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Abstract. We apply evolutionary algorithm (EA) to the design of controller for
adaptive robots. EAs can be successful for more complicated tasks, where traditional
engineering methods struggle to provide a good solution. However a simple
evolutionary process is computationally expensive and works only for tasks of limited
complexity. Incremental evolution can provide a solution. Complex tasks are divided
into easier steps. This article gives an overview of incremental evolution and explains
our incremental evolution experiments. We use EA as an on-board learning method to
solve the novel task encountered by the robot in its environment. A robot equipped
with a simulator of itself evolves a routine to overcome an obstacle in the execution of
its task. We demonstrate embedded incremental evolution of a robot program for a
task with computationally limited LEGO1 robots.

1. Introduction

A challenge of evolving a robot controller for a complex task is too difficult for a simple
evolutionary algorithm. However, EAs can be used for automatic controller design for more
complex behaviors, if the difficulty is decreased by dividing the evolutionary process into
steps, each one easy enough to be solved. After a robot controller for a simple problem is
evolved, the problem difficulty is incremented and the evolution continues. More than two
steps are allowed in incremental evolution. The incremental difficulty can take several
different forms:
• Environment difficulty – for example, the number of obstacles on a robot’s path,

presence or speed of moving objects in the environment, etc.
• Task difficulty – for example, first we might require a football playing robot to approach

the ball, later we could require also to approach it from the right direction.
• Robot’s abilities – a high number of robot’s sensors and actuators can be too confusing

for a learning algorithm. A subset of robot’s equipment can be used in early steps and
more specific sensors and actuators added later.

                                                          
1 LEGO is a trademark of LEGO Group.



• Controller abilities – the task for the robot might require a complex controller, for
example one with an internal state. Evolution can start with a simple controller that is
sufficient for initial task and the controller can be extended later during the evolution.
The change can be either quantitative, i.e. incrementing the number of nodes in a neural
network, or qualitative, i.e. introducing a new set of primitives for a GP-evolved
program.

Incrementing the difficulty thus can be achieved by changing either the experimental setup or
the fitness function in case of task difficulty or functional fitness function, see [12]. When
entering a new step, already learned parts of the genotype can either remain frozen or
continue to evolve. A population that converged to a solution at the end of one step might
need to be reinitialized before entering another step with preserving what is already learned.
Subparts of the problem can be either independent, for example individual modules that can
be tested separately, or depend to some extend on other parts – thus creating a dependence
hierarchy (i.e. arranged in a tree, or in a graph). In this case, one can incrementally evolve the
behaviors from the bottom of the hierarchy, and later add upper layers and parallelize the
algorithm more easily. This is a general framework, but various researchers already executed
more concrete and specific experiments. The following sections give an overview of
previous work on incremental evolution, describe our experiment and the proposed method,
and finally discuss the results and future directions.

2. Related work

This section’s aim is to catch most of the current and past uses of the incremental evolution.
We believe that even though it is extensive, it will provide a good starting point for studying
the related work about this topic. We also avoided a possible classification of the papers
since there are many different viewpoints and classification criteria.

An exercise of incrementally evolving a simple NN mapping of 4-bit binary vectors was
presented in [14]. After evolving weights for a 12-node NN for 3 binary vector pairs, 4 nodes
and 1 vector pair were added to the evolved networks and the evolution continued. In the
incremental case (4 vector pairs and 16 nodes), the resulting solutions had lower fitness than
in a non-incremental case, which was also faster. The task was easy even for a standard GA
and there was high redundancy in learning after the 3 vector pairs were already learned by
part of the network.

 The behavior language BL for Brooks’ Subsumption architecture was extended to a
version suitable for EA called GEN. In [1], Brooks reasons that the robot should be initially
operated with only some of its sensors, and perhaps only some of its actuators. Once the
fundamental behaviors are present, additional sensors and actuators can be made available.
The fitness function can vary over the time.

