
Simulated evolution of distributed FSA behaviour-based
arbitration

Pavel Petrovi

�
, IDI, NTNU, 7491 Trondheim, ppetrovic@acm.org

The field of Evolutionary Robotics (ER) [1] deals with automatic design of robot
controllers using Evolutionary Algorithms (EA). In most cases, the goal is to design
the software controller for a mobile robot, where the controller is typically a program
evolved using genetic programming (GP), or the connection weights and possibly
topology of a feed-forward or recurrent neural network, or another architecture. The
controller typically takes the sensory readings on the input and produces the control
signals to the actuators on the output, possibly maintaining some internal state.
However, the architectures of the evolved controllers are usually uniform, without any
internal hierarchy or structure. Furthermore, the evolution is usually made responsible
for generating the complete behaviour of the robot, thus specifying the control
commands or actions and processing of the input to the least detail. Unfortunately, the
physical interactions of mobile robots with their environments are of a very complex
nature, made even more intricate by inaccuracy of the sensors and actuators. Thus
even a very simple task, for example locating a recognizable object and delivering it
to one of two landmark-marked locations based on its colour is already a quite
difficult one to evolve from scratch. In addition, the reliability of the resulting
behaviour of the robot is questionable; it is very insecure that the detailed behaviour
will perform as desired. Still, the possibility to generate the controller automatically
could be an important advantage of ER, if these difficulties were overcome.

Non-automatic design of controllers for mobile robots developed through decades
from hierarchical deliberative architectures with functional decomposition to
behaviour-based (BB) architectures with behaviour decomposition, where the reactive
aspect decides the controller topology [2]. The common property of the BB
architectures is the simultaneous execution of elementary behaviours that are
coordinated using some mechanism. The problem of coordination of behaviours is
referred to in the literature as action selection problem or behaviour arbitration, for an
overview, see [3].

This work applies the methods of EA to the design of specific type of behaviour
arbitration – distributed finite state automata (FSA) arbitration. The behaviours that
form the controller are already designed (manually, or possibly automatically), and do
not change during the evolution. The aim is to develop an efficient method for
automatic design of controllers given a set of standard basic both low-level and high-
level behaviours for the robot. By keeping the arbitration mechanism distributed,
where each arbitration FSA is associated with its behaviour module, we achieve a
relatively high degree of extensibility and modifiability: when a novel behaviour is
added to an existing controller, also its arbitration FSA is added, and the previous
functionality of the controller is affected only to the necessary extend. Finally, instead
of using a single evolutionary run, the target behaviour of the robot is simplified
stepwise either sequentially or qualitatively and evolved in steps – with the use of
incremental evolution.

In the experiments, we use the LEGO RCX hardware platform. Its main advantages
are high flexibility, availability, extensibility, large group of users with good support
and many available tools, robustness, easy maintenance, attractivity, and price.

Disadvantages such as low processing power, limited sensors and actuators precision
and variety, proprietary copyrights, limited controller hw extensibility can be dealt
with since we use it only for testing the algorithms on the prototype robots.

The chosen BrickOS (former LegOS) software platform based on GNU C compiler
and RCX ROM utilities produces the binary for the built in processor H8/300 and thus
allows to utilize the resources of RCX to the best. Features as multiple threads,
POSIX semaphores, dynamic memory, floating-point operations, random numbers,
direct motor and sensor control, infrared communication, fast downloads, and other
make LegOS the most suitable platform for research experiments. [5]

The experimental task for the robot is cargo delivery. The robot navigates in a
rectangular environment with obstacles and using hints (light and dark line to be
followed drawn on a white floor) locates cargo loading and unloading stations, where
it repeatedly loads, delivers, and unloads cargo using high-lifting fork mechanism.
The controller contains basic behaviours, such as line-follower, obstacle-avoidance,
random explore, load cargo, and other. The task for the EA is to find a correct
distributed FSA behaviour arbitration, which utilizes the basic behaviours in suitable
cooperation so that the robot efficiently makes use of the hints present in the
environment and navigates between the loading and unloading stations while avoiding
obstacles and carrying the cargo.

Since the evolution requires many runs, it would be unfeasible to run the EA on-line
on the robot controller. Therefore we have developed a simulator of the robot
hardware and software. The simulator allows to run the same program that runs on the
physical robot. It works with a continuous time and environment described in the
project configuration files. The simulator allows to define active elements in the
environment, such as lights that can be controlled, and provides simple scripting
language for creating events that can be triggered either by changing the robot state or
position, or by a (possibly periodical) timer. The result of each simulated run is a
quantitative fitness value – estimation of how much the robot behaviour resembles the
target behaviour. In order to achieve as high fidelity in simulation of the physical
conditions as possible, random uniform noise is added to the sensor readings and
robot movements. In addition, the speed of the motors is adjusted according to
measurements made with a camera setup [4], see figure 1. Since the simulation is
performed on a powerful computer (1.4GHz Athlon, 512MB RAM), the early runs
show that the same program can run 10-times faster in simulation than on the real
robot (the remaining time is used for a detailed simulation computation).

Figure 1. Camera setup for measuring the actual real-world outcome of the individual
robot movements (left), the detail of the robot covered by black surface with 2 white
marks detected by the calibrating software (centre), an experimental robot with high-
lifting fork (right).

Figure 2. The architecture of the controller for the cargo task. Each module has
associated an FSA arbitrator which translates the incoming and outgoing messages.

Figure 3. An example of the FSA arbitrator for the line follower module. This
arbitrator was designed manually for the optimal performance. The labels on the
transitions represent the incoming messages, in italics are shown the messages sent
down to the module or out to other modules.

The arbitrators translate the messages sent to or by a module. The individuals in the
EA population are sets of FSAs. Special EA operators for mutation, crossover, and
initialization for this genotype representation were designed.

The main focus of the work lies in the analysis of the incremental evolution method,
comparison of various task-decomposition strategies, population reinitialization, and
controller architectures suitable for incremental evolution. The work is a PhD project
in progress.

References.

[1] Nolfi S. and Floreano D. Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. Cambridge, MA: MIT Press/Bradford
Books, 2000.

[2] Arkin R.C. Behavior-Based Robotics. Cambridge, MA: MIT Press/Bradford
Books, 1998.

[3] Pirjanian P. Behavior Coordination Mechanisms State-of-the-art. Technical Report
IRIS-99-375, Institute of Robotics and Intelligent Systems, School of Engineering,
University of Southern California, October 1999.

[4] Miglino O. Lund H.H. Nolfi S. Evolving Mobile Robots in Simulated and Real
Environments. Artificial Life, vol. 2, nr. 4, pp. 417-434, 1995.

[5] BrickOS home: http://brickos.sourceforge.net.

