
What’s your preference?

And how to express and implement it
in logic programming!

Torsten Schaub

University of Potsdam

What’s your preference?

And how to express and implement it
in logic programming!

Torsten Schaub

University of Potsdam

• Motivation

• Answer set programming

• Answer set programming with preferences

? Syntax

? Semantics

? Implementation

• Conclusion

1

Motivation

The notion of preference in commonsense reasoning is pervasive.

Motivation

The notion of preference in commonsense reasoning is pervasive.

For instance,

• in buying a car, one may prefer certain features over others;

Motivation

The notion of preference in commonsense reasoning is pervasive.

For instance,

• in buying a car, one may prefer certain features over others;

• in scheduling, meeting some deadlines may be more important

than meeting others;

Motivation

The notion of preference in commonsense reasoning is pervasive.

For instance,

• in buying a car, one may prefer certain features over others;

• in scheduling, meeting some deadlines may be more important

than meeting others;

• in legal reasoning, laws are subject to higher principles, like

lex superior or lex posterior, which are themselves subject to

“higher higher” principles;

Motivation

The notion of preference in commonsense reasoning is pervasive.

For instance,

• in buying a car, one may prefer certain features over others;

• in scheduling, meeting some deadlines may be more important

than meeting others;

• in legal reasoning, laws are subject to higher principles, like

lex superior or lex posterior, which are themselves subject to

“higher higher” principles;

• etc etc . . .

2

Legal reasoning
The challenge!

“A person wants to find out if her security interest in a certain ship is perfected. She

currently has possession of the ship. According to the Uniform Commercial Code

(UCC, §9-305) a security interest in goods may be perfected by taking possession of

the collateral. However, there is a federal law called the Ship Mortgage Act (SMA)

according to which a security interest in a ship may only be perfected by filing a

financing statement. Such a statement has not been filed. Now the question is

whether the UCC or the SMA takes precedence in this case. There are two known

legal principles for resolving conflicts of this kind. The principle of Lex Posterior gives

precedence to newer laws. In our case the UCC is newer than the SMA. On the other

hand, the principle of Lex Superior gives precedence to laws supported by the higher

authority. In our case the SMA has higher authority since it is federal law.”

(Gordon, 1993)

3

Legal reasoning
Our solution in “ordered logic programming”

perfected :- name(ucc), possession, not neg perfected.

neg perfected :- name(sma), ship, neg finstatement, not perfected.

possession. ship. neg finstatement.

(Y < X) :- name(lex_posterior(X,Y)), newer(X,Y), not neg (Y < X).

(X < Y) :- name(lex_superior(X,Y)), state_law(X), federal_law(Y), not neg (X < Y).

newer(ucc,sma). federal_law(sma). state_law(ucc).

(lex_posterior(X,Y) < lex_superior(X,Y)).

4

Approaches to preference
(in alphabetical order)

Approaches to preference
(in alphabetical order)

• Baader and Hollunder

• Benferhat

• Brewka and Eiter

• Delgrande, Schaub, and Tompits

• Dimopoulos and Kakas

• Geffner and Pearl

• Gelfond and Son

• Grosof

Approaches to preference
(in alphabetical order)

• Baader and Hollunder

• Benferhat

• Brewka and Eiter

• Delgrande, Schaub, and Tompits

• Dimopoulos and Kakas

• Geffner and Pearl

• Gelfond and Son

• Grosof

• Hunter

• Marek and Truszczyński

• Prakken and Sergot

• Rintanen

• Sakama and Inoue

• Wang, Zhou, and Lin

• Zhang and Foo

• etc etc

5

Our focus

Our focus

Extended logic programming under answer sets semantics

Our focus

Extended logic programming under answer sets semantics

➥ Allows for solving all search problems within NP

Our focus

Extended logic programming under answer sets semantics

➥ Allows for solving all search problems within NP

➥ Allows for multiple solutions

Our focus

Extended logic programming under answer sets semantics

➥ Allows for solving all search problems within NP

➥ Allows for multiple solutions

➥ Allows for using powerful off-the-shelf systems,

such as dlv, nomore and smodels

6

Approaches to preference
(in alphabetical order)

◦ Baader and Hollunder

◦ Benferhat

• Brewka and Eiter

• Delgrande, Schaub, and Tompits

◦ Dimopoulos and Kakas

◦ Geffner and Pearl

◦ Gelfond and Son

◦ Grosof

◦ Hunter

◦ Marek and Truszczyński

◦ Prakken and Sergot

◦ Rintanen

◦ Sakama and Inoue

• Wang, Zhou, and Lin

◦ Zhang and Foo

◦ etc etc

7

Why these approaches?

