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2 J�urgen Dix et al.problems loated on the seond level of the polynomial hierarhy are well suited tobe takled with the mahinery of answer sets. In partiular problems whih allowfor many solutions (like in planning where usually many plans for a given problemexist) �t in this piture.In this paper, we investigate the ways of formulating and solving HTN plan-ning problems using nonmonotoni logi programs under the ASP semantis. HTNplanning (Saerdoti, 1977; Erol et al., 1994; Wilkins, 1988; Nau et al., 1999) is anAI-planning paradigm in whih the goals of the planner are de�ned in terms ofativities (tasks) and the planning proess is aomplished by using the tehniquesof task deomposition. There are several well-known HTN planning systems suhas Universal Method Composition Planner (UMCP) (Erol et al., 1994), Simple Hi-erarhial Ordered Planner (SHOP) (Nau et al., 1999), and SHOP2 (a total-orderplanner with partially ordered subtasks) (Nau et al., 2001). In this work, we fo-us on the SHOP planning system, whih is a domain-independent HTN planningsystem that is built around the onept alled ordered task deomposition.We desribe a systemati translation method Trans(�) whih transforms HTN-planning problems as formalized in SHOP into logi programs with negation. Ourbasi goal is that an appropriate semantis of the logi program should orrespondto the solutions (plans) of the planning problem. We have adapted the syntax ofthe smodels software for our transformation, although we are also experimentingwith other systems like DLV and XSB.1.1 Related WorkThere are many e�orts in the literature for formulating ations in logi programsand solving planning problems by using formulations suh as (Gelfond & Lifshitz.,1998; Turner, 1997; Lifshitz, 1999). (Gelfond & Lifshitz., 1998) desribes threedi�erent ation desription languages that formalize theories of ations. The latestone of these languages, the language C, provides means to implement that formalismas logi programs to solve planning problems e�etively and eÆiently (Lifshitz,1999; Giunhiglia & Lifshitz, 1998). The C language onsists of general templateto de�ne ations that have preonditions and e�ets. (MCain & Turner, 1997)presents a language for ausal theories. They have also developed a system alledCal, whih is a model heker for the language of suh ausal theories translatedfrom propositions in the C ation language using rewrite rules (?). The idea in allthese works is that representing a given omputational problem by a logi programwhose models orrespond to the solutions for the original problem. This idea wasthe main inspiration for our work presented here.(Baral & Tuan., 2001) presents a language about ations using ausal laws toreason in probabilisti settings and solves the planning problems in suh settings.The language resembles similarities to those desribed above, but the ation theoryinorporates probabilities and probabilisti reasoning tehniques|as desribed in(Pearl, 1988)|to solve the planning problems with unertainty.(Dimopoulos et al., 1997) presents a framework for enoding planning problemsin logi programs with negation-as-failure. In this work, the idea is almost the same



HTN Planning in ASP 3as ours, that is, the models of the logi program orresponds to the plans. However,this work onsiders only ation-based planning problems and inorporates ideasfrom suh planners GRAPHPLAN and SATPLAN . In terms of the underlyingassumptions and methods presented in (Dimopoulos et al., 1997), our approah isompletely di�erent.(Son et al., 2001) disusses solving planning programs by logi programs. Thedi�erene between this work and the one desribed above is that (Son et al., 2001)inorporates domain-dependent ontrol knowledge to improve the performane ofthe planning. In this respet, this work is similar to HTN planning algorithms.However, the enoding provided in this work is oneptually not an HTN-planner;instead, it uses hierarhial networks to de�ne domain onstraints suh as the or-dering relationships between the ations, and use them in pruning the searh fororret sequene of ations to solve the planning problem.Our experimental results suggest that both (1) enodings using HTN planningare better than other enodings, beause the HTN ontrol knowledge an be usedto prune irrelevant branhes of the searh spae; and (2) running an ASP systemon non-ground programs (obtained from planning problems) results in a drastiperformane relative to smodels, thus bringing our method loser to dediatedplanning systems like SHOP. 1.2 OrganizationThis paper is organized as follows. We desribe in Setion 2 the HTN-planningparadigm as well as the SHOP planning system. In Setion 3 we present our ausaltheory for HTN-planning and our translation method to transform HTN planningproblems into logi programs with negation. Setion 4 ontains our results. Ourmain theorem is that our translation method is orret and omplete with respetto HTN-planners. We also present our experimental results along with some disus-sions on the soures of omplexity. Finally, we onlude with Setion 5 and provideour future researh diretions.2 Hierarhial Task Network (HTN) PlanningSHOP is a domain-independent Hierarhial Task Network (HTN) planning algo-rithm (Nau et al., 1999; Nau et al., 2000). However, one di�erene between SHOPand most other HTN planning algorithms is that SHOP plans for tasks in the sameorder that they will later be exeuted. Planning for tasks in the order that thosetasks will be performed makes it possible to know the urrent state of the world ateah step in the planning proess, whih makes it possible for SHOP's preondition-evaluation mehanism to inorporate signi�ant inferening and reasoning power,inluding the ability to all external programs to reason about preonditions andthe ability to perform numeri omputations.In order to do planning in a given planning domain, SHOP needs to be givenknowledge about that domain. SHOP's knowledge base ontains operators andmethods. Eah operator is a desription of what needs to be done to aomplish



4 J�urgen Dix et al.some primitive task, and eah method is a presription for how to deompose someomplex task into a totally ordered sequene of subtasks, along with various restri-tions that must be satis�ed in order for the method to be appliable. More thanone method may be appliable to the same task, in whih ase there will be morethan one possible way to deompose that task.Given the next task to aomplish, SHOP hooses an appliable method, instan-tiates it to deompose the task into subtasks, and then hooses and instantiatesother methods to deompose the subtasks even further. If the onstraints on thesubtasks prevent the plan from being feasible, SHOP will baktrak and try othermethods.As an example, Figure 1 shows two methods for the task of travelling from oneloation to another: travelling by air, and travelling by taxi. Travelling by air involvesthe subtasks of purhasing a plane tiket, travelling to the loal airport, ying toan airport lose to our destination, and travelling from there to our destination.Travelling by taxi involves the subtasks of alling a taxi, riding in it to the �naldestination, and paying the driver.Note that eah method's preonditions are not used to reate subgoals (as wouldbe done in ation-based planning). Rather, they are used to determine whether ornot the method is appliable: thus in Figure 1, the travel by air method is onlyappliable for long distanes, and the travel by taxi method is only appliable forshort distanes.Now, onsider the task of travelling from the University of Maryland to MIT.Sine this is a long distane, the travel by taxi method is not appliable, so we musthoose the travel by air method. As shown in Figure 1, this deomposes the task intothe following subtasks: (1) purhase a tiket from Baltimore-Washington Interna-tional (BWI) airport to Logan airport, (2) travel from the University of Marylandto BWI, (3) y from BWI airport to Logan airport, and (4) travel from Loganairport to MIT. For the subtasks of travelling from the University of Maryland toBWI and travelling from Logan to MIT, we an use the travel by taxi method toprodue additional subtasks as shown in Figure 1.
Methods
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Fig. 1. Travel planning example.Here are some of the ompliations that an arise during the planning proess:� The planner may need to reognize and resolve interations among the sub-tasks. For example, in planning how to travel to the airport, one needs to



