, we get Π∅
2 = {p← ⊥} and min⊆(Π∅

2) = {∅}.

– For X = {p}, we get Π
{p}
2 = {p← ⊤} and min⊆(Π

{p}
2) = {{p}}.

• In general,

– F ← G, not not H is equivalent to F ; not H ← G

– F ; not not G← H is equivalent to F ← not G, H

– not not not F is equivalent to not F

➥ Intuitionistic Logic HT (Heyting, 1930)

70

Some more examples

Π3 = {p← (q, r) ; (not q, not s)}

Π4 = {(p ; not p), (q ; not q), (r ; not r)←}

Π5 = {(p ; not p), (q ; not q), (r ; not r)←, ⊥ ← p, q}

71

Implementation

nlp http://www.cs.uni-potsdam.de/~torsten/nlp

72

Language extensions

• Choice rules

• Cardinality constraints

• Weight constraints

• Semantics by embedding in Nested logic programs

73

Choice rules

Idea Choices over subsets

Syntax

{A1, . . . , Am} ← Am+1, . . . , An, not An+1, . . . , not Ao,

Informal meaning If the body is satisfied in an answer set,

then any subset of {A1, . . . , Am} can be included in the answer set.

Example The program Π = { {a} ← b, b←} has two answer sets: {b}

and {a, b}.

Implementation smodels

74

Cardinality constraints

Syntax A cardinality constraint is of the form l {A1, . . . , Am} u

Informal meaning A cardinality constraint is satisfied in an answer set

X, if the number of atoms from {A1, . . . , Am} satisfied in X is

between l and u (inclusive).

More formally, if l ≤ |{A1, . . . , Am} ∩X | ≤ u.

Conditions l {A1, . . . , Am : Am+1, . . . , An} u

where Am+1, . . . , An are often used for type definitions of variables

occurring in A1, . . . , Am.

Implementation smodels

75

n-colorability revisited
with n = 3

C(I) vertex(1) ← edge(1,2) ←

vertex(2) ← edge(2,3) ←

vertex(3) ← edge(3,1) ←

C(P) color(r) ← color(b) ← color(g) ←

1 {colored(V,C):color(C)} 1 ← vertex(V)

← edge(V,U),color(C),

colored(V,C),colored(U,C)

Answer set { colored(1,r), colored(2,b), colored(3,g), . . . }

76

Further extensions

Weight constraints

Syntax l {A1 : w1, . . . , Am : wm} u

Informal meaning A weight constraint is satisfied in an answer set

X, if l ≤ ΣAi∈X wi ≤ u.

Implementation smodels

Optimization

Syntax minimize {A1 : w1, . . . , Am : wm}

Implementation smodels

77

Further extensions (cont’d)

Weak integrity constraints

Syntax :∼ A1, . . . , Am, not Am+1, . . . , not An[w : l]

Informal meaning

1. minimize the sum of weights of violated constraints in the

highest level;

2. minimize the sum of weights of violated constraints in the

next lower level;

3. etc

Implementation dlv

78

Embedding in nested logic programs

For formulas F, F1, . . . , Fn, define

• ← F as ⊥ ← F

• {F1 . . . , Fn}
c as (F1 ; not F1), . . . , (Fn ; not Fn)

➥ corresponds to choice over subsets (see above)

For example,

Π =

{p, q}c ←

← p, q

stands for

(p ; not p), (q ; not q) ←

⊥ ← p, q

79

Embedding in nested logic programs (ctd)

For formulas F1, . . . , Fn, define

• l {F1, . . . , Fn} as

∨

1≤i1<...il≤n

(Fi1 , . . . , Fil
)

• {F1, . . . , Fn} u as not (u + 1 {F1, . . . , Fn})

• l {F1, . . . , Fn} u as (l {F1, . . . , Fn}), ({F1, . . . , Fn} u)

80

An example

Π =

{p, q, r}c ←

← 2 {p, q, r}

← {p, q, r} 0

stands for

(p ; not p) ←

(q ; not q) ←

(r ; not r) ←

⊥ ← (p, q) ; (p, r) ; (q, r)

⊥ ← not (p ; q ; r),

Answer sets ? {p}, {q}, and {r} !

81

Embedding in nested logic programs (ctd)

For formulas F1, . . . , Fn, define

• l {F1, . . . , Fn}c as ({F1, . . . , Fn}c, l {F1, . . . , Fn})

• {F1, . . . , Fn}
c u as ({F1, . . . , Fn}

c, {F1, . . . , Fn} u)

• l {F1, . . . , Fn}c u as ({F1, . . . , Fn}c, l {F1, . . . , Fn} u)

➥ corresponds to cardinality constraints (see above)

The program

1 {p, q, r}c 1←

has the same answer sets as the previous one.

82

A closer look

1 {p, q, r} 2← versus 1 {p, q, r}c 2←

1 {p, q, r} 2←

= (1 {p, q, r}), ({p, q, r} 2)←

= (p ; q ; r), not (3 {p, q, r})←

= (p ; q ; r), not (p, q, r)←

1 {p, q, r}c 2←

= 1 {p, q, r} 2, {p, q, r}c ←

= (p ; q ; r), not (p, q, r), ((p ; not p), (q ; not q), (r ; not r))←

83

A closer look (ctd)

(1 {p, q, r} 2←)X

= (1 {p, q, r} 2)X ←

= (p ; q ; r)X , (not (p, q, r))X ←

= (p ; q ; r), (not (p, q, r))X ←

(1 {p, q, r}c 2←)X

= (1 {p, q, r}c 2)X ←

= (1 {p, q, r} 2, {p, q, r}c)X ←

= (1 {p, q, r} 2)X , ({p, q, r}c)X ←

= (p ; q ; r), (not (p, q, r))X , ((p ; (not p)X), (q ; (not q)X), (r ; (not r)X))←

84

A closer look (ctd)

Consider X = {p, q}

(1 {p, q, r} 2←){p,q}

= (p ; q ; r), (not (p, q, r)){p,q} ←

= (p ; q ; r),⊤ ←

= (p ; q ; r)←

(1 {p, q, r}c 2←){p,q}

= (p ; q ; r), (not (p, q, r)){p,q}, ((p ; (not p){p,q}),

(q ; (not q){p,q}), (r ; (not r){p,q}))←

= (p ; q ; r),⊤, ((p ;⊥), (q ;⊥), (r ;⊤))←

= (p ; q ; r), (p, q)←

= (p, q)←

85

What about. . . ?

s← 1 {p, q, r} 2 versus s← 1 {p, q, r}c 2

Enjoy your exercise ⌣ !

86

Usage in lparse and smodels

In lparse and smodels,

• rule bodies may include

– l {F1, . . . , Fn}

– {F1, . . . , Fn} u

– l {F1, . . . , Fn} u

• rule heads may include

– {F1, . . . , Fn}c

– l {F1, . . . , Fn}c

– {F1, . . . , Fn}
c u

– l {F1, . . . , Fn}
c u

– but dropping superscript c

• For instance, ‘{p,q,r} :- {p,q,r} 2’ stands for {p, q, r}c ← {p, q, r} 2.

87

Algorithms & Systems: The Smodels approach

• Approximation

• Expansion

• Backtracking search

88

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U

such that L ⊆ X ⊆ U .

➥ L and U constitute lower and upper bounds on X.

➥ L and (A \ U) describe a 3-valued model of the program.

Properties Let X be an answer set of normal logic program Π.

• If L ⊆ X, then X ⊆ Cn(ΠL).

• If X ⊆ U , then Cn(ΠU) ⊆ X.

• If L ⊆ X ⊆ U , then L ∪ Cn(ΠU) ⊆ X ⊆ U ∩ Cn(ΠL).

89

Approximating answer sets (ctd)

Second Idea

Iterate

• Replace L by L ∪ Cn(ΠU)

• Replace U by U ∩ Cn(ΠL)

until L and U do not change anymore.

Observations

• At each iteration step

– L becomes larger (or equal)

– U becomes smaller (or equal)

• L ⊆ X ⊆ U is invariant for every answer set X of Π

• If L 6⊆ U , then Π has no answer set!

• If L = U , then L is an answer set of Π.

90

The basic expand algorithm

expand(L, U)

repeat

L′ ← L

U ′ ← U

L← L′ ∪ Cn(ΠU ′

)

U ← U ′ ∩ Cn(ΠL′

)

if L 6⊆ U then return

until L = L′ and U = U ′

☞ Π is a global parameter!

91

Let’s expand!

Π =

a←

b← a, not c

d← b, not e

e← not d

L′ Cn(ΠU ′

) L U ′ Cn(ΠL′

) U

1 ∅ {a} {a} {a, b, c, d, e} {a, b, d, e} {a, b, d, e}

2 {a} {a, b} {a, b} {a, b, d, e} {a, b, d, e} {a, b, d, e}

3 {a, b} {a, b} {a, b} {a, b, d, e} {a, b, d, e} {a, b, d, e}

➥ We have {a, b} ⊆ X and (A \ {a, b, d, e}) ∩X = ({c} ∩X) = ∅

for every answer set X of Π.

92

The basic expand algorithm (ctd)

expand

• tightens the approximation on answer sets

• is answer set preserving

• amounts to the well-founded semantics of a program

(see following lectures)

93

Let’s expand with d !

Π =

a←

b← a, not c

d← b, not e

e← not d

L′ Cn(ΠU ′

) L U ′ Cn(ΠL′

) U

1 {d} {a} {a, d} {a, b, c, d, e} {a, b, d} {a, b, d}

2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

➥ {a, b, d} is an answer set X of Π.

94

Let’s expand with “not d” !

Π =

a←

b← a, not c

d← b, not e

e← not d

L′ Cn(ΠU ′

) L U ′ Cn(ΠL′

) U

1 ∅ {a, e} {a, e} {a, b, c, e} {a, b, d, e} {a, b, e}

2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

➥ {a, b, e} is an answer set X of Π.

95

The basic smodels algorithm

smodels(L, U)

expand(L, U)

if L 6⊆ U then return

if L = U then exit with L

A← select(U \ L)

smodels(L ∪ {A}, U)

smodels(L, U \ {A})

Call: smodels(∅,A) where A is the set of all atoms in Π

96

The basic smodels algorithm (ctd)

• Backtracking search building a binary search tree

• Choice points on atoms

• A node in the search tree corresponds to a 3-valued model

• The search space is pruned by

– making one choice at a time by appeal to a heuristics (select)

– the set of remaining choices is reduced and conflicts are

detected (expand)

• Low level implementation using Dowling-Gallier-type data

structures (see following lectures)

97

Outer system architecture

Two-phase implementation

1. lparse: Grounding (and handling of “special definitions”)

2. smodels: Answer set computation for ground programs

Running smodels:

UNIX> lparse demo.lp | smodels

More info:

• http://www.tcs.hut.fi/Software/smodels/

• lparse --help or smodels --help

• Try in particular lparse -t and smodels 0

98

What’s inside real smodels?

expand in smodels

• is based on propagation rules

• uses furthermore back-propagation

• generalizes the well-founded semantics

• . . .

smodels in smodels

• is enhanced by lookahead (see next slide)

• uses smart heuristics

• . . .

99

Lookahead

• Given a program Π, an atom A, and sets of atoms L and U

– if expand(L ∪ {A}, U) yields a conflict, then delete A from U

– if expand(L, U \ {A}) yields a conflict, then add A to L

• Moreover, lookahead is used for determining the next atom A to

select (from U \ L in the smodels algorithm).

That is, provided that

– u+ = |U \ L| after expand(L ∪ {A}, U) and

– u− = |U \ L| after expand(L, U \ {A})

then

h(A) = 2u+

+ 2u−

☞ Select an atom A with a minimal value of h(A)

100

Some remarks on lparse

• lparse accepts only domain-restricted programs

• In a program, predicates are (automatically) partitioned into

– domain predicates

∗ no choices

∗ no recursion “through” negation-as-failure

– non-domain predicates

∗ all others

• A rule is domain-restricted if each of its variables appears in a

positive domain predicate in its body.

• A program is domain-restricted if every rule is domain-restricted.

101

Examples for domain predicates

• Facts

– vertex(1). vertex(2). vertex(3).

– edge(1,2). edge(2,3). edge(3,1).

– color(1). color(2). color(3).

• Non-recursive rules

– two-edge(X,Y) :- edge(X,Z), edge(Z,Y), not edge(X,Y).

• Recursive rules

– path(X,Y) :- edge(X,Y).

– path(X,Y) :- edge(X,Z), path(Z,Y), vertex(Z).

102

Examples for domain-restricted rules

colored(V,r) :- not colored(V,b), not colored(V,g),

vertex(V)

colored(V,b) :- not colored(V,r), not colored(V,g),

vertex(V)

colored(V,g) :- not colored(V,r), not colored(V,b),

vertex(V)

:- edge(V,U), colored(V,C),colored(U,C),

color(C).

103

Domain-restricted programs

• Rules defining domain predicates have a single answer set.

This answer set can be computed very efficiently through database

techniques.

• Domain-restricted programs are grounded in two-steps:

1. Evaluate domain predicates;

2. Generate for each rule with variables a set of ground instances

that are compatible with the evaluation of domain predicates.

• Also, certain built-ins are supported. For instance,

– d(0..n)

– odd(X+1) :- d(X), X<n, not odd(X).

where n is either explicitly provided in the program by means of

const n=n or supplied through the command line option -c n=n to

lparse.

104

Algorithms & Systems: The noMoRe approach

• Exemplary proceeding

• Formal devices

• Coloring sequences

105

Motivation

Goal Characterize the computation of answer sets of logic programs.

Approach Use rule dependency graphs (RDGs) and their colorings.

Inspiration Proof theory, in particular, SLD derivations.

Outcome A series of operational characterizations of answer sets

in terms of operators on partial colorings.

106

Examplary proceeding

r1 : penguin(tweety) ←

r2 : bird(tweety) ←

r3 : flies(tweety) ← bird(tweety), not ¬flies(tweety)

r4 : ¬flies(tweety) ← penguin(tweety), not flies(tweety).

Building
the graph

r1��
��

r2��
��

r4��
��

r3��
��? ?

-�

Coloring
the graph

Propagation ~ Propagation~

Choice~Propagation ~
Answer set
extraction

r1 r2

r4 r3

X1 = {penguin(tweety), bird(tweety), f lies(tweety)}

107

Examplary proceeding

r1 : penguin(tweety) ←

r2 : bird(tweety) ←

r3 : flies(tweety) ← bird(tweety), not ¬flies(tweety)

r4 : ¬flies(tweety) ← penguin(tweety), not flies(tweety).

r1��
��

r2��
��

r4��
��

r3��
��? ?

-�

~ ~

~~

X2 = {penguin(tweety), bird(tweety),¬flies(tweety)}

108

Formal devices in a nutshell

Graphs The rule dependency graph (Π, E0, E1) of program Π is a

labeled directed graph with

E0 = {(r, r′) | r, r′ ∈ Π, head(r) ∈ body+(r′)} (0-edges);

E1 = {(r, r′) | r, r′ ∈ Π, head(r) ∈ body−(r′)} (1-edges);

Colorings are partial functions C : Π→ {⊕,⊖};

➥ Admissible colorings are colorings characterizing answer sets;

Operators are partial functions O : C→ C ;

Coloring sequences (Ci)0≤i≤n;

➥ Successful coloring sequences enjoy

• C0 is the “empty” coloring

• O : Ci 7→ Ci+1 for 0 ≤ i ≤ n and some operator O

• Cn is some admissible coloring

109

Rule dependency graph

• The rule dependency graph (RDG)

(Π, E0, E1)

of program Π, also written as ΓΠ, is a labeled directed graph with

E0 = {(r, r′) | r, r′ ∈ Π, head(r) ∈ body+(r′)} (0-edges);

E1 = {(r, r′) | r, r′ ∈ Π, head(r) ∈ body−(r′)} (1-edges).

110

An example

• Consider Π = {r1, . . . , r6}, where

r1 : p ←

r2 : b ← p

r3 : f ← b, not f ′

r4 : f ′ ← p, not f

r5 : b ← m

r6 : x ← f, f ′, not x

• The RDG of Π is given as follows:

ΓΠ =

 Π,

(r1, r2), (r1, r4), (r2, r3),

(r3, r6), (r4, r6), (r5, r3)

, {(r3, r4), (r4, r3), (r6, r6)}

111

An example (ctd)

• Consider Π = {r1, . . . , r6}, where

r1 : p ←

r2 : b ← p

r3 : f ← b, not f ′

r4 : f ′ ← p, not f

r5 : b ← m

r6 : x ← f, f ′, not x

• The RDG of Π is graphically given as:

r1��
��

r2��
��

r4��
��

r3��
��

r6��
��

r5��
��

? ?
-�

-

6�
�

�
�

��	?

��
��

0

0

0

0

1

0

1

0

112

Coloring

• A coloring C of ΓΠ is a mapping C : Π→ {⊕,⊖}.

• Define

C⊕ = {r | C(r) = ⊕} and C⊖ = {r | C(r) = ⊖} .

We often identify a coloring C with the pair (C⊕, C⊖).

• If C is total, (C⊕, C⊖) is a binary partition of Π.

That is, Π = C⊕ ∪ C⊖ and C⊕ ∩ C⊖ = ∅.

• A partial coloring C induces a pair (C⊕, C⊖) of sets such that

C⊕ ∪ C⊖ ⊆ Π and C⊕ ∩ C⊖ = ∅.

113

Coloring (ctd)

• For comparing partial colorings, C and C ′, define

C ⊑ C′ if C⊕ ⊆ C⊕
′ and C⊖ ⊆ C⊖

′ .

