

Program your NXT robot with Imagine
Pavel Petrovič, ppetrovic@acm.org
Department of Computer and Information Science, NTNU Trondheim

Abstract
Our aim is to develop a versatile toolset for constructive learning. We achieve it through the
marriage of powerful learning tools: a universal learning environment Imagine Logo (Kalaš and
Hrušecká, 2004) and the recent and most popular educational robotics kit LEGO® Mindstorms®
NXT.

LEGO Mindstorms NXT is the second generation robotics toolkit. Performance and robustness
have been improved, infrared communication medium was replaced by BlueTooth® radio, new
sensor types and motor actuators are more powerful with built-in encoders. Educational software
RoboLab has been completely rewritten based on the collected experiences. And perhaps the
most important is that the platform is open and well documented down to the low-level hardware
layer. Schools and educational centres already own the sets. However, the chosen approach
used in the RoboLab educational software does not necessarily suit all needs. In particular:

 Despite the communication capabilities of the robots, the software does not provide any
means for writing applications for the PC, which could interact with the robots;

 The software requires learning yet another language, which may be a too high obstacle for
educators;

 The coding style is based on drawing flow-chart diagrams, which easily become complex
and difficult to understand, modify, debug, and analyze; the language lacks structure, the
possibility to view programs as plain text; and it implies serious limitations;

Other environments for NXT programming are already available, but they usually suffer from
some of these shortcomings. Our approach is different. Let us use the existing power of Imagine
Logo, and give its users the possibility to control and even program their NXT robots. We
demonstrate how this on three different levels, all utilizing the BlueTooth communication:

 Direct interactive control of robot sensors and actuators from Imagine environment;
 Loadable Imagine project with procedures for interfacing robots from Imagine projects;
 Possibility to download and run a piece of Logo program directly on NXT robots, while this

program may communicate with an Imagine project running on the PC or other NXT robots.

The programs running on NXT robots may feature multithreading and get access to all features
of the NXT brick. User works only with the procedures that were implemented in Imagine Logo.
The logo interpreter – a program written with Next Byte Codes is automatically downloaded to
NXT from Imagine environment. The solution does not require the firmware replacement. Our
implementation is open-source and available for further development and improvement.

In this paper, we describe all three interaction modes on demonstrative examples. In the second
part, we develop two educational experiments for physics and mathematics. These include the
Imagine project and robot setup.

In the mathematics experiment, the children are presented with a black-box with gears, where
their task is to write a program in Imagine Logo, which will utilize the sensors in order to
measure the angular velocity of the input and output of the gear box, compute the conversion
ratio, and thus determine the contents of the box given the known set of gear wheels. The
physics experiment demonstrates the use of pulleys and a division of force. Students measure
and observe the difference in force applied by the motor in various pulley setups.

Keywords
Imagine, LEGO Mindstorms NXT, Educational Robotics.

do NOT use any Footer – it will be added by us later

EuroLogo 2007 header – do not use it, it will be added by us

Figure 1. Robogjeng – after-school robotics club at secondary school Katedralskole in Trondheim at public
presentations: MiniSumo playing robots (left), and Labyrinth-navigating and Line-following robots, right.

Robotics in Education
Robot is a machine which behaves, works, and often looks like a human being. Robots – as
other machines – are usually used for the benefit of the human: to liberate us from heavy work
or provide functionality that would otherwise be inaccessible. Thanks to the advance of the
technology, robots are part of everyday life today. From this perspective, it is natural to expect
their appearance in the educational process. This for the sake of: assisting the teachers and
students in various tasks (for instance for disabled) on one hand, and becoming part of the
learning experience on the other hand. Robots in education may:

 demonstrate phenomena in novel and more ample ways,

 provide creative platforms for hands-on exploration for individual or group student work,

 increase entertainment experience during the learning process,

 increase motivation for learning,

 spawn interest in technology among students.

Using robots in education has severe drawbacks and challenges:

 high cost of robots,

 extra time, space, work and competence required from teachers and schools,

 shortage of curriculum materials and guidelines.