HTN Planning in ASP 5make sure one will arrive at the airport in time to ath the plane. To makethe example in Figure 1 more realisti, suh information would need to bespei�ed as part of SHOP's methods and operators.� In the example in Figure 1, it was always obvious whih method to use. Butin general, more than one method may be appliable to a task. If it is notpossible to solve the subtasks produed by one method, SHOP will baktrakand try another method instead.SHOP uses the usual �rst-order logi de�nitions for atoms, terms, variable andonstant symbols, funtion and prediate symbols, onjunts, most-general uni�ersand Horn lauses. Its domain desription onsists of methods, operators and axiomsas desribed below.De�nition 1 (Method: (Meth h � t) ) A method is an expression of the form(Meth h � t) where h (the method's head) is a ompound task, � (the method'spreonditions) is a onjunt and t is a totally ordered list of subtasks, alled thetask list.De�nition 2 (Operator: (Op h �del �add) ) An operator is an expression ofthe form (Op h �del �add), where h (the head) is a primitive task and �add and�del are lists of atoms (alled the add- and delete-lists). The set of variables in theatoms in �add and �del is a subset of the set of variables in h.De�nition 3 (Axioms: AX ) An axiom is an expression of the forma l1; : : : ; ln;where a is an atom and the li are literals.A plan, P , is de�ned as the sequene of ground operator instanes.De�nition 4 (Plans) A plan is a list of heads of ground operator in-stanes. If P = (p1p2 : : : pn) is a plan and S is a state (a set of groundatoms a), then the result of applying P to S is the state result(S; P ) =result(result(. . . (result(S; p1); p2); : : :); pn). A plan P is alled a simple plan whenn = 1.De�nition 5 (Simple redutions) Let t be a task, S be the initial state, Meth =(Meth h � t) be a method, and AX be an axiom set. Suppose that u is a uni�erfor h and t, and that v is a uni�er that uni�es �u with respet to S [ AX . Thenthe method instane (Methu)v is appliable to t in S, and the result of applying itto t is the task list r = (tu)v. The task list r is a simple redution of t by Meth inS.De�nition 6 (Domains and problems)A domain representation is a set of axioms, operators and methods. A planningproblem is a triple (S; t;D), where S is a state, t= (t1t2 : : : tk) is a task list, and



6 J�urgen Dix et al.D is a domain representation. Suppose (S; t;D) is a planning problem and P =(p1p2 : : : pn) is a plan. Then we say that P solves (S; t;D); or equivalently, thatP ahieves t from S in D (we will omit the phrase \in D" if the identity of D isobvious) if any of the following is true:1. Case 1: t and P are both empty, (i.e., k = 0 and n = 0);2. Case 2: t1 is a primitive task, p1 is a simple plan for t1, (p2 : : : pn) ahieves(t2 : : : tk) from result(S; p1);3. Case 3: t1 is a omposite task, and there is a simple redution (r1 : : : rj) of t1in S suh that P ahieves (r1 : : : rjt2 : : : tk) from S.The planning problem (S; t;D) is solvable if there is a plan that solves it. Wetherefore denote the set of all plans by Sol(S; t;D).3 Enoding HTN planning in Nonmonotoni Logi ProgrammingOur approah of enoding HTN-planning problems as logi programs is based onSHOP's representation of a planning problem. We �rst desribe SHOP's formalismfor HTN-planning briey. Then we present �rst steps of a ausal theory of HTNplanning based on that formalism. This theory serves as a motivation for our trans-lation methodology whih is given in the subsequent subsetion. We onlude thissetion with the formalization of a partiular example.3.1 Formal De�nitions for HTN-planning: Syntax and SemantisWe use the same de�nitions for variable and onstant symbols, prediate symbols,terms, atoms as SHOP. Our de�nitions for axioms, operators, methods are adaptedfrom SHOP. The next paragraph desribes these onepts briey; for a detaileddisussion see (Nau et al., 1999).A term is either a onstant or a variable symbol. A state S is a set of groundatoms, and an axiom is a Horn lause. A task is an expression of the form(ht1t2 : : : tn), where h (the task's name) is a task symbol, and t1; t2; : : : ; tn (thetask's arguments) are terms. A task an be either primitive or omposite. A tasklist is a list of tasks.An operator spei�es a primitive task that an be aomplished by modifying theurrent state of the world by removing every atom in its deletions list and addingevery atom in its additions list. As an example, here is a possible implementationof the get-taxi operator from Figure 1:(:Op(!get-taxi ?x)((servie-available-to ?x))((taxi-oming-to ?x)))Here is a possible implementation of the travel-by-taxi method from the same�gure:(:Meth (travel ?x ?y)((smaller-distane ?x ?y))((!get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver ?x ?y)))



HTN Planning in ASP 73.2 Causal Theory for HTN-planningIn this setion we prepare the ground for our translation in the next subsetion. Wegive some de�nitions of a ausal theory for HTN-planning in a SHOP-like orderedtask deomposition. The reason for presenting this ausal theory is not to give aformal semantis, but to give some motivations for the more tehnial aspets ofthe translation given later on.In the de�nitions below, (S; t;D) is a planning problem as introdued in De�ni-tion 6.De�nition 7 (Caused) Let (S; t;D) be a planning problem and let P be a plan.We de�ne for a ground literal, l, the property of being aused wrt. S. This prop-erty is de�ned through the following reursive de�nition:1. l aused wrt. S if (a 2 S if l = a;a 62 S if l = :a:2. l aused wrt. S: if there is an axiom given in the domain desription D ofthe form a l1 ^ l2 ^ : : : ^ ln;suh that l = a and every li is aused wrt. S: li aused wrt. S.A list of literals, L, is aused wrt. S i� every literal in L is aused wrt. S.The next de�nition represents an important persistene property over time.De�nition 8 (Law of Inertia) A ground literal l, whih is aused in the urrentstate S, is also aused in the next state S 0 unless the negated literal :l is ausedin S 0. Here the symbol : denotes lassial negation. The Law of inertia an berepresented by the following rule:l aused wrt. S 0 : if l aused wrt. S andnot \:l aused wrt. S 0".This rule ensures that for eah atom a and eah state S, either a or :a is ausedwrt. S.De�nition 9 (Caused Tasks) A primitive task t is aused (to-be-aomplished)wrt. (S, D) i� there exists an operator for t: (Op t �del �add) 2 D.A omposite task t is aused wrt. (S, D) i�1. there exists a method for t: (Meth t � t) 2 D,2. the preonditions-list �, whih is a list of literals representing a onjunt, isaused, and3. all of the suessor subtasks of t are aused. In that ase, we say the subtasksause t.Using this ausal theory as an intermediate step, we developed a systemati transla-tion method for mapping planning problems to logi programs with negation whihwe illustrate in the next setion.