• The “empty” coloring (∅, ∅) is the ⊑-smallest coloring.

• Accordingly, define

C ⊔ C′ as (C⊕ ∪ C⊕
′, C⊖ ∪ C⊖

′) .

• We denote the set of all partial colorings of a RDG ΓΠ by CΓΠ .

☞ Or simply C if ΓΠ is clear from the context.

114

An example

• If C is a coloring of ΓΠ,

we call the pair (ΓΠ, C) a colored RDG.

• For example, “coloring” the RDG

of the previous program Π with

C = ({r1, r2}, {r6}) = (C⊕, C⊖)

yields the following colored graph.

r1��
��

r2��
��

r4��
��

r3��
��

r6��
��

r5��
��

? ?
-�

-

6�
�

�
�

��	?

��
��

0

0

0

0

1

0

1

0~��
�� ~��

��

r4��
��

r3��
��

~��
��

r5��
��

? ?
-�

-

6�
�

�
�

��	?

��
��

0

0

0

0

1

0

1

0

115

Colorings representing answer sets

Given a logic program Π along with its RDG Γ.

Then, for every answer set X of Π, define a unique admissible coloring

C of Γ as

C = (RΠ(X), Π \RΠ(X))

where

RΠ(X) = {r ∈ Π | body+(r) ⊆ X and body−(r) ∩X = ∅} .

116

Auxiliary concepts

Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a partial

coloring of Γ.

For r ∈ Π, define:

1. r is supported in (Γ, C), if body+(r) ⊆ {head(r′) | (r′, r) ∈ E0, r
′ ∈ C⊕};

2. r is unsupported in (Γ, C), if {r′ | (r′, r) ∈ E0, head(r′) = q} ⊆ C⊖ for

some q ∈ body+(r);

3. r is blocked in (Γ, C), if r′ ∈ C⊕ for some (r′, r) ∈ E1;

4. r is unblocked in (Γ, C), if r′ ∈ C⊖ for all (r′, r) ∈ E1.

Whenever C is total, a rule is unsupported (or unblocked) iff it is not

supported (or not blocked, respectively).

117

Auxiliary concepts (ctd)

Let Γ be the RDG of program Π and C be a partial coloring of Γ.

We define

1. S(Γ, C) = {r ∈ Π | r is supported in (Γ, C)};

2. S(Γ, C) = {r ∈ Π | r is unsupported in (Γ, C)};

3. B(Γ, C) = {r ∈ Π | r is blocked in (Γ, C)};

4. B(Γ, C) = {r ∈ Π | r is unblocked in (Γ, C)}.

118

An example (ctd)

• Consider the sets obtained regarding the above colored RDG.

• We get:

– S(ΓΠ, C) = {r1, r2, r3, r4}

– S(ΓΠ, C) = {r5}

– B(ΓΠ, C) = ∅

– B(ΓΠ, C) = {r1, r2, r5, r6}

r1��
��

r2��
��

r4��
��

r3��
��

r6��
��

r5��
��

? ?
-�

-

6�
�

�
�

��	?

��
��

0

0

0

0

1

0

1

0~��
�� ~��

��

r4��
��

r3��
��

~��
��

r5��
��

? ?
-�

-

6�
�

�
�

��	?

��
��

0

0

0

0

1

0

1

0

☞ Rules like r1 = p← or r5 = b← m

must be distinguished through

their “inner” structure!

119

Relation to answer sets

Let C be the admissible coloring of Γ corresponding to answer set X of

Π.

For r ∈ Π, we have

1. r ∈ S(Γ, C) iff body+(r) ⊆ X;

2. r ∈ S(Γ, C) iff body+(r) 6⊆ X;

3. r ∈ B(Γ, C) iff body−(r) ∩X 6= ∅;

4. r ∈ B(Γ, C) iff body−(r) ∩X = ∅.

120

Relation to answer sets (ctd)

Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.

If C is admissible, we have for the corresponding answer set X of Π that

1. S(Γ, C) ∩B(Γ, C) = RΠ(X);

2. S(Γ, C) ∪B(Γ, C) = Π \RΠ(X).

For every answer set X of Π with

C⊕ ⊆ RΠ(X) and C⊖ ⊆ Π \RΠ(X)

we have that

1. S(Γ, C) ∩B(Γ, C) ⊆ RΠ(X);

2. S(Γ, C) ∪B(Γ, C) ⊆ Π \RΠ(X).

121

Propagation operator P

Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.

• Define

PΓ : C→ C

as

PΓ(C) = C ⊔ (S(Γ, C) ∩B(Γ, C), S(Γ, C) ∪B(Γ, C)) .

• A partial coloring C is closed under PΓ, if C = PΓ(C).

122

Propagation operator P (ctd)

• Define

P∗
Γ : C→ C

where P∗
Γ(C) is

– the ⊑-smallest partial coloring

– containing C and

– being closed under PΓ .

• Alternatively, we have

P∗
Γ(C) =

⊔

i<ω

P i(C)

where

1. P 0(C) = C and

2. P i+1(C) = PΓ(P i(C)) for i < ω.

123

An example

r1 : p ←

r2 : b ← p

r3 : f ← b, not f ′

r4 : f ′ ← p, not f

r5 : b ← m

r6 : x ← f, f ′, not x

PΓ((∅, ∅)) = (∅, ∅) ⊔ ({r1} ∩ {r1, r2, r5}, {r5} ∪ ∅)

= ({r1}, {r5})

PΓ(({r1}, {r5})) = ({r1}, {r5}) ⊔ ({r1, r2, r4} ∩ {r1, r2, r5}, {r5} ∪ ∅)

= ({r1, r2}, {r5})

PΓ(({r1, r2}, {r5})) = ({r1, r2}, {r5}) ⊔ ({r1, r2, r3, r4} ∩ {r1, r2, r5}, {r5} ∪ ∅)

= ({r1, r2}, {r5})

Hence, we obtain P∗
Γ((∅, ∅)) = ({r1, r2}, {r5}).

124

Propagation operator U

• Originally, U is defined in graph-theoretical terms by means of the

so-called “support graph”.a

• Alternative definition:

Define UΓ : C→ C as

UΓ(C) = (C⊕, C⊖ ∪ {r | body
+(r) 6⊆ Cn((Π \ C⊖)∅)}) .

• For instance, for Π = {p← q, q ← p}, we obtain

UΓ((∅, ∅)) = (∅, {p← q, q ← p}) ,

which is not obtainable through PΓ.

aIntuitively, support graphs constitute the graph-theoretical counterpart of Cn.

125

Choice operators

Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.

• For ◦ ∈ {⊕,⊖}, define C◦Γ : C→ C as

1. C⊕Γ (C) = (C⊕ ∪ {r}, C⊖) for some r ∈ Π \ (C⊕ ∪ C⊖);

2. C⊖Γ (C) = (C⊕, C⊖ ∪ {r}) for some r ∈ Π \ (C⊕ ∪ C⊖).

• For ◦ ∈ {⊕,⊖}, define D◦
Γ : C→ C as

1. D⊕
Γ (C) = (C⊕ ∪ {r}, C⊖) for some r ∈ S(Γ, C) \ (C⊕ ∪ C⊖);

2. D⊖
Γ (C) = (C⊕, C⊖ ∪ {r}) for some r ∈ S(Γ, C) \ (C⊕ ∪ C⊖).

126

All operators at a glance

• P and P∗ :

– deterministic

– provide basic forward propagation

– P∗ computes the closure under P

– P∗ amounts to closure under Fitting’s operator (see below)

– P is reflexive, monotonic, and answer set preserving

• U and V :

– deterministic

– allow for detecting unsupported rules

– V is an incremental variant of U

– (PU)∗ amounts to well-founded semantics (see below)

– U is reflexive, idempotent, monotonic, and answer set preserving

127

All operators at a glance (ctd)

• N :

– deterministic

– colors all uncolored rules with ⊖

– Formally: NΓ(C) = (C⊕, Π \ C⊕).

• C◦ and D◦ for ◦ ∈ {⊕,⊖} :

– nondeterministic

– choose a rule and color it, either with ⊕ or ⊖

– D◦ is restricted to choosing supported rules only

128

Operational answer set characterization I

Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ

iff

there exists a sequence (Ci)0≤i≤n with the following properties:

1. C0 = (∅, ∅);

2. Ci+1 = C◦Γ(Ci) for some ◦ ∈ {⊕,⊖} and 0 ≤ i < n;

3. Cn = PΓ(Cn);

4. Cn = UΓ(Cn);

5. Cn = C.

129

Operational answer set characterization II

Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ

iff

there exists a sequence (Ci)0≤i≤n with the following properties:

1. C0 = (PU)∗Γ((∅, ∅));

2. Ci+1 = (PU)∗Γ(C◦Γ(Ci)) for some ◦ ∈ {⊕,⊖} and 0 ≤ i < n;

3. Cn = C.

130

A coloring sequence according to II

r1 : p ←

r2 : b ← p

r3 : f ← b, not f ′

r4 : f ′ ← p, not f

r5 : b ← m

r6 : x ← f, f ′, not x

r1j r2j

r4j r3j

r6j r5j

? ?-�

-

6�
�

��	?

� �
��

0

0

0

0

1

0

1

0

(PU)∗Γ
7−→

xj xj

r4j r3j

r6j xj

? ?-�

-

6�
�

��	?

� �
��

0

0

0

0

1

0

1

0

C
⊕
Γ
7−→

xj xj

r4j xj

r6j xj

? ?-�

-

6�
�

��	?

� �
��

0

0

0

0

1

0

1

0

(PU)∗Γ
7−→

xj xj

xj xj

xj xj

? ?-�

-

6�
�

��	?

� �
��

0

0

0

0

1

0

1

0

131

Operational answer set characterization V

Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ

iff

there exists a sequence (Ci)0≤i≤n with the following properties:

1. C0 = P∗
Γ((∅, ∅));

2. Ci+1 = P∗
Γ(D◦

Γ(Ci)) where ◦ ∈ {⊕,⊖} and 0 ≤ i < n− 1;

3. Cn = NΓ(Cn−1);

4. Cn = PΓ(Cn);

5. Cn = C.

☞ This is the basic strategy of the noMoRe system!

132

Summary of operational characterizations

Formation Check Properties Properties

Process Prefix sequences

I [C◦Γ]k PΓ ,UΓ 1–5 1–3

II [(PU)∗Γ ◦ C
◦
Γ]k ◦ (PU)∗Γ − 1–7 1–3,5–7

II+ [(PU)∗Γ ◦ C
⊕

Γ]k ◦ (PU)∗Γ − 1–7 1–3,5–7

II− [(PU)∗Γ ◦ C
⊖

Γ]k ◦ (PU)∗Γ − 1–7 1–3,5–7

III+ UΓ ◦ P
∗
Γ ◦ [C⊕Γ]k − 1–5 1–3,5

III− P∗
Γ ◦ [C⊖Γ]k − 1–5 1–3,5

IV NΓ ◦ [D◦
Γ]k PΓ 1–5,8 1–3,5,8

IV+ NΓ ◦ [D⊕

Γ]k PΓ 1–5,8–9 1–3,5,8–9

V NΓ ◦ [P∗
Γ ◦ D

◦
Γ]k ◦ P∗

Γ PΓ 1–8 1–3,5–8

V+ NΓ ◦ [P∗
Γ ◦ D

⊕

Γ]k ◦ P∗
Γ PΓ 1–9 1–3,5–9

VI [(PV)∗Γ ◦ D
◦
Γ]k ◦ (PV)∗Γ − 1–8 1–3,5–8

VI+ [(PV)∗Γ ◦ D
⊕

Γ]k ◦ (PV)∗Γ − 1–9 1–3,5–9

VI− [(PV)∗Γ ◦ D
⊖

Γ]k ◦ (PV)∗Γ − 1–8 1–3,5–8

133

The noMoRe system

• System architecture

• Coloring strategy and algorithm

• Visualizing color sequences

• Extensions

• Future development

134

System architecture

.

. .. .

.input

grounder daVinci

parser transformations coloring output

visualizer

System architecture of the non-monotonic reasoning system noMoRe.

135

Computing answer sets

Computation of answer sets (in general) consists of

1. deterministic part: extends a partial (answer set) graph coloring in

a reasonable way as much as possible. Only consistent operations

are performed. For example, facts have to be in the answer set.

2. non-deterministic part: extends a partial (answer set) graph

coloring, which cannot be extended deterministicly, in a systematic

(possibly inconsistent) way. For example, a rule (a← not a) must be

considered as applied and non-applied.

☞ see definitions of the different operators and results on coloring

sequences

☞ the non-deterministic part is subject of heuristics

☞ see the smodels algorithm including expand

136

The basic coloring strategy of noMoRe

☞ Recall the basic strategy of the noMoRe system:

Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ

iff

there exists a sequence (Ci)0≤i≤n with the following properties:

1. C0 = P∗
Γ((∅, ∅));

2. Ci+1 = P∗
Γ(D◦

Γ(Ci)) where ◦ ∈ {⊕,⊖} and 0 ≤ i < n− 1;

3. Cn = NΓ(Cn−1);

4. Cn = PΓ(Cn);

5. Cn = C.

☞ How to implement this strategy?

137

Implementation: Main algorithm I

☞ code simplified, but very close to the implementation

a_color(Col) :- % Col is modified during computation

pre_color(Col,CP),

!,

color_cp(CP,Col),

color_rest(Col).

pre_color(Col, CP) :-

facts(Fs),q_facts(QF),

color_all_1(Fs,Col,QF,CP1),

loops_1(L1),

color_all_0(L1,Col,CP1,CP).

138

Implementation: Main algorithm II

color_cp(CP, Col) :-

heuristic_choose(Node,CP,CP1,Col),!,

(Node = no -> true;

(cp(Node,Col,[],NewCPs),

ord_union(NewCPs,CP1,CP2),

color_cp(CP2,Col)

)).

cp(Node, Col, CP1, CP2) :-

col_1(Node,Col,CP1,CP2).

cp(Node, Col, CP1, CP2) :-

col_0(Node,Col,CP1,CP2).

139

Implementation: Main algorithm III

☞ Missing predicates

• color_rest(Col) is true iff

all uncolored nodes can be colored ⊖ wrt Col and we obtain an

admissible coloring (see operator-NΓ).

• color_all_1(Set,Col,InCP,OutCP) is true iff

all nodes in Set can be colored ⊕ wrt Col where OutCP is InCP plus

new possible choices (color_all_0\4 analog).

• facts\1, q_facts\1 and loop_1\1 give the respective rules.

Examples

– q_facts(h :- not b) is true (no positive body)

– loop_1(h :- a, not, b, not h) is true (self-blocking)

• heuristic_choose(Node,InCP,OutCP,Col) is true iff

Node is some heuristically chosen rule out of InCP;

OutCP contains remaining possible choices.

140

• col_1\1 and col_0\1 color a node ⊕ or ⊖, respectively, and

propagate the new coloring. If propagation fails col_1/0 fails!!

141

Implementation: Main algorithm IV

col_1(Node, Col, CP1, CP2) :-

arg(Node,Col,C),

((C == 1) -> CP1=CP2;

(C == u ->

(

setarg(Node,Col,1),

prop_1(Node,Col,CP1,CP2),

show(Node,1,Col)

);fail

)).

☞ How to compute prop_1/4 and prop_0/4?

142

Implementation: Propagation I

☞ Recall coloring sequence formation: Ci+1 = P∗
Γ(D◦

Γ(Ci)) where

◦ ∈ {⊕,⊖}.

• For efficiency operators P and D are mixed together in the actual

implementation.

• Propagation is performed as local as possible. That is, whenever a

node is colored, its color is propagated to the direct successors of

that node.

• No need for global computation of S(Γ, C), S(Γ, C), B(Γ, C) and

B(Γ, C).

• Next possible choices are computed online during propagation.

• Propagation is performed recursively until no more nodes can be

colored by propagation.

143

Implementation: Propagation II

Let C be a partial coloring of ΓΠ (Π logic program) and let u ∈ Π be

some uncolored node wrt C. We have the following (local) forward

propagation cases:

1. prop(⊕
1
→ u) 7→ (⊕

1
→ ⊖) no condition

2. prop(⊕
0
→ u) 7→ (⊕

0
→ ⊕) if u ∈ S(Γ, C) ∪B(Γ, C)

3. prop(⊖
1
→ u) 7→ (⊖

1
→ ⊕) if u ∈ S(Γ, C) ∪B(Γ, C)

4. prop(⊖
0
→ u) 7→ (⊖

0
→ ⊖) if u ∈ S(Γ, C)

☞ prop_1\4 calls cases 1. and 2. whereas prop_0\4 calls cases 3. and 4.

☞ if prop(⊕
0
→ u) 7→ (⊕

0
→ ⊕) fails since u ∈ S(Γ, C) but u 6∈ B(Γ, C), then

u is collected as a new choice.

144

Propagation: prop(⊕
1
→ u) 7→ (⊕

1
→ ⊖)

Condition: no

r′

r

r

⊕

⊖

⊖

1

1

145

Propagation: prop(⊕
0
→ u) 7→ (⊕

0
→ ⊕)

Condition: r ∈ S(Γ, C) ∪B(Γ, C)

r′ r

r′′

r′′
⊕ ⊕

⊖

⊖

0
1

1

r′ r

⊕

r is new possible choice!!