These can be overcome generally only through added-value enthusiasm of teachers and
students who see the potential and value in such work. Once enough experience and potential is
generated, institutions may eventually integrate robotic platforms into more or less standardized
curriculum. In this sense, LEGO is doing a pioneering work, which naturally is not always a
profitable business.

Important role play after-school robotics clubs and centres, which bring together young people
with enthusiasts and generate deal of material that can possibly be digested into curriculum by
educators. Figure 1 shows the students from secondary school in Trondheim who meet regularly
to program robots for fun and robot competitions (Balogh, 2005) – such as RoboCup Junior
(Sklar et.al. 2000), MiniSumo, or Micromouse.

Teaching Robotics Materials
The work towards the use of robots in schools is slowly starting to materialize into teaching
materials. Most of the pilot programs performed up to day focus on teaching basics of control
and programming – learning about sensors, feedback, and mechanics. Examples of such are

do NOT use any Footer – it will be added by us later

EuroLogo 2007 header – do not use it, it will be added by us

the project of London Grid for Learning or woks of (Rosenblatt M. and Choset, 2000, Johansson,
2001). LEGO provides a set of inspiration booklets on mechanics, buildings, energy, and robots,
and a set of 16 activities with worksheets and supporting CD: Science & Technology Activity
Pack. Extensive work of LDAPS team (LEGO Design and Programming System), which was at
the start of RoboLab system produced multiple creative project ideas (LDAPS url). These are
described also in the book (Erwin, 2001) and in the recent book of Barbara Bratzel, a teacher at
Shady Hill School, a preK through 8 independent school in Cambridge, Massachusetts, who has
developed a project-based course that teaches classical mechanics through engineering
(Bratzel, 2005). Comprehensive set of materials is provided by CMU Robotics Academy (CMU
Robotics Academy url). Yet, there is a large potential for more curriculum material that would be
easy to use for teachers without extensive previous experience and technical competence.

LEGO Robotics
Today, LEGO has a long tradition of producing educational toys and robotics programmable
sets. The LEGO Educational department founded in 1980 was renamed to LEGO Dacta in 1989
and produced programmable sets that could be controlled from computer running a dialect of
Logo. Already since 1984, Dr. Papert had been working with LEGO's development staff on
linking the LOGO computer programming language to LEGO products. LEGO Logo that was
developed in that cooperation was a successful product that allowed controlling non-
autonomous LEGO robotics sets. However, today, this product is almost completely forgotten
somewhere in the history of the early 90s. With the autonomous robotics sets, new concepts
arose and ought to be treated anew.

A precursor of the autonomous programmable brick was CodePilot released in 1997 as part of
the 8479 Technic set. It could be programmed by swiping over barcodes. However, the highlight,
LEGO Mindstorms with wonderful programmable brick RCX arrived in 1998, and it is still
enjoying attention (RoboCup Jr. Slovakia url). RCX can be programmed using graphical iconic
parallel language of Robotics Invention System, using RoboLab – an educational iconic
language with greater functionality, using Lejos – a limited version of embedded Java, using Not
Quite C (NQC) – a C-like interpreted language with limitations, or even using BrickOS – a
standard C/C++ based on the GNU C/C++ with libraries for RCX control. Many other systems
were developed, for instance PbForth – minimalistic stack-oriented procedural language.
Several more or less compatible flavours of the LEGO Mindstorms were produced, targeting
mainly entertainment market: CyberMaster, Scout, Micro-Scout, Spybotics. An important step
forward was achieved by releasing the LEGO camera, which however, requires wired
connection to the computer, and provides very limited functionality. The recently released LEGO
Mindstorms NXT sets support compatibility with previous LEGO electric parts (motors, sensors),
and align the LEGO robotics product with the current standard for embedded devices: radio
BlueTooth communication, I2C bus, fast ARM7 microprocessor, direct USB connection,
graphical display, servo motors, large flash memory, EIA-485 fast serial interface, compact Li-ion
rechargeable battery. However, the main break-trough is that LEGO released the source-code of
the firmware, detailed schematics of all parts and documentation. This allows the non-LEGO
developers to maximize the educational benefit of the new robotics system. In addition to new
version of RoboLab – NXT-G, which is now the main programming iconic language for NXT, less
than a year after its release, NXT can be programmed in limited Java – remotely using
iCommand, and autonomously using Lejos, in a new version of NQC (now called Not eXactly C),
in C-like language RobotC, and using the low-level byte-code language Next Byte Codes (NBC).
Third-party developers play a very important role in making the LEGO robotics products useful
by providing various sensors. The main players are HiTechnic, Mindsensors, and Techno-stuff.