Why these approaches?

✔ Extended logic programming

Why these approaches?

✔ Extended logic programming

✘ Selection function on the set of answer sets

Why these approaches?

✔ Extended logic programming

✘ Selection function on the set of answer sets

✘ Complexity within NP

8

Extended logic programs

• A rule, r, is an ordered pair of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln,

where n ≥ m ≥ 0, and each Li (0 ≤ i ≤ n) is a literal.

• An extended logic program is a finite set of rules.

Extended logic programs

• A rule, r, is an ordered pair of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln,

where n ≥ m ≥ 0, and each Li (0 ≤ i ≤ n) is a literal.

• An extended logic program is a finite set of rules.

• Notations

head(r) = L0

body(r) = {L1, . . . , Lm,not Lm+1, . . . ,not Ln}

body+(r) = {L1, . . . , Lm}

body−(r) = {Lm+1, . . . , Ln}

r+ = head(r)← body+(r)

Extended logic programs

• A rule, r, is an ordered pair of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln,

where n ≥ m ≥ 0, and each Li (0 ≤ i ≤ n) is a literal.

• An extended logic program is a finite set of rules.

• Notations

head(r) = L0

body(r) = {L1, . . . , Lm,not Lm+1, . . . ,not Ln}

body+(r) = {L1, . . . , Lm}

body−(r) = {Lm+1, . . . , Ln}

r+ = head(r)← body+(r)

• A rule r is defeated by a set of literals X iff body−(r) ∩X 6= ∅.

9

Answer sets

• The reduct, ΠX , of a program Π relative to a set X of literals is

defined by

ΠX = {r+ | r ∈ Π and body−(r) ∩X = ∅}.

Answer sets

• The reduct, ΠX , of a program Π relative to a set X of literals is

defined by

ΠX = {r+ | r ∈ Π and body−(r) ∩X = ∅}.

In other words, ΠX is obtained from Π by

1. deleting any rule in Π which is defeated by X and

2. deleting each literal of the form not L occurring

in the bodies of the remaining rules.

Answer sets

• The reduct, ΠX , of a program Π relative to a set X of literals is

defined by

ΠX = {r+ | r ∈ Π and body−(r) ∩X = ∅}.

In other words, ΠX is obtained from Π by

1. deleting any rule in Π which is defeated by X and

2. deleting each literal of the form not L occurring

in the bodies of the remaining rules.

• A set X of literals is an answer set of a program Π iff Cn(ΠX) = X

(where Cn(·) is the usual consequence operator of basic logic programs).

Answer sets

• The reduct, ΠX , of a program Π relative to a set X of literals is

defined by

ΠX = {r+ | r ∈ Π and body−(r) ∩X = ∅}.

In other words, ΠX is obtained from Π by

1. deleting any rule in Π which is defeated by X and

2. deleting each literal of the form not L occurring

in the bodies of the remaining rules.

• A set X of literals is an answer set of a program Π iff Cn(ΠX) = X

(where Cn(·) is the usual consequence operator of basic logic programs).

☞ For the talk, we consider consistent answer sets only!

10

An example: n-Queens

An example: n-Queens

For n = 4 , we get:

Q

Q

Q

Q

11

n-Queens in answer set programming

q(X,Y) gives the legal positions of the queens

n-Queens in answer set programming

q(X,Y) gives the legal positions of the queens

q(X,Y) ← not¬q(X,Y)

¬q(X,Y) ← not q(X,Y)

n-Queens in answer set programming

q(X,Y) gives the legal positions of the queens

q(X,Y) ← not¬q(X,Y)

¬q(X,Y) ← not q(X,Y)

← q(X,Y), q(X ′, Y)

← q(X,Y), q(X,Y ′)

← q(X,Y), q(X ′, Y ′), |X −X ′| = |Y − Y ′|

n-Queens in answer set programming

q(X,Y) gives the legal positions of the queens

q(X,Y) ← not¬q(X,Y)

¬q(X,Y) ← not q(X,Y)

← q(X,Y), q(X ′, Y)

← q(X,Y), q(X,Y ′)

← q(X,Y), q(X ′, Y ′), |X −X ′| = |Y − Y ′|

← not hasq(X)

hasq(X) ← q(X,Y)

12

n-Queens
(in the smodels language)

q(X,Y) :- d(X), d(Y), not negq(X,Y).

negq(X,Y) :- d(X), d(Y), not q(X,Y).

:- d(X), d(Y), d(X1), q(X,Y), q(X1,Y), X1 != X.