0

1

146

Propagation: prop(⊖
1
→ u) 7→ (⊖

1
→ ⊕)

Condition: r ∈ S(Γ, C) ∪B(Γ, C)

r′ r

r′′

r′′
r′′

r

⊖

⊕

⊖

⊖

⊕

1

1

1

10

147

Propagation: prop(⊖
0
→ u) 7→ (⊖

0
→ ⊖)

Condition: r ∈ S(Γ, C)

r′ r

r′′

r′′
⊖ ⊖

⊖

⊖

0
0

0

148

Implementation: Backward propagation I

Let C be a partial coloring of ΓΠ (Π logic program) and let u ∈ Π be

some uncolored node wrt C. We have the following (local) backward

propagation cases:

1. bprop(⊕
1
← u) 7→ (⊕

1
← ⊖) no condition

2. bprop(⊕
0
← u) 7→ (⊕

0
← ⊕) if first node is in B(Γ, C) and only u is

responsible for supporting the first one

3. bprop(⊖
1
← u) 7→ (⊖

1
← ⊕) if first node is in S(Γ, C) and only u is

responsible for blocking the first one

4. bprop(⊖
0
← u) 7→ (⊖

0
← ⊖) if first node is in B(Γ, C) and only u is

responsible for non-supporting the first one

☞ backward propagation is only necessary for choices and 1-loops and it

works recursively.

149

Backward propagation II

☞ For backward propagation we have to look at partial mappings

C : Π 7→ {⊖,⊕, +} for graph coloring.

r r′

r′′

r′′

⊖

1
0

0
1

☞ All + colored nodes have to be colored ⊕ in order to end with an

admissible coloring.

150

Backward propagation: bprop(⊕
1
← u) 7→ (⊕

1
← ⊖)

Condition: no

r′

r

r

⊕

⊖

⊖

1

1

151

Backward propagation: bprop(⊕
0
← u) 7→ (⊕

0
← ⊕)

Condition: r′ ∈ B(Γ, C)

r′

r′′

r

r′′

r′′

⊕ +

⊖

⊖
1

11

0

0

0
0

152

Backward propagation: bprop(⊖
1
← u) 7→ (⊖

1
← ⊕)

Condition: r′ ∈ S(Γ, C)

r′

r′′

r

r′′

⊖ +

⊖

⊖

⊕

1

1

1

0

153

Backward propagation: bprop(⊖
0
← u) 7→ (⊖

0
← ⊖)

Condition: r′ ∈ B(Γ, C)

r′

r

r
⊖

⊖

⊖

⊖

⊖ 0

0

1

1

154

Backward propagation: Jumping

ra = a← not a, not b, not d

rb = b← not c

rc = c← not b

rd = d← not e

re = e← not d

rc

rb rd

re

ra

⊖

⊖

1 1

1 1
1

155

Backward propagation: Experiments

noMoRe smodels

backprop no yes yes with (without)

jumping no no yes lookahead

ham k 7 14335 14335 2945 4814 (34077)

ham k 8 82200 82200 24240 688595 (86364)

ind cir 20 539 317 276 ∗ 276 (276)

ind cir 30 9266 5264 4609 ∗ 4609 (4609)

p1 step4 - 464 176 7 (69)

p2 step6 - 13654 3779 75 (3700)

col4x4 27680 27680 7811 7811 (102226)

col5x5 - - 580985 580985 (2.3 Mil)

queens4 84 84 5 1 (11)

queens5 326 326 13 9 (34)

156

Visualizing color sequences: An example

☞ noMoRe has an interface to the graph drawing tool daVinci, which

gives animated coloring sequences

r1 : b ← p

r2 : f ← b, not f ′

r3 : f ′ ← p, not f

r4 : p ←

r5 : w ← b

157

Visualizing color sequences: An example

d
aV
in
ci

V
2.

1
1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

d
aV
in
ci

V
2.

1

1

2

3

4

5

158

Extension: Transformations

☞ for dependency graphs

v v v v
00

w

159

Transformations: An example

r1 : a← not b. r2 : b← not a.

r3 : c← a. r4 : c← b. r5 : d← c.

r1 r2

r3 r4

r5

⊕/⊖

⊕/⊖

⊖/⊕

⊖/⊕

⊕/⊕

11

0 0

0 0

r1, r3 r2, r4

r5

⊕/⊖ ⊖/⊕

⊕/⊕

11

0 0

☞ no normal program with same answer sets corresponds to the

transformed graph.

160

Extension: Syntax

By suitable generalization of RDGs noMoRe is able to deal with

(ground) normal nested logic programs, that is, rule of the form

h1, . . . , hk ← B1; . . . ; Bn (1)

where each Bi is a conjunction of default literals (“normal” body).

• p(a) and q(a, b) are propositional atoms

• conjunction and disjunction are allowed as in rule (1), for example

– a normal rule p(a)← b, not c is represented by p(a) :- b, not c.

– a nested rule a, b← (c, not d); (e) is represented by

a,b :- (c, not d);(e).

– a integrity constraint ← p, q is represented by :- p, q.

• lines beginning with a % are regarded as a comment lines

161

Extension: Transformations

☞ for logic programs

• all rules Πϕ ⊆ Π with head ϕ are transformed to one rule

ϕ← B1; . . . ; Bn where body(Πϕ) = {B1, . . . , Bn}.

• all rules Πφ ⊆ Π with body φ are transformed to one rule

h1, . . . , hn ← φ where head(Πφ) = {h1, . . . , hn}.

☞ Observe, that this program transformations can be applied since

noMoRe is able to deal with normal nested programs.

162

noMoRe ++

• C++ implementation

163

Extensions and future development

• heuristics for choices

• more transformations

• preferences between rules

• extension to disjunctive programs

164

Classical Negation ¬

• Motivation

• Semantics

• Translation

165

Motivation

• Given a set X, the difference among not a and ¬a amounts to:

a 6∈ X versus ¬a ∈ X

• Example

cross ← not train cross ← ¬ train

X = {cross} X = ∅

• Two- versus Three-valued-interpretation of answer sets

For instance, given A = {a, b} and X = {a},

– b is false under a two-valued interpretation of X and

– b is undefined under a three-valued interpretation of X.

166

Literals

• A literal L is an atom A or its negation ¬A.

• Two literals A and ¬A are said to be complementary .

• A set of literals is inconsistent, if it contains a complementary pair

of literals, and consistent otherwise.

• A set of literals is logically closed if it is consistent or if it equals

the set of all literals.

167

Extended logic programs

• An extended rule, r, is an ordered pair of the form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln,

where n ≥ m ≥ 0, and each Li (0 ≤ i ≤ n) is a literal.

• An extended logic program is a finite set of extended rules.

• Notations

head(r) = L0

body(r) = {L1, . . . , Lm, not Lm+1, . . . , not Ln}

body+(r) = {L1, . . . , Lm}

body−(r) = {Lm+1, . . . , Ln}

• A program is called basic if body−(r) = ∅ for all its rules.

168

Answer sets

• The smallest set of atoms which is logically closed and closed under

a basic program Π is denoted by Cn(Π).

• A set X of atoms is an answer set of a program Π if Cn(ΠX) = X.

169

Back to normal logic programs

• Define A′ = {A′ | A ∈ A}.

• The mapping norm between extended and normal logic programs is

defined recursively as follows:

– norm(A) = A if A is an atom,

– norm(¬A) = A′ if A is an atom,

– norm(not L) = not norm(L) if L is a literal,

– norm(X) = {norm(L) | L ∈ X} if X is a set,

– norm(Π) = {norm(head(r))← norm(body(r)) | r ∈ Π}

plus the set Π⊥ of contradiction rules

– A← B, B′

– A′ ← B, B′

for all distinct pairs A, B of atoms in A.

170

Properties of norm

• For any basic program Π,

norm(Cn(Π)) = Cn(norm(Π) ∪Π⊥)

• Let Π be an extended logic program and let X be a set of literals.

Then, we have that

X is an answer set of Π iff norm(X) is an answer set of norm(Π)∪Π⊥.

• Let Π be an extended logic program and let X be a consistent set

of literals. Then, we have that

X is an answer set of Π iff norm(X) is an answer set of norm(Π).

171

An example

Π =

p← not q

q ← not p

¬p

norm(Π)∪Π⊥ =

p← not q

q ← not p

p′

∪

p← q, q′

p′ ← q, q′

q ← p, p′

q′ ← p, p′

• Π has answer set {q,¬p}

• norm(Π) ∪Π⊥ has answer set {q, p′}

• norm(Π) has two answer sets {q, p′} and {p, p′}

172

Preferences

• Motivation

• Semantics

• Compilation

173

Motivation

The notion of preference in commonsense reasoning is pervasive.

For instance,

• in buying a car, one may prefer certain features over others;

• in scheduling, meeting some deadlines may be more important

than meeting others;

• in legal reasoning, laws are subject to higher principles, like

lex superior or lex posterior, which are themselves subject to

“higher higher” principles;

• etc etc . . .

174

Legal reasoning
The challenge!

“A person wants to find out if her security interest in a certain ship is perfected. She

currently has possession of the ship. According to the Uniform Commercial Code

(UCC, §9-305) a security interest in goods may be perfected by taking possession of

the collateral. However, there is a federal law called the Ship Mortgage Act (SMA)

according to which a security interest in a ship may only be perfected by filing a

financing statement. Such a statement has not been filed. Now the question is

whether the UCC or the SMA takes precedence in this case. There are two known

legal principles for resolving conflicts of this kind. The principle of Lex Posterior gives

precedence to newer laws. In our case the UCC is newer than the SMA. On the other

hand, the principle of Lex Superior gives precedence to laws supported by the higher

authority. In our case the SMA has higher authority since it is federal law.”

(Gordon, 1993)

175

Legal reasoning
Our solution in “ordered logic programming”

perfected :- name(ucc), possession, not neg perfected.

neg perfected :- name(sma), ship, neg finstatement, not perfected.

possession. ship. neg finstatement.

(Y < X) :- name(lex_posterior(X,Y)), newer(X,Y), not neg (Y < X).

(X < Y) :- name(lex_superior(X,Y)), state_law(X), federal_law(Y), not neg (X < Y).

newer(ucc,sma). federal_law(sma). state_law(ucc).

(lex_posterior(X,Y) < lex_superior(X,Y)).

176

What type of preference?

Different (often dependent) options:

• Preferences on rules

(versus preferences on literals

or preferences on answer sets)

• Selection function on the set of answer sets

(versus possible modification of answer sets)

• Complexity within NP

(versus complexity beyond NP)

177

How to express preferences?

Static preferences: Use an external order < .

Ordered logic program: (Π, <)

where Π is a logic program over L and

< is a strict partial order over Π ;

Dynamic preferences: Use a special-purpose predicate ≺ .

Ordered logic program: Π

where Π is a logic program over L ∪ {≺} containing

rules expressing that ≺ is a strict partial order.

Every statically ordered program can be expressed as a dynamically

ordered one.

178

An example

Consider the following ordered logic program (Π, <) with Π = {r1, r2, r3}

r1 : ¬a ←

r2 : b ← ¬a, not c

r3 : c ← not b

and r3 < r2 .

This program has two standard answer sets,

{¬a, b} and {¬a, c}

among which the green one is preferred.

179

How to define preferred answer sets?
for statically ordered logic programs

Let (Π, <) be an ordered program and let X be an answer set of Π.

Then, X is <-preserving, if X is either inconsistent, or else there exists

an enumeration 〈ri〉i∈I of RΠ(X) such that for all i, j ∈ I we have that:

1. body+(ri) ⊆ {head(rj) | j < i}; and

2. if ri < rj, then j < i; and

3. if ri < r′ and r′ ∈ Π \RΠ(X), then

(a) body+(r′) 6⊆ X or

(b) body−(r′) ∩ {head(rj) | j < i} 6= ∅.

Recall: RΠ(X) = {r ∈ Π | body+(r) ⊆ X and body−(r) ∩X = ∅}.

180

An example

Consider the statically ordered logic program

(Π, <) = ({r1, r2, r3}, {r3 < r2})

with

r1 = ¬a ←

r2 = b ← ¬a, not c

r3 = c ← not b

The (standard) program Π has two answer sets:

1. {¬a, b} is <-preserving; 〈r1, r2〉 satisfies (1) and (2).

2. {¬a, c} is not <-preserving, since 〈r1, r3〉 violates (3b).

181

Implementation
for dynamically ordered logic programs

Idea

Translate a logic program Π with preference information

into a regular logic program T (Π) such that

answers to T (Π) respect the preferences in Π.

Plan

1. Extend the language for expressing preference

2. Add axioms encoding specific preference handling strategies

182

(Dynamically) ordered logic programs

An ordered logic program is an extended logic program over a

propositional language L,

containing the following pairwise disjoint categories:

• a set N of terms serving as names for rules;

• a set A of regular (propositional) atoms of a program; and

• a set A≺ of preference atoms s ≺ t, where s, t ∈ N are names.

For each ordered program Π, we require a bijective function n(·)

assigning to each rule r ∈ Π a name n(r) ∈ N .

To simplify our notation, we write

• nr instead of n(r) or ni instead of nri
and

• t : r instead of t = n(r).

183

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:

ap(nr) signifies that rule r is applicable wrt X, that is,

• body+(r) ⊆ X and

• body−(r) ∩X = ∅.

bl(nr) signifies that rule r is blocked wrt X, that is, either

• body+(r) 6⊆ X or

• body−(r) ∩X 6= ∅.

ok(nr) signifies that it is “ok” to consider rule r

2. Provide axioms that guarantee a consideration of rules that is in

accord with the underlying preference information, that is,

nr ≺ nr′ enforces that ok(nr′) is derivable “before” ok(nr)

3. Specify what it means that a rule “has been considered”

184

Translating ordered logic programs

Let Π = {r1, . . . , rk} be an ordered logic program over L.

Let L⋆ be the language obtained from L by adding, for each r, r′ ∈ Π,

new pairwise distinct propositional atoms

• ap(nr),

• bl(nr),

• ok(nr), and

• rdy(nr, nr′).

Then, the logic program T (Π) over L⋆ contains the following rules,

(shown on the next slide)

185

Translating ordered logic programs (ctd)

For each r ∈ Π, where L+ ∈ body+(r), L− ∈ body−(r), and r′, r′′ ∈ Π :

a1(r) : head(r) ← ap(nr)

a2(r) : ap(nr) ← ok(nr), body(r)

b1(r, L) : bl(nr) ← ok(nr), not L+

b2(r, L) : bl(nr) ← ok(nr), L
−

c1(r) : ok(nr) ← rdy(nr, nr1), . . . , rdy(nr, nrk
)

c2(r, r
′) : rdy(nr, nr′) ← not(nr ≺ nr′)

c3(r, r
′) : rdy(nr, nr′) ← (nr ≺ nr′), ap(nr′)

c4(r, r
′) : rdy(nr, nr′) ← (nr ≺ nr′), bl(nr′)

t(r, r′, r′′) : nr ≺ nr′′ ← nr ≺ nr′ , nr′ ≺ nr′′

as(r, r′) : ¬(nr′ ≺ nr) ← nr ≺ nr′

186

An(other) example

Consider the following ordered logic program Π = {r1, r2, r3, r4}:

r1 = ¬a ←

r2 = b ← ¬a, not c

r3 = c ← not b

r4 = n3 ≺ n2 ← not d

where ni denotes the name of rule ri (i = 1, . . . , 4).

This program has two answer sets, {¬a, b, n3 ≺ n2} and {¬a, c, n3 ≺ n2}.

Only the first one, {¬a, b, n3 ≺ n2}, preserves its contained preference,

given by n3 ≺ n2.

187

Properties

Let (Π, <) be an ordered logic program and X a set of literals.

Soundness and correctness

X is a <-preserving answer set of Π

iff

X = Y ∩ L for some answer set Y of T (Π ∪ {(nr ≺ nr′)←| r < r′}).

➥ One-to-one correspondence (actually holds).

Selection

If Y is an answer set of T (Π ∪ {(nr ≺ nr′)←| r < r′}),

then Y ∩ L is an answer set of Π.

188

Implementation

plp http://www.cs.uni-potsdam.de/~torsten/plp

• Front-end to dlv and smodels

• Ordered logic programs

– with preferences (everywhere)

eg. n17 ≺ n42 ← n17 ≺ n34, not (n42 ≺ n34)

– with variables

eg. n1(x) ≺ n2(y)← p(y), not (x = c)

– with disjunctive preferences

eg. (r2 ≺ r42) ∨ (r4 ≺ r42)← ¬a

189

The example ran through plp

Ordered logic program Π = {r1, r2, r3, r4} :

r1 = ¬a ←

r2 = b ← ¬a, not c

r3 = c ← not b

r4 = n3 ≺ n2 ← not d

becomes

neg a.

b :- name(n2), neg a, not c.

c :- name(n3), not b.

(n3 < n2) :- not d.

190

The outcome

neg_a.

b :- ap(n2).

ap(n2) :- ok(n2), neg_a, not c.

bl(n2) :- ok(n2), not neg_a.

bl(n2) :- ok(n2), c.

c :- ap(n3).

ap(n3) :- ok(n3), not b.

bl(n3) :- ok(n3), b.

prec(n3, n2) :- not d.

ok(N) :- name(N), rdy(N, n2), rdy(N, n3).

rdy(N, M) :- name(N), name(M), not prec(N, M).

rdy(N, M) :- name(N), name(M), prec(N, M), ap(M).

rdy(N, M) :- name(N), name(M), prec(N, M), bl(M).

neg_prec(M, N) :- name(N), name(M), prec(N, M).

prec(N, M) :- name(N), name(M), name(O),

prec(N, O), prec(O, M).

false :- a, neg_a. false :- b, neg_b. false :- c, neg_c. false :- d, neg_d.

false :- name(N), name(M), prec(N, M), neg_prec(N, M).

name(n3). name(n2).