8 J�urgen Dix et al.Theorem 10Let a planning problem (S; t;D) be given, where S is the initial state, t is the listof tasks to be ahieved and D is the domain desription.If there is a solution to (S; t;D), then eah of the tasks in t is aused wrt (S,D) in the order they are given in t.ProofThe proof starts by reursively de�ning the solution of an HTN-planning problem(S; t;D) and showing the ausal relationships based on our ausal theory at thesame time.The solution plan, P ((S; t;D)), for the planning problem (S; t;D) is initiallyempty. If t is empty, then (S; t;D) ontains exatly one plan, namely the emptyplan. This is beause of the fat that there will be no tasks to be aomplished|thus, no task to be aused . If t is not empty, then let h be the �rst task in t, andlet R be the remainning tasks. There are two ases.1. If h is primitive and there is no simple plan in D for it, then P ((S; t;D)) isempty: there is no solution.2. If h is primitive and there is a simple plan p in D for t, then P ((S; t;D)) =append(p; q), where q 2 Sol(result(S; p);R;D). Then, aording to the �rstpart of De�nition 9 of our ausal theory, we say that h is aused wrt. D.3. If h is a omposite task, then P ((S; t;D)) = P (S; append(r; R); D), where r isone of the simple redutions of h (see De�nition 5), whih is a list of subtasksof h. In order for h to be aomplished|so that (S; t;D) will be solvable|allof the subtasks in r have to be aomplished. Aording to the seond partof our De�nition 9, this orresponds the fat that in order for h to be ausedwrt. D, all of its subtasks must be aused wrt. D.Therefore, it follows from the reursive onstrution above that if task h is a-omplished aording to our ausal theory, it must be aused as well. If we havemore than one task in t, then aording to De�nition 6, we have to aomplish allof them separately in the order they are given in t, whih also means that eah ofthem must be aused wrt. (S, D) in that partiular order.3.3 Enoding Planning Problems as Logi ProgramsTranslating a planning problem (S; t;D) to its logi program ounterpartTrans((S; t;D)) requires enoding the methods, the operators, and the axioms aslogi program segments as well as the underlying ordered task deomposition har-ateristis of SHOP. For this reason, we present our translation method in severalsteps, performing all of whih yield a logi program that is apable of solving plan-ning problems in the way SHOP does.



HTN Planning in ASP 9Step 1. Enoding the Domain Independent Rules.The problem independent rules for a logi program are adapted mainly from (Sonet al., 2001; Lifshitz, 1999; Dimopoulos et al., 1997). The main atoms in theserules are� state(A; T ): A holds in the urrent state at time T ,� literal(A): A is a literal,� ontrary(A;:A): A and its negation :A are ontraditory.The main rules are given next. In these rules, T is a variable of the sort time.literal(A) : � atom(A):literal(neg(A)) : � atom(A):ontrary(A; neg(A)) : � atom(A):ontrary(neg(A); A) : � atom(A):state(A; T + 1) : � literal(A); literal(B); ontrary(A;B); state(A; T );not state(B; T + 1):Here, the �rst and the seond rules enode the fat that any atom and its negationis a literal, and the last rule is the Law of Inertia.Step 2. Enoding the Problem Dependent State Elements.SHOP allows using variables in the domain desriptions of the planning problems.Unfortunately most nonmonotoni systems an not handle free variables. For ex-ample smodels is doing an (intelligent) grounding of the desription it is given andit is requiring that a ertain syntati ondition, safeness, is satis�ed. DLV allowsvariables, but imposes a safeness restrition and does not allow funtion symbols.In the urrent implementation of smodels, there is a further tehnial ondition(whih will be relaxed in the next release) that we have to take into aount: Forevery variable that we use in our logi program, we have to speify the range ofvalues that it an be instantiated during model generation proess.Due to this fat, we have to take are of the following:1. we have to enumerate all the possible ground atoms that an be used in thelogi program;2. we have to inlude rules for type prediates in the logi program, whih de�nethe range of values for a variable of a ertain type.Translation Proedure for the Atoms and Type prediates1. Speify the atoms that an ever be used by the logi program as atom( ).2. De�ne a type of the form [type℄( ) for eah variable that is used in the logiprogram, and speify the range of values for eah of those types.To give an example, onsider the method for travelling from one plae to another.Suppose that the name of this method is travel(X;Y ). Here, X and Y are variables



10 J�urgen Dix et al.of loations that are going to be used in this method. The logi program that en-odes this method must have the following type prediates: plae(umd), plae(mit),and so on, for all loations that an be used in the model generation proess.Note that if the translation is being done for a system that annot handle freevariables - like smodels-, we have to speify the type of eah variable appearing ineah rule of the translated logi program by adding the neessary type prediates tothe righthand side of those rules. On the other hand, in a system like DLV , whihan handle free variables, we may omit the type prediates in the rules as long aswe do not violate the safeness restritions.Step 3. Enoding the Initial State for the Planning Problems.SHOP's initial state for the planning problems is de�ned to be a set of groundatoms. In this respet, given a planning problem (S; t;D), the following proeduremust be used in order to translate it into its logi program ounterpart.De�nition 11 (Trans(S): Translation for Initial State)Given a planning problem (S; t;D), for all a 2 S, add the rulestate(a; 0) : �This rules spei�es that a is in the state at time 0, whih is used to designate theinitial time. Step 4. Enoding the Goal Task(s).The goal tasks are the ordered list of tasks that must be aomplished by theplanning system. In our translation, this list is enoded in the following rules. Inthese rules, Ti's are variables of time, and hi's are the names of the tasks thatmust be aomplished, and Pre(hi)'s are the labels for the preondition lists of themethods whih were applied to those tasks.De�nition 12 (Trans(fh1; : : : ; hng): Translation for Goal Tasks)Given a planning problem (S; t;D), let t = h1; h2 : : : ; hn be the ordered sequene ofgoal tasks. Then,1. Enode the �rst goal task h1 as the following rule:urrentTask(h1; 0) : �2. For the rest of the goal tasks, add the following n � 1 rules (i = 2; : : : ; n) tothe logi program:urrentTask(hi; Ti) : � aused(hi�1;Pre(hi�1); Ti�1; Ti):The prediate urrentTask(task name; T ) uniquely spei�es the urrent taskseleted at time T . As desribed above, we assumed that the planning proessbegins at time 0. If there exists only one goal task to be aomplished for theproblem in hand, then only de�ning the �rst rule will suÆe.



HTN Planning in ASP 11De�nition 12 enfores the fat that a goal task hi is designated as the urrenttask to be aomplished if the previous goal task hi�1 in t is aused. This is a diretonsequene of our Theorem 10. Following this de�nition and theorem, we add thefollowing rules in the logi program:plan found : � aused(hn;Pre(hn); Tn; Tn+1):: � not plan found:where Tn denotes the time when the partiular method for the last goal task, hn,is deomposed and Tn+1 is the time at whih hn is aused (aomplished).These two rules together state that if the last goal task is aused then there isa plan (solution) for the planning problem (S; t;D) as a result of De�nition 12.Otherwise, there is none.Step 5. Enoding the Problem Dependent Control Strutures.Given a planning problem (S; t;D), the domain desription D ontains axioms,operators and methods as desribed in the previous setion. For eah of these on-struts, we present a translation proedure.De�nition 13 (Charateristi Funtion for Literals)Given a literal, l, we de�ne C(l; T ), the harateristi funtion of l at time T , asC(l; T ) := � state(a; T ) if l = a;not state(a; T ) if l = :a:where a is an atom.De�nition 14 (Trans(AX ): Translation for Axioms)Given a planning problem (S; t;D), for all "a l1; : : : ; ln" 2 D, add the rulestate(a; T ) : � C(l1; T ); C(l2; T ); : : : ; C(ln; T );where C(li; T ) is de�ned in De�nition 13 above.De�nition 15 (Trans(OP): Translation for Operators)Given a planning problem (S; t;D), for all Op 2 OP, add the following rules:for all a 2 Del(Op): state(neg(a); T + 1) : � urrentTask(h; T ):and for all a 2 Add(Op):state(a;T + 1) : � urrentTask(h; T ):and �nally add the following rules,ation(h; T; T + 1) : � urrentTask(h; T ):aused(h; T; T + 1) : � urrentTask(h; T ):