:- d(X), d(Y), d(Y1), q(X,Y), q(X,Y1), Y1 != Y.

:- d(X), d(Y), d(X1), d(Y1), q(X,Y), q(X1,Y1),

X != X1, Y != Y1, abs(X - X1) == abs(Y - Y1).

:- d(X), not hasq(X).

hasq(X) :- d(X), d(Y), q(X,Y).

d(1..queens).

13

And the performance . . . ?

torsten@belle-ile 506 > lparse -c queens=20 queens2.lp | smodels

smodels version 2.25. Reading...done

Answer: 1

Stable Model: d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10) d(11) d(12)

d(13) d(14) d(15) d(16) d(17) d(18) d(19) d(20) q(1,16) q(2,13) q(3,6) q(4,3)

q(5,15) q(6,19) q(7,1) q(8,4) q(9,9) q(10,11) q(11,8) q(12,10) q(13,17)

q(14,2) q(15,20) q(16,18) q(17,7) q(18,5) q(19,14) q(20,12)

True

Duration: 37.810

Number of choice points: 1471

Number of wrong choices: 1464

Number of atoms: 501

Number of rules: 10100

Number of picked atoms: 304305

Number of forced atoms: 14604

Number of truth assignments: 3111768

Size of searchspace (removed): 400 (0)

14

How to express preferences?

How to express preferences?

Two options:

How to express preferences?

Two options:

Static preferences: Use an external order < .

Ordered logic program: (Π, <)

where Π is a logic program over L and

< is a strict partial order over Π ;

How to express preferences?

Two options:

Static preferences: Use an external order < .

Ordered logic program: (Π, <)

where Π is a logic program over L and

< is a strict partial order over Π ;

Dynamic preferences: Use a special-purpose predicate ≺ .

Ordered logic program: Π

where Π is a logic program over L ∪ {≺} containing

rules expressing that ≺ is a strict partial order.

15

An example

Consider the following ordered logic program (Π, <) with Π = {r1, r2, r3}

r1 : ¬a ←
r2 : b ← ¬a,not c

r3 : c ← not b

and r3 < r2 .

An example

Consider the following ordered logic program (Π, <) with Π = {r1, r2, r3}

r1 : ¬a ←
r2 : b ← ¬a,not c

r3 : c ← not b

and r3 < r2 .

This program has two standard answer sets,

{¬a, b} and {¬a, c}

16

An example

Consider the following ordered logic program (Π, <) with Π = {r1, r2, r3}

r1 : ¬a ←
r2 : b ← ¬a,not c

r3 : c ← not b

and r3 < r2 .

This program has two standard answer sets,

{¬a, b} and {¬a, c}

among which the green one is (usually) preferred.

16

Three types of preference

Three types of preference

• W-preference (Wang, Zhou, and Lin)

? (alternating) fixed point theory

Three types of preference

• W-preference (Wang, Zhou, and Lin)

? (alternating) fixed point theory

• D-preference (Delgrande, Schaub, and Tompits)

? order preservation (of generating rules)

? translation into standards programs

Three types of preference

• W-preference (Wang, Zhou, and Lin)

? (alternating) fixed point theory

• D-preference (Delgrande, Schaub, and Tompits)

? order preservation (of generating rules)

? translation into standards programs

• B-preference (Brewka and Eiter)

? dual GL-reduction (eliminating prerequisites)

? fixed point operator

17

How to define “preferred” answer sets?

Claim Standard approach, ie. “Cn(ΠX) = X”, doesn’t work!

How to define “preferred” answer sets?

Claim Standard approach, ie. “Cn(ΠX) = X”, doesn’t work!

Common intuitions

How to define “preferred” answer sets?

Claim Standard approach, ie. “Cn(ΠX) = X”, doesn’t work!

Common intuitions

“<” induces some order on rule application

How to define “preferred” answer sets?

Claim Standard approach, ie. “Cn(ΠX) = X”, doesn’t work!

Common intuitions

“<” induces some order on rule application

↪→ iterative specification (option)

How to define “preferred” answer sets?

Claim Standard approach, ie. “Cn(ΠX) = X”, doesn’t work!

Common intuitions

“<” induces some order on rule application

↪→ iterative specification (option)

“<” induces additional dependencies between rules

How to define “preferred” answer sets?

Claim Standard approach, ie. “Cn(ΠX) = X”, doesn’t work!

Common intuitions

“<” induces some order on rule application

↪→ iterative specification (option)

“<” induces additional dependencies between rules

↪→ keep original rules

18

Fixpoint definition of standard answer sets
(unfolding iterated applications of “immediate consequence operations”)

Let Π be a logic program and let X be a (consistent) set of literals.