191

Computing preferred answer sets

?- lp2dlv(’Examples/example’).

yes

?- dlv(’Examples/example’).

dlv [build BEN/Apr 5 2000 gcc 2.95.2 19991024 (release)]

{name(n2), name(n3), neg_a, ok(n2), rdy(n2,n2), rdy(n2,n3), rdy(n3,n3),

prec(n3,n2), neg_prec(n2,n3), ap(n2), b, rdy(n3,n2), ok(n3), bl(n3)}

yes

?- dlv(’Examples/example’,nice).

dlv [build BEN/Apr 5 2000 gcc 2.95.2 19991024 (release)]

{neg_a, b}

yes

?-

192

Sokoban - Initial Information

• initial_at(X,Y)

• square(X,Y)

• initial_box(X,Y)

• target_square(X,Y)

193

Sokoban - Beginning and End

time(1..n).

at(X, Y, 1) :-

initial_at(X, Y).

has_box(X, Y, 1) :-

initial_box(X, Y).

% In the end, all target squares must have boxes:

compute { has_box(X, Y, n +1) : target_square(X, Y) }.

194

Sokoban - Has Box I

% A box ends where it is pushed to

has_box(X, Y, I+1) :-

move_to(X, Y, I),

move_square(X, Y),

time(I).

% A box moves away when pushed

-has_box(X, Y, I+1) :-

push(X, Y, Dir, I),

time(I),

has_neighbor(X, Y, Dir).

195

Sokoban - Has Box II

% A box stays at a place if not pushed

has_box(X, Y, I+1) :-

not -has_box(X, Y, I+1),

has_box(X, Y, I),

time(I),

move_square(X, Y).

% A box may not be pushed onto another

:- has_box(X, Y, I),

move_to(X, Y, I),

move_square(X, Y),

time(I).

196

Sokoban - Has Box III

% A box may not be pushed over another

:- has_box(X_2, Y_2, I),

push(X_1, Y_1, Dir, I),

move_to(X_3, Y_3, I),

time(I),

same_segment(X_1, Y_1, X_2, Y_2, Dir),

same_segment(X_2, Y_2, X_3, Y_3, Dir).

197

Sokoban - Move to

% A box ends at exactly one position along the push direction

1 { move_to(X_2, Y_2, I) : same_segment(X_1, Y_1, X_2, Y_2, Dir) } 1 :-

push(X_1, Y_1, Dir, I),

has_neighbor(X_1, Y_1, Dir),

time(I), I < n.

198

Sokoban - Pushing Boxes I

% A box may be pushed if it can be pushed:

{ push(X, Y, Dir, I) } :-

can_push(X, Y, Dir, I),

has_box(X, Y, I),

has_neighbor(X, Y, Dir),

possible_box(X, Y, I),

time(I).

% No two boxes may be pushed at one time

:- 2 { push(X, Y, Dir, I) :

move_square(X, Y) :

direction(Dir) },

time(I).

199

Sokoban - Pushing Boxes II

% A box can be pushed in a direction if the worker can reach it and

% there is space immediately behind the box

can_push(X, Y, east, I) :-

has_box(X, Y, I),

move_square(X, Y ; X+1, Y),

square(X-1, Y),

not has_box(X-1, Y, I),

not has_box(X+1, Y, I),

reachable(X-1, Y, I),

possible_box(X, Y, I),

time(I).

200

Sokoban - Moving Boxes

% We only try to move to places from where there is a route to a

% target location:

move_square(X, Y) :-

square(X, Y),

has_target_route(X, Y).

has_target_route(X, Y) :-

target_square(X, Y).

has_target_route(X, Y) :-

square(X, Y ; X+1, Y; X-1, Y),

has_target_route(X+1, Y).

usw.

201

Sokoban - Reachable

% The worker can reach all places that are not blocked.

reachable(X, Y, I) :-

square(X, Y),

time(I),

at(X, Y, I).

reachable(X+1, Y, I) :-

square(X, Y ; X+1, Y),

time(I),

reachable(X, Y, I),

not has_box(X+1, Y, I).

usw.

202

Sokoban - Has Neighbor

% When squares have neighbors:

has_neighbor(X, Y, east) :-

move_square(X, Y ; X +1, Y).

usw.

203

Sokoban - Improvements I

% Check if goal is reached:

goal(I) :-

{ not has_box(X, Y, I) : target_square(X, Y) } 0,

time(I).

% Do not push after goal is reached:

:- 1 { move_to(X, Y, I) : move_square(X, Y) },

time(I),

goal(I).

204

Sokoban - Improvements II

% The final move has to be to a target square:

1 { move_to(X_2, Y_2, n) : same_segment(X_1, Y_1, X_2, Y_2, Dir) :

target_square(X_2, Y_2) } 1 :-

push(X_1, Y_1, Dir, n),

has_neighbor(X_1, Y_1, Dir).

% A box may not be pushed twice to the same direction:

:- push_dir(Dir, I),

move_to(X, Y, I),

push(X, Y, Dir, I),

has_neighbor(X, Y, Dir),

time(I).

205

Sokoban - Improvements III

% no immediate undoing of a move, if reachable doesn’t change

:- push(X, Y, west, I),

push_dir(east, I),

move_to(X, Y, I+1),

time(I), I < n,

has_neighbor(X, Y, west),

reachable(X-2, Y, I).

usw.

206

Sokoban - Improvements IV

% Don’t push two boxes adjacent each other along the edge.

:- edge_pair(X_1, Y_1, X_2, Y_2),

time(I),

has_box(X_1, Y_1, I),

has_box(X_2, Y_2, I).

edge_pair(X, Y, X+1, Y) :-

move_square(X, Y ; X+1, Y),

not target_square(X, Y),

not target_square(X+1, Y),

not square(X, Y-1),

not square(X+1, Y-1).

usw.

207

Sokoban - Improvements V

% Don’t push three boxes into a L-turn:

:- { target_square(X_1, Y_1),

target_square(X_2, Y_2),

target_square(X_3, Y_3) } 2,

l_turn(X_1, Y_1, X_2, Y_2, X_3, Y_3),

time(I),

has_box(X_1, Y_1,I),

has_box(X_2, Y_2,I),

has_box(X_3, Y_3,I).

l_turn(X,Y, X+1, Y, X+1, Y+1) :-

move_square(X, Y ; X+1, Y ; X+1, Y+1),

not square(X+1, Y).

208

Sokoban - Improvements VI

% Don’t form a 4-box square:

:- move_square(X, Y),

move_square(X+1,Y),

move_square(X+1, Y+1),

move_square(X, Y+1),

time(I),

not target_square(X, Y),

not target_square(X+1,Y),

not target_square(X+1, Y+1),

not target_square(X, Y+1),

has_box(X, Y, I),

has_box(X+1, Y, I),

has_box(X+1, Y+1, I),

has_box(X, Y+1, I).

209

Sokoban - Improvements VII

% Treat first two moves special because we know what moves are possible:

possible_box(X, Y, 1) :- initial_box(X, Y).

possible_box(X_2, Y_2, 2) :-

same_segment(X_1, Y_1, X_2, Y_2, Dir),

move_square(X_2, Y_2),

initial_box(X_1, Y_1).

possible_box(X, Y, 2) :-

initial_box(X, Y).

possible_box(X, Y, I) :-

time(I), I >= 3,

move_square(X, Y).

210

What is a configuration problem?

Product: consists of different components (configuration objects) that

interact in complex ways

Configuration model: collection of objects and relationships between

them

Constraints: restrict allowed object combinations in the model

Configuration: set of objects of the configuration model

Configuration process: find a configuration that satisfies given user

requirements in a given configuration model

211

Classes of configurations

Valid configuration: satisfies all constraints of the configuration model

Suitable configuration: is a valid configuration satisfying all user

requirements

Optimal configuration: is a suitable configuration satisfying some

optimal criteria

212

Debian GNU/Linux System

The Debian configuration model can be divided in two parts:

1. a database that stores information about the packages and their

relations as facts;

2. a set of inference rules that construct the valid configurations

using the facts stored in the database.

213

Database

package(P) software package P

depends(P1,P2) package P1 depends on package P2 (package P1

cannot be used if P2 is not installed)

conflicts(P1,P2) package P1 will not operate if P2 is installed

recommends(P1,P2) package P2 enhances the functionality of package

P1 in a significant way

214

Debian GNU/Linux System
Database

package(mail-reader1)

package(mail-reader2)

package(mail-extension)

package(mail-transport-agent)

depends(mail-reader1, mail-transport-agent)

depends(mail-reader2, mail-transport-agent)

depends(mail-extension, mail-reader1)

conflicts(mail-reader1, mail-reader2)

recommends(mail-reader1, mail-extension)

215

Inference Rules

in(P) package P is chosen to be in the configuration

justified(P) package P has some reasons to be in the configuration

user-exclude(P), user-include(P) representation of user requirements

216

Debian GNU/Linux System
Inference Rules

{in(P)} ← package(P), justified(P)

← in(P1), depends(P1, P2), not in(P2)

← conflicts(P1, P2), in(P1), in(P2)

← user-include(P), not in(P)

← user-exclude(P), in(P)

justified(P) ← user-include(P)

justified(P2) ← depends(P1, P2), in(P1)

justified(P2) ← recommends(P1, P2), in(P1)

217

Suitable configurations

Given a Debian configuration model CM , a set U of user requirements,

and a stable model M of CM ∪U , a Debian configuration CM is a set of

packages

CM = {P | in(P) ∈M}

218

Debian GNU/Linux System
Logic program

package(mailreader1). depends(mailreader1,mailtransportagent).

package(mailreader2). depends(mailreader2,mailtransportagent).

package(mailextension). depends(mailextension,mailreader1).

package(mailtransportagent). recommends(mailreader1,mailextension).

conflicts(mailreader1,mailreader2).

{ in(P) } :- package(P), justified(P).

:- in(P1), depends(P1,P2), not in(P2).

:- conflicts(P1,P2),in(P1),in(P2).

:- userinclude(P), not in(P).

:- userexclude(P), in(P).

justified(P) :- userinclude(P).

justified(P2) :- depends(P1,P2), in(P1).

justified(P2) :- recommends(P1,P2), in(P1).

userinclude(mailreader1).

hide. show in(X).

219

Debian GNU/Linux System
Stable models

smodels version 2.27. Reading...done

Answer: 1

Stable Model: in(mailtransportagent) in(mailreader1)

Answer: 2

Stable Model: in(mailtransportagent) in(mailextension) in(mailreader1)

220

Debian GNU/Linux System
Logic program

package(mailreader1). depends(mailreader1,mailtransportagent).

package(mailreader2). depends(mailreader2,mailtransportagent).

package(mailextension). depends(mailextension,mailreader1).

package(mailtransportagent). recommends(mailreader1,mailextension).

conflicts(mailreader1,mailreader2).

{ in(P) } :- package(P), justified(P).

:- in(P1), depends(P1,P2), not in(P2).

:- conflicts(P1,P2),in(P1),in(P2).

:- userinclude(P), not in(P).

:- userexclude(P), in(P).

justified(P) :- userinclude(P).

justified(P2) :- depends(P1,P2), in(P1).

justified(P2) :- recommends(P1,P2), in(P1).

userinclude(mailreader2).

hide. show in(X).

221

Debian GNU/Linux System
Stable models

smodels version 2.27. Reading...done

Answer: 1

Stable Model: in(mailtransportagent) in(mailreader2)

222

Debian GNU/Linux System
Logic program

package(mailreader1). depends(mailreader1,mailtransportagent).

package(mailreader2). depends(mailreader2,mailtransportagent).

package(mailextension). depends(mailextension,mailreader1).

package(mailtransportagent). recommends(mailreader1,mailextension).

conflicts(mailreader1,mailreader2).

{ in(P) } :- package(P), justified(P).

:- in(P1), depends(P1,P2), not in(P2).

:- conflicts(P1,P2),in(P1),in(P2).

:- userinclude(P), not in(P).

:- userexclude(P), in(P).

justified(P) :- userinclude(P).

justified(P2) :- depends(P1,P2), in(P1).

justified(P2) :- recommends(P1,P2), in(P1).

userinclude(mailextension).

userinclude(mailreader2).

No stable models!

223

Diagnostic Model

Unsatisfiable requirements are diagnosed using a diagnostic model.

The diagnostic model is constructed from the configuration model by

adding a new set of atoms that represent the possible error conditions.

The diagnostic output also explains why each problematic component

was included in the configuration.

The constraint are modified in such way that the diagnostic model will

always have at least one stable model.

224

Diagnostic Model
New atoms

missing(P), in-conflict(P1,P2) denote error conditions

needs-reason(P) mark the packages that are in some way part of the

problem and thus needs an explanation

user-selected(P), needs(P1,P2) explain why certain packages were

taken into the configuration

225

Diagnosis

Given a Debian configuration model DM and a set U of user

requirements, a diagnosis D is a four-tuple D = (M, EM , PM , RM), where

1. M is a stable model of DM ∪ U ;

2. EM is the error set

EM = {missing(P) ∈M} ∪ {in-conflict(P1, P2) ∈M};

3. PM is the problem set

PM = {P | needs-reason(P) ∈M}; and

4. RM is the explanation set

RM = {user-selected(P) ∈M} ∪ {needs(P1, P2) ∈M}.

226

Modifying configuration models

We want that the diagnosis contains only those packages that have to

be in there so that it will be as small as possible.

Thus, remove rule

{in(P)} ← package(P), justified(P).

In addition, this ensures that no false alarms are caused by adding

unnecessary recommended packages in the configuration.

227

Missing Packages
Error set

missing(P) denote that some package in the configuration depends on P

but for some reason P is not in the configuration.

Rule ← in(P1), depends(P1, P2), not in(P2) is replaced by:

in(P2) ← in(P1), depends(P1, P2), package(P2)

missing(P2) ← in(P1), depends(P1, P2), not package(P2)

The first rule ensures that existing packages are added to the model,

the second rule marks non-existing packages as missing.

In addition, it may be the case that a package the user included is not

available. Hence, rule ← user-include(P), not in(P) is replaced by:

in(P) ← user-include(P), package(P)

missing(P) ← user-include(P), not package(P)

228

Conflicts
Error set

in-conflict(P1, P2) is used to model conflicts. in-conflict(P1, P2) is true

when P1 and P2 conflict with each other and they both have to be in the

configuration.

We replace rule ← conflicts(P1, P2), in(P1), in(P2) with

in-conflict(P1, P2)← conflicts(P1, P2), in(P1), in(P2).

To handle the case where the user wants to leave out a package that

some other package needs, we replace the rule ← in(P), user-exclude(P)

with

in-conflict(P, user-exclude)← in(P), user-exclude(P).

229

Justifications

needs-reason(P) marks the packages we want to justify.

We add the rules

needs-reason(P) ← missing(P)

needs-reason(P1) ← in-conflict(P1, P2), package(P1)

needs-reason(P2) ← in-conflict(P1, P2), package(P2)

needs-reason(P1) ← depends(P1, P2), needs-reason(P2), in(P1)

user-selected(P) is true when the user chose P to be in the configuration.

needs(P1, P2) is true if P2 was included because P1 depends on it. The

justifications can be modeled with the following rules:

user-selected(P) ← needs-reason(P), user-include(P)

needs(P1, P2) ← needs-reason(P2), depends(P1, P2), in(P1)

230

Debian GNU / Linux System

in(P2) ← in(P1), depends(P1, P2), package(P2)

missing(P2) ← in(P1), depends(P1, P2), not package(P2)

in-conflict(P1, P2) ← conflicts(P1, P2), in(P1), in(P2)

in-conflict(P, user-exclude) ← in(P), user-exclude(P)

in(P) ← user-include(P), package(P)

missing(P) ← user-include(P), not package(P)

justified(P) ← user-include(P)

justified(P2) ← depends(P1, P2), in(P1)

justified(P2) ← recommends(P1, P2), in(P1)

needs-reason(P) ← missing(P)

needs-reason(P1) ← in-conflict(P1, P2), package(P1)

needs-reason(P2) ← in-conflict(P1, P2), package(P2)

needs-reason(P1) ← depends(P1, P2), needs-reason(P2), in(P1)

user-selected(P) ← needs-reason(P), user-include(P)

needs(P1, P2) ← needs-reason(P2), depends(P1, P2), in(P1)

231

Stable Models

User requirements:

userinclude(mailextension). userinclude(mailreader2).

package(mailreader1). depends(mailreader1,mailtransportagent).

package(mailreader2). depends(mailreader2,mailtransportagent).

package(mailextension). depends(mailextension,mailreader1).

package(mailtransportagent). recommends(mailreader1,mailextension).

conflicts(mailreader1,mailreader2).

232

Stable Models

User requirements:

userinclude(mailextension). userinclude(mailreader2).

Stable Model: userinclude(mailreader2) userinclude(mailextension)

needs(mailextension,mailreader1)

in(mailreader1)

in(mailextension)

in(mailtransportagent)

in(mailreader2)

needsreason(mailreader1)

needsreason(mailreader2)

needsreason(mailextension)

userselected(mailreader2)

userselected(mailextension)

inconflict(mailreader1,mailreader2)

233

Debian GNU / Linux System
Diagnosis

Error set:

E = {in-conflict(mail-reader1, mail-reader2)}

Problem set:

P = {mail-reader1, mail-reader2, mail-extension}

Explanation set:

R =

user-selected(mail-reader2),

user-selected(mail-extension),

needs(mail-extension, mail-reader1)

.

