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Abstract. LEGO® presented the following problem at the SCAI’01 
conference in February 2001: Given any 3D body, how can it be built from 
LEGO bricks? We apply methods of Evolutionary Algorithms (EA) to solve 
this optimization problem. For this purpose several specific operators are 
defined, applied, and their use is compared. In addition, mutation operators 
with dynamic rate of mutation updated based on their contribution to progress 
of evolution are proposed. Different population organization strategies are 
compared. Early results indicate that EA is suitable for solving this hard 
optimization problem. 
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1. Introduction 

Evolutionary Algorithms are a standard method for solving optimization problems. 
Their basic theory is well based on mathematical proofs, and their practical 
application showed many successful results, see for example [Dasgupta, Michalewicz, 
1997]. In this work, we apply a version of the Genetic Algorithm [Holland, 1975] to a 
hard combinatorial optimization problem of LEGO brick layout. The problem was 
proposed by engineers from LEGO Company presenting a poster at Scandinavian 
Conference on Artificial Intelligence in Odense in February 2001. According to them, 
this problem has not been solved yet. It has been tackled by a group of 
mathematicians on a one-week workshop [Gower et.al, 1998] who devised a cost 
function for Simulated Annealing [Kirpatrick et.al. 1983, Laarhoven & Aarts, 1987] 
general search method, but no practical implementation and study has been 
performed. The problem has typical features of problems suitable for solving using 
Evolutionary Algorithms (EAs): hard combinatorial optimization problem, solutions 
are relatively easy to represent, the optimal (best) solution is not required, the search 
process should generate only a “good enough” solution. EAs are therefore a natural 
tool for solving this problem. Recently, [Gently, 1996] studied a general problem of 
design of 3D objects using EAs, and [Funes & Pollack, 1997] designed 2D structures 
built from LEGO bricks with the help of physical model and parallel asynchronous 
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GA. The problem of brick layout was adopted and discussed by the EVAL group at 
IDI NTNU, and we started to work towards a solution for the brick layout problem. In 
this article, we start with definition of the problem, summary of the work of the 
mathematician group of Gower et al., and description of our approach. We 
implemented a first experimental system that successfully generates brick layouts 
using a parallel genetic algorithm. In the following sections, we describe the chosen 
representation and the designed and implemented genetic operators. We will present a 
short comparison of early results obtained by runs of the implemented package. 
Further sections will introduce you to the idea of adaptive reinforced mutation and 
show how it can speed up the search process. Finally, we will discuss an indirect 
representation, which promise delivery of higher-quality results, but requires 
implementation of specially tailored operators. 

2. Problem description 

In order to build complicated structures from LEGO bricks efficiently, LEGO 
engineers need a program that will generate brick layouts for all layers of models they 
want to build. The input to the system is a 3D model partitioned into multiple layers, 
each of which is divided into rectangular grid. Each unit square of this grid is 
supposed to be either covered by some brick or left empty. For the purposes of this 
work, we use only standard bricks shown on figure 1, and we consider only 
monochromatic models. For the real application purposes, we would have to consider 
bricks with triple height and DUPLO bricks with units of double size in addition. The 
extension to color can be in the first round achieved easily by splitting longer bricks at 
places where the color is changing into two or more shorter bricks. In the next stage, 
the optimization algorithm should take the color information into account already 
while searching for a stable solution.  

Figure 1. Standard LEGO bricks 
 

The goal is to find such a layout, which will provide good stability – both per brick 
and as a whole. Ideally, one could apply the laws of statics to compute the stability of 
a model. However, this is computationally complex procedure and therefore the 
search algorithm should try to follow heuristic hints loosely corresponding to a 
stability of the model. 

3. Previous Work 

Gower et al. identified the following heuristics for stable solutions: 

1. A high percentage of each brick’s area should be covered, above and below, by 
other bricks. This means that a brick hanging in the air without any support is not 
very stable and each brick should be supported from as much of its area as 
possible. 

2. Larger bricks should be preferred for the smaller bricks; they give better overall 
stability to the model. 



  

3. Bricks placed on top of each other in consecutive layers should have alternating 
directionality. If for example long bricks are placed perpendicularly instead of 
parallel to each other, they provide a strong support for overall stability. 

4. Bricks in the layers above and below should cover a high percentage of each 
brick’s vertical boundaries (ideally, bricks above and below should be centered on 
these boundaries). This means that bricks in the consecutive layers should not 
have boundaries at the same place thus creating a possible unstable cut for the 
model. 