We define

X0 = ∅ and for i ≥ 0

Xi+1 = Xi ∪
{

head(r)
∣∣ r ∈ Π, body+(r) ⊆ X, body−(r) ∩ Y = ∅

}
Then, X is an answer set of Π if X =

⋃
i≥0Xi.

Fixpoint definition of standard answer sets
(unfolding iterated applications of “immediate consequence operations”)

Let Π be a logic program and let X be a (consistent) set of literals.

We define

X0 = ∅ and for i ≥ 0

Xi+1 = Xi ∪
{

head(r)
∣∣ r ∈ Π, body+(r) ⊆ X, body−(r) ∩ Y = ∅

}
Then, X is an answer set of Π if X =

⋃
i≥0Xi.

☞ A rule r ∈ Π is active wrt the pair (X,Y) of sets of literals,

if body+(r) ⊆ X and body−(r) ∩ Y = ∅.

19

Fixpoint definition of W–preferred answer sets

Let (Π, <) be an ordered logic program and let X be a set of literals.

We define

X0 = ∅ and for i ≥ 0

Xi+1 = Xi ∪

head(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (Xi, X) and

II . there is no rule r′ ∈ Π with r < r′

such that

(a) r′ is active wrt (X,Xi) and

(b) head(r′) 6∈ Xi

Then, X is a W–preferred answer set if X =

⋃
i≥0Xi.

20

Fixpoint definition of W–preferred answer sets

Let (Π, <) be an ordered logic program and let X be a set of literals.

We define

X0 = ∅ and for i ≥ 0

Xi+1 = Xi ∪

head(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (Xi, X) and

II . there is no rule r′ ∈ Π with r < r′

such that

(a) r′ is active wrt (X,Xi) and

(b) head(r′) 6∈ Xi

Then, X is a W–preferred answer set if X =

⋃
i≥0Xi.

21

Fixpoint definition of W–preferred answer sets

Let (Π, <) be an ordered logic program and let X be a set of literals.

We define

X0 = ∅ and for i ≥ 0

Xi+1 = Xi ∪

head(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (Xi, X) and

II . there is no rule r′ ∈ Π with r < r′

such that

(a) r′ is active wrt (X,Xi) and

(b) head(r′) 6∈ Xi

Then, X is a W–preferred answer set if X =

⋃
i≥0Xi.

22

Fixpoint definition of D–preferred answer sets

Let (Π, <) be an ordered logic program and let X be a set of literals.

We define

X0 = ∅ and for i ≥ 0

Xi+1 = Xi ∪

head(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (Xi, X) and

II . there is no rule r′ ∈ Π with r < r′

such that

(a) r′ is active wrt (X,Xi) and

(b) r′ 6∈ rule(Xi)

Then, X is a D–preferred answer set if X =

⋃
i≥0Xi.

23

Fixpoint definition of D–preferred answer sets

Let (Π, <) be an ordered logic program and let X be a set of literals.

We define

X0 = ∅ and for i ≥ 0

Xi+1 = Xi ∪

head(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (Xi, X) and

II . there is no rule r′ ∈ Π with r < r′

such that

(a) r′ is active wrt (X,Xi) and

(b) r′ 6∈ rule(Xi)

Then, X is a D–preferred answer set if X =

⋃
i≥0Xi.

24

Example

Consider ordered logic program (Π, <):

r1 : a ← not b

r2 : b ←
r3 : a ←

r2 < r1

Π has one standard answer set: X = {a, b}.

Example

Consider ordered logic program (Π, <):

r1 : a ← not b

r2 : b ←
r3 : a ←

r2 < r1

Π has one standard answer set: X = {a, b}.

• X is a W-preferred answer set.

Example

Consider ordered logic program (Π, <):

r1 : a ← not b

r2 : b ←
r3 : a ←

r2 < r1

Π has one standard answer set: X = {a, b}.

• X is a W-preferred answer set.

• Π has no D-preferred answer sets.

25

Fixpoint definition of B–preferred answer sets

Fixpoint definition of B–preferred answer sets

Let (Π, <) be an ordered logic program and let X be an answer set of Π.

We define

X0 = ∅ and for i ≥ 0

Xi+1 = Xi ∪

head(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (X,X) and

II . there is no rule r′ ∈ Π with r < r′

such that

(a) r′ is active wrt (X,Xi) and

(b) head(r′) 6∈ Xi

Then, X is a B–preferred answer set if X =

⋃
i≥0Xi.

26

Fixpoint definition of B–preferred answer sets

Let (Π, <) be an ordered logic program and let X be an answer set of Π.