234

Stable Models

User requirements:

userinclude(mailreader2).

Stable Model: in(mailtransportagent)

in(mailreader2)

E = P = R = ∅

235

Configuration of a PC

A computer is configured using the following configuration model:

• a mass-memory {IDEdisk, SCSIdisk, floppydrive},

• a keyboard {GermanlayoutKB, UKlayoutKB},

• a processor {PII, PIII},

• a motherboard {ATX, I820},

• a graphics card gcard.

The following dependencies must be respected:

• SCSI disk requires an SCSI controller {SCSIcontroller},

• {PII} is incompatible with I820 and {PIII} with ATX,

• graphics card is needed, if motherboard contains none, {ATX}

contains one, {I820} does not.

236

Configuration Rule Language (CRL)

Rules are of the form

a1θ . . . θal ← b1, . . . , bm, not c1, . . . not cn

where θ ∈ {|,⊕}, a1, . . . , an, b1, . . . bm, c1, . . . cn are atoms.

We have two types of disjunction:

|: ”normal or”

⊕: exclusive or

237

Configuration model of a PC

computer ←

IDEdisk | SCSIdisk | floppydrive ← computer

GermanlayoutKB ⊕ UKlayoutKB ← computer

PII ⊕ PIII ← computer

ATX ⊕ I820 ← computer

SCSIcontroller ← SCSIdisk

← PII, I820

← PIII, ATX

gcard ← not gcardinmb

gcardinmb ← ATX

238

Satisfaction

A configuration C satisfies a set of rules R in CRL (C |= R) iff

1. If a1 | . . . | al ← b1, . . . , bm, not c1, . . . not cn,

{b1, . . . , bm} ⊆ C and {c1, . . . , cn} ∩ C = ∅,

then {a1, . . . al} ∩ C 6= ∅.

2. If a1 ⊕ . . .⊕ al ← b1, . . . , bm, not c1, . . . not cn,

{b1, . . . , bm} ⊆ C and {c1, . . . , cn} ∩ C = ∅,

then for exactly one a ∈ {a1, . . . al}, a ∈ C.

239

Computation of configurations

Given a configuration C and a set of rules R, we denote by RC the set

of rules

{ai ← b1, . . . bm : a1θ . . . θal ← b1, . . . , bm, not c1, . . . not cn ∈ R,

θ ∈ {|,⊕}, ai ∈ C, 1 ≤ i ≤ l,

{c1, . . . , cn} ∩ C = ∅} ∪

{a← b1, . . . bm : a← b1, . . . , bm, not c1, . . . not cn ∈ R,

{c1, . . . , cn} ∩ C = ∅}.

The least model of RC is denoted by MM(RC).

The configuration is R-valid iff C = MM(RC) and C |= R.

240

Configuration of a PC

computer ←

IDEdisk | SCSIdisk | floppydrive ← computer

GermanlayoutKB ⊕ UKlayoutKB ← computer

PII ⊕ PIII ← computer

ATX ⊕ I820 ← computer

SCSIcontroller ← SCSIdisk

← PII, I820

← PIII, ATX

gcard ← not gcardinmb

gcardinmb ← ATX

GermanlayoutKB ←

C1 = {computer, SCSIdisk, UKlayoutKB, PII, PIII, gcard}

Configuration C1 is not R-valid.

241

Configuration of a PC

computer ←

IDEdisk | SCSIdisk | floppydrive ← computer

GermanlayoutKB ⊕ UKlayoutKB ← computer

PII ⊕ PIII ← computer

ATX ⊕ I820 ← computer

SCSIcontroller ← SCSIdisk

← PII, I820

← PIII, ATX

gcard ← not gcardinmb

gcardinmb ← ATX

GermanlayoutKB ←

C2 =

computer, IDEdisk, GermanlayoutKB, PIII, ATX,

SCSIcontroller, gcardinmb

Configuration C2 is not R-valid.

242

Configuration of a PC

computer ←

IDEdisk | SCSIdisk | floppydrive ← computer

GermanlayoutKB ⊕ UKlayoutKB ← computer

PII ⊕ PIII ← computer

ATX ⊕ I820 ← computer

SCSIcontroller ← SCSIdisk

← PII, I820

← PIII, ATX

gcard ← not gcardinmb

gcardinmb ← ATX

GermanlayoutKB ←

C3 =

computer, SCSIdisk, GermanlayboutKB, PII, ATX,

SCSIcontroller, gcardinmb

243

Configuration of a PC
C3 |= R

Reduct RC3 :

computer ←

SCSIdisk ← computer

GermanlayoutKB ← computer

PII ← computer

ATX ← computer

SCSIcontroller ← SCSIdisk

← PII, I820

← PIII, ATX

gcardinmb ← ATX

GermanlayoutKB ←

MM(RC3) = C3.

Configuration C3 is R-valid.

244

Relationship to logic programming semantics

Let R be a set of rules in CRL. Let f, f ′ be atoms not appearing in R.

Include f ′ ← not f ′, f .

For each rule a1 | . . . | al ← b1, . . . , bm, not c1, . . . not cn we include a rule

f ← b1, . . . , bm, not c1, . . . not cn, â1, . . . , âl

and for all i = 1, . . . , l, two rules

ai ← not âi, b1, . . . , bm, not c1, . . . not cn and âi ← not ai

where â1, . . . , âl are new atoms.

For each rule a1 ⊕ . . .⊕ al ← b1, . . . , bm, not c1, . . . not cn we additionally

include

f ← b1, . . . , bm, not c1, . . . not cn, a′, a′′

where a′ = ai and a′′ = aj for some i, j, 1 ≤ i < j ≤ l.

245

Configuration of a PC
translation of the rules

computer ←

stays unchanged.

246

Configuration of a PC
translation of the rules

f ′ ← not f ′, f

IDEdisk | SCSIdisk | floppydrive← computer

f ← computer, IDEdisk′, SCSIdisk′, f loppydrive′

IDEdisk ← not IDEdisk′, computer

IDEdisk′ ← not IDEdisk

SCSIdisk ← not SCSIdisk′, computer

SCSIdisk′ ← not SCSIdisk

floppydrive ← not floppydrive′, computer

floppydrive′ ← not floppydrive

247

Configuration of a PC
translation of the rules

GermanlayoutKB ⊕ UKlayoutKB ← computer

f ← computer, GermanlayoutKB′, UKlayoutKB′

GermanlayoutKB ← not GermanlayoutKB′, computer

GermanlayoutKB′ ← not GermanlayoutKB

UKlayoutKB ← not UKlayoutKB′, computer

UKlayoutKB′ ← not UKlayoutKB

f ← computer, GermanlayoutKB, UKlayoutKB

248

Configuration of a PC
computer.

fp :- not fp, f.

f :- computer, nidedisk, nscsidisk, nfloppydrive.

idedisk :- not nidedisk, computer.

nidedisk :- not idedisk.

scsidisk :- not nscsidisk, computer.

nscsidisk :- not scsidisk.

floppydrive :- not nfloppydrive, computer.

nfloppydrive :- not floppydrive.

f:- computer, ngermanlayoutKB, nuklayoutKB.

germanlayoutKB :- not ngermanlayoutKB, computer.

ngermanlayoutKB :- not germanlayoutKB.

uklayoutKB :- not nuklayoutKB, computer.

nuklayoutKB :- not uklayoutKB.

f :- computer, germanlayoutKB, uklayoutKB.

f:- computer, npII, npIII. f :- computer, natx, ni820.

pII :- not npII, computer. atx :- not natx, computer.

npII :- not pII. natx :- not atx.

pIII :- not npIII, computer. i820 :- not ni820, computer.

npIII :- not pIII. ni820 :- not i820.

f :- computer, pII, pIII. f :- computer, atx, i820.

scsicontroller :- scsidisk.

:- pII, i820.

:- pIII, atx.

gcard :- not gcardinmb.

gcardinmb :- atx.

germanlayoutKB.

hide.

show computer,

idedisk,scsidisk,floppydrive,germanlayoutKB,uklayoutKB,pII,pIII,atx,i820,scsicontroller,gcard,gcardinmb.

249

Configuration of a PC

smodels version 2.27. Reading...done

Answer: 1

Stable Model: gcard i820 pIII germanlayoutKB idedisk computer

Answer: 2

Stable Model: gcard scsicontroller scsidisk i820 pIII germanlayoutKB idedisk computer

Answer: 3

Stable Model: gcard scsicontroller scsidisk i820 pIII germanlayoutKB floppydrive idedisk computer

Answer: 4

Stable Model: gcard i820 pIII germanlayoutKB floppydrive idedisk computer

Answer: 5

Stable Model: gcard i820 pIII germanlayoutKB floppydrive computer

Answer: 6

Stable Model: gcard scsicontroller scsidisk i820 pIII germanlayoutKB floppydrive computer

Answer: 7

Stable Model: gcard scsicontroller scsidisk i820 pIII germanlayoutKB computer

Answer: 8

Stable Model: gcardinmb atx scsicontroller scsidisk pII germanlayoutKB computer

Answer: 9

Stable Model: gcardinmb atx pII germanlayoutKB idedisk computer

Answer: 10

Stable Model: gcardinmb atx scsicontroller scsidisk pII germanlayoutKB idedisk computer

Answer: 11

Stable Model: gcardinmb atx scsicontroller scsidisk pII germanlayoutKB floppydrive idedisk computer

Answer: 12

Stable Model: gcardinmb atx scsicontroller scsidisk pII germanlayoutKB floppydrive computer

Answer: 13

Stable Model: gcardinmb atx pII germanlayoutKB floppydrive computer

Answer: 14

Stable Model: gcardinmb atx pII germanlayoutKB floppydrive idedisk computer

250

References

1. T. Syrjänen: A rule-based formal model for software configuration,

1999,

2. T. Soininen: An approach to knowledge representation and

reasoning for product configuration tasks, 2000,

3. T. Syrjänen: Including diagnostic information in configuration

models, 2000,

4. T. Soininen, I. Niemelä: Developing a declarative rule language for

applications in product configuration, 1999.

251

Action languages

• Transition Systems

• Action language A

• Action language C

252

Action signatures

An action signature consists of three nonempty sets:

• a set V of value names,

• a set F of fluent names, and

• a set A of action names.

Intuitively, any ”fluent” has a specific ”value” in any ”state of the

world”. An ”action”, if executed in some state, leads to a ”resulting”

state.

253

Transition systems

A transition system 〈S, V, R〉 of an action signature 〈V,F,A〉 consists of

1. a set S,

2. a function V from F× S into V, and

3. a subset R of S ×A× S.

The elements of S are called states.

V (P, s) is the value from P in s.

254

Transitions

A transition is any triple 〈s, A, s′〉 ∈ R, where s′ is a result of the

execution of A in s.

A is executable in s if there is at least one such s′.

A is deterministic in s if there is at most one such s′.

An action signature 〈V,F,A〉 is propositional if its value names are the

truth values of classical logic: V = {f, t}.

A transition system is propositional if its signature is propositional.

255

Transition graph

A transition system can be thought of as a labeled directed graph.

• States are the vertices,

• transitions 〈s, A, s′〉 ∈ R are represented as edges from s to s′ labeled

with A.

256

Example
Doors

Fluents : {closed}

Actions : {opendoor}

States :
s1 = {closed}

s2 = {¬closed}

Transitions : 〈s1, a, s2〉

〈s2, a, s2〉

s1��
��

s2��
��?

a

a��
��

257

Example

Fluents : {p, q, r}

Actions : {a, b}

States : s1 = {¬p,¬q,¬r}

s2 = {p, q,¬r}

s3 = {p,¬q, r}

Transitions : 〈s1, a, s1〉

〈s1, b, s2〉

〈s1, b, s3〉

〈s2, a, s3〉

s2��
��

s3��
��

s1��
��

6

-

�
�

�
�

���

b

a

b

a��
��

258

Example

Fluents : {p, q}

Actions : {a}

States : s1 = {p, q}

s2 = {¬p, q}

s3 = {p,¬q}

s4 = {¬p,¬q}

Transitions : 〈s1, a, s1〉

〈s2, a, s1〉

〈s3, a, s3〉

〈s4, a, s3〉

s1��
��

s3��
��

s2��
��

s4��
��

6 6

a a

a a
��
�?

��
�?

259

Action language A

Let 〈{f, t},F,A〉 be a propositional action signature.

A proposition is an expression of the form

A causes L if F

where A is an action name, L is a literal and F is a conjunction of

literals.

If F is true then if F can be dropped.

An action description is a set of propositions.

260

Action language A

Let 〈{f, t},F,A〉 be a propositional action signature. Let D be an action

description in A.

The transition system 〈S, V, R〉 described by D is defined as follows:

• S is the set of all interpretations of F,

• V (P, s) = s(P),

• R is set of transitions 〈s, A, s′〉 such that

E(A, s) ⊆ s′ ⊆ E(A, s) ∪ s,

where E(A, s) = {L | A causes L if F in D, s satisfies F} are the

effects of A executed in s.

261

Example
Fluents : {p, q} Actions : {a}

Propositions : a causes p

States : s1 = {p, q}

s2 = {¬p, q}

s3 = {p,¬q}

s4 = {¬p,¬q}

Transitions : 〈s1, a, s1〉

〈s2, a, s1〉

〈s3, a, s3〉

〈s4, a, s3〉

s1��
��

s3��
��

s2��
��

s4��
��

6 6

a a

a a
��
�?

��
�?

Effects of a executed in si are {p} for all i ∈ {0, . . . , 4}. E(A, s) ⊆ s′ ⊆ E(A, s) ∪ s holds for all transitions 〈s, a, s′〉.

262

Example
Fluents : {p, q} Actions : {a}

Propositions : a causes p if q

States : s1 = {p, q}

s2 = {¬p, q}

s3 = {p,¬q}

s4 = {¬p,¬q}

Transitions : 〈s1, a, s1〉

〈s2, a, s1〉

〈s3, a, s3〉

〈s4, a, s4〉

s1��
��

s3��
��

s2��
��

s4��
��

6

a

a a

a

��
�?

��
�?

��
�?

E(a, s1) = E(a, s2) = {p}, E(a, s3) = E(a, s4) = ∅. E(A, s) ⊆ s′ ⊆ E(A, s) ∪ s holds for all transitions 〈s, a, s′〉.

263

Action language C

• A state formula is a propositional combination of fluent names.

• A formula is a propositional combination of fluent names and

elementary action names.

• A static law is an expression of the form

caused F if G

where F, G are state formulas.

• A dynamic law is an expression of the form

caused F if G after U

where F, G are state formulas and U is a formula.

• An action description is a set of static and dynamic laws.

264

Action language C

A formula F is caused in a transition 〈s, a, s′〉 if it is

(i) the head of a static law

caused F if G

such that s′ satisfies G, or

(ii) the head of a dynamic law

caused F if G after U

such that s′ satisfies G and s ∪ a satisfies U .

A transition 〈s, a, s′〉 is causally explained by D if there is only one s′ that

satisfies all formulas caused in this transition.

265

Action language C

Let D be an action description in C.

The transition system 〈S, V, R〉 described by D is as follows:

(i) S is the set of all interpretations s of F such that for every

caused F if G

in D, s satisfies F if s satisfies G,

(ii) V (P, s) = s(P),

(iii) R is the set of transitions 〈s, A, s′〉 which are causally explained in D.

266

Example
Doors

Action: {OpenDoor} open a springloaded door

Fluents: {Closed}

Action description:

caused Closed if Closed,

caused ¬Closed if True after OpenDoor

States: {¬Closed, Closed}

Transitions (all causally explained):

〈¬Closed,¬OpenDoor, Closed〉,

〈Closed,¬OpenDoor, Closed〉,

〈¬Closed, OpenDoor,¬Closed〉,

〈Closed, OpenDoor,¬Closed〉.

267

Shortcuts

A causes F if G stands for caused F if True after G ∧A,

inertial F stands for caused F if F after F,

inertial F1, . . . Fn stands for inertial Fi(1 ≤ i ≤ n),

always F stands for caused False if ¬F,

nonexecutable A if F stands for caused False after F ∧A,

default F if G stands for caused F if F ∧G

exogenous F stands for caused F if F.

268

Translation to extended logic programs

Consider timesteps t = 0, . . . , T

(i) caused F if L1 ∧ . . . ∧ Lm is translated to

F (t)← not ¬L1(t), . . . , not ¬Lm(t),

(ii) caused F if L1 ∧ . . . ∧ Lm after Lm+1, . . . , Ln is translated to

F (t + 1)← not ¬L1(t + 1), . . . , not ¬Lm(t + 1), Lm+1(t), . . . , Ln(t),

(iii) for all fluents B at time step 0 or for action names:

¬B ← not B

B ← not ¬B.

269

Example
Doors

default Closed,

OpenDoor causes ¬Closed

stands for

caused Closed if Closed,

caused ¬Closed if True after OpenDoor

(i) Closed(t) ← not ¬Closed(t)

(ii) ¬Closed(t + 1) ← OpenDoor(t)

(iii) Closed(0) ← not ¬Closed(0)

¬Closed(0) ← not Closed(0)

(iii) OpenDoor(t) ← not ¬OpenDoor(t)

¬OpenDoor(t) ← not OpenDoor(t)

270

Example
Doors

time(0..1).

closed(T) :- not -closed(T),time(T).

-closed(T1) :- openDoor(T),time(T),T1 = T+1,time(T1).

closed(0) :- not -closed(0).

