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Abstract—Our contribution describes a mobile robot platform 

that has been built for the purpose of the contest Robotour – 

robotika.cz outdoor delivery challenge. The robot is a standard 

differential-drive robot with a good quality consumer market 

digital video camera with a lightweight, but high-performance 

laptop computer used as the main control board. Supplementary 

board is used to control motors and sensors of the robot. The 

robot utilizes a behavior-based architecture and its vision module 

that is responsible for track-following is utilizing an artificial 

neural network that was trained on a set of images. This is a 

novel solution that has not been used in Robotour contest 

previously, and our early experiments demonstrate promising 

results.  

Keywords – robotour, navigation, artificial neural networks, 

learning robots  

I.  INTRODUCTION  

Applications of robotics technology in both production and 
personal use are becoming possible with the development of 
new materials, motors, sensors and vision, ever decreasing cost 
of computing and memory capacity, and development of new 
algorithms and control strategies. Robots must be able to 
operate in dynamic and unpredictable environments. Therefore, 
one of the most important challenges to be solved reliably is 
robot navigation – in both indoor and outdoor environments. 
The robots must be able to localize themselves on a supplied 
map, create their own map representations of the explored 
environment, and they must be able to navigate their 
environments safely, without colliding with obstacles, or 
failing to follow the paths, roads, trails, and tracks. The real 
improvements in the technology typically occur when there is a 
large motivational pressure to produce a working solution. This 
might either be a goal to produce a final product, or alternately, 
with somewhat more relaxed requirements and settings, which 
are suitable for experimentation, and research, when the goal is 
to develop a robot to participate in a robotics contest.  

Robotour – robotika.cz outdoor delivery challenge, 
organized by the Czech association robotika.cz, is an annual 
meeting of teams building and/or programming outdoor robots 
that navigate in a city park filled with trails, trees, grass, 
benches, statues, water ponds, bridges, and people. The task 
changes every year, but the main challenges are 1) be able to 
localize and navigate on a map supplied by the organizers, and 
2) be able to follow the trails and paths without colliding with 

the obstacles or leaving the path without reaching the goal. See 
[1] for the exact rules of this year's contest. 

Various solutions for the challenge were developed, 
however, in most cases, they did not take advantage of 
advanced artificial intelligence algorithms. In particular, only 
few different vision algorithms were developed until today, 
several teams shared the successful solution of [2], and many 
solutions rely on the use of odometry, compass, and GPS. We 
would like to address this area, and prepare a solution for the 
contest in 2010 or 2011 that will utilize AI algorithms. The 
second author has participated in the competition team several 
times in the past, and collected some experience and 
motivation for a new attempt. In this article, we describe the 
principles our solution is based on and is currently being built. 
In the following sections, we describe the mechanics and the 
hardware, robot overall architecture, the software components, 
and the AI methods that we aim to use. Finally we summarize 
the experience with building and programming the robot up to 
date. 

II. MECHANICS 

The robot is a simple robot with differential-drive 
kinematics with one supporting free-rolling caster wheel. The 
length of the sides of its square base is 45 cm; the air-inflated 
wheels of a diameter 15.3 cm are mounted on the outside of the 
base, in the front of the robot. The total weight is about 6 kg 
without any load. The robot provides a storage space of ca. 20 
x 20 x 45 cm to carry a heavy load (approx. 5 kg), which can 
be placed close to the center of rotation, above the propelled 
wheels, so that it does not have a negative impact on 
maneuverability of the robot. The main control unit is a 
portable computer, mounted in a flat plastic frame with a foam 
to compensate the shocks. The lead acid 12V 9Ah rechargeable 
battery, being the heaviest component, is stored under the base, 
between the wheels, keeping the centre of gravity low. Color 
camera with a true optical image stabilizer and CCD image 
sensor is mounted using anti-shock foam on a U-shape 
construction frame built of aluminum profiles, together with 
GPS and IMU sensor, see Fig.1. The camera is inclined 10° 
downwards. The IMU sensor must be mounted far from any 
sources of electric and magnetic fields, such as motors and 
wires. Placing GPS high compensates also for obstacles in the 
surrounding terrain, which may hinder the GPS satellites 
signal. The robot is built from raw materials, except of the 
motors, wheels and consoles that hold them, which are all part 



of a set from Parallax. The aluminium framework allows 
mounting a rain shield for the computer and the camera when 
necessary. 

 

 

 

 

 

 

 

 

 

Figure 1.  3D Model of the robot showing main parts. In real implementation, 

we have mounted only one caster wheel as it proved to be sufficient, and 

allowed more accurate control. 

