
Strengths and Weaknesses of FSA representation

Department of Computer and Information Science
Pavel Petrovič, ppetrovic@acm.org

REFERENCES
[1] P. Petrovic. Evolving automatons for distributed
behavior arbitration. Technical Report IDI 05/05,
Norwegian University of Science and Technology, 2005.
[2] P. Petrovic. Comparing finite-state automata
representation with gp-trees. Technical Report IDI
05/06, 2006.

ABSTRACT
Genetic Programming and Evolutionary Programming are fields
studying the application of artificial evolution on evolving directly
executable programs, in form of trees similar to Lisp expressions
(GP-trees), or Finite State Automata (FSA). In this exercise, we
study the performance of these methods on several example
problems, and draw conclusions on the suitability of the
representations with respect to the task structure and properties.
We investigate the role of incremental evolution and its bias in
the context of FSA representation. The experiments are
performed in simulation and/or confirmed on real robots.

Keywords: Evolutionary Programming, Finite State Automata,
Incremental Evolution

Figure 1. Illustration of GP and FSA representations.

Figure 2. FSA Crossover.

GP mutation:
mut change, mut
exchange, mut insert, mut
remove, random node;

FSA mutation:
mut change, mut
exchange, mut insert, mut
remove, random fsa, mut
insert

TASKS

bit collect:
• fill all holes (easy) or pack
ones (hard)
• read/write pointer on finite tape
• operations left, right, write0,
write1, done
• example: 10111001010001 to
11111111111111 (easy) or to
11111110000000 (hard)

(abcd)n>

• repeating a fixed pattern
• same settings
• example:
11111111111111111111 to
abcdabcdabcdabcdabcd

switch:
• unpredictable interaction
• same settings
• example:
100040300002000130040000000003000020

to
111144333332222133344444444443333322

find_target:
• navigating in 2D area
with obstacles
• operations: fd, bk, fdlong,
bklong, lt, rt, done
• example: figure 3

dock:
• robot docking into
prescribed rectangle
• sensor sensitivity:
stopOn, stopOff
• example: figure 4

REPRESENTATION

CONCLUSIONS

• Both GP and FSA representations outperform each
other on different tasks

• FSA is suitable when the task requires switching
between different tasks/contexts

• Incremental Evolution successfully improves
evolvability with FSA representation, but care must be
taken for the cost of the incremental bias.

RESULTS

Figure 3. 2D environments for find_target and dock task.

	Strengths and Weaknesses of FSA representation