12 J�urgen Dix et al.The �rst and the seond rule enode the delete- and the add-lists of the operatorrespetively. The third rule designates the ation for to aomplish the primitivetask h. Sine, in SHOP, the ground instanes of operators represent ation, we donot need suh designations there. The last rule enodes the fat that the task isaused if and only if there exists an operator for it (see De�nition 9).As desribed in the previous setion, given a omposite task h, a method man be ategorized as one of the following two types: either m an be the onlymethod for the task h or it an be one of the many methods for task h. Althoughthey possess slight di�erenes, the translation proedures for eah of these asesare mostly similar. In the rest of this setion, we will present these translationproedures.De�nition 16 (Trans(MET H): Translation for Methods)Given a planning problem (S; t;D), we are translating the methods ontained in D.Case 1: Given a omposite task h, suppose that there exists only one method mwhose head mathes with h. Let Pre(h) be the label for the preondition list of themethod m and let Z be the set of all variables that are used in that preonditionlist. Then,1. Designate the method to be applied to the urrent omposite task:method(h;Pre(h); T ) : � urrentTask(h; T ):2. De�ne the preondition list of the method by inserting the following rule(s) inthe logi program (where l1; : : : ; ln are all preonditions of the method m): fori = 1; : : : ; n,(a) If li is a positive literal and it ontains free variables (i.e, it ontainsvariable symbols that do not appear in the head of the method m). Letai(X1; X2; : : : ; Xv) denote the fat that there are v free variables in li. Letsj denote the number of substitutions for the variable Xj in the urrentstate S. For eah kj = 1 : : : sj , de�ne Ym = (X1;k1 ; X2;k2 ; : : : ; Xn;kn),where m = 1; : : : ; s1 � s2 � : : : � sv suh that Y1 = (X1;1; X2;1; : : : ; Xv;1)and Ym = (X1;s1 ; X2;s2 ; : : : ; Xn;sv ).Then, add the following rule in the logi program,heked(state(ai(Y1); T ); T ) : � method(h;Pre(h); T );state(ai(Y1); T );Vs1�����svm=2 not heked(state(ai(Ym); T ); T );Vvj=1Xj;1! = Xj;2! = : : :! = Xj;sj :(b) Otherwise, add the following rule,heked(state(li; T ); T ) : � C(li; T );method(h;Pre(h); T ):where C(li; T ) is as de�ned in De�nition 13.and �nally, add the following rule in the logi program,preCond(Pre(h); Z; T ) : � heked(state(l1; T ); T ); : : : ; heked(state(ln; T ); T );method(h;Pre(h); T ):



HTN Planning in ASP 133. Assuming the ordered task deomposition for this method is the ordered setof tasks ft1; t2; ; tng, add the following set of rules to the logi program tospeify the deomposition (note that the time variable T1 in the following rulede�nitions in this item denote the same value as the time variable T in therule de�nitions presented in other items does):urrentTask(t1; T1) : � method(h;Pre(h); T1); preCond(Pre(h); Z; T1):urrentTask(t2; T2) : � method(h;Pre(h); T1);preCond(Pre(h); Z; T1);aused(t1;Pre(t1); T1; T2);T2 = T1:... ... ...urrentTask(tn; Tn) : � method(h;Pre(h); T1)preCond(Pre(h); Z; T1);Vn�1i=1 aused(ti;Pre(ti); Ti; Ti+1);Vn�1i=2 Ti+1 = Ti:4. Finally, speify the ausal links from the hild tasks ft1; t2; ; tng to the parenttask h.aused(h;Pre(h); T; Tn+1) : � method(h;Pre(h); T );preCond(Pre(h); Z; T );Vni=1 aused(ti;Pre(ti); Ti; Ti+1);Vn+1i=2 Ti = Ti�1:Case 2: Given a omposite task h, suppose that there exist n > 1 many methodsmi suh that i = 1; : : : ; n, whose heads math with h. Then for eah suh methodmi, perform the previous proedure given for Case 1 above, with the followingmodi�ations:1. Replae eah Pre(h) term with the term Pre(h)i.2. Use PreCond(mi) for the partiular mi.3. Rewrite the �rst rule as follows:method(h;Pre(h)i; T ) : � urrentTask(h; T );Vk=1;:::;n;k 6=i not method(h;Pre(h)k ; T )The rest of the rules are exatly the same as presented for the Case 1.3.4 A Translation Example: An Elevator DomainIn this setion, we give an example translation for the Mioni-10 Elevator domain,whih was introdued as an oÆial benhmark domain during the AIPS-2000 om-petition (see (Bahus, 2001) and http://www.s.toronto.edu/aips2000). In theompetition, the domain was on�gured in a number of versions to aommodate therepresentational power of di�erent planning systems. Its simplest version (the onereferred to as the \�rst trak" version at http://www.informatik.uni-freiburg.de/~koehler/elev/elev.html) was one of the test ases in (Son et al., 2001), andwe used the same version here and in our experiments (see Setion 4.2). This version



14 J�urgen Dix et al.di�ers from the more ompliated versions in the following respets: The plannersimply has to generate plans to serve a group of passengers of whom the originand destination oors are given. There are no onstraints suh as satisfying spaerequirements of passengers or ahieving optimal elevator ontrols.Although we have the full translation of the domain, for the sake of simpliity, wegive here only a part of our translation along with the orresponding HTN domaindesription for omparison.Suppose that we have only two oors and one person to be delivered. Further-more, suppose that the elevator starts its operation at the 0th oor (i.e., the groundoor whih is marked as 0) and its initial diretion is upwards. Our passenger boardsthe elevator at the �rst oor and wants to go down to the ground oor.Now, we will desribe the basis of the translation proess step by step as de-sribed in the previous setion.
Step 1. Enoding the domain independent rules.For our elevator example, the domain independent rules are as follows:literal(P ) : � atom(P ):literal(neg(P )) : � atom(P ):ontrary(P; neg(P )) : � atom(P ):ontrary(neg(P ); P ) : � atom(P ):state(P; T + 1) : � time(T ); literal(P ); literal(Q); ontrary(P;Q);state(P; T ); not state(Q;T + 1):As it an be seen in these rule de�nitions, we have to de�ne all possible atomsthat an ever be used during planning.