Inman Harvey’s Species Adaptation Genetic Algorithm (SAGA) [17] is a modified GA
that allows genotypes with variable (growing) length. The Sussex group used SAGA in
experiments with incremental evolution of NN architectures for adaptive behavior [3].
Harvey points out that contrary to a GA, which is a general problem solving optimization and
search tool working with a finite search space, SAGA fits for evolving structures with
arbitrary and potentially unrestricted capabilities that require genotypes with unrestricted
length. In SAGA, incremental refers to the fact that the length of the genotype increments
over the evolutionary run. Sussex group controllers are typically arbitrary interconnected
networks with inhibitory and excitatory connections. Internal uniform noise is added to
node’s excitation. Inhibition is binary: once a node receives at least one inhibitory signal, it
does not produce any excitatory output. Certain level of excitation sets the inhibitory output



of a node. Network connections are found by the evolution. SAGA has been tested on simple
visually guided robot that had to remain in the centre of the arena. Later, the Sussex group
experimented also with increments in the task difficulty. A visually guided gantry robot
learned to navigate towards a triangle in four steps: forward movement, movement towards a
large target, movement towards a small target, distinguishing a triangle from a square [18].

Lund and Miglino incrementally evolved a Khepera robot with recurrent NN controller
that performed a detour behavior [23]. The task for the robot was to reach a target placed
behind a U shaped obstacle. They failed to evolve such a controller non-incrementally, but
succeeded with two-step process. The robot was first trained for a rectangular obstacle,
which was later replaced by one of a U shape.

In [10], changing environment lead to better results than a static one. Authors experiment
with nest-based foraging strategies of feed-forward reactive NN controllers. An environment
with a constant amount of food was compared to one with decreasing amount of food, thus
making the task incrementally more difficult. Environmental change caused a drastic
improvement in the quality and efficiency of the foraging strategies. In the later work at
Lausanne [33], an advanced modular architecture was trained using Behavior Analysis and
Training (BAT) [5, 7]. Evolution as a global search was combined with the Reinforcement
Learning during the individual’s lifetime. The robot learned to move around the arena as
long as possible avoiding obstacles and regularly recharging batteries. Later the robot had to
collect and deliver objects. New modules were added to the controller architecture and the
genotype was augmented. Evolved parts of the genotype were masked so crossover and
mutation operators did not affect them in the later stage.

A group at the University of Texas [15] used incremental evolution in combination with
Enforced Sub-Populations (ESP) to evolve recurrent NN architectures. Members of the
population were individual neurons segregated into sub-populations. The network was
formed by randomly selecting one neuron from each sub-population. Delta-coding GA [34]
was used for reinitialization of the population based on differences from best-fit individual.
Prey capture behavior of a mobile agent was evolved in 8 incremental steps. The prey, first
static, was later allowed to perform several initial steps, to be finally made mobile with
incrementing speed in consecutive evolutionary steps. Authors formulate heuristics for
devising an incremental sequence of evaluation tasks. (i) Increasing the density of the
relevant experiences within a trial so that a network can be evaluated based on greater
information in a shorter amount of time. (ii) Making the evaluation-task easier so that the
acquisition of fundamental goal-task (final task) skills is more feasible. Results of the prey
capture experiments showed significantly better fitness in the case of incrementally evolved
controllers compared to the direct evolution.

Perkins and Hayes [27] argue that evolving NN controllers incrementally is too difficult.
Their arguments are: networks with internal states are not suitable for breeding; there are
difficulties with using the converged population of the previous incremental step as an initial
population for the next step; protecting parts of the network responsible for behaviors
learned in previous steps is impossible because these parts are not identifiable. Their Robot
Shaping method is closer to a classifier system. A population of neurons that compete and
cooperate to produce a behavior of a robot is evolved. The network is made up of several
different species of neurons, which have different connectivity characteristics and different
mutation operators. Neurons are evaluated by an analogue to the bucket-brigade algorithm
from CS. In their later experiments [28] and Perkins’ Ph.D. thesis [29], they evolved a target
following behavior for B21 mobile robot. The task was to keep the brightest object in front,
centered in its visual field. Robot was trained in two incremental steps: first only turning
towards its target and later also focusing on it (pan and tilt axes). The controller consisted of
several tree-like programs (agents) evolved with GP. Agents had two outputs: validity and



value and they competed for the control over their assigned actuator. Before proceeding to
the next evolutionary step, the current agents in the controller were frozen and the evolution
continued only with appended agents. The incrementally shaped controller performed
significantly better than a non-shaped, although handcrafted controller was simpler and
better.

A systematic study of incremental evolution in GP is in [35]. Authors distinguish
between the true incremental evolution, such as in [23] from other techniques where the
controller is trained in steps and previously evolved parts are held constant in subsequent
steps. Authors experiment with two different termination criteria: fixed number of
generations and achieving the performance limit. They employ two different population
organization strategies: standard undivided population and demetic grouping, where the
population consists of several isolated sub-populations that exchange the genotypes only
occasionally. They statistically compare named methods applied to target tracking task of
pan and tilt controlled mobile robot.