The LEGO company has a strong focus on the user community, and provides ideas, hints and
inspirations of professional quality at their websites (mindstorms.lego.com,
legoeducation.info/nxt/). In addition, thousands of users and third-party developers exchange
their experience at various forums, which include LEGO Users Group (lugnet.com), and blogs
(thenxtstep.blogspot.com, nxtbot.com).

do NOT use any Footer – it will be added by us later

http://www.legoeducation.info/nxt
http://www.thenxtstep.blogspot.com/

EuroLogo 2007 header – do not use it, it will be added by us

Logo for NXT
Logo programming language has a successful history of being used for teaching programming.
Recently, LEGO introduced its second generation robotics educational sets on the market. Their
combining is made possible and easy by using the radio Bluetooth link between a PC running
Imagine Logo and a NXT brick. Both learning tools complement each other. In concert, they
create a learning studio of endless series of possibilities for educational projects. That is our
main motivation for the Logo for NXT project. It consists of the following parts:

1. Imagine project with simple controls for immediate remote control and status querying of
NXT brick.

2. Imagine loadable text project nxt.imt containing set of elementary procedures that directly
interact with NXT brick.

3. Logo interpreter running on the NXT brick that allows running simple logo programs on
NXT brick autonomously.

4. Set of example programs for both the second and the third level.

Imagine NXT Controller
For immediate control of NXT robot, testing the functionality, calibrating sensors, or even simple
navigation including speed regulation and direction steering, one can use the provided controller
project, see figure 2. The user can setup types of sensors, configure and operate the motors. In
the upper-right part of the screen, the nine controls allow steering a two-wheeled robot in all
main directions. Since NXT motors have built-in rotation sensors, NXT brick firmware supports
automatic synchronization of the motor speed to a specified value. Furthermore, the firmware
can automatically control the ratio between the rotational speed of two selected motors. The
controller project has controls to test this functionality. The NXT brick only needs to be on and
have standard or compatible firmware installed. Logo interpreter program is not required.

Control NXT from users’ projects
Users can load the nxt.imt project and call many different procedures that interact with NXT
brick. These are of two main types:

1. Direct commands and commands according to LEGO NXT Communication protocol
(LEGO, 2006), 34 different commands at the time of writing.

2. Higher-level commands that are based on direct commands and provide some higher-
level functionality, or easier to understand interface, about 10 different commands at the
time of writing.

Examples of the commands from the first set are nxt_getoutputstate, nxt_resetmotorposition,
or nxt_openappenddata, which determine the state of the motors, reset the built-in rotation
sensors, and open a file in NXT’s flash memory for appending, respectively. All commands are
described in the documentation of the Logo for NXT project (Logo for NXT url).

Higher-level commands provide the following interface:

(motor m cmd [arg]) – operates on motor output m, supported commands are: on, off, brake,
regulate [speed], sync [ratio], onrot [nrot], onms [ms], power [pwr], rst;

(readmotor m cmd) – reads the rotation sensor of specified motor in one of three ways
(rotations, tacho, blocktacho);
(sensor N) – reads the value of specified sensor;
(setsensor N type_or_cmd) – configures the specified sensor as: raw, switch, tmpC, tmpF, refl,
angle, lightA, lightI, db, dba, lowspd, spd9V. Also allows resetting sensor: rst.