We define

X0 = ∅ and for i ≥ 0

Xi+1 = Xi ∪

head(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (X,X) and

II . there is no rule r′ ∈ Π with r < r′

such that

(a) r′ is active wrt (X,Xi) and

(b) head(r′) 6∈ Xi

Then, X is a B–preferred answer set if X =

⋃
i≥0Xi.

27

Example
(Brewka and Eiter, 1999)

Consider ordered logic program (Π, <):

r1 : b ← a,not ¬b
r2 : ¬b ← not b

r3 : a ← not ¬a

r3 < r2 < r1

Π has two standard answer sets: X = {a, b} and X ′ = {a,¬b}.

Example
(Brewka and Eiter, 1999)

Consider ordered logic program (Π, <):

r1 : b ← a,not ¬b
r2 : ¬b ← not b

r3 : a ← not ¬a

r3 < r2 < r1

Π has two standard answer sets: X = {a, b} and X ′ = {a,¬b}.

• X is the unique B-preferred answer set.

Example
(Brewka and Eiter, 1999)

Consider ordered logic program (Π, <):

r1 : b ← a,not ¬b
r2 : ¬b ← not b

r3 : a ← not ¬a

r3 < r2 < r1

Π has two standard answer sets: X = {a, b} and X ′ = {a,¬b}.

• X is the unique B-preferred answer set.

• Π has no W- and D-preferred answer sets.

28

Example
(Baader and Hollunder, 1993)

Consider ordered logic program (Π, <):

r1 : ¬f ← p,not f

r2 : w ← b,not ¬w
r3 : f ← w,not ¬f
r4 : b ← p

r5 : p ←

r2 < r1

Π has two standard answer sets:

X = {p, b,¬f, w} and X ′ = {p, b, f, w} .

Example
(Baader and Hollunder, 1993)

Consider ordered logic program (Π, <):

r1 : ¬f ← p,not f

r2 : w ← b,not ¬w
r3 : f ← w,not ¬f
r4 : b ← p

r5 : p ←

r2 < r1

Π has two standard answer sets:

X = {p, b,¬f, w} and X ′ = {p, b, f, w} .

• X is the unique W- and D-preferred answer set.

Example
(Baader and Hollunder, 1993)

Consider ordered logic program (Π, <):

r1 : ¬f ← p,not f

r2 : w ← b,not ¬w
r3 : f ← w,not ¬f
r4 : b ← p

r5 : p ←

r2 < r1

Π has two standard answer sets:

X = {p, b,¬f, w} and X ′ = {p, b, f, w} .

• X is the unique W- and D-preferred answer set.

• X and X ′ are both B-preferred answer sets.

29

Is there a lesson to be learned. . . ?

Is there a lesson to be learned. . . ?

Let (Π, <) be an ordered logic program.

Then, we have:

ASD(Π, <) ⊆ ASW(Π, <) ⊆ ASB(Π, <) ⊆ AS(Π)

where AS(Π) — set of standard answer sets

ASP (Π, <) — set of “P–preferred answer sets”

Is there a lesson to be learned. . . ?

Let (Π, <) be an ordered logic program.

Then, we have:

ASD(Π, <) ⊆ ASW(Π, <) ⊆ ASB(Π, <) ⊆ AS(Π)

where AS(Π) — set of standard answer sets

ASP (Π, <) — set of “P–preferred answer sets”

Roughly, the hierarchy is induced by a decreasing interaction between

groundedness and preference:

Is there a lesson to be learned. . . ?

Let (Π, <) be an ordered logic program.

Then, we have:

ASD(Π, <) ⊆ ASW(Π, <) ⊆ ASB(Π, <) ⊆ AS(Π)

where AS(Π) — set of standard answer sets

ASP (Π, <) — set of “P–preferred answer sets”

Roughly, the hierarchy is induced by a decreasing interaction between

groundedness and preference:

D-preference full compatibility

W-preference weak compatibility

B-preference no compatibility

30

Implementation
for dynamically ordered logic programs

Implementation
for dynamically ordered logic programs

Idea Translate a logic program Π with preference information

into a standard logic program T (Π) such that

answers to T (Π) respect the preferences in Π.

Implementation
for dynamically ordered logic programs

Idea Translate a logic program Π with preference information

into a standard logic program T (Π) such that

answers to T (Π) respect the preferences in Π.

Plan 1. Extend the language for expressing preference

2. Add axioms encoding specific preference handling strategies

31

(Dynamically) ordered logic programs

An ordered logic program is an extended logic program over a

propositional language L,

containing the following pairwise disjoint categories:

• a set N of terms serving as names for rules;

• a set A of regular (propositional) atoms of a program; and

• a set A≺ of preference atoms s ≺ t, where s, t ∈ N are names.