Incremental evolution was used with GP in [13]. They evolved programs for 2 tasks. A
controller for evasion in pursuit-evasion game was evolved in 2 steps: in the first step, the
speed of the evader was different. They give a detailed analysis of various speeds (both
slower and faster than in the final task) and time moments when the shift between the two
steps occurs. They show that even a more difficult task when used as a first step, can
sometimes speed-up the evolution. The reason for (problem of) this approach is that by
giving a more difficult task in the beginning, the selection pressure is altered thus speeding
up the evolution. Most likely, a similar effect can be obtained also by changing other GA
parameters. In the second experiment, a controller for an artificial ant following a food trail
is evolved. Authors use 2 steps: in the first step, a simpler (more difficult) trail is used.
Again, authors’ results indicate that more difficult task as the first incremental step can speed
up the evolution. In both experiments, they were able to evolve the required behaviors in a
shorter time using incremental evolution compared to a non-incremental GP.

The issue of determining effective function nodes for GP was addressed in [24]. They
successfully compare their method to ADF GP on a simulated incremental evolution on
parity problem.

Controllers based on fuzzy rules are evolved using incremental evolution strategy in [19].
Evolution starts from a knowledge base containing single rule. Later, the rules are allowed to
expand by either partitioning the domain of some input variable or by adding a linear term to
the consequence part of the rule.

Currently active research on incremental evolution is done in AnimatLab [9,20]. Their
SGOCE paradigm evolves tree-like programs that generate recurrent NN controllers
incrementally for different versions of the problem. Good solutions to a simpler version are
frozen and used to seed the initial population for harder problem, where also inter-modular
connections to other parts of the controller are created. For example in [2], the group evolved
a robust obstacle avoidance behavior with Khepera mobile robot in two steps, the second
with a higher environmental difficulty.

Impact of combining the evolution with learning in order to maintain population diversity
during incremental evolution was analyzed shortly in [8] on a binary mapping task.

Incremental evolution where several populations from the earlier evolutionary step are
merged was used in [6] on the domain of the theorem proving. Neural networks were
evolved to provide heuristics for constructing proofs of theorems from a simple set of
axioms and two inference rules. Incremental case performed better compared to non-
incremental evolution.

Researchers in the field of Evolvable Hardware are facing the problem of high
complexity tasks (and thus long genotypes) as well and incremental evolution comes very



handy in this domain. The advantage here is that it is relatively easier to divide the task
(typically a binary function) into subtasks. This approach (divide and conquer) was suggested
and later elaborated on by Torresen [32]. It was further built upon by Kalganova [21], where
the incremental evolution is running in two directions: from complex system to sub-systems
and from sub-systems to complex system.

 Another common method used in ER for arranging the gradual increase of the task
difficulty is the co-evolution [4, 30, 31, 20, 11]. In this approach, two simultaneous
competing populations of individuals are evolved. They share the same environment and
might have opposite goals. As a consequence, the environment complexity is gradually
increased over the generations as the evolution finds better individuals in both populations.

3. Embedded evolutionary computation

The nature of many tasks where robots might be useful requires adaptivness, learning and
dealing with unpredictable, changing and unstructured environments. It is therefore almost
impossible to predict situations that the robot will have to handle during the execution of its
task. Robots should be able to learn new operations and skills. Particular learning algorithms
for this purpose are needed.

It’s becoming a real possibility to equip mobile robots with high-performance computers
on-board. Their computational power can be used for much better vision and signal
processing algorithms, better planning, reasoning, processing natural language commands,
etc. In addition, we propose to include a simulator of the robot itself to test robot’s planned
actions without the risk of failure in the real world. The simulator is used by an embedded
evolutionary algorithm to evolve a good strategy or actual program code that performs a
required operation. In this way, the robot can learn new skills when they become needed. A
similar approach by Grefenstette and Ramsey [16] is called Anytime Learning. Our approach
is slightly different, namely we evolve a program for the robot instead of a set of rules; the
learning component is started on demand when the novel situation is experienced and is not
running all the time in the background; we don’t require real-time performance of the
simulator since the robot can wait before continuing the execution of its task, although high
performance of the simulator is desired as the simulation is used to compute the fitness; our
model is simpler, for example it doesn’t require a feedback to simulation module provided
by an execution module (which in turn requires the execution module to be fairly complex
since it has to know the details of the simulation module).