-closed(0) :- not closed(0).

openDoor(T):- not -openDoor(T),time(T).

-openDoor(T):- not openDoor(T),time(T).

271

Example
Doors

Answer: 1

Stable Model: closed(0) openDoor(0) -closed(1)

Answer: 2

Stable Model: -closed(0) openDoor(0) -closed(1)

Answer: 3

Stable Model: -closed(0) -openDoor(0) closed(1)

Answer: 4

Stable Model: closed(0) -openDoor(0) closed(1)

272

Example
Monkey& Bananas

A monkey wants a bunch of bananas, hanging from the ceiling. To get

the bananas the monkey must push a box to the empty place under the

bananas and then climb on top of the box.

Fluents: for x ∈ {Monkey, Bananas, Box}

Loc(x),

HasBananas, OnBox

Actions: for l ∈ {L1, L2, L3}

Walk(l), PushBox(l), ClimbOn, ClimbOff, GraspBananas

273

Example
Monkey& Bananas

caused Loc(Bananas) = l if HasBananas ∧ Loc(Monkey) = l

caused Loc(Monkey) = l if OnBox ∧ Loc(Box) = l

Walk(l) causes Loc(Monkey) = l

nonexecutable Walk(l) if Loc(Monkey) = l

nonexecutable Walk(l) if OnBox

PushBox(l) causes Loc(Box) = l

PushBox(l) causes Loc(Monkey) = l

nonexecutable PushBox(l) if Loc(Monkey) = l

nonexecutable PushBox(l) if OnBox

nonexecutable PushBox(l) if Loc(Monkey) 6= Loc(Box)

274

Example
Monkey& Bananas

ClimbOn causes OnBox

nonexecutable ClimbOn if OnBox

nonexecutable ClimbOn if Loc(Monkey) 6= Loc(Box)

ClimbOff causes ¬OnBox

nonexecutable ClimbOff if ¬OnBox

GraspBananas causes HasBananas

nonexecutable GraspBananas if HasBananas

nonexecutable GraspBananas if ¬OnBox

nonexecutable GraspBananas if Loc(Monkey) 6= Loc(Bananas)

275

Example
Monkey& Bananas

nonexecutable Walk(l) ∧ PushBox(l)

nonexecutable Walk(l) ∧ ClimbOn

nonexecutable PushBox(l) ∧ ClimbOn

nonexecutable ClimbOff ∧GraspBananas

exogenous c % for every action constant c

inertial c % for every simple fluent constant c

276

Example
Monkey& Bananas

Initial situation:

• loc(bananas,l1,0), loc(monkey,l2,0), loc(box,l3,0)

Solution:
• walk(l3,0)

– walk(l3,0) causes loc(monkey,l3,1)

• pushBox(l1,1)

– pushBox(l1,1) causes loc(box,l1,2)

– pushBox(l1,1) causes loc(monkey,l1,2)

• climbOn(2)

– climbOn(2) causes onBox(3)

• graspBananas(3)

– graspBananas(3) causes hasBananas(4)

277

Monkey& Bananas with DLVK

DLVK is a planning system, which provides an implementation of action

language K as a front-end of the DLV system.

More information and download of the Monkey & Bananas example on:

http://www.dbai.tuwien.ac.at/proj/dlv/K/

278

monkey.dl

%% Background Knowledge

object(box).

object(monkey).

object(bananas).

279

monkey.plan

fluents: loc(O,L) requires object(O), #int(L).

onBox.

hasBananas.

actions: walk(L) requires #int(L).

pushBox(L) requires #int(L).

climbBox.

graspBananas.

280

monkey.plan
always: caused loc(monkey,L) after walk(L).

caused -loc(monkey,L) after walk(L1), loc(monkey,L), L<>L1.

executable walk(L) if not onBox.

caused loc(monkey,L) after pushBox(L).

caused loc(box,L) after pushBox(L).

caused -loc(monkey,L) after pushBox(L1), loc(monkey,L), L<>L1.

caused -loc(box,L) after pushBox(L1), loc(box,L), L<>L1.

executable pushBox(L) if loc(monkey,L1), loc(box,L1), not onBox.

caused onBox after climbBox.

executable climbBox if not onBox, loc(monkey,L), loc(box,L).

caused hasBananas after graspBananas.

executable graspBananas if onBox, loc(monkey,L), loc(bananas,L).

inertial loc(O,L).

inertial onBox.

inertial hasBananas.

281

monkey.plan

initially: loc(monkey,2).

loc(box,3).

loc(bananas,1).

noConcurrency.

goal: hasBananas ? (4)

282

Solutions

bash-2.05b$ dlv -FP -N=4 monkeyK.plan monkeyK.dl

DLV [build BEN/May 23 2004 gcc 2.95.4 20011002 (Debian prerelease)]

STATE 0: loc(box,3), loc(monkey,2), loc(bananas,1)

ACTIONS: walk(3)

STATE 1: loc(monkey,3), loc(box,3), -loc(monkey,2), loc(bananas,1)

ACTIONS: pushBox(1)

STATE 2: loc(monkey,1), -loc(monkey,3), -loc(box,3), loc(bananas,1), loc(box,1)

ACTIONS: climbBox

STATE 3: onBox, loc(monkey,1), loc(bananas,1), loc(box,1)

ACTIONS: graspBananas

STATE 4: loc(monkey,1), loc(bananas,1), loc(box,1), onBox, hasBananas

PLAN: walk(3); pushBox(1); climbBox; graspBananas

Check whether that plan is secure (y/n)? y

The plan is secure.

Search for other plans (y/n)? y

bash-2.05b$

283

Meta-interpreting Logic Programs

A logic program can be encoded for and interpreted by a generic

meta-interpreter.

A representation F (Π) of a logic program Π is a set of facts.

These facts are combined with a generic logic program ΠIα
such that

AS(Π) = {π(A) | A ∈ AS(F (Π) ∪ΠIα
)},

where π is a ”simple projection function”.

284

Representation
of a logic program

We translate Π into F (Π) as follows:

1. For every rule

L0 ← L1, . . . Lm, not Lm+1, . . . not Ln.

of Π, F (Π) contains the facts:

rule(r). head(L0, r). pbl(L1, r). . . . pbl(Lm, r).

nbl(Lm+1, r). . . . nbl(Ln, r).

where r is a unique rule identifier.

2. For each pair of complementary literals L,¬L in Π we add the fact

compl(L,¬L).

285

Example
bird & penguin

(1) peng.

(2) bird.

(3) ¬flies ← not flies, peng.

(4) flies ← not ¬flies, bird.

F (Π) : rule(r1). head(peng, r1).

rule(r2). head(bird, r2).

rule(r3). head(negflies, r3).

pbl(peng, r3). nbl(flies, r3).

rule(r4). head(flies, r4)

pbl(bird, r4). nbl(negflies, r4).

and compl(flies, negflies).

286

Basic Meta-interpreter program

in AS(X) is true if literal X is in an answer set of Π.

in AS(X)← head(X, R), pos body true(R),

not neg body false(R).

287

Basic Meta-interpreter program

The positive part of the body is true, if all its literals are in the answer

set.

If there are no positive literals, the positive body is trivially true.

pos body exists(R) ← pbl(X, R).

pos body true(R) ← rule(R), not pos body exists(R).

288

Basic Meta-interpreter program

If positive literals exists, we proceed iteratively. We use DLV’s built-in

total order on constants for defining successor relation on positive body

literals of each rule, and to identify the first and the last literal of a

positive rule body in this total order.

Auxiliary relations:

pbl inbetween(X, Y, R) ← pbl(X, R), pbl(Y, R), pbl(Z, R), X < Z, Z < Y.

pbl notlast(X, R) ← pbl(X, R), pbl(Y, R), X < Y.

pbl notfirst(X, R) ← pbl(X, R), pbl(Y, R), Y < X.

289

Basic Meta-interpreter program

The positive body is true up to some positive body literal (wrt the

built-in order):

pos body true upto(R, X) ← pbl(X, R), not pbl notfirst(X, R), in AS(X).

pos body true upto(R, X) ← pos body true upto(R, Y), pbl(X, R),

in AS(X), Y < X, not pbl inbetween(Y, X, R).

pos body true(R) ← pos body true upto(R, X),

not pbl notlast(X, R).

290

Basic Meta-interpreter program

The negative part of a body is false, if one of its literals is in the answer

set.

neg body false(R)← nbl(X, R), in AS(X).

Each answer set is consistent:

← compl(X, Y), in AS(X), in AS(Y).

Each answer set A of ΠIα
∪F (Π) represents an answer set A′ of Π, where

π(A) = A′ and

π(A) = {l | in AS(l) ∈ A}.

291

Meta-interpreter

in_AS(X) :- head(X,R), pos_body_true(R), not neg_body_false(R).

pos_body_exists(R) :- pbl(X,R).

pos_body_true(R) :- rule(R), not pos_body_exists(R).

pbl_inbetween(X,Y,R) :- pbl(X,R), pbl(Y,R), pbl(Z,R), X < Z, Z < Y.

pbl_notlast(X,R) :- pbl(X,R), pbl(Y,R), X < Y.

pbl_notfirst(X,R) :- pbl(X,R), pbl(Y,R), Y < X.

pos_body_true_upto(R,X) :- pbl(X,R), not pbl_notfirst(X,R), in_AS(X).

pos_body_true_upto(R,X) :- pos_body_true_upto(R,Y), pbl(X,R),

in_AS(X), Y < X, not pbl_inbetween(Y,X,R).

pos_body_true(R) :- pos_body_true_upto(R,X), not pbl_notlast(X,R).

neg_body_false(R) :- nbl(X,R), in_AS(X).

:- compl(X,Y), in_AS(X), in_AS(Y).

292

Example
bird & penguin

rule(r1). head(peng,r1).

rule(r2). head(bird,r2).

rule(r3). head(negflies,r3).

pbl(peng,r3). nbl(flies,r3).

rule(r4). head(flies,r4).

pbl(bird,r4). nbl(negflies,r4).

compl(flies,negflies).

bash-2.05b$ dlv -filter=in_AS metainterpreterAS.pl

DLV [build BEN/Apr 12 2002 gcc 2.95.3 20010315 (SuSE)]

{in_AS(peng), in_AS(bird), in_AS(flies)}

{in_AS(peng), in_AS(bird), in_AS(negflies)}

293

Crossing a river

canCross ← boat, not leaking

canCross ← boat, leaking, hasBucket

We observe somebody crossing the river with a boat. How can we

explain that?

294

Abduction

An abduction problem is a triple 〈Π,H,O〉, where

• Π is a logic program,

• H is a set of facts, referred to as hypotheses, and

• O is a set of atoms, referred to as observations.

A set ∆ ⊆ H is an explanation of O wrt Π if all answer sets of Π ∪∆

contain O.

An explanation ∆1 is minimal if for every other explanation ∆2 of O

∆2 6⊂ ∆1 holds.

We call ∆ a single explanation if |∆| = 1.

295

Crossing a river

Explanations

• Π =

canCross ← boat, not leaking

canCross ← boat, leaking, hasBucket

• Hypotheses: H = {boat, leaking, hasBucket}.

• Observation: canCross

• Explanations:

1. {boat}

2. {boat, hasBucket}

3. {boat, leaking, hasBucket}

• Only boat is a minimal (and single) explanation.

296

Running DLV

• canCross.dl

canCross :- boat, not leaking.

canCross :- boat, leaking, hasBucket.

• canCross.hyp

boat.

leaking.

hasBucket.

• canCross.obs

canCross.

297

Running DLV

Computing all explanations:

bash-2.05b$ dlv -FD canCross.dl canCross.hyp canCross.obs

DLV [build BEN/May 23 2004 gcc 2.95.4 20011002 (Debian prerelease)]

Diagnosis: boat leaking hasBucket

Diagnosis: boat

Diagnosis: boat hasBucket

Computing single explanations:

bash-2.05b$ dlv -FDsingle canCross.dl canCross.hyp canCross.obs

DLV [build BEN/May 23 2004 gcc 2.95.4 20011002 (Debian prerelease)]

Diagnosis: boat

298

Further Semantics

• Completion

• Supported Models

• Fitting semantics

• Well-founded semantics

299

Completion

Let Π be a basic normal logic program.

Then, Π∗ is a set of rules obtained from Π as follows:

• Replace each rule A← with A← true.

• If an atom A is not the head of a rule in Π, then add the rule

A← false.

Π∗∗ is obtained from Π∗ as follows:

• Replace each rule A0 ← A1, . . . An with A0 ← (A1 ∧ . . . ∧An).

• Next, replace all rules A← B1, . . . , A← Bm with the same head by

A← (B1 ∨ . . . ∨Bm).

We obtain the program completion of Π by replacing each occurrence of

← by ≡.

300

Example
Completion

Π :

a ←

b ← a

c ← a

c ← b

d ← c, e

Π∗ :

a ← true

b ← a

c ← a

c ← b

d ← c, e

e ← false

Π∗∗ :

a ← true

b ← a

c ← (a ∨ b)

d ← (c ∧ e)

e ← false

Completion of Π :

a ≡ true

b ≡ a

c ≡ (a ∨ b)

d ≡ (c ∧ e)

e ≡ false

301

2-valued models

• truth-values: {true, false},

• representation: 〈T, F 〉, where T is the set of all true atoms and F is

the set of all false atoms,

• T ∩ F = ∅,

• T ∪ F is the set of all atoms.

302

Supported models

A supported model for a (basic) normal logic program Π is a (2-valued)

Herbrand model in which all equivalences of the completion of Π are

true.

303

Example
Supported model

Completion of Π:

a ≡ true

b ≡ a

c ≡ (a ∨ b)

d ≡ (c ∧ e)

e ≡ false

The supported model of Π is

〈{a, b, c}, {d, e}〉.

304

Including negation as failure

Π:

q ← not p

p ← not x, not q

Completion of Π:

q ≡ ¬p

p ≡ (¬x ∧ ¬q)

x ≡ false

305

3-valued models

• truth-values: {true, false,⊥},

• representation: 〈T, F 〉, where T is the set of all true atoms and F is

the set of all false atoms,

• T ∩ F = ∅, T ∩ ⊥ = ∅, F ∩ ⊥ = ∅,

• T ∪ F ∪ ⊥ is the set of all atoms.

For 〈T1, F1〉 and 〈T2, F2〉 we define

〈T1, F1〉 ≤ 〈T2, F2〉 if T1 ⊆ T2 and F1 ⊆ F2.

306

Fitting Operator

Let Π be a normal logic program. The mapping ΦΠ is defined as follows:

ΦΠ〈T, F 〉 = 〈T ′, F ′〉

where for all atoms A we have:

(i) A ∈ T ′ if there is a rule A← A1, . . . , Am, not Am+1, . . . not An such that

{A1, . . . , Am} ⊆ T and {Am+1, . . . An} ⊆ F ,

(ii) A ∈ F ′ if for all rules A← A1, . . . , Am, not Am+1, . . . not An either

{A1, . . . , Am} ∩ F 6= ∅ or {Am+1, . . . , An} ∩ T 6= ∅,

(iii) A ∈ ⊥ otherwise.

307

Example

Π:

a ←

b ← a

c ← not a

d ← b, c

Given 3-valued model 〈{a}, ∅〉, then

ΦΠ〈{a}, ∅〉 = 〈{a, b}, {c}〉.

308

Properties of ΦΠ

Let Π be a normal logic program.

• Operator ΦΠ is monotonic, that is

〈T1, F1〉 ≤ 〈T2, F2〉 implies ΦΠ〈T1, F1〉 ≤ ΦΠ〈T2, F2〉.

• ΦΠ has a least fixpoint.

309

Fitting semantics

Φ0
Π = 〈∅, ∅〉

Φi+1
Π = ΦΠ(Φi

Π)

Φω
Π = ∪i<ω{Φ

i
Π}

The least fixpoint of ΦΠ, denoted by Φω
Π, supplies the Fitting semantics.

310

Example
Fitting

Π =

r ← s ←

t ← r, s u ← not t

p ← not p, not q a ← b

b ← a

Φ0
Π = 〈∅, ∅〉

Φ1
Π = 〈{r, s}, {q}〉

Φ2
Π = 〈{r, s, t}, {q}〉

Φ3
Π = 〈{r, s, t}, {q, u}〉

Φ4
Π = Φ3

Π

311

Example
Fitting

Π =

a ← b

b ← a

Φ0
Π = 〈∅, ∅〉

Φ1
Π = 〈∅, ∅〉

But, a and b never become true!

⇒: ”Extension” of Fitting semantics: well-founded semantics

312

Unfounded sets

Let Π be a normal logic program.

A set of atoms A is an unfounded set (of Π wrt 〈T, F 〉) if each atom

A ∈ A and for each rule A← A1, . . . Am, not Am+1, . . . not An one of the

following conditions is satisfied:

1. either {A1, . . . , Am} ∩ F 6= ∅ or {Am+1, . . . , An} ∩ T 6= ∅, or

2. there is an 0 ≤ i ≤ m such that Ai ∈ A.

The greatest unfounded set (of Π wrt 〈T, F 〉) is the union of all

unfounded sets (of Π wrt 〈T, F 〉).

313

Example
Unfounded sets

Π =

a ← b

b ← a

Given 〈∅, ∅〉,

the greatest unfounded set is {a, b}.

314

Unfounded sets

The mapping UΠ is defined as follows:

UΠ〈T, F 〉 = 〈T ′, F ′〉

where for all atoms A we have:

(i) A ∈ T ′ if A ∈ T ,

(ii) A ∈ F ′ if A is in the greatest unfounded set (wrt Π and 〈T, F 〉),

(iii) A ∈ ⊥ otherwise.