(Dynamically) ordered logic programs

An ordered logic program is an extended logic program over a

propositional language L,

containing the following pairwise disjoint categories:

• a set N of terms serving as names for rules;

• a set A of regular (propositional) atoms of a program; and

• a set A≺ of preference atoms s ≺ t, where s, t ∈ N are names.

For each ordered program Π, we require a bijective function n(·)
assigning to each rule r ∈ Π a name n(r) ∈ N .

To simplify our notation, we write

• nr instead of n(r) or ni instead of nri and

• t : r instead of t = n(r).

32

Towards preferred answer sets

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:

ap(nr) signifies that rule r is applicable wrt X, that is,

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:

ap(nr) signifies that rule r is applicable wrt X, that is,

• body+(r) ⊆ X and

• body−(r) ∩X = ∅.

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:

ap(nr) signifies that rule r is applicable wrt X, that is,

• body+(r) ⊆ X and

• body−(r) ∩X = ∅.

bl(nr) signifies that rule r is blocked wrt X, that is, either

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:

ap(nr) signifies that rule r is applicable wrt X, that is,

• body+(r) ⊆ X and

• body−(r) ∩X = ∅.

bl(nr) signifies that rule r is blocked wrt X, that is, either

• body+(r) 6⊆ X or

• body−(r) ∩X 6= ∅.

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:

ap(nr) signifies that rule r is applicable wrt X, that is,

• body+(r) ⊆ X and

• body−(r) ∩X = ∅.

bl(nr) signifies that rule r is blocked wrt X, that is, either

• body+(r) 6⊆ X or

• body−(r) ∩X 6= ∅.

ok(nr) signifies that it is “ok” to consider rule r

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:

ap(nr) signifies that rule r is applicable wrt X, that is,

• body+(r) ⊆ X and

• body−(r) ∩X = ∅.

bl(nr) signifies that rule r is blocked wrt X, that is, either

• body+(r) 6⊆ X or

• body−(r) ∩X 6= ∅.

ok(nr) signifies that it is “ok” to consider rule r

2. Provide axioms that guarantee a consideration of rules that is in

accord with the underlying preference information, that is,

nr ≺ nr′ enforces that ok(nr′) is derivable “before” ok(nr)

Towards preferred answer sets

1. Introduce special purpose predicates controlling rule application:

ap(nr) signifies that rule r is applicable wrt X, that is,

• body+(r) ⊆ X and

• body−(r) ∩X = ∅.

bl(nr) signifies that rule r is blocked wrt X, that is, either

• body+(r) 6⊆ X or

• body−(r) ∩X 6= ∅.

ok(nr) signifies that it is “ok” to consider rule r

2. Provide axioms that guarantee a consideration of rules that is in

accord with the underlying preference information, that is,

nr ≺ nr′ enforces that ok(nr′) is derivable “before” ok(nr)

3. Specify what it means that a rule “has been considered”

33

Translating ordered logic programs
according to D-preference

Let Π = {r1, . . . , rk} be an ordered logic program over L.

Let L? be the language obtained from L by adding, for each r, r′ ∈ Π,

new pairwise distinct propositional atoms ap(nr), bl(nr), ok(nr), and

rdy(nr,nr′).

34

Then, the logic program T (Π) over L? contains the following rules, for

each r ∈ Π, where L+ ∈ body+(r), L− ∈ body−(r), and r′, r′′ ∈ Π :

Then, the logic program T (Π) over L? contains the following rules, for

each r ∈ Π, where L+ ∈ body+(r), L− ∈ body−(r), and r′, r′′ ∈ Π :

a1(r) : head(r) ← ap(nr)

a2(r) : ap(nr) ← ok(nr), body(r)

Then, the logic program T (Π) over L? contains the following rules, for

each r ∈ Π, where L+ ∈ body+(r), L− ∈ body−(r), and r′, r′′ ∈ Π :

a1(r) : head(r) ← ap(nr)

a2(r) : ap(nr) ← ok(nr), body(r)

b1(r, L) : bl(nr) ← ok(nr),not L+

b2(r, L) : bl(nr) ← ok(nr), L−

Then, the logic program T (Π) over L? contains the following rules, for

each r ∈ Π, where L+ ∈ body+(r), L− ∈ body−(r), and r′, r′′ ∈ Π :

a1(r) : head(r) ← ap(nr)

a2(r) : ap(nr) ← ok(nr), body(r)

b1(r, L) : bl(nr) ← ok(nr),not L+

b2(r, L) : bl(nr) ← ok(nr), L−

c1(r) : ok(nr) ← rdy(nr,nr1), . . . , rdy(nr,nrk)

c2(r, r′) : rdy(nr,nr′) ← not (nr ≺ nr′)

c3(r, r′) : rdy(nr,nr′) ← (nr ≺ nr′), ap(nr′)

c4(r, r′) : rdy(nr,nr′) ← (nr ≺ nr′), bl(nr′)