(nxt_connect port) – establishes connection to NXT brick on specified virtual serial BT port;

do NOT use any Footer – it will be added by us later

EuroLogo 2007 header – do not use it, it will be added by us

(nxt_disconnect) – closes connection to NXT brick;

(download filename) and (upload filename) – transmits a file to or from NXT;

User projects can use commands from both groups interchangeably. Attention needs to be paid
to the fact that BlueTooth radio communication despite its relatively high bandwidth in one-
directional communication has an inherent delay when switching the direction of communication.
Therefore the commands that require responses from NXT will usually take about 60ms to
complete.

Figure 2. Direct control of NXT brick using Imagine project.

Logo interpreter for NXT
Finally, as a simple and straightforward extension to the interface described above, the
command (remote expression) allows evaluating Logo expressions directly on the NXT brick.
This command assumes the logo interpreter program is already running on the brick, but if it is
not, the running program can be controlled from Imagine with the help of nxt_startprogram,
nxt_stopprogram, and nxt_getcurrentprogramname commands. The expression is
transmitted to NXT over BlueTooth radio, evaluated on the NXT, and the return value is sent
back to Imagine Logo running on the PC. The expression can contain all supported commands.
For example, the command (remote [load “myprogram.lgo]) will load the specified program
from the file stored in the NXT flash. NXT Logo programs can define procedures and operations,
and they can themselves, in an analogical way, request expressions to be evaluated on the PC
by Imagine Logo (provided that the expression-polling is turned on) using the same remote
command.

At the time of writing, only very limited functionality of the interpreter is available, but we expect
the following features to be available shortly:

NXT Logo supports the following primitive procedures and operations:

1. Arithmetic: add, sub, mul, div, mod, neg, abs

2. Logic: and, or, xor, not

3. Bitwise: bitand, bitor, bitxor, bitnot

4. Lists and words: first, bf, last, bl, item, se, list, word

5. Maps & co.: map, apply, foreach, run, remote

6. Loops and conditions: repeat, while, foreach, if, ifelse

do NOT use any Footer – it will be added by us later

EuroLogo 2007 header – do not use it, it will be added by us

7. Predicates: empty? number? list? word? equal? gt? lt? ge? le? member?

8. Variables and procedures: make, let, to, op, stop, erase, launch

9. NXT file handling: load, printto, fopen, fwrite, fread, fclose, fremove

10. Sounds: tone, sound

11. Motors, sensors: motor, readmotor, sensor, setsensor, battery

12. Other: wait, random, print, draw, ascii, char, boot, gc, fm

The expressions must be in the prefix notation. Currently all procedures have a fixed number of
arguments, and therefore the parenthesis are not needed (and are not recognized by the
parser). Variables are used in the same way as in Logo: "name denotes variable name, and
:name refers to its value. There are global variables (make) as well as local variables (let, and
arguments). Lexical scoping applies as usual in Logo. There is currently no support for objects,
or images, or other primitive types. However, the draw command allows drawing images stored
in the files in the NXT flash, and the sound command allows playing NXT sound files. The NXT
software architecture has a limited support for multithreading, and the logo contains the launch
command for starting a separate thread. See the documentation (Logo for NXT, url) for more
details on the syntax and purpose of all supported commands.

Example programs
A set of documented example programs demonstrates the basic use of the Logo primitive
commands. In this way, users who are not familiar with Logo programming language can learn
to use Logo for NXT directly. In fact, we do not require the user to own Imagine Logo. Logo
programs that are uploaded to NXT can be started directly from the interpreter. The
communication with the PC will be disabled, and the remote command will have no effect (return
“false), but the logo programs will run.

In addition, example programs for line-following, and mini-sumo playing robots, as well as some
other are provided.

Implementation issues
Logo for NXT interpreter is written in NBC, a very low-level programming language that is
compiled into byte-code, which is then interpreted by the standard NXT firmware. NBC programs
have at their disposition 32 Kbytes RAM for “dynamic” memory. Logo interpreter allocates the
whole available memory as one large array, and features its own C-style memory management
(malloc, free) with support for garbage collection on demand. That means that all data that can
be de-allocated immediately are de-allocated immediately. However, lists, and words are being
freed only after verifying that there are no pending references. We aimed at very compact and
memory-efficient representations utilizing almost every data bit.