Step 2. Enoding the Problem Dependent State Elements.In this step, we have to formulate all of the possible atoms that an ever be usedduring the planning proess. Due to the fat that the variables in smodels semantismust have a range of values, we must also de�ne type prediates in our translationas desribed in the previous setion. In a SHOP domain desription, we do not needto make these de�nitions about the set of all possible atoms and tasks, nor aboutthe type prediates.In our elevator example, we need the following rules for de�ning the set of allpossible atoms:



HTN Planning in ASP 15atom(boarded(P )) : � person(P ):atom(goal(P )) : � person(P ):atom(served(P )) : � person(P ):atom(lift(F )) : � floor(F ):atom(origin(P; F )) : � person(P ); f loor(F ):atom(destination(P; F )) : � person(P ); f loor(F ):atom(top(F )) : � floor(F ):atom(bottom(F )) : � floor(F ):atom(urrent diretion(X)) : � diretion type(X):...And also the type prediates suh as:person(0) : �floor(0 : : : 1) : �diretion type(up) : �diretion type(down) : �...Step 3. Enoding the Initial State for the Planning Problems.We need the following rules to speify the initial state in our enoding of the elevatorexample: state(lift(0); 0) : �state(goal(0); 0) : �state(origin(0; 1); 0) : �state(destination(0; 0); 0) : �state(urrent diretion(up); 0) : �...As it an be seen from these rules, these rules speify ertain ground atoms to bein the state of the planner (De�nition 11 in the previous setion). The last argumentfor eah state(P; T ) prediate is the time T at whih the atom P holds. We de�nethe initial time for the exeution of the planner to be 0.Step 4. Enoding the Goal Task(s).We need the following rule to speify the goal tasks in our enoding of the elevatorproblem in whih we have only one in this ase:urrentTask(serve all; 0):This rule spei�es that our goal task is a task whose head is serve all and theinitial time is 0.



16 J�urgen Dix et al.Sine there is only one goal task in this partiular elevator problem, we needonly one rule for speifying it. If we had more than one goal task, then we wouldhave several rules as given in De�nition 11 in the previous setion. To give anexample, suppose that we have another goal task initialize elevator whih guar-antees that the elevator is returned to ground level after serving all the passengers.In the ordered task list de�nition of SHOP, these will onstitute a goal task listt = (serve all; initialize elevator). In this ase, we would have the following rulesaording to De�nition 11 in our enoding of the problem:urrentTask(serve all; 0) : �urrentTask(initialize elev; T ) : � aused(serve all;Pre(serve all); 0; T );T > 0:Step 5. Enoding the Problem Dependent Control Strutures.In this step, we formulate our axioms, operators, and methods, whih are given inthe HTN domain desription, D.For example, in the HTN de�nition of our partiular elevator example, we havethe following operator de�nition for moving the elevator from one oor to another:(:operator (!move f1 f2)(lift(f1))(lift(f2)))This operator is enoded (see De�nition 15.) in the following set of rules:state(neg(lift(F1)); T + 1) : � time(T ); f loor(F1); f loor(F2);urrentTask(move; F1; F2; T ):state(lift(F2); T + 1) : � time(T ); f loor(F1); f loor(F2);urrentTask(move; F1; F2; T ):ation(move; F1; F2; T; T + 1) : � time(T ); f loor(F1); f loor(F2);urrentTask(move; F1; F2; T ):aused(move; F1; F2; T; T + 1) : � time(T ); f loor(F1); f loor(F2);urrentTask(move; F1; F2; T ):These rules apply only when the urrent task is the primitive task (movef1f2).There are two ases in the translation of a method as given in De�nition 16. Inthe �rst ase, we may have only one HTN method for a partiular task. Supposethat the urrent task is (op elevf), where f is a oor, and we have the followingmethod:(:method (op_elev f)(lift(f)) % the preondition((hek_board f) % subtask 1(hek_dep f) % subtask 2(move_elev f))) % subtask 3



HTN Planning in ASP 17Aording to Case 1 of the De�nition 16, we have the following rules:method(op elev; F;Pre(op elev); T ) : �time(T ); f loor(F );urrentTask(op elev; F; T ):heked(state(lift(F ); T ); T ) : �state(lift(F ); T );method(op elev; F;Pre(op elev); T ):preCond(Pre(op elev); F; T ) : �heked(state(lift(F ); T );method(op elev; F;Pre(op elev); T ):urrentTask(hek board; F; T ) : �time(T ); f loor(F ); preCond(Pre(op elev); F; T );method(op elev; F;Pre(op elev); T ):urrentTask(hek dep; F; T2) : �time(T ); time(T2); f loor(F );preCond(Pre(op elev); F; T );method(op elev; F;Pre(op elev); T );aused(hek board; F;Pre(hek board); T; T2);T2 � T:urrentTask(move elev; F; T3) : �time(T ); time(T2); time(T3); f loor(F );preCond(Pre(op elev); F; T );method(op elev; F;Pre(op elev); T );aused(hek board; F;Pre(hek board); T; T2);aused(hek dep; F;Pre(hek dep); T2; T3);T2 � T; T3 � T2:aused(op elev; F;Pre(op elev); T; T4): �time(T ); time(T2); time(T3); time(T4);f loor(F );method(op elev; F;Pre(op elev); T );preCond(Pre(op elev); F; T );aused(hek board; F;Pre(hek board); T; T2);aused(hek dep; F;Pre(hek dep); T2; T3);aused(move elev; F;Pre(move elev); T3; T4);T2 � T; T3 � T2; T4 � T3:In this translation, the �rst rule designates the appliation of the method whosehead is op elev to the urrent task (op elevf). The seond and the third rulesmake sure that all of the preonditions of the method are satis�ed in the urrentstate S. The fourth through the sixth rules de�ne the suessor subtasks with theorder they were de�ned in the orresponding HTN method. Note that, in HTNformalism, the ordering of the subtasks enfore the fat that a subtask t an beseleted as the urrent task for deomposition only if all of the subtasks preedingt are aomplished suessfully. This is ahieved in our translation by the ausedproperties of the tasks (see De�nition 9).As the other ase, we may have two di�erent methods for the same ompositetask in our HTN domain desription. For example, suppose that we also have thefollowing method for the task (op elevf) in addition to that given above:(:method (op_elev f)(lift(f)) % the preondition((move_elev f))) % the subtask



18 J�urgen Dix et al.In a SHOP-like HTN planning algorithm, having two methods with di�erentsuessor subtasks appliable for a partiular task reates a branhing (baktrak-ing) point in the searh spae of the planner. If we require the planner to returnall the solutions (plans) for the planning problem at hand, the planner should tryeah branh to �nd a possibly|but not neessarily|di�erent plan. To be able toimplement this property in our translation, we use the NAF literals to generatedi�erent answer sets orresponding to the appliation of eah method|as given inCase 2 of De�nition 16. Aording to this de�nition, we will the following methoddesignation rules in the translation of eah method:method(op elev; F;Pre(op elev)1; T ) : � time(T ); f loor(F );urrentTask(op elev; F; T );notmethod(op elev; F;Pre(op elev)2; T )method(op elev; F;Pre(op elev)2; T ) : � time(T ); f loor(F );urrentTask(op elev; F; T );notmethod(op elev; F;Pre(op elev)1; T )The index of the prediate Pre(h), where h is the head of the method - whihis op elev in this example-, spei�es whih branh is being taken. The rest of thetranslation for eah method remains the same as in the example above exept allthe instanes of Pre(h) should be replaed by Pre(h)i, where i is the index of themethod. 4 Results: Theory and PratieIn this setion, we present our theoretial results on the orretness of our transla-tion method and the soundness and the ompleteness of the resulting logi programsas planning systems as well as the experiments we have undertaken.4.1 Soundness and CompletenessDue to spae limitations, we will not present the whole proofs here, but we willdisuss the basi ideas behind them.Our �rst theorem states that our translation indeed orresponds to HTN plan-ning as done in SHOP.Let Trans(�) be the translation method desribed in the previous setion. Givenany HTN-planning problem, we are interested in the relationship between the mod-els (or answer sets) of Trans(�).Theorem 17 (Trans(�) and HTN planning) Given a planning problem(S; t;D), where S is the initial state, t is the list of tasks to be ahieved and Dis the domain desription, let Trans((S; t;D)) be the orresponding logi programwith negation. Furthermore, let Sol(S; t;D) be the set of solutions returned bySHOP. Then,1. If Sol(S; t;D) = ;, then Trans((S; t;D)) has no answer sets.