Then, the logic program T (Π) over L? contains the following rules, for

each r ∈ Π, where L+ ∈ body+(r), L− ∈ body−(r), and r′, r′′ ∈ Π :

a1(r) : head(r) ← ap(nr)

a2(r) : ap(nr) ← ok(nr), body(r)

b1(r, L) : bl(nr) ← ok(nr),not L+

b2(r, L) : bl(nr) ← ok(nr), L−

c1(r) : ok(nr) ← rdy(nr,nr1), . . . , rdy(nr,nrk)

c2(r, r′) : rdy(nr,nr′) ← not (nr ≺ nr′)

c3(r, r′) : rdy(nr,nr′) ← (nr ≺ nr′), ap(nr′)

c4(r, r′) : rdy(nr,nr′) ← (nr ≺ nr′), bl(nr′)

t(r, r′, r′′) : nr ≺ nr′′ ← nr ≺ nr′ ,nr′ ≺ nr′′

as(r, r′) : ¬(nr′ ≺ nr) ← nr ≺ nr′

35

Translating ordered logic programs
according to W-preference

Translating ordered logic programs
according to W-preference

a1(r) : head(r) ← ap(nr)

a2(r) : ap(nr) ← ok(nr), body(r)

b1(r, L) : bl(nr) ← ok(nr),not L+

b2(r, L) : bl(nr) ← ok(nr), L−

c1(r) : ok(nr) ← rdy(nr,nr1), . . . , rdy(nr,nrk)

c2(r, r′) : rdy(nr,nr′) ← not (nr ≺ nr′)

c3(r, r′) : rdy(nr,nr′) ← (nr ≺ nr′), ap(nr′)

c4(r, r′) : rdy(nr,nr′) ← (nr ≺ nr′), bl(nr′)

c5(r, r′) : rdy(nr,nr′) ← (nr ≺ nr′), head(r′)

t(r, r′, r′′) : nr ≺ nr′′ ← nr ≺ nr′ ,nr′ ≺ nr′′

as(r, r′) : ¬(nr′ ≺ nr) ← nr ≺ nr′

36

Translating ordered logic programs
according to B-preference

Translating ordered logic programs
according to B-preference

Π + a1(r) : head(r′) ← ap(nr)

a2(r) : ap(nr) ← ok(nr), body(r),not body−(r′)

b1(r, L) : bl(nr) ← ok(nr),not L,not L′

b2(r,K) : bl(nr) ← ok(nr),K,K′

c1(r) : ok(nr) ← rdy(nr,nr1), . . . , rdy(nr,nrk)

c2(r, s) : rdy(nr,ns) ← not (nr ≺ ns)

c3(r, s) : rdy(nr,ns) ← (nr ≺ ns), ap(ns)

c4(r, s) : rdy(nr,ns) ← (nr ≺ ns), bl(ns)

c5(r, s, J) : rdy(nr,ns) ← head(s), J

d(r) : ← not ok(nr)

t(r, s, t) : nr ≺ nt ← nr ≺ ns,ns ≺ nt

as(r, s) : ¬(ns ≺ nr) ← nr ≺ ns

37

An(other) example

Consider the following ordered logic program Π = {r1, r2, r3, r4}:

r1 = ¬a ←
r2 = b ← ¬a,not c

r3 = c ← not b

r4 = n3 ≺ n2 ← not d

where ni denotes the name of rule ri (i = 1, . . . , 4).

This program has two answer sets, {¬a, b, n3 ≺ n2} and {¬a, c, n3 ≺ n2}.

38

An(other) example

Consider the following ordered logic program Π = {r1, r2, r3, r4}:

r1 = ¬a ←
r2 = b ← ¬a,not c

r3 = c ← not b

r4 = n3 ≺ n2 ← not d

where ni denotes the name of rule ri (i = 1, . . . , 4).

This program has two answer sets, {¬a, b, n3 ≺ n2} and {¬a, c, n3 ≺ n2}.