5. The same holds within the same layer: neighboring bricks should be placed so that 
their boundaries are as far from each other as possible (i.e. ideally the brick should 
start in the middle of the neighboring brick).  

The group recommended using a cost function of a form: 
 

P = C1P1 + C2P2 + C3P3 

Where Ci are weight constants and: 
P1  is perpendicularity, i.e. penalty given to bricks, which do not fit with factor 3 

above 
P2  represents vertical boundaries; i.e. penalizes the placement of bricks, which 

does not fit with factor 4 above 
P3  is horizontal alignment; i.e. penalty to bricks placed in a way that goes against 

factor 5 above 
 
Other hints included use of a library for certain patterns, pattern filling and 
translating, and use of local search or simulated annealing. A feasible use of a solution 
library seems to be problematic, since the number of possibilities and ways how such 
micro-patterns, which could be stored in the library, could be combined is too high.  

4. Evolutionary approach 

In order to solve a problem with EAs, one has to decide on a uniform representation 
of solutions to the searched problem (that is how the solution – phenotype – is 
represented genetically, i.e. by genotype). Mutation and recombination operators have 
to be devised, objective function written, type of an algorithm chosen, and finally the 
parameters have to be setup and tuned. 

There are two standard approaches to genotype representation: direct and indirect. In 
direct representations, the phenotype (the solution) is identical to the genotype and 
individual genes in the genotype correspond directly to features in the phenotype. In 
indirect representations, phenotype is constructed from genotype through a series of 
transformations. Indirect representations have often the disadvantage of being 
vulnerable to the use of standard genetic operators. Crossover and mutation operators 
applied on an individual can lead to an offspring with features completely unlike its 
parents. The search thus becomes only blind random search, and such a representation 
combined with the search operators (that in fact define the neighborhood of each 
search location and thus the whole search space ordering) might result in a very rough 
fitness landscape. On the other hand, indirect representations, when chosen properly, 
might significantly reduce and focus the search spaces, and sometimes might be 
necessary to avoid searching through number of unfeasible solutions.  

Our approach is to converge to a smart indirect representation, but we argue that this 
cannot be easily achieved without studying direct representations first. The transition 



  

to indirect representation can then be smooth: direct representation can be augmented 
with indirect features and the evolution might decide how much direct or indirect the 
genotype features should be. 

The experiments described in this paper were performed with the following direct 
representation: 

A solution to the problem is an unordered list of triples (row column brick-type), 
where [row; column] are coordinates of upper-left corner of a brick, and brick-type 
determines which of the bricks shown on figure 1 is placed at this location. Brick-type 
contains also information about the brick orientation. Clearly, each brick layout can 
be represented as such a list. On the other hand, many lists don’t correspond to a 
feasible layout. We can either ignore this problem, and hope the evolution will search 
its way through the mass of infeasible solutions, or define special operators. Early 
results with representation allowing unfeasible solutions showed that it is difficult for 
evolution to find one feasible solution, not even an efficient one. Therefore we 
introduced the requirement that all of the individuals present in the population should 
correspond to a feasible layout, i.e. layout where bricks don’t overlap or extend 
beyond the given input pattern. At the moment, there are 4 different initialization 
operators available: CarefulInitializer processes the input pattern from top row to 
bottom and each row from left to right (or from bottom to top and from right to left, 
the chances of both possibilities are 50%). Each time it finds a unit that is not yet 
covered by some brick, it stochastically selects one of the bricks, which fit at this 
location, with larger bricks having higher chance to be selected (the chance is 
proportional to the area of the respective brick). EdgeFirstInitializer is inspired 
by the hint provided by LEGO engineers – first the edges of the model are covered 
and only afterwards comes the “inside” of the model. This initializer first collects 
those units that lie on the border of the model and fills them in a random order with 
random bricks (using larger bricks with higher probability) and thereafter fills the rest 
in a random direction. Figure 2 shows comparison of performance of these two 
initializers.  

Figure 2. The fitness of the best individual, average from 3 different models, 10 runs 
for each. Demetic GA with 5 populations of size 500 was used in this experiment. 