System works with 16-bit unsigned words, where typically the upper 14 bits form a value or a
pointer (given max. 32 KB memory, 14 bits are sufficient to address 16-bit words). The
remaining two bits are used for the type information: direct integer value (00), pointer to word
(01), car-pointer to list (10), cdr-pointer to list (11). List elements are normally stored in a
continuous block, and the cdr-pointer is used only if the list grew out of its original memory block.

Lists of all words, all global variable names, and all procedure names are maintained. These lists
are not simple linked-lists, rather sorted linked-lists of tables containing 8 records each in order
to make the search faster (symbol tables). When any of the tables becomes full, it is
automatically split in two. Logo words are stored in a single memory block each. There is a
separate support for the columned and quoted words (“hello, :var) so that there is no duplicity
(i.e. columned and quoted words are only manifesting its type and point to the memory block
with the unquoted word). Unquoted system reserved words are especially marked so that they
are never de-allocated. All unquoted words have one 16-bit slot reserved for the variable pointer
to the current context, which contains the current value, and one 16-bit slot reserved for the

do NOT use any Footer – it will be added by us later

EuroLogo 2007 header – do not use it, it will be added by us

procedure pointer to procedure symbol table. The former is updated each time a variable is
created/erased/shadowed. Words are never stored in duplicates in the memory, and as a
consequence, comparison of pointers is sufficient. List items are 16-bit values as described
above. The pointers to list nodes can point to middle of a continuous sequence of list elements.
When lists are allocated, there is automatically a small buffer of free elements provided before
the start of the list to allow for growing forward without the need of re-allocation. This is to avoid
memory blocks containing only a single list element, which would mean too large overhead. Lists
are stored in reversed direction so that garbage collection process can safely traverse through a
pointer to a random element in the middle of the list to the start of the block and mark it as used.
Each memory block requires one word (16-bytes) of overhead containing a 14-bit value – the
block size, one bit indicating if the block is free, and one bit used by the garbage collection. The
procedures are represented as lists of commands, preceded by a value containing the number
of arguments, and a pointer to the list of argument names. The names of primitive procedures
are loaded to memory from a separate file (logo.def) during the start-up of the interpreter.

The core engine consists of parser, evaluator, and printer. The parser is started when an
expression is sent using the remote command, or when a logo program file is loaded from the
NXT flash. Its role is to simply convert the string expression into internal expression/value
representation. The opposite transformation is the responsibility of the printer. The evaluator
has two flavours: one that evaluates list-expressions – such as procedure or loop-command
bodies. These contain commands that do not return values, and the whole expression can
optionally return a value using the op (output) command. The second flavour evaluates single
immediate values, such as procedure arguments, and always returns a value. The evaluator
supports recursion, and variable shading. It works with a current context, which is a structure
containing a reference to local variables symbol table, parent context, and expression being
evaluated as well as the position in the evaluated expression. Since the parser translates all
variable references to pointers, the values can be immediately retrieved through the symbol-
table pointers contained in the block of the word. When returning from a call, current context is
released, and the previous symbol-table pointers are retrieved from the local symbol-table that
stores the previous pointer.

The communication with PC is maintained by a communication thread perpetually running in the
background. It calls the parser and evaluator when an expression arrives. If communication is
not established, user can enjoy a limited interaction with the logo interpreter using the buttons
and LCD display.

Garbage collection works only on demand. The logo program must call the gc command in order
to free unused memory. At that point of time, all global variables, all local variables in all parent
contexts, all referenced lists, words, and procedure bodies are marked as used. Finally, the
whole memory is scanned, and all blocks which are not marked are claimed to be free. The fast
ARM7 processor running on 48MHz frequency is able to scan the whole 30kB memory thousand
times a second, therefore even if the logo interpreter itself is interpreted, the performance can be
acceptable, provided that the garbage collection is not started in critical periods. We believe this
is a feasible approach for programming embedded systems in general, where sudden unplanned
interruption by garbage collector could cause undesirable results. On the other hand, the
programs for embedded devices typically contain safe periods when garbage collecting break is
possible.