4. Experimental Setup

Consider a delivery task (similar to a taxi driver) for a robot placed in a grid maze. Robot
starts at initial location [xi,yi], picks the object at source location [xs,ys] and delivers it to a
destination at [xd,yd]. The plan for the maze (each grid cell is either free or contains an
obstacle) and the initial location are known to the robot, which is controlled by a sequential
program consisting of simple self-explanatory commands: forward n, back n, right, left,
turn180, nop, stop. The challenge is to find a program that will safely navigate the robot to
execute the task after the source and destination locations are disclosed. This can be done
either manually, using a deterministic algorithm, or using some stochastic search. In our
experiment, this challenge is solved using an embedded evolutionary algorithm with a
simulator of the grid environment. We have chosen this task for the following reasons: it is
suitable for tests with different environmental difficulty, it allows making the incremental



steps in the task difficulty, it is very simple and allows a small set of primitives in the
program, which can be easily represented in a genome, and its practical implementation with
LEGO Robotics sets is straight-forward. A similar, single target task was addressed by work
of Xiao et. al. [36], where the environment was continuous and combines off-line and on-line
learning for changing environment.

Practical experiments were performed with a two-wheeled vehicle built from the parts of
the LEGO Mindstorms construction set. The robot contained two motors to propel
independent wheels, a third motor to load and unload cargo (fig.1. left), one light sensor to
perceive the environment, and two rotation sensors to measure and compensate the built-in
differences of the motors’ drive (another solution we used was an adder/subtracter
differential, but the rotation sensors were more precise since a lower number of loosely
connected gear wheels were used).

At the start of the experiment, the robot first learned about the current situation using its
light sensor (fig.1. right): the coordinates were encoded in binary (black and yellow color) in
the wall constructed from 12 LEGO bricks. Next, the robot spent some time evolving a
program (for 100 generations and 90 individuals in a population, evolution took ca. 3 min on
LEGO RCX computer). Each program in the population was evaluated with a fitness
function (see below) based on the simulated performance in a simple simulator that
contained the environment map. Finally, after the simulated evolution produced a solution,
the robot executed the task in the real world.

Fig. 1. Experimental robot lifting an object at source location (left) and reading the task from the colour
wall (right).

The robot program was a sequence of instructions described above (the probability of
forward instruction was double). Maximum program length was limited and a standard GA
with 50% truncation selection was used (mainly because of the implementation reasons:
truncation selection requires space for only 1 copy of the population in the memory). The
crossover operator exchanged parts of the programs of the same length at random positions
in the parent individuals. Mutation worked on a per-instruction basis: one half of mutations
replaced a single instruction by any random instruction; in the remaining cases, only an
instruction argument was mutated (applies only to forward and back instructions). The
following fitness function was used: f = max – 10(d1 + d2) – (len / 2) + α (s1+s2) – β hit,
where d1 (d2) was the length of the shortest straight vertical or horizontal line without
obstacles connecting the source (destination) location with the robot, i.e. the robot could
“see” the source (destination) in a distance d1 (d2) from some point on its trajectory, len was
the length of the program until the stop instruction (shorter programs were preferred by
evolution), s1 (s2) were 0/1 flags that were set, if the robot stopped  at source (destination)
location to (un)load the cargo, hit was the number of times that the robot hit the wall, and α,



and β were weight parameters. The software was written in C using LegOS by Markus Noga
[25].

Fig.2. Robot’s grid world environments. Init. position of the robot is marked with i, source location s,
destination location d, and t is a temporary source location. Grid cells with obstacles are black.

5. Results

Early experiments completely in simulation were used to tune the GA parameters: crossover
rate 0.75, mutation rate 0.3, population size 90, 100 generations, α = 5, and β = 60 performed
satisfactorily well on simple environments with 9 obstacles (fig.2. left). The same
performance, using the same program, was measured in real robot experiments (fig.1).

To work with a more interesting task, we used a more complex environment: it contained
15 obstacles and the robot had to travel double the distance and turn a few more times to find
both source and destination locations (fig.2. middle). Since the fact whether the remaining
experiments were performed in simulation or on a real robot was not relevant to our
argument and observations, we performed them in simulation to save time.