39

The example ran through our implementation

Ordered logic program Π = {r1, r2, r3, r4} :

r1 = ¬a ←
r2 = b ← ¬a,not c

r3 = c ← not b

r4 = n3 ≺ n2 ← not d

becomes

neg a.

b :- name(n2), neg a, not c.

c :- name(n3), not b.

(n3 < n2) :- not d.

39

The outcome

neg_a.

b :- ap(n2).

ap(n2) :- ok(n2), neg_a, not c.

bl(n2) :- ok(n2), not neg_a.

bl(n2) :- ok(n2), c.

c :- ap(n3).

ap(n3) :- ok(n3), not b.

bl(n3) :- ok(n3), b.

prec(n3, n2) :- not d.

ok(N) :- name(N), oko(N, n2), oko(N, n3).

oko(N, M) :- name(N), name(M), not prec(N, M).

oko(N, M) :- name(N), name(M), prec(N, M), ap(M).

oko(N, M) :- name(N), name(M), prec(N, M), bl(M).

neg_prec(M, N) :- name(N), name(M), prec(N, M).

prec(N, M) :- name(N), name(M), name(O),

prec(N, O), prec(O, M).

false :- a, neg_a. false :- b, neg_b. false :- c, neg_c. false :- d, neg_d.

false :- name(N), name(M), prec(N, M), neg_prec(N, M).

name(n3). name(n2).

40

Computing preferred answer sets'

&

$

%

?- lp2dlv(’Examples/example’).

yes

?- dlv(’Examples/example’).

dlv [build BEN/Apr 5 2000 gcc 2.95.2 19991024 (release)]

{name(n2), name(n3), neg_a, ok(n2), oko(n2,n2), oko(n2,n3), oko(n3,n3),

prec(n3,n2), neg_prec(n2,n3), ap(n2), b, oko(n3,n2), ok(n3), bl(n3)}

yes

?- dlv(’Examples/example’,nice).

dlv [build BEN/Apr 5 2000 gcc 2.95.2 19991024 (release)]

{neg_a, b}

yes

?-

dlv is an off-the-shelf logic programming/deductive database system

41

Implementation

plp http://www.cs.uni-potsdam.de/~torsten/plp

• Front-end to dlv and smodels

1. plp: OLP 7→ LP

2. dlv/smodels: LP 7→ Answer sets

• Ordered logic programs

eg. n17 ≺ n42 ← n17 ≺ n34, not (n42 ≺ n34)

• Ordered logic programs with variables

eg. n1(x) ≺ n2(y)← p(y), not (x = c)

• Disjunctive logic programming

? preferences about disjunctive rules

? disjunctive preferences,

eg. (r2 ≺ r42) ∨ (r4 ≺ r42)← ¬a

42

Conclusion

Conclusion

• Methodology for

? specifying and

? implementing

preferences within answer set programming

Conclusion

• Methodology for

? specifying and

? implementing

preferences within answer set programming

• Elaboration upon three different approaches that were originally

defined in rather different ways

Conclusion

• Methodology for

? specifying and

? implementing

preferences within answer set programming

• Elaboration upon three different approaches that were originally

defined in rather different ways

• Uniformity provides us with a deeper understanding of how and

which answer sets are preferred in each approach

Conclusion

• Methodology for

? specifying and

? implementing

preferences within answer set programming

• Elaboration upon three different approaches that were originally

defined in rather different ways

• Uniformity provides us with a deeper understanding of how and

which answer sets are preferred in each approach

• In particular, this is reflected in the compilation framework used for

implementing preferences

43

Acknowledgements
(in alphabetical order)

Acknowledgements
(in alphabetical order)

Farid Benhammadi Philippe Besnard

Jim Delgrande Pascal Nicolas

Hans Tompits Kewen Wang

Acknowledgements
(in alphabetical order)

Farid Benhammadi Philippe Besnard

Jim Delgrande Pascal Nicolas

Hans Tompits Kewen Wang

Thank you all very much!

44

Example

Consider ordered logic program (Π, <):

r1 : a ← not b

r2 : b ←
r2 < r1

Π has one standard answer set: X = {a, b}.

Example

Consider ordered logic program (Π, <):

r1 : a ← not b

r2 : b ←
r2 < r1

Π has one standard answer set: X = {a, b}.

• Π has no W-, D- and B–preferred answer sets.

45

Example

Consider ordered logic program (Π, <):

r1 : a ← b

r2 : b ←
r2 < r1

Π has one standard answer set: X = {a, b}.

Example

Consider ordered logic program (Π, <):

r1 : a ← b

r2 : b ←
r2 < r1

Π has one standard answer set: X = {a, b}.

• X is B–preferred.

• Π has no W– and D–preferred answer sets.

46