315

Well-founded semantics

W0
Π = 〈∅, ∅〉

Wi+1
Π = ΦΠ(Wi

Π) ∪ UΠ(Wi
Π)

Wω
Π = ∪i<ωW

i
Π

Wω
Π is the well-founded model of Π.

There always exists a well-founded model of Π.

If the well-founded model is total, then it is the unique stable model.

The well-founded model is a subset of every stable model.

316

Example

Π =

r ← s ← t ← r, s u ← not t

p ← not p, not q a ← b b ← a

Φ0
Π = 〈∅, ∅〉 ∪ U0

Π = 〈∅, ∅〉

W0
Π = 〈∅, ∅〉

Φ1
Π = 〈{r, s}, {q}〉 ∪ U1

Π = 〈∅, {a, b}〉

W1
Π = 〈{r, s}, {q, a, b}〉

Φ2
Π = 〈{r, s, t}, {q, a, b}〉 ∪ U2

Π = 〈{r, s}, {q, a, b}〉

W2
Π = 〈{r, s, t}, {q, a, b}〉

Φ3
Π = 〈{r, s, t}, {q, a, b, u}〉 ∪ U3

Π = 〈{r, s, t}, {q, a, b, u}〉

W3
Π = 〈{r, s, t}, {q, a, b, u}〉

W4
Π = W3

Π

Wω
Π = 〈{r, s, t}, {q, u, a, b}〉

317

Relation to other systems

noMoRe:

Let Γ be the RDG of normal logic program Π.

P∗
Γ((∅, ∅)) corresponds to Φω

Π(〈∅, ∅〉), and

UΓ(C) gives us the greatest unfounded set wrt Π and the 3-valued model

obtained from C.

(PU)∗Γ((∅, ∅)) gives us the well-founded model of Π.

smodels:

expand(∅,A) gives well-founded model of Π, where A is the set of all

atoms in Π

318

Alternating fixpoint characterization

Let Π be a logic program and X be a set of atoms.

• Define CΠ(X) = Cn(ΠX).

• The fixpoints of CΠ(X) are the answer sets of Π.

• CΠ(X) is anti-monotonic. Hence, CΠ(CΠ(X)) = C2
Π(X) is monotonic.

• Define AΠ(X) = C2
Π(X).

• 〈lfpAΠ(X), Atm \ CΠ(lfpAΠ(X))〉 is the well-founded model of Π.

319

Example
Alternating fixpoint characterization

Π =

r ← s ← t ← r, s u ← not t

p ← not p, not q a ← b b ← a

X = {r, s, t}

Cn(Π{r,s,t}) = {r, s, t, p} Cn(Π{r,s,t,p}) = {r, s, t} AΠ(X) = {r, s, t} = X

lfpAΠ(X) = {r, s, t}

CΠ(lfpAΠ(X)) = {r, s, t, p} Atm \ CΠ(lfpAΠ(X)) = {u, a, b, q}

Well-founded model: 〈{r, s, t}, {q, u, a, b}〉

320

The Cmodels approach

For syntactically restricted (tight) programs answer sets and models of

completion coincide.

Cmodels idea: use program completion to compute answer sets of tight

programs.

• Completion

• Basic Davis-Putnam-Logemann-Loveland procedure for SAT

• Operation of Cmodels

321

Completion (Recapitulation)

Let Π be a normal logic program.

Then, Π∗ is a set of rules obtained from Π as follows:

• Replace each rule A← with A← true.

• If an atom A is not the head of a rule in Π, then add A← false.

Π∗∗ is obtained from Π∗ as follows:

• Replace each occurence of not with ¬.

• Replace each rule A0 ← A1, . . . An with A0 ← (A1 ∧ . . . ∧An).

• Replace all rules A← B1, . . . , A← Bm with same head A by

A← (B1 ∨ . . . ∨Bm).

Finally, we obtain the program completion of Π by replacing each

occurence of ← by ≡.
322

Example

Π :

p ← not q

q ← not p

r ← p

r ← q

Π∗ = Π

Π∗∗ :

p ← ¬q

q ← ¬p

r ← (p ∨ q)

Completion of Π :

p ≡ ¬q

q ≡ ¬p

r ≡ (p ∨ q)

323

Satisfiability

Satisfiability problem (SAT)

Find an interpretation satisfying a given set of propositional

formulas (or determine that this set is unsatisfiable).

We consider the (superficially) simpler problem of finding an

interpretation satisfying a given set of clauses

(that is, a propositional formula in CNF).

324

Propositional Satisfiability

• A literal is an atom or its negation.

• For any atom A the literals A and ¬A are complementary to each

other.

• For any literal L the literal complementary to L is denoted by L.

• A clause is a (possibly empty) disjunction of literals.

The empty clause is denoted by ⊥.

☞ Any formula can be transformed into an equivalent set of clauses.

325

Clausification

Let F be a formula.

Clausify(F)

eliminate all connectives from F except ¬,∧ and ∨;

distribute ¬ over ∧ and ∨ until it applies to atoms only;

distribute ∨ over ∧ until it applies to literals only;

return the set of conjunctive terms of the resulting formula;

326

Clausification

We have

Clausify(p ∨ ¬(q → r)) = (p ∨ q) ∧ (p ∨ ¬r).

Problem: Clausify(F) can be much longer than F ; for instance if F is

(p1 ∧ q1) ∨ . . . ∨ (pn ∧ qn) then Clausify(F) consists of 2n clauses.

☞ Use alternative clausification.

327

Clausification with new atoms

Let F be a formula and let Γ be set of clauses (initially Γ = ∅).

Clausify⋆(F, Γ)

if F is a conjunction of clauses C1 ∧ . . . ∧ Ck

then exit with {C1, . . . , Ck} ∪ Γ;

G← a minimal (wrt subformulas) non-literal subformula of F ;

u← a new atom;

F ← result of replacing G in F by u;

Clausify⋆(F, Γ ∪Clausify(u ≡ G));

☞ Clausify⋆(F, ∅) contains atoms not contained in F .

328

Example for Clausify⋆(F,Γ)

F Γ G u Clausify(u ≡ G)

p ∨ ¬(q → r) ∅ q → r u0 (¬u0 ∨ ¬q ∨ r) ∧ (q ∨ u0) ∧ (¬r ∨ u0)

p ∨ ¬u0 ∅

☞ Clausify⋆(F, Γ) = (p ∨ ¬u0) ∧ (¬u0 ∨ ¬q ∨ r) ∧ (q ∨ u0) ∧ (¬r ∨ u0)

329

Properties of Clausify⋆

• F and Clausify⋆(F, ∅) are not equivalent:

To see this consider

F = p ∨ ¬(q → r)

Clausify⋆(F, Γ) = (p ∨ ¬u0) ∧ (¬u0 ∨ ¬q ∨ r) ∧ (q ∨ u0) ∧ (¬r ∨ u0)

Let I be an interpretation s.t. I(q) = I(u0) = 1 and I(p) = I(r) = 0.

Then I(F) = 1 but I(Clausify⋆(F, Γ)) = 0.

• Each model of F can be extended to “new” atoms such that

Clausify⋆(F, ∅) will be satisfied (take I(u0) = 0).

• Each model of Clausify⋆(F, ∅) is a model of F when restricted to

“old” atoms.

330

Example for Clausify⋆(F,Γ)

F Γ G u Clausify(u ≡ G)

(p1 ∧ q1) ∨ (p2 ∧ q2) ∅ p1 ∧ q1 u0 (¬u0∨p1)∧(¬u0∨q1)∧

(¬p1 ∨ ¬q1 ∨ u0)

u0 ∨ (p2 ∧ q2) Clausify(u0 ≡ p1 ∧ q1) ∪ Γ p2 ∧ q2 u1 (¬u1∨p2)∧(¬u1∨q2)∧

(¬p2 ∨ ¬q2 ∨ u1)

u0 ∨ u1 Clausify(u1 ≡ p2 ∧ q2) ∪ Γ

Clausify⋆(F, Γ) = (u0 ∨ u1)∧

(¬u0 ∨ p1) ∧ (¬u0 ∨ q1) ∧ (¬p1 ∨ ¬q1 ∨ u0)∧

(¬u1 ∨ p2) ∧ (¬u1 ∨ q2) ∧ (¬p2 ∨ ¬q2 ∨ u1)

For F = (p1 ∧ q1) ∨ . . . ∨ (pn ∧ qn) we have that Clausify⋆(F, Γ) has (3n + 1)

clauses.

☞ This is small compared to 2n clauses of Clausify(F) (take n = 5).

331

Unit Clause Propagation

A unit clause is a clause that consists of a single literal.

If a set of clauses contains a unit clause, then it can be simplified

using the fact that

• the set of clauses {F, F ∨G} is equivalent to {F} and

• the set of clauses {F,¬F ∨G} is equivalent to {F, G}.

A simplification step like this may create a new unit clause and that can

make further simplifications possible.

☞ This process is called unit propagation.

332

Unit Clause Propagation Procedure

UnitPropagation(Γ, U)

while there is a unit clause {L} in Γ

U ← U ∪ {L}

for every clause C ∈ Γ do

if L ∈ C then Γ← Γ \ {C}

elsif L ∈ C then Γ← (Γ \ {C}) ∪ {C \ {L}}

end

end

• Γ is a set of clauses;

• U is a consistent set of literals such that, for every L ∈ U ,

neither L nor L occurs in any clause in Γ.

333

Some remarks

• During execution, Γ is simplified and U grows bigger.

• Upon termination, there are no unit clauses in Γ.

• To apply unit clause propagation to a set of clauses Γ0, the

procedure is invoked with Γ = Γ0 and U = ∅.

• After every execution of the while-loop, Γ ∪ U remains equivalent to

the original set of clauses Γ0.

334

Example

For Γ = {p,¬p ∨ ¬q,¬q ∨ r} apply Unit-Propagation.

Γ U L

{p,¬p ∨ ¬q,¬q ∨ r} ∅ p

{¬q,¬q ∨ r} {p} ¬q

∅ {p,¬q} no

☞ This computation shows that Γ = {p,¬p ∨ ¬q,¬q ∨ r} is equivalent to

{p,¬q}.

☞ Each interpretation I with I(p) = 1 and I(q) = 0 is a model of Γ.

335

Another Example

For Γ = {p, p ∨ q,¬p ∨ ¬q, q ∨ r,¬q ∨ ¬r} apply Unit-Propagation.

Γ U L

{p, p ∨ q,¬p ∨ ¬q, q ∨ r,¬q ∨ ¬r} ∅ p

{¬q, q ∨ r,¬q ∨ ¬r} {p} ¬q

{r} {p,¬q} r

∅ {p,¬q, r} no

☞ Interpretation I with I(p) = I(r) = 1 and I(q) = 0 is a model of Γ.

336

Properties of Unit-Propagation

There are two cases when unit clause propagation alone is sufficient for

solving SAT for a set of clauses Γ0.

For this, consider the values of Γ and U upon termination of

Unit-Propagation(Γ0, ∅).

1. if Γ includes the empty clause, then Γ is unsatisfiable, and so is Γ0;

2. if Γ = ∅, then Γ0 is equivalent to U , which is a consistent set of

literals.

A model of Γ0 can easily obtained from U .

337

Davis-Putnam-Logemann-Loveland Procedure

The DPLL procedure is an extension to unit clause propagation that

allows for solving SAT in full generality.

Observation

For any set of formulas Γ and any formula F ,

the set of models of Γ is the union of the sets of models

of Γ ∪ {F} and Γ ∪ {¬F}.

The DPLL procedure uses this fact to apply unit clause propagation

(even) when Γ does not contain unit clauses.

338

The DPLL algorithm

DPLL(Γ, U)

UnitPropagation(Γ, U)

if ∅ ∈ Γ then return

if Γ = ∅ then exit with a model of U

A← select(atoms(Γ))

DPLL(Γ ∪ {A}, U)

DPLL(Γ ∪ {A}, U)

• Γ is a set of clauses; U is a consistent set of literals such that, for

every L ∈ U , neither L nor L occurs in any clause in Γ (see above).

• atoms(Γ) returns the set of all atoms occuring in Γ,

• Initially, DPLL is invoked with Γ = Γ0 and U = ∅.

339

Some remarks

• The return of the first if-statement indicates that Γ ∪ U is

unsatisfiable.

• The exit in the second statement produces a model of Γ ∪ U .

340

Example

Let Γ = {¬p ∨ q,¬p ∨ r, q ∨ r,¬q ∨ ¬r} be a set of clauses and apply DPLL.

Γ = {¬p ∨ q,¬p ∨ r, q ∨ r,¬q ∨ ¬r}

U = ∅

DPLL(Γ, U)

UP leaves Γ and U unchanged

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

DPLL(Γ ∪ {p}, U)

UP gives ∅ ∈ Γ hence no model

DPLL(Γ ∪ {¬p}, U)

UP gives

Γ = {q ∨ r,¬q ∨ ¬r}

U = {¬p}

select q

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

DPLL(Γ ∪ {q}, U)

UP gives

Γ = ∅

U = {¬p, q,¬r} is model

DPLL(Γ ∪ {¬q}, U)

UP gives

Γ = ∅

U = {¬p,¬q, r} is model

341

Operation of Cmodels

In the process of its operations, Cmodels

1. simplifies the given normal program,

2. verifies that the resulting program is tight,

3. forms the program completion and call a SAT solver to find its

models.

342

Simplification

Let AS(Π) denote the set of all answer sets of program Π.

• Two programs Π and Π′ are equivalent if AS(Π) = AS(Π′).

☞ Many other different equivalence concepts were proposed

in the literature!

343

Some Definitions

Define

• Atom(Π) all atoms occurring in Π

• Atom+(Π) =
⋂

X∈AS(Π) X intersection of all answer sets

• Atom−(Π) = Atom(Π) \
⋃

X∈AS(Π) X atoms not in any answer set of Π

344

Simplification

Any program Π of the form

Head← Body, F.

Π′

s.t. F ∈ Atom−(Π) is equivalent to program

← F.

Π′
(2)

345

Simplification

Let Π be a program of the form

Head← Body, not F.

Π′

• If F ∈ Atom+(Π) then Π is equivalent to program

← not F.

Π′
(3)

• If F ∈ Atom−(Π) then Π is equivalent to program

← F.

Head← Body.

Π′

(4)

346

Example

Π =

a← b, not c.

d← not a.

c← not d.

☞ AS(Π) = {{d}} implies Atom+(Π) = {d} and Atom−(Π) = {a, b, c}.

According to (2) Π is equivalent to

Π′ =

← b.

d← not a.

c← not d.

☞ Atom+(Π′) = Atom+(Π) = {d} and Atom−(Π′) = Atom−(Π) = {a, b, c}.

347

Example ctd

According to (3) Π′ is equivalent to

Π′′ =

← b.

d← not a.

← not d.

According to (4) Π′′ is equivalent to

Π′′′ =

← b.

← a.

d← .

← not d.

348

Remark on Simplification

How to determine sets Atom+(Π) and Atom−(Π)?

• for example, all facts of Π are in Atom+(Π)

• for example, atoms {a | (← a) ∈ Π} are in Atom−(Π)

• cmodels uses smodels procedures atmost and atleast to determine

subsets of Atom+(Π) and Atom−(Π), respectively.

• In general, the WFM is part of any answer set.

349

Tight Programs

The positive dependency graph G of a normal logic program Π is a

directed graph s.t.

1. the vertexes of G are the atoms occurring in Π

2. G has an edge from A to B if Π has a rule with head B that

contains A in the positive part of the body.

A program is tight if its positive dependency graph has no cycles.

350

Example

Π =

p← not p.

p← q.

q ← p.

The positive dependency graph of Π:

p��
��

q��
��

-�

☞ The graph has a cycle and thus Π is not tight.

351

Tightness

Before verifying tightness cmodels applies some further simplifications

• rules of the form A← . . . , A, . . . are deleted since this does not

change answer sets and

• “inessential” vertexes are eliminated, for example atoms that do not

occur in the head of a rule.

Then cmodels verifies tightness by

1. building the positive dependency graph and

2. uses a standard depth first search algorithm to detect cycles.

352

Example

Let Π be the following program:

a← not b, not d.

b← not a, not c.

c← d.

d← c.

f ← c, not f.

c← not d, not a, not b.

d← not c, not a, not b.

☞ Which answer sets?

353

Example

Π Sim(Π) Completion

a← not b, not d. a← not b. a ≡ ¬b

b← not a, not c. b← not a. b ≡ ¬a

c← d. ← d. ⊥ ≡ d.

d← c. ← c. ⊥ ≡ c.

f ← c, not f. ← c.

c← not d, not a, not b. c← not a, not b. c ≡ ¬b ∧ ¬a.

d← not c, not a, not b. d← not a, not b. d ≡ ¬b ∧ ¬a.

☞ Π is not tight, but Sim(Π) is tight.

☞ AS(Π) = {{a}, {b}} .

354

Detailed Operation of Cmodels

In the process of its operations, Cmodels

1. simplifies a given program generated from lparse

2. turns it into a basic nested program

3. verifies that the resulting program is tight,

4. forms the program completion and call a SAT solver to find its

models.

355

lparse Programs

An output program of lparse contains

• normal rules of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not An,

• choice rules of the form

{A1, . . . , Am} ← Am+1, . . . , An, not An+1, . . . , not Ak,

• Weight constraint rules of the form

A0 ← l {A1 = w1, . . . , Am = wm},

where each Ai is an atom, and l (lower bound) and wj (weights) are

integers.