The initializers – MultiCarefulInitializer and MultiEdgeFirstInitializer 
first call the respective initializer several times (5 rounds were used in the 
experiments), and then select the solution that has the best fitness among them. 
Thanks to this initialization strategy, already the solutions in generation zero are 
relatively good solutions. In the experiments described below, the 
MultiEdgeFirstInitializer was used. 
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Clearly, standard one-point crossover would lead into overlaps. Instead, our search 
uses RectCrossover operator, which chooses random rectangular area inside of the 
layer grid. The offspring is composed of all bricks from one parent that lie inside of 
this rectangle, and all bricks from the other parent that don’t conflict with already 
placed bricks. In this way, some of the areas of the input pattern might become 
uncovered. They are covered in the objective function, see below. 

Similarly, random mutation operator would generate overlaps. Instead, each 
individual, which is selected for mutation, is randomly mutated in one of the 
following ways: 

• single brick is replaced by other random brick (larger bricks are used with 
higher probability); bricks that are in the way are removed  

• single brick is added at random empty location, larger bricks are used with 
higher probability; bricks in the way are removed  

• single brick is shifted by 1 unit square in 1 of the possible 4 directions (with 
respect to keeping the borders); all bricks that are in the way are removed  

• single brick is eliminated from the layout  
• single brick is extended by 1 unit in 1 of the possible 4 directions; all bricks 

that are in the way are removed 
• all bricks that are in a random rectangle are removed and the area is filled with 

random bricks (larger bricks are used with higher probability)  
• the whole layout is generated anew using MultiEdgeFirstInitializer. 

Each mutation type was assigned a probability: 0.1 for new individual and brick 
remove, 0.15 for remove in rectangle, replace by random brick, and extend brick, and 
0.2 for creating a new brick. 

The objective function is inspired by the previous work mentioned above. The 
following function has been used in the experiments: 

 
Fitness = cnumbricks * numbricks + cperpend * perpend +  

cedge * edge + cuncovered * uncovered +  
cotherbricks * otherbricks + cneighbor * neighbor 

where each of the following variables is scaled by its weight constant: 

numbricks – number of bricks in the layout. This corresponds indirectly to use of 
large bricks, this objective is minimized,  

perpend – total sum of ratios through all bricks describing how well (0 – 1) each of 
them covers the previous layer perpendicularly: for all unit squares that the brick 
covers, perpend looks whether the brick at the corresponding unit square in the 
previous layer contains perpendicularly placed brick; 2x2 brick, L brick, and 1x1 
brick don’t contribute to this variable, this objective is maximized 

edge – total sum of ratios through all bricks describing how much (0 – 1) each of 
them has edges at the same locations as the edges in the previous layer, this objective 
is minimized 

uncovered – total sum of squared ratios through all bricks describing how large area 
of the brick is uncovered in the previous and following layers, this objective is 
minimized 



  

otherbricks – total sum of ratios (1 – 1 / x) through all bricks, where x is the 
number of bricks from the previous layer that the brick covers. The more bricks in a 
previous layer a brick covers, the better is the overall stability of the model, this 
objective is maximized 

neighbor – total sum of ratios through all bricks describing how far from the brick’s 
edge is an edge of a neighboring brick (in the direction towards brick’s center). This 
relates to factor 5 described in previous work section. This objective is maximized. 

Thus our fitness function corresponds directly to points 1-5 from Gower et al. and we 
introduced a new heuristics ‘otherbricks’. 

It has already been mentioned that even though the initializers generate complete and 
feasible layouts, some operators can lead to layouts with uncovered gaps. To 
compensate for this, the objective function, before actual computation of fitness, first 
finishes the layout by randomly filling all of the empty places with fitting bricks 
(larger bricks are used with higher probability). Thanks to this feature, it was possible 
to disable the use of 1x1 brick in initializers and other operators. Empty gaps 1x1 are 
always filled in the objective function. In other cases, 1x1 bricks served only as an 
obstacle in the way of larger bricks. In addition, it seems that more transformations 
when generating phenotype from genotype can be useful. For example, the evolution 
often generates solutions, where two neighboring bricks can be directly merged (i.e. 
they can be replaced by a larger brick). The merging operation has been carefully 
implemented into genotype to phenotype transformation before computing the fitness 
of each individual. More transformations, perhaps based on some library of 
transformations, might be possible. 

The weight constant parameters were tuned empirically and the following values were 
used in the experiments: cnumbricks = 200, cperpend = –200, cedge = 300, cuncovered = 5000, 
cotherbricks = –200, cneighbor = –300. 