Two Projects
While LEGO and robotics provide multiple advanced challenges, such as robotics competitions,
which are strongly motivating students with over-average performance, LEGO in the schools can
be the motivational force for the students who are struggling with the usual curriculum material
due to their difficulties with maintaining attention and finding interest when links between
theoretical knowledge and practical applications are missing. This section discusses two simple
LEGO Logo-style projects, to be used directly at the standard math or physics lessons.

do NOT use any Footer – it will be added by us later

EuroLogo 2007 header – do not use it, it will be added by us

Gearboxes – learning about fractions
The first project can be used at mathematics courses in junior high-school for teaching
computing with fractions. Students are presented a closed box with the same kind of gear wheel
in the middle of both sides of the box. The wheels are connected using gears in some way, i.e.
turning the wheel on one side by 1 rotation turns the wheel on the other side by a/b rotations
(see top of the figure 3, the inside of the gearbox is shown on the right). Teacher can prepare
several gearboxes with different ratios. It is possible to simply attach a motor with a rotation
sensor on one of the wheel, by connecting it on top of the gearbox, and another rotation sensor
to the second wheel by connecting it to the bottom of the gearbox (both modules are shown at
the bottom of the figure). The task for the student is to first measure the ratio between the
numbers of rotations on both sides, then describe this ratio by a fraction. Finally, the student
needs to make estimation (a drawing) of the contents of the gearbox, knowing that only standard
gearwheels with 40, 24, 16, and 8 teeth are used inside of the gearbox. This requires mastering
fraction algebra. Students can use Logo for NXT to write program that measures the number of
rotations, see figure 4.

Figure 3. Gearbox project: motivated learning about fraction algebra.

to measureRatio
 setsensor 1 “angle
 setsensor 2 “angle
 setsensor 1 “rst
 setsensor 2 “rst
 motor “A “power 50
 ; rotate the first wheel 10-times
 while [gt? 160 sensor 1]
 ; sensor2 measures the opposite side, output the ratio
 op list sensor 1 sensor 2
end

Figure 4. Gearbox project: Logo for NXT program to measure the ratio between numbers of rotations.

do NOT use any Footer – it will be added by us later

EuroLogo 2007 header – do not use it, it will be added by us

Analysis: Including a practical experiment in a series of mathematics lessons not only improves
the manual skills of the pupils, but mainly creates important connections between the theory
material that is part of the curriculum and the real life. Such practical demonstrations of the
learned theory are essential, if the school aims at preparing the pupils for the real life,
particularly in the lower-grades and in the schools for the widest general public.

Pulleys and division of force
The machine shown on figure 5 is a demonstration of practical application of pulleys. It is
inspired by a model in the science museum in Bremen. A mobile platform can slide in the track
from right to left and opposite. It is connected using a LEGO plate brick to a string, which can be
rolled on a coil using a motor controlled by NXT brick. A light sensor can signal when the
platform reaches its left-most position. The platform can either be connected directly, or using
the two pulleys. There is a load (on the figure, it is a LEGO 9V battery box) placed on top of the
platform. Various loads can be used, especially such that allow gradual increase of weight – for
example a set of weights from the physics laboratory). The task for the student is to measure the
force the motor applies on the platform in both machine configurations. For reasonable results,
the motor is powered with only 10-15% of power. The force can be measured using Newton-
meter from the physics laboratory, or by loading the platform with different weights (and taking
into account friction coefficient), or by attaching a string with weights hanging down from the
other side of the platform over another pulley. Figure 6 shows a simple program in Logo for NXT
that can be used to run an experiment.