HTN Planning in ASP 192. If Sol(S; t;D) 6= ;, then for every plan P 2 Sol(S; t;D) 6= ;, there is ananswer set of Trans((S; t;D)), suh that the ation( ) prediates orrespondexatly to the steps pi in P .ProofSketh Given an HTN planning problem (S; t;D), the proof starts with de�ningthe solution depth of a plan P 2 Sol(S; t;D) to be the number of deompositionsneeded to produe P from t plus the length of P . Then, it follows from the ausaltheory for HTN-planning desribed in the previous setion (Theorem 10), thatboth SHOP and the logi program Trans((S; t;D)) have the same set of plansinitially. Then, by indution on the solution depth of any solution in Sol(S; t;D),we show that the theorem holds throughout the plan/model generation proess.This is beause the logi program Trans((S; t;D)) is produed by our translationmethodology, whih is based on our ausal theory.Soundness and ompleteness are the two important requirements for any planningsystem. Soundness means that all of the plans that are generated by the plannerare atually true solutions to the given planning problem; that is, no plan, whihis not solution to the problem, should be generated. Completeness means that theplanning system must be able to generate all of the possible plans (solutions) forthe given problem.Corollory 18 (Soundness and Completeness of ASP using Trans(�))Given a planning problem (S; t;D), where S is the initial state, t is the list oftasks to be ahieved and D is the domain desription, let Trans((S; t;D)) be theorresponding logi program with negation. Furthermore, let Sol(S; t;D) be the setof solutions returned by SHOP.Then, the answer sets of Trans((S; t;D)) orrespond exatly to the plans in Sol(S,t,D). There is a bijetion between these two sets and eah plan in Sol (S,t,D)an be reonstruted from its orresponding answer set in Trans((S; t;D)) and vieversa.The orollary follows easily from the theorem and the fat that SHOP itself hasbeen shown to be a sound and omplete planner.De�nition 19 (Solution Tree for Trans(�))Given a planning problem (S; t;D), and the orresponding logi program with nega-tion Trans((S; t;D)), we de�ne the solution tree produed by Trans((S; t;D)). It isan AND-OR tree, T , in whih the AND branhes represent the task deompositionsand the OR branhes represent di�erent possible methods whose heads math witha partiular task.We say T represents Sol(S; t;D). Without loss of generality, we assume that thesolution tree of Trans((S; t;D)) is a omplete AND-OR tree as shown in Figure 2.Furthermore, we suppose that t ontains only one task to be aomplished and wehave no negated atoms in the preonditions of the methods in D.
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. . .Fig. 2. A omplete AND-OR TreeTheorem 20 (Time Performane using Trans(�) (1))Given a planning problem (S; t;D), the orresponding logi program with negationTrans((S; t;D)), and the solution tree T , then, the time required for Trans((S; t;D))to generate the set of all answer sets that orrespond to Sol(S; t;D) monotoniallyinreases with the number of appliable methods for a partiular task (the numberof branhes in a partiular OR-branh).ProofSketh Given a partiular task t in the solution tree T , let n denote the number ofappliable methods to t. Aording to our translation methodology, for eah suhmethod, Trans((S; t;D)) will inlude the rules given in De�nition 16. Without lossof generality, we assume that Trans((S; t;D)) requires a unit amount of time tomake a rule ground and �re it, and all of the possible method appliations to t leadto isomorphi sub-trees. Then, let the time required for Trans((S; t;D)) to solvea sub-tree of T whose root is t, be denoted by  6= 0. The overall time requiredfor Trans((S; t;D)) to �nd all answer sets is n + a, where a represents the timerequired by Trans((S; t;D)) for the rules orresponding to the rest of the parts ofthe solution tree T .The proof starts by showing that when n = 0, the time required forTrans((S; t;D)) to �nd all answer sets is equal to a and it monotonially inreasesif we inrease n by 1 (+a is learly greater than a). Suppose that for all i < n, thetheorem holds. Then, by indution, if we inrease the number of methods appliableto task t to be n+1, the overall time required for Trans((S; t;D)) to �nd all answersets will be (n+ 1)+ a suh that (n+ 1)+ a > n+ a.It follows therefore that the total time required by Trans((S; t;D)) to generateall answer sets that orrespond to Sol(S; t;D) monotonially inreases with theinreasing number of appliable methods to a partiular task in T .Theorem 21 (Time Performane using Trans(�) (2))Given a planning problem (S; t;D), the orresponding logi program with negationTrans((S; t;D)), and the solution tree T , then, the time required for Trans((S; t;D))



HTN Planning in ASP 21to generate the set of all answer sets that orrespond to Sol(S; t;D) monotoniallyinreases with the number of subtasks of a partiular task (the number of branhesin an AND-branh).ProofGiven a partiular task t and a method m : (Meth h � t), whose head, h, matheswith the task t, the subtasks of the task t orrespond the simple redution r of tby in S. Suppose that there are n subtasks in r. Then, aording to our translationmethodology, Trans((S; t;D)) will ontain n rules as shown in the item 3 of the �rstase in De�nition 16. Without loss of generality, we assume that Trans((S; t;D))requires a non-zero unit amount of time, denoted as , to make a rule ground, and�re it. Let k 6= 0 be the number of ourrenes of the partiular task t in thesolution tree T of (S; t;D). Then, the overall time required for Trans((S; t;D)) willbe kn+ a, where a represents the time required by Trans((S; t;D)) for the rulesorresponding to the rest of the parts of the solution tree T .The proof starts by showing that when n = 0, the time required forTrans((S; t;D)) to �nd all answer sets is equal to a and it monotonially inreasesif we inrease n by 1 (k+a is learly greater than a. Suppose that for all i < n, thetheorem holds. Then, by indution, if we inrease the number of methods appliableto task t to be n + 1, the overall time required by Trans((S; t;D)) to generate allanswer sets will be k(n+ 1)+ a suh that k(n+ 1)+ a > kn+ a.Then, it follows that the total time required by Trans((S; t;D)) to generateall answer sets that orrespond to Sol(S; t;D) monotonially inreases with theinreasing number of subtasks of a partiular task in T .De�nition 22 (Range of a Variable: kvk)The range of a variable v, denoted by range(v) is de�ned to be the set of all possiblevalues de�ned for v. The ardinality of range(v) is denoted by kvk.De�nition 23 (The Universal set of atoms)Given a planning problem (S; t;D), the universal set of atoms, U , is de�ned as theset of all possible ground atoms that an ever be used to �nd all of the solutions for(S; t;D).We assume that for every atom a in U , the number of variables of a is a �xednumber, say k. Furthermore, the range for every variable in a has the same lengthr.Theorem 24 (Time Performane using Trans(�) (3))Given a planning problem (S; t;D), the orresponding logi program with negationTrans((S; t;D)), and the solution tree T , then, the time required for Trans((S; t;D))to generate the set of all answer sets that orrespond to Sol(S; t;D) monotoniallyinreases as k and/or r inrease (see previous de�nition).ProofThe proof starts by de�ning the total number of ground instanes, g, of a partiularrule of Trans((S; t;D)). Suppose that k and v, as desribed above, are �xed non-zero