4.1 Results 

A software package was developed to test the evolutionary approach to this problem. 
It consists of a program that generates random continuous 3D layered model, 
implementation of the Genetic Algorithm with operators as described in the previous 
section, and a simple viewer, which allows to display an evolved solution layer-by-
layer either when the evolution is finished or during the progress of evolution. Early 
runs were used to tune the GA parameters, it seems that the values pmut=0.5, 
pcross=0.5, popsize=500, and numgen=4000 provided a reasonable performance.  

Separate runs on the same data showed that based on the part of the search space, 
which is exploited by random initialization, the resulting solutions can significantly 
differ for the same input pattern in different runs. However, no clear relation between 
fitness in layer1 and overall fitness has been noticed, as shown on figure 3. This lead 
into an idea of running several parallel populations at the same time and occasionally 
exchanging several genotypes in order to give a chance to the crossover operator to 
generate good hybrids from individuals evolved in different sub-populations. This is a 
standard strategy referred to as multiple-deme GA, see [Cantú-Paz, 1998] for a survey 
of parallel GAs.  

In addition, the selection method used in the GA can significantly influence the speed 
of convergence. We experimented with standard roulette-wheel selection and steady 
state GA – the two basic implementations that are available in the GA library we used 



  

for running experiments. First part of the results compares these two selection 
methods. Second part compares single-population and multiple-population GAs with 
the better selection mechanism. Figures 4 and 5 show two evolved layers for the same 
example input pattern evolved with both roulette-wheel selection and with steady-
state GA. The quality of the final solution is comparable, but the computational effort 
for the steady-state GA is significantly lower. 

Figure 3. Dependence of the total fitness on the first layer fitness. The overall final 
fitness varies significantly, its average is 31505.87, and standard deviation is 
1869.257.  

Figure 4. First and second layers of a model evolved with roulette-wheel selection. 
On the left, the layers are shown together. Notice the low number of edges common 
in both layers – this makes the layout more stable. 

Figure 5. First and second layers of a model evolved with steady-state GA. These 
input patterns generated by rndmodel tool are somewhat unrealistic and the 
algorithm should be tested on real LEGO models. 
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Figure 6 displays the fitness of the best individual for the second layer of the same 
example model for both roulette-wheel selection and steady-state GA. Notice that the 
required time for the same number of populations in steady-state GA is much smaller. 

Figure 6. 
Compariso
n of 
evolution 
progress 
for 
roulette-
wheel 
selection 
(left) and 
steady-
state GA (right). The charts display the fitness of the best individual against the 
generation number for an example run. The actual computational time spent on one 
generation of demetic GA is much shorter than on one generation of single-
population GA. The total times for 4000 generations were 41311 seconds for 
roulette-wheel selection and 17391 seconds for steady-state selection. The charts 
show that the progress is more continuous, smoother, faster, and better converging 
in case of steady-state selection. See also fig.7.  

Figure 7 shows the average of fitness of best individual over 20 different runs on 
different random models. In the experiments, we used 5 sub-populations and 10 
individuals migrated after each generation. A stepping-stone migration scheme was 
used (i.e. individuals migrate only to a neighboring population arranged in a cycle). 

Figure 7. Best individual fitness with standard deviations (average of 20 different 
random 3D models 20x20x5) for layer 4. Steady-state selection is compared to both 
roulette-wheel selection (left) and multiple-deme with 5 populations of 1/5 size of 
population size of steady-state GA and 10 individuals migrating after each 
generation (right). Both comparisons show that the steady-state GA performs better.  

Finally, we studied the dependence of the final fitness on the number of migrating 
individuals and number of populations used in the multiple-deme GA. We tried all 
combinations of 5, 10, and 20 populations with migration rates 5, 10, and 20 
individuals. The population sizes of all sub-populations were always 500 individuals. 
Figure 8 shows the averages obtained from runs on 10 different models (2nd layer). 
For comparison, we evolved the layouts for the same models also using a steady-state 
GA with the population size equal to the sum of all population sizes for all 3 different 
population numbers. In case of 20 populations, the population size of the steady state 
was too large for the selection mechanism to work, so the multiple-deme GA reached 
better final fitness. In other cases, the single-population GA usually performed better. 
The total best result was obtained in case of 20 populations and 5 migrating 
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individuals, but took the longest time. 5 populations always performed worse than 10 
or 20 populations, which performed very similarly. No clear tendency was observed 
with respect to the number of migrating individuals.  