Figure 5. Pulleys project: learning about pulleys, force, friction, work.

to movePlatform
 setsensor 1 “lightA
 let “threshold 30
 motor “C “power 15
 motor “C “on
 while [lt? sensor 1 :threshold] []
 motor “C “off
end

Figure 6. Pulleys project: Logo for NXT program to run the platform and stop it at the end of the ramp.

do NOT use any Footer – it will be added by us later

EuroLogo 2007 header – do not use it, it will be added by us

Conclusions and Future Work
We presented an alternative way of programming NXT robots, which we believe is the way the
LEGO programming system could have been designed in the first place. In fact, the original
LEGO Dacta systems that were connected using the wired interface were using a powerful
dialect of parallel Logo. The transition from the wired remote control to autonomous RCX
required abandoning that path due to the limited memory, CPU, and communication capabilities
of the RCX. NXT resolves these bottlenecks and it is time to come back with powerful Logo
language as the programming platform for the educational use of LEGO robotics systems. Our
work does exactly that. It still has major limitations due to the fact that it is implemented using
interpreted NBC, that is Logo programs are currently interpreted by an interpreter that is
interpreted by the firmware. We chose this solution for three reasons: 1) to determine the
limitations of the NBC and to see if it can provide a reasonable performance and 2) to liberate us
from the arduous challenge of understanding how to write our own firmware, and 3) to provide
as compatible solution as possible, one that does not require the user to change the firmware on
the NXT brick. Despite the limitations (these are: 1) 30 kB memory limitation for all data, code,
and internal stack compared to normally available 64 KB RAM, and 2) limited performance
compared to interpreter that would execute directly on the CPU), our system can already be
used successfully to program NXT robots in Logo. In addition, it smoothly plugs into Imagine
Logo educational suite. This paper presents the system as we wish it will perform. At the time of
writing, portions of the functionality are still under intense development. The Logo for NXT
project is open-source, and available for the user customization. Source-code is extensively
commented, and documentation is provided. We demonstrate two simple projects, where Logo
for NXT is used in practical student tasks within standard curriculum of junior high school.

Acknowledgments
Tomas Gunnarsson from Nardo Robot Club, and Gustav Henrich Bernhardt from Katedralskole
in Trondheim provided extensive support and photographs from public presentations.

References
Balogh, R. (2005) I am a Robot - Competitor, A Survey of Robotic Competitions, International
Journal of Advanced Robotic Systems, vol.2, number 2, p. 144—160.

Bratzel B (2005) Physics by design, College House Enterprises, LLC.

Erwin B. (2001) Creative Projects with LEGO MINDSTORMS, Addison-Wesley.

Johansson H. (2001) Robotic courses based on LEGO, Master Thesis, Department of Computer
Science, Lund University.

Kalaš I. and Hrušecká A. (2004) The Great Big Imagine Logo Project book, Logotron.

LEGO (2006) LEGO Mindstorms NXT BlueTooth Development Kit, LEGO NXT’reme document,
version 1.00.

Rosenblatt M. and Choset H. (2000) Designing and Implementing Hands-On Robotics Labs,
IEEE Intelligent Systems, vol.15, nr. 6, p. 32-39.

Sklar, E.I. and Johnson J.H. and Lund H.H. (2000) Children Learning From Team Robotics:
RoboCup Junior 2000, Educational Research Report, Department of Design and Innovation,
Faculty of Technology, The Open University, Milton Keynes, UK.

CMU Robotics Academy url, http://www-education.rec.ri.cmu.edu/

LDAPS url, http://www.ceeo.tufts.edu/ldaps/htdocs/

Logo for NXT url, http://virtuallab.kar.elf.stuba.sk/robowiki/index.php/Logo_for_NXT

RoboCup Jr. Slovakia url, http://www.skse.sk/

do NOT use any Footer – it will be added by us later

http://www.ceeo.tufts.edu/ldaps/htdocs/
http://virtuallab.kar.elf.stuba.sk/robowiki/index.php/Logo_for_NXT
http://www.skse.sk/

	Program your NXT robot with Imagine
	Robotics in Education
	Teaching Robotics Materials

	LEGO Robotics
	Logo for NXT
	Imagine NXT Controller
	Control NXT from users’ projects
	Logo interpreter for NXT
	Example programs
	Implementation issues

	Two Projects
	 Gearboxes – learning about fractions
	Pulleys and division of force

	Conclusions and Future Work
	Acknowledgments
	References