22 J�urgen Dix et al.numbers initially. Let x be the number of atoms in that partiular rule. Then, thetotal number of ground instanes is g = kvx. Let (k; v) denote the time required byTrans((S; t;D)) in order to make a rule ground, and �re it. If Trans((S; t;D)) �resN rules during the proess of traversing the orresponding solution tree T , then thetotal time required for Trans((S; t;D)) to generate all the possible answer sets isgiven by Ng� (k; v). Then, by indution on k and/or v, we show that the theoremholds throughout the traversal proess of T implemented by Trans((S; t;D)) inorder to generate all of the answer sets orresponding to Sol (S,t,D).As simple orollaries of the last theorem, we an onlude that the time for gen-erating the set of all answer sets monotonially inreases with (1) the number ofpreonditions of the methods, and (2) the number of atoms in the add- and delete-lists of the operators. 4.2 Experimental StudyIn our experiments, we used two di�erent planning domains:The Travelling Domain: This domain is the one of the domains inluded in thedistribution of SHOP planning system. The senario for the domain as desribedin (Nau et al., 1999) is that we want to travel from one loation to another ina ity. We have three loations: downtown, uptown, and park. There are threepossible means of transportation: taxi, bus and foot. Taxi travel involves hailingthe taxi, riding to the destination and paying the driver $1.50 plus $1.00 foreah mile travelled. Bus travel involves hailing the bus, paying the driver $1.00,and riding to the destination. Foot travel just involves walking., but the maxi-mum feasible walking distane depends on the weather. Thus, di�erent plans arepossible depending on the weather onditions, the distane between our urrentloation and the one we want to go, and how muh money we have.The Mioni-10 elevator Domain: This is the domain as desribed in Se-tion 3.4. It is ontained in a series of benhmarks http://www.informatik.uni-freiburg.de/~koehler/elev/elev.html and it was reently used not onlyto measure the performane of various planners but also for other translationmethods from planning problems into ASP (see http://www.FCS.NMSU.Edu/~tson/asp_planner/.We desribe our experiments in the following three subsetions. We used thesoftware pakage smodels v2.6|whih is available at http://www.ts.hut.fi/Software/smodels/|as the testing environment for our logi program enoding.We ran our experiments on a Solaris 2.6 Sun Ultra 1 mahine. . However, wealso tested our logi programs on the DLV system|whih is available at http://www.dbai.tuwien.a.at/proj/dlv/.4.2.1 Comparison with (Son et al., 2001)The setion desribes our omparison of the time performane of the logi programsprodued by using our translation methodology with that of the logi-program



HTN Planning in ASP 23enodings presented in (Son et al., 2001). Note that the enoding methods proposedin (Son et al., 2001) does not produe atual HTN enodings, rather they makeuse of only a few properties of HTN s|as they are introdued in (Erol et al.,1994)|for implementing ontrol knowledge in logi programs that perform ation-based planning. In their paper, Son et al., showeed that employing that of ontrolknowledge has inreased the time performane of the logi program that enodesan ation-based planner.The problems that we used in these experiments are from http://www.CS.NMSU.Edu/~tson/asp_planner. Table 1 shows both our results and the results from (Sonet al., 2001), whih were also obtained on the Smodels system. These experimentswere run on an HP OmniBook 6000 Laptop with 128MB RAM and an Intel PentiumIII 600 Mhz proessor.Problem Trans(�) (Son et al., 2001)S1-0 0.150 0.100S2-0 0.880 1.802S3-0 6.300 22.682S4-0 8.960 164.055S5-0s1 2.530 57.952S5-0s2 3.900 105.040S6-0 53.340 no solutionTable 1. Comparison of HTN Enoding with (Son et al., 2001)The results learly show that the logi programs produed by our translationmethodology outperform the logi programs produed in (Son et al., 2001). Ourenoding was even able to solve a problem, for a solution ould not be found by(Son et al., 2001).In this respet, these results on�rm the fat that a SHOP-like HTN planningis an e�etive way for solving planning problems. They also illustrate that ourtranslation method provides a way to produe eÆient HTN-logi programs withASP semantis to solve planning problems ompared to other ation-based enod-ing methodologies that use some HTN onepts as domain ontrol knowledge. Webelieve that this is due to the fat that HTN-planning is more expressive thanation-based planning (?). Thus, all of the planning problems an be representedin HTN formalism. For this reason, our translation methodology o�ers an eÆientway solving planning problems by using logi programs with answer set semantis.



24 J�urgen Dix et al.4.2.2 The E�et of GroundingWe hypothesize that our translation methodology provides more eÆient logi pro-grams with ASP semantis if the system on whih those programs are implementedallows the usage of free variables in the programs. Otherwise, the system tries tomake every rule ground in the input program, whih is not an appropriate be-haviour in planning. Most of the reent planning systems|suh as SHOP (Nauet al., 1999) , TALPlanner (?), et.|an work on planning-problem desriptionswith free variables and these systems are proven to be faster then those whihreequire grounding.As we desribed earlier, the smodels system annot work on the logi programswith free variables. To test our hypothesis, we applied our translation methodologyto our elevator and travelling examples to produe logi programs on a di�erentsystem alled DLV . DLV is a dedutive database system, and an be used as a logiprogramming system as well. It implements stable model semantis and it supportsthe usage of free variables in the input logi programs.Tables 2 show our results on the travelling problems. As it an be seen, ourprograms are muh more faster on DLV , then on smodels. This is beause of thefat that, as desribed in Setion 3.4, smodels work on ground logi programs.Beause of that we have to de�ne type prediates for eah variable in the problemdomain as well as all possible ground instanes of the atoms that an ever be used inthe planning proess. The result is that as the number of variables and the numberof their possible instantiations inrease, the time performane of the logi programdereases (see Theorem 24). However, we do not have suh onstraints on DLVsine it an work on programs with free variables. Thus, the e�et of grounding anbe learly seen in our results on travelling domain.On the elevator problems, however, the performanes of our programs are almostthe same (see Table 3 ). The reason for this is the fat that the elevator domain, byits de�nition, enfores the input programs to be more ground than the travellingdomain. Thus, no matter they are implemented on either smodels or DLV , theprograms need to be ground. Therefore, in this domain the e�et of groundingannot be seen learly. 4.2.3 Comparison with SHOPEnouraged by the performanes of the logi programs produed by our translation,we prepared an experiment set in whih we ompared the time performanes ofour logi-program enodings on the travelling examples with those of the SHOPplanning system itself on the same domain.For this experiment set we designed three independent variables, namely thedestination loation, the weather ondition and the �nanial status of the traveller.We assumed that the traveller always starts travelling from the downtown of theity. The treatments for these independent variables are: the destination loationan be uptown or park, the weather an be good or bad, and the traveller an be