356

Basic Nested Programs

A basic nested program contains

• basic nested rules of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not An, not not An+1, . . . , not not Ak,

where each Ai is an atom.

☞ This is a special case of the concept of programs with nested

expressions.

☞ Observe that the definiton of tightness works for basic nested

without changes.

357

Example: choice rules

The following lparse program

{p, q}

r ← p

r ← q

is translated by cmodels into the following program with nested

expressions:

p ← not not p

q ← not not q

r ← p

r ← q

358

Simplification

Any lparse program of the form

Head ← L{F = w, Tail}

Π′

s.t. F ∈ Atom−(Π) is equivalent to program

← F

Head ← L{Tail}

Π′

(5)

359

Simplification

Let Π be a lparse program of the form

Head← L{not F = w, Tail}

Π′

• If F ∈ Atom+(Π) then Π is equivalent to program

← not F.

Head← L{Tail}

Π′

(6)

• If F ∈ Atom−(Π) then Π is equivalent to program

← F.

Head← L− w{Tail}

Π′

(7)

360

Example

Let Π be the following program:

{a}

c← 4{a = 1, b = 1, not d = 2}

☞ AS(Π) = {{a}, ∅} implies Atom+(Π) = ∅ and Atom−(Π) = {b, c, d}.

According to (5) Π is equivalent to

{a}

← b

c← 4{a = 1, not d = 2}

361

Example ctd

Since Atom−(Π) = {b, c, d}, according to (7) program

{a}

← b

c← 4{a = 1, not d = 2}

is equivalent to

{a}

← b

← d

c← 2{a = 1}.

362

Example: Translation to Basic Nested Programs

The rule

p← 3{q = 3, r = 2, s = 2}

is translated to four simpler rules:

p← aux1

aux1← 3{r = 2, s = 2}

p← q,aux2

aux2← 0{r = 2, s = 2}

☞ aux1 is an abbreviation for 3{r = 2, s = 2} and

☞ aux2 is an abbreviation for 0{r = 2, s = 2}.

☞ since 0{r = 2, s = 2} is always true aux2 can be dropped.

363

Example ctd

We obtain

p← aux1

aux1← 3{r = 2, s = 2}

p← q

A similar step gives:

p← aux1

aux1← aux3

aux3← 3{s = 2}

aux1← r,aux4

aux4← 1{s = 2}

p← q

☞ aux3 is an abbreviation for 3{s = 2} and

☞ aux4 is an abbreviation for 1{s = 2}.

364

Example ctd

Since 3{s = 2} is always false we obtain program

p← aux1

aux1← r,aux4

aux4← 1{s = 2}

p← q

Finally, we get the following program since 1{s = 2} can be replaced by s:

p← aux1

aux1← r,aux4

aux4← s

p← q

365

SAT for Horn Clauses and

Computation of the least Herbrand Modell

Clauses vs Rules:

The efficient DPLL algorithm for SAT can be further optimized if we

restrict ourself to clauses with “direction”.

☞ We deal with definite programs, Horn clauses or rules.

• efficient procedure for SAT on Horn clauses

• efficient computation of the least Herbrand model

• naive algorithm

• optimized algorithm according to Dowling und Gallier (1984)

• application to ASP solvers

366

Horn-Klauseln (Erinnerung)

Eine aussagenlogische Horn-Klausel ist

• eine definite Programmklausel oder

• ein definites Ziel

☞ eine Horn-Klausel hat folgende Form:

• A (Fakt)

• [A,¬B1, . . . ,¬Bm] (A← B1 ∧ . . . ∧Bm) (definite Klausel kein Fakt)

• [¬B1, . . . ,¬Bm] (← B1 ∧ . . . ∧Bm) (definites Ziel)

☞ Horn-Klauseln und definite Programme unterscheiden sich nur durch

definite Ziele

367

Beispiel

Betrachte folgende Menge von Horn-Klauseln:

A

¬A ∨B

¬A ∨ ¬B

☞ Horn-Klauseln können inkonsistent sein, aber

☞ definite Programme (als Klauselmenge) sind immer konsistent.

368

Das Kleinste Herbrand-Modell (Erinnerung)

Sei P ein definites aussagenlogisches Programm und I ein

Interpretation.

TP(I) = {A | (A← B1 ∧ . . . ∧Bm) ∈ P und {B1, . . . , Bn} ⊆ I}

TP ↑0 = ∅

TP ↑(n + 1) = TP(TP ↑n) (für n ∈ IN)

☞

TP ↑1 = {A | (A← B1 ∧ . . . ∧Bm) ∈ P und {B1, . . . , Bn} ⊆ ∅}

TP ↑(n + 1) = {A | (A← B1 ∧ . . . ∧Bm) ∈ P und {B1, . . . , Bn} ⊆ TP ↑(n)}

369

Algorithmus 1 für definite Programme
Sei P = {r1, . . . , rn} ein definites Programm, Atm(P) = {A1, . . . , Am} die

aussagenlogischen Variablen von P , ~V ein boolscher Vektor der Länge m und ch

eine boolsche Variable.

program a l g o r i t hm1 ;

begin ch := t ;

f o r each X ∈ Atm(P) do V (X) := f end fo r

fo r each X ∈ Atm(P) s.t. X ∈ P do V (X) := t end fo r

wh i le ch do

ch := f ;

f o r each (A← B1 ∧ . . . ∧Bk) ∈ P do

i f V (B1) = t, . . . , V (Bk) = t and V (A) = f then

V (A) := t; ch := t;

P := P \ {A← B1 ∧ . . . ∧Bk}

end i f

end fo r

end whi le

end

☞ MP = {A | V (a) = t} mit Komplexität O(n2) .

370

Beispiel

Betrachte folgendes definite Programm (Ordnung nicht relevant):

A B ← A

C D ← B ∧ C

E ← D ∧ F F ← E

➥ V (A) = V (B) = V (C) = V (D) = V (E) = V (F) = V (G) = f ;

➥ V (A) = V (C) = t

➥ 1. While-Loop: V (B) = t ; P := P \ {B ← A}

➥ 2. While-Loop: V (D) = t ; P := P \ {D ← B ∧ C}

➥ 3. While-Loop: keine weitern Änderungen

371

Algorithmus 1 für Horn-Klauseln

Sei H = {r1, . . . , rn} ein definites Programm, Atm(H) = {A1, . . . , Am} die

aussagenlogischen Variablen, ~V ein boolscher Vektor der Länge m und ch und cons

boolsche Variablen.

program a l g o r i t hm1 ;

begin ch := t; cons := t;

f o r each X ∈ Atm(H) do V (X) := f end fo r

fo r each X ∈ Atm(H) s.t. X ∈ H do V (X) := t end fo r

wh i le ch and cons do ch := f ;

f o r each C ∈ H and ch do

i f C = ¬B1 ∨ . . . ∨ ¬Bk and V (B1) = t, . . . , V (Bk) = t then cons := f

e l s e

i f C = (A ∨ ¬B1 ∨ . . . ∨ ¬Bk) and V (B1) = t, . . . , V (Bk) = t and V (A) = f then

V (A) := t; ch := t;

H := H \ C

end i f

end i f

end fo r

end whi le end 372

Beispiel

Betrachte folgende Menge von Horn-Klauseln (Ordnung nicht relevant):

A

¬A ∨B

¬A ∨ ¬B

➥ V (A) = V (B) = f ;

➥ V (A) = t

➥ 1. While-Loop: V (B) = t ; H := H \ {¬A ∨B}

➥ 2. While-Loop: cons = f ;

☞ Inkonsistenz entdeckt!!

☞ Komplexität O(n2)

373

Optimierung von Algorithmus 1

☞ Initial werden alle aussagenlogischen Variablen gleich f (false)

gesetzt (wie bisher), aber es wird andere Datenstruktur verwendet.

• für jede Horn-Klausel C ∈ H wird ein Zähler eingeführt, dessen

Wert die Anzahl der negativen Literale mit Wahrheitswert f (false)

angibt (falls es keine negativen Literale in c gibt ist der Wert 0)

• eine Klausel C wird bearbeitet, wenn der Wert ihres Zählers 0 ist,

d.h. für alle negativen Literale ¬B ∈ C ist B = t (true)

➥ das positive Literal A ∈ C wird auf t (true) gesetzt sobald der

Zähler von C null ist

• mit jeder aussagenlogischen Variabel B ist die Liste der Klauseln

assoziiert, in denen B negative vorkommt

• ist ein positives Literal A = t (true), werden die Zähler aller

Klauseln in denen A negativ vorkommt um eins decrementiert

374

Algorithmus 2 für Horn-Klauseln

Sei H = {r1, . . . , rn} ein definites Programm und

Atm(H) = {A1, . . . , Am} die aussagenlogischen Variablen, die in H vorkommen.

program algorithm2;

type clause = record N : 1 . . n ; next : ˆ clause end ;

type lit = record val : boolean ; clauselist : ˆ clause end ;

type Hornclause = ar ray [1 . . m] of lit ;

type count = ar ray [1 . . n] of 0 . . m ;

var H : Hornclause ; queue : q-type ;

num, poslit : count ; cons : boolean ;

begin

input(H);

init(H, num, poslit, queue, new);

cons := t;

sat(H, num, poslit, queue, cons, new);

i f cons then

print(assignment);

e l s e

print(unsat);

end 375

Algorithmus 2 Initialisierung

Gegeben: H

Initialisierung von num , poslit und cons (queue):

1. für alle Variablen A ∈ Atm(H) setzte

• A.val := f und

• A.clauselist := Liste aller C ∈ H mit ¬A ∈ C

2. für alle Klauseln C ∈ H setzte

• num[C] := Anzahl der negativen Literale in C und

• poslit[C] :=

A falls A positive in C

0 sonst (steht für false)

3. setzte queue := Liste aller Fakten,

d.h. aller Klauseln ohne negative Literale

4. setzte cons := t

376

Algorithmus 2 sat

program sat(H, num, poslit, queue, cons, new);

var c1, c2, old, new, next : 1 . . n; \∗ H = {r1, . . . , rn} ∗\

k : 1 . . m; \∗ Atm(H) = {A1, . . . , Am} ∗\

begin old := new;

whi le queue <> nil and cons do new := 0;

f o r i := 1 to old and cons do

c1 := pop(queue); next := poslit(c1);

f o r c2 ∈ H[next].clauselist do num[c2] := num[c2]− 1;

i f num[c2] = 0 then k := poslit[c2];

i f H[k].val 6= 1 then

i f k <> 0 then

H[k].val := t; queue := push(c2, queue); new := new + 1;

e l s e cons := f ;

end i f end i f end i f

end fo r end fo r

old := new;

end whi le end

377

Beispiel: Initialisierung

Betrachte folgende Horn-Klauseln:

c1 : A c2 : B ∨ ¬A ≡ (B ← A)

c3 : C ∨ ¬A ∨ ¬B ≡ (C ← A ∧B) c4 : ¬B ∨ ¬C ≡ (← B ∧ C)

clauselist(A) = {c2, c3} poslit(c1) = A poslit(c3) = C

clauselist(B) = {c3, c4} poslit(c2) = B poslit(c4) = 0

clauselist(C) = {c4}

Es gilt:

partielles Modell = {A} num(c1) = 0

queue = {A} num(c2) = 1

cons = t num(c3) = 2

num(c4) = 2

378

Beispiel: nach 1. While-Loop

c1 : A c2 : B ∨ ¬A ≡ (B ← A)

c3 : C ∨ ¬A ∨ ¬B ≡ (C ← A ∧B) c4 : ¬B ∨ ¬C ≡ (← B ∧ C)

clauselist(A) = {c2, c3} poslit(c1) = A poslit(c3) = C

clauselist(B) = {c3, c4} poslit(c2) = B poslit(c4) = 0

clauselist(C) = {c4}

Es gilt:

partielles Modell = {A, B} num(c1) = 0

queue = {B} num(c2) = 0

cons = t num(c3) = 1

num(c4) = 2

379

Beispiel: nach 2. While-Loop

c1 : A c2 : B ∨ ¬A ≡ (B ← A)

c3 : C ∨ ¬A ∨ ¬B ≡ (C ← A ∧B) c4 : ¬B ∨ ¬C ≡ (← B ∧ C)

clauselist(A) = {c2, c3} poslit(c1) = A poslit(c3) = C

clauselist(B) = {c3, c4} poslit(c2) = B poslit(c4) = 0

clauselist(C) = {c4}

Es gilt:

partielles Modell = {A, B, C} num(c1) = 0

queue = {C} num(c2) = 0

cons = t num(c3) = 0

num(c4) = 1

380

Beispiel: nach 3. While-Loop

c1 : A c2 : B ∨ ¬A ≡ (B ← A)

c3 : C ∨ ¬A ∨ ¬B ≡ (C ← A ∧B) c4 : ¬B ∨ ¬C ≡ (← B ∧ C)

clauselist(A) = {c2, c3} poslit(c1) = A poslit(c3) = C

clauselist(B) = {c3, c4} poslit(c2) = B poslit(c4) = 0

clauselist(C) = {c4}

Es gilt:

partielles Modell = {A, B, C} num(c1) = 0

queue = {0} (false!!) num(c2) = 0

cons = f (!!) num(c3) = 0

num(c4) = 0

☞ Inkonsistenz entdeckt

381

Komplexität von Algorithmus 2

• Jede Horn Klausel C ∈ H kommt höchsten einmal in die queue ; C

kommt genau dann in die queue wenn alle ihre negativen Literale t

(true) sind.

• Sobald eine Klausel c2 bearbeitet wird, wird ihr positives Literal zu

t (true), dass verhindert doppelte Behandlung von Klauseln.

• Wenn eine Klausel c1 im While-Loop gelöscht wird, werden sofort

alle Klauseln behandelt, die das positive Literal von c1 negativ

enthalten. Jedes negative Vorkommen einer Variable wird nur genau

einmal betrachtet. Es gibt nur linear (in n der Anzahlder Klauseln)

viele negative Vorkommen von aussagenlogischen Variablen.

☞ Algorithmus 2 braucht O(n) Schritte.

☞ Für definite Programme berechnet Algorithmus 2 das kleinste

Herbrand Modell MP

382

How to Apply the Idea to ASP?

Horn Clauses normal rules

a← b1, . . . , bn a← b1, . . . , bn, not c1, . . . , not ck

← b1, . . . , bn ← b1, . . . , bn, not c1, . . . , not ck

Remeber application condition for rule r wrt a set of atoms X

• r has to be supported, that is, body+(r) ⊆ X , and

• r has to be unblocked, that is, body−(r) ∩X = ∅ .

☞ Use tow counter for each rule, one for support and one for blockage.

383

Notions of Equivalence

Two programs Π1 and Π2 are

• (weakly) equivalent (Π1 ≡ Π2) if AS(Π1) = AS(Π2) .

• strongly equivalent (Π1 ≡s Π2)if AS(Π1 ∪Π′) = AS(Π2 ∪Π′)

for any program Π′ .

• uniformly equivalent (Π1 ≡u Π2) if AS(Π1 ∪ F) = AS(Π2 ∪ F)

for any set of facts F .

Example: Π1 = {a ∨ b← } and Π2 = {a← not b , b← not a }

• Π1 ≡ Π2 since AS(Π1) = {{a}, {b}} = AS(Π2)

• Π1 ≡u Π2

• Π1 6≡s Π2 , e.g. Π′ = {a← b , b← a }

384

How to Show Strong Equivalence

• close relation to non-classical logic of here-and-there (Lifschitz,

Pearce, Valverde)

• model-theoretic characterization (Turner)

– Let Π be a logic program and X, Y interpretations such that

X ⊆ Y

– (X, Y) is an SE-model of Π if Y |= Π and X |= ΠY

– Ms(Π) denotes the set of all SE-models of Π

– Π1 ≡s Π2 iff Ms(Π1) = Ms(Π2)

385

How to Show Strong Equivalence (ctd.)

Example: Π1 = {a ∨ b← } and Π2 = {a← not b , b← not a }

Ms(Π1) = {({a}, {a}), ({b}, {b}), ({a}, {a, b}), ({b}, {a, b}),

({a, b}, {a, b})}

Ms(Π2) = Ms(Π1) ∪ {(∅, {a, b})}

Ms(Π1) 6= Ms(Π2) therefore Π1 6≡s Π2

386

How to Show Uniform Equivalence

• model-theoretic characterization (Eiter, Fink)

– Let Π be a logic program and X, Y interpretations such that

X ⊆ Y

– (X, Y) ∈Ms(Π) is an UE-model of Π if

for every (X ′, Y) ∈Ms(Π) it holds that X ⊂ X ′ implies X ′ = Y

– Mu(Π) denotes the set of all UE-models of Π

– Π1 ≡u Π2 iff Mu(Π1) = Mu(Π2)

387

How to Show Uniform Equivalence (ctd.)

Example: Π1 = {a ∨ b← } and Π2 = {a← not b , b← not a }

Ms(Π1) = {({a}, {a}), ({b}, {b}), ({a}, {a, b}), ({b}, {a, b}),

({a, b}, {a, b})}

Ms(Π2) = Ms(Π1) ∪ {(∅, {a, b})}

☞ (X, Y) = (∅, {a, b}) is not an UE-models of Π2 since

X ⊂ X ′ implies X ′ = Y does not hold e.g. for (X ′, Y) = ({a}, {a})

☞ All other SE-models of Π1 and Π2 are also UE-models:

Mu(Π1) = Mu(Π2) therefore Π1 ≡u Π2

388