Even with a larger population size (120) and a higher number of generations (350), the
same GA found the solution only in a few cases. Therefore we temporarily moved the source
location closer to a robot for γ generations in the beginning of the evolution, thus making our
EA incremental. Fig.3. left shows the development of the best fitness (average from 500
runs) for a non-incremental case, γ=25 and γ=250. First of all, we can see that non-
incremental evolution was not able to find a very good solution. The drop of the best fitness
after moving the source location results from the fact that the programs

Fig.3. Influence of the moment of source shift, 2nd environment in fig 2. In case of γ=25, the standard deviations
of the best fitness (s25-best) were 15.03, 13.65, 81.10, 118.04, and 123.02 in generations 10, 25, 50, 250, and 350

respectively. The complete solution was found in 5.6% of runs and in 29.4% of runs, no points for seeing the
destination were earned. In the case γ=250, s250-best were 15.58, 14.06, 9.31, 0.04, and 102.52 in the same
respective generations. The complete solution was found in 0.4% of runs, and only the source was seen in

31.8% of runs. In the non-incremental case, the respective standard deviations of the best fitness were 28.36,
37.53, 45.35, 88.06, and 102.17, complete solution in 1.2% of runs, only the source in 69.2% of runs.
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were not able to find the new source immediately, but they were not worse than programs
evolved in the non-incremental case. Besides, the population contained enough genetic
material to evolve quickly towards programs that could find the new source location. Further
we studied the appropriate time moment for incremental change. Fig.3. right shows the final
fitness for various γ (again, average over 500 runs). The final fitness was highest when the
incremental change occurred just before the best fitness ceased to improve. Fig.3. left shows
that if the evolution continued with incremental source longer, even though the recovery
from the shift was faster, the final fitness would not exceed the γ=25 case. However, the
problem was too difficult in this experiment and even 350 generations were not enough to
evolve programs that could reach both the source and the destination locations. We repeated
the same experiment with a simplified environment (3rd at fig.2) and the fig. 4 shows a
similar result.

Fig.4. Influence of the moment of source shift, 3rd environment in fig. 2.

In both cases, the generation when the source was moved had to be specified in advance.
This is not possible, when an adaptive robot is solving a novel problem. We therefore
proposed a method to determine this generation automatically. In addition, we made the
environment difficult enough (fig.5 left) so that more than one incremental change was
needed. Inspired by the results from previous experiments, we measured the improvement of
the best fitness. If its momentum was lower than a certain threshold and the best fitness had
improved since the beginning of this stage, then the evolution progressed to another
incremental stage. Precisely, we introduced 2 new parameters: discount ϕ, and threshold θ,
and we measured the improvement µ (initialized to some low constant) using the rule: µnew =
ϕµ + (bf – pbf), where bf is the current best fitness and pbf is the best fitness in the previous
generation. The evolution entered a new stage, when µ <θ. In other words, the evolution
naturally proceeds to another stage when the learning starts to cease.

The robot found the path to execute the task after ca. 2000 generations, with 200
individuals in the population and ϕ = 0.9, θ = 0.001. Fig.5 right shows the development of
the fitness for an example run. Each drop corresponds to one shift of an incremental source
location. The final steep improvement corresponds to discovering the target location.

Fig.5. Environment with several incremental source locations and corresponding evolution of best fitness.
Evolution found the target in 22% of 100 runs. The average generation numbers of incremental steps and their

standard deviations were 132, 259, 488, 802, 1171, and 13.75, 21.25, 254.17, 328.40, 427.49.
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6. Conclusion and Future directions

Plain evolutionary algorithms are not sufficient search mechanisms for finding solutions to
difficult problems, such as controllers for robots working in complex environments.
Providing additional guidelines to the evolution by dividing it into several incremental steps
is a possible way to tackle this hurdle.
This article gives a broad overview of previous and current incremental evolution research
and describes an incremental evolution experiment with an embedded evolutionary algorithm
running on a simple robot built from flexible LEGO construction sets.

Our experiments show that the decision about the time (generation number) for the
incremental change has an influence on the quality of the final solution. A robot facing a
novel problem to solve needs to determine this generation automatically. We proposed a
method that uses the information that is available about the current population. In the future
work, we will focus on analyzing the nature of incremental evolution, providing a useful
framework for practical users of evolutionary computation. We will study the interactive
aspect of EA for design of robot controller, i.e. in which stages, how and to what degree
should the user influence the evolutionary process. We will also investigate combining of the
visual perceptions of mobile robots with other sensory information in incremental
evolutionary algorithms.
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