HTN Planning in ASP 25Problem smodels DLVP1 3.23 0.2P2 2.23 0.12P3 2.19 0.22P4 2.08 0.10P5 2.2 0.19P6 2.18 0.11P7 2.21 0.19P8 2.15 0.08Table 2. Comparison of smodels and DLV using Trans(�) (1)Problem smodels DLVS1-0 0.150 0.51S2-0 0.880 1.30S3-0 6.300 6.61S4-0 8.960 6.66S5-0s1 2.530 4.06S5-0s2 3.900 3.76S6-0 53.340 54.54Table 3. Comparison of smodels and DLV using Trans(�) (2)either rih (i.e., have suÆient money for travelling with taxi) or broke (i.e, has nomoney at all).As it an be seen from the results of our experiment (see Table 4), the performaneof our logi programs are omparable to that SHOP. Given the fat that SHOP isproven to be one of the fastest and eÆient planners in the AIPS-2000 planningompetition (Bahus, 2001), these results suggest that our translation methodology



26 J�urgen Dix et al.Problem SHOP Trans(�) on DLVP1 0.026 0.20P2 0.002 0.12P3 0.003 0.22P4 0.002 0.10P5 0.004 0.19P6 0.009 0.11P7 0.003 0.19P8 0.003 0.08Table 4. Comparison of Trans(�) with SHOP (no Grounding)introdues a way of providing very eÆient solutions to planning problems usinglogi programming with ASP semantis and it has the potential to be the mostompetitive approah in the logi-programming literature with the atual planningsystems.In the near future, we will test our system on more planning domains and ompareour approah with other well-known planning systems. We are also planning toimplement our approah on two systems, namely the XSB system ((Rao et al.,1997)) and the front-end software developed by P. Bonatti for smodels ((Bonatti,2001b; Bonatti, 2001a)), both of whih an handle free variables like the DLVsystem. 4.2.4 Experimental Veri�ation of Our TheoremsThis setion desribes four sets of experiments with respet to Theorems 20, and 21.We introdued two independent variables, one for eah experiment: the number ofappliable methods for a partiular task kmkt, and the number of subtasks of apartiular task, ktkt. In eah experiment, we measured the time performane of ourlogi program enoding produed by our translation methodology on the travellingproblems.We designed di�erent number of treatments for eah of our independent variable.For the independent variables about a partiular task, we hose the travelling task(i.e., the task travelXY ) in SHOP notation). The treatments for our independentvariables are shown in Table 5.The results are shown in Table 6 and Table 7. These results orroborate with ourtheoretial results in Theorem 20 and 21, respetively. As it an be seen from these



HTN Planning in ASP 27Independent Variable Treatmentskmkt 1, 2, 3, 4ktkt 2, 3, 4Table 5. Treatments of Independent Variablestables, the time required to generate all the answer sets in Sol (S,t,D) inreaseswith the number of methods appliable to a partiular task and with the numberof subtasks of a partiular task.Independent Variable 1. Treat. 2. Treat. 3. Treat. 4. Treat.kmkt 6.1 17.68 29.59 41.77Table 6. Performane of Trans((S; t;D)) wrt. Number of Methods.Independent Variable 1. Treat. 2. Treat. 3. Treat.ktkt 13.75 17.68 39.33Table 7. Performane of Trans((S; t;D)) wrt. Number of Subtasks.5 Conlusions and Future Researh DiretionsIn this paper, we desribed a way to enode HTN-planning problems into logiprograms under the answer set semantis. This transformation is not only sound andomplete, but it also orresponds losely to HTN-planning systems whih generateplans by using ordered task deompositions. Previous enodings (as �rst introduedin (Dimopoulos et al., 1997)) do onsider ation-based planning or they take aspeial view of HTN planning (as onstraint-based planning, like in (Son et al.,2001)).To test our approah, we used it to reate both smodels logi programs and DLVlogi programs, for two di�erent AI planning domains: the Travelling Domain, andthe \�rst trak" version of the Mioni 10 Elevator Planning Domain. Here is asummary of our experimental results and what we believe they signify:� In our experiments on the Mioni 10 domain, our smodels logi programslearly outperformed the orresponding ones desribed in (Son et al., 2001),



28 J�urgen Dix et al.whih are based on answer set semantis. This, we believe, is due largely tothe HTN-style ontrol knowledge that our translation methodology enodesinto the logi programs.� Although our logi-program enodings on smodels outperformed those of (Sonet al., 2001), they were not ompetitive with SHOP, whih is a state-of-the-art AI planning system. We believe one of the reasons for this is that smodelsrequire grounding, whih reates ombinatorially many ground instanes ofthe lauses in the logi program. For any given problem instane, most ofthese lauses are likely to be irrelevant.� Our overall translation methodology does not rely on grounding. Groundingis merely used here beause many available systems, notably smodels, requireit. DLV , on the other hand, allows for free variables, but does not allowfuntion symbols, whih ome in handy in smodels. We have inluded in thispaper our �rst experiments in applying our methodology for programs withfree variables. In our experiments on the Travelling Domain using our methodtogether with DLV , we got a speed-up of two orders of magnitude omparedto smodels. However, the performane was still about 1.5 orders of magnitudeworse than SHOP, one of the best planning systems on the market.We emphasize the fat that our method does not use any partiular features ofthe engine for omputing answer sets. Obviously, taking advantage of the partiularsearh method of smodels, or the bottom-up evaluation of DLV , it would be possibleto write even more eÆient translations. But our aim is to develop a translationthat is independent of the underlying nonmonotoni engine.As a byprodut, we believe our method an be easily used as transferring benh-marks from the planning ommunity to benhmarks for omparing nonmonotonisystems based on omputing answer sets. This is beause our method is very gen-eral and does not rely on the features of a partiular system. Due to lak of time,we were not yet able to test the benhmarks on the XSB system, a Prolog sys-tem whih not only allows funtion symbols but also free variables at the sametime. These are features that neither smodels nor DLV provide. We believe thatwe an get a ompetitive planning system one we an apply our translation into anonmonotoni system with these two features.We are also planning to ompare our method with smodels equipped with a front-end to allow for (restrited use of) free variables ((Bonatti, 2001b; Bonatti, 2001a)).The latter system has been developed by Piero Bonatti and is a front-end systemthat an be added to any system omputing answer sets and based on grounding.This would also allow for omparisons of systems with built-in grounding to thosewho do not require this (but are, in general, slower). Again, we believe that seriousbenhmarks from the planning ommunity an help a lot to evaluate nonmonotonisystems.Our overall aim is to investigate to what extent state-of-the-art nonmonotonitheorem provers an ompete with dediated planners (in partiular those based onHTN) and what lessons we an learn from the di�erent translation methods. Weexpet that optimal translations (if they exist) depend on the partiular appliation
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