Figure 8. Best individual fitness with standard deviations (average of 20 different 

random 3D models 20x20x5) for layer 4. Steady-state selection is compared to both 
roulette-wheel selection (left) and multiple-deme with 5 populations of 1/5 size of 
population size of steady-state GA and 10 individuals migrating after each 
generation (right). Both comparisons show that the steady-state GA performs better.  

The software package with which these results were obtained including the data files 
from the described experiments is available for download at [Project homepage] to 
ensure the repeatability of results. 

5. Future work 

5.1 Adaptive Reinforced Mutation Rate 

The mutation operator we used is complex – it uses 7 different mutation strategies. 
The probability of each strategy was established empirically, which is obviously not 
ideal. Furthermore, for different models, different mutation operators might perform 
with different success rate. We therefor propose the following improvement to the 
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search algorithm. The rate for each type of mutation will consist of a sum of two 
components: fixed and variable part. The variable parts will be initialized to a uniform 
value in the beginning of the evolution. During the evolution, each individual will 
contain information about how (by which operator) it was created. If its fitness will be 
over average, the variable part of corresponding operator will be increased by a small 
step, if the fitness of individual will be below average, the variable part of the 
corresponding operator will be decreased by a small step. In this way, the successful 
operators will be invoked with a higher probability and thus the progress of evolution 
will be faster. 

5.2 Indirect representation 

The current status of the direct representation allows having individuals consisting of 
only one brick – the remaining bricks would be inserted by genotype to phenotype 
conversion in the objective function before computing individual’s fitness. This 
allows easy integration of indirect features in this representation. Particularly, the 
following extension is proposed.  

Each brick placement in the genome list will contain an optional pseudocode. This 
pseudocode will allow generating more bricks based on this brick placement. The 
pseudocode will work with a cursor and relative cursor movement commands. Among 
other, they will include: move cursor 1 unit in any direction; move cursor in a distance 
of (half of) width/height of current brick; rotate cursor 90º, place a copy of a brick, 
place complementary brick (rotated 90º); repeat the block several times. In addition, 
certain standard pattern-filling and tiling algorithms will be provided instead of 
forcing the evolution to discover them. Possibly, the pseudocode might be evolved in 
a separate population and each brick placement might stochastically select from this 
pool of prepared and evolved algorithms. Empirical tests are needed to see whether 
this strategy could lead to successful solutions.  

Alternately, one could completely omit the direct part in the representation and rely 
for example on genetic programs to generate a complete tiling algorithm. However, it 
is likely that this approach would need some local search or post-processing applied 
after the genetic program generates layout in order to achieve full and efficient 
coverage. 

5.3 Interactive evolution 

We are also very interested in adding interactivity to the evolutionary process. While 
the algorithm is searching for a good solution, a human observer can often provide 
valuable hints about the direction of the search. In case of the brick layout problem, 
this could be achieved by interactive interface, where the user could see the current 
representative solution of the population – for example the best individual (this part is 
already implemented). In this window, a user could edit the layout – remove, rotate, 
or add new bricks. The new layout would be inserted into the current population in 
several exemplars, or perhaps it could spawn another parallel population - deme. 

6. Discussion 

This paper presents an up to date status of a research project directed towards 
developing an efficient method for generating brick layouts for 3D models built from 
LEGO bricks. The approach relies on Genetic Algorithm with special initialization, 
recombination and mutation operators. The genotypes and phenotypes differ, and the 



  

representation and objective function are designed in such a way as to allow an easy 
augmentation of representation with indirect features. 

Results demonstrate that the implemented algorithm successfully generates brick 
layouts for 3D models. In addition, different selection mechanisms and population 
organization strategies are applied and compared. Steady-state GA performed better 
and faster than standard roulette-wheel selection and multiple-deme GA. 

Adaptive mutation rate is proposed for tuning probabilities of individual operators. By 
obtaining a global progress measure for different mutation operators, the evolutionary 
engine can speed up the evolution by using more successful operators with higher 
probability. Indirect representation for the brick layout problem is discussed. The 
augmentation of direct representation with indirect features is proposed as a future 
research topic. An idea of interactive evolution where a human user can direct the 
search is proposed and left for future research. More studies and both quantitative and 
qualitative analysis should be performed in the future. 
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