 

 

 

Figure 2.  The resulting constructed robot from the side, front, and back. The 
control electronics is installed under the PC. The robot has already been tested 

in outdoor settings and has traveled a distance of several km. 

III. HARDWARE ARCHITECTURE 

The robot is propelled by two 12V DC motors with built-in 
transmission, rotating at up to 150 rpm and consuming 1.5A at 
no load. The encoders with 36 ticks per rotation are used for 
speed and position feedback and are equipped with on-board 
microcontrollers that are directly connected to the motor 
drivers HB25, supplying them with the proper PWM signal to 
keep the requested speed. In this way, the main microcontroller 
board, which is the SBot control board, designed in our group 
originally for SBot mobile robot, is freed from the low-level 
motor control, and dedicates this task to both of the encoders 
that have an implementation of a standard P (proportional) 
controller and are connected using the same 1-wire serial bus. 
Unfortunately, we found that the original firmware for the 
encoders supplied by Parallax did not satisfy our needs for 
several reasons. Most importantly, the encoders were not 
designed for dynamic change of speed, but only for simple 
positional commands that accelerate from zero speed to a fixed 
predefined speed, and then decelerate after traveling the 
required distance. They do not allow to change the speed in the 
middle of such positional command. However, movements, 
where the speed and rotation is changed arbitrarily at any time, 
are required in the Robotour task, where the robot has to 

dynamically respond to the visual feedback when it has to align 
its movement with the shape of the path. Fortunately, Parallax 
makes the source-code for the encoders firmware available, 
and thus we could modify it to suit our application and support 
immediate smooth changes of the instant speed. 

The obstacles are detected using the standard SRF-08 and 
Maxbotix LV EZ1 ultrasonic distance sensors that are 
connected to the main control board. 

Outdoor robots are typically equipped with a global 
positioning device, i.e. GPS, and it is the case for our robot too. 
Information from the GPS module that is connected directly to 
the main computer using USB port, however, is not so reliable 
due to atmospheric and other occlusions, and serves only as a 
guidance for map localization. It is confronted with visual input 
and complemented by the current heading obtained from 
compass sensor. The compass sensor is part of the complex 9 
DOF IMU sensor that includes several axes of gyroscopes, 
accelerometers, and magnetometers, thus compensating for 
various robot inclinations when traveling uphill or downhill. 
This is important since the simple compass sensors provide 
incorrect information once the robot and thus also the sensor is 
tilted. 

Finally, for the visual input, we chose to use a standard 
video camera Panasonic SDR-T50, due to a very good ratio of 
parameters/price. The video camera is built around a CCD 
sensor, which has the advantage over the CMOS image sensors 
of taking the image instantly. Cheap CMOS cameras therefore 
suffer from a serious vertical distortion when the camera is 
moving, since the different rows of the image are scanned at 
different times. In addition, the camera has a built-in true 
optical image stabilizer, which further compensates for 
distortions due to the movement. Unfortunately, we found this 
stabilizer to be insufficient, and thus we have supported it with 
an anti-shock foam placed between the camera and the 
platform where it is tightened using flexible textile tape. The 
camera renders its image either as 16:9 or 4:3 image, however, 
it sends a wider signal down to its video output jack connector, 
which is further connected to a USB frame grabber card and 
the main computer. The main computer is a 2-core powerful 
PC with a GPU that can be used for the intensive image 
processing computation. The computer and the Sbot control 
board are connected using a serial port or a virtual serial port 
over radio BlueTooth connection. In debugging and testing 
applications, the robot can be controlled using a wireless 
gamepad connected using a proprietary 2.4GHz radio link.  

In general, the robot is designed in such a way that it can be 
used in many different applications. For instance, a stereo 
vision system or an arm with a gripper can be installed in the 
cargo hold area. Additional sensors can be easily mounted on 
the aluminum profiles or wooden base. Fig. 3 shows overall 
system architecture. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 3.  System hardware architecture.  

IV. SOFTWARE CONTROLLER ARCHITECTURE 

The software architecture is tailored for the Robotour 
contest. In this year's contest, the goal for the robot is to 
navigate to the target without knowing its starting location. It is 
only given the target coordinates and an official map of the 
park. It may not use other map information. The software 
controller is logically divided into five main components, see 
Fig.4. 

The first component, planning, uses the map with the 
destination location and generates a path plan for the robot to 
follow. It tries to minimize the number and complexity of the 
crossings as these are the most critical places and candidates 
for navigational errors. The component outputs a sequence of 
locations that are to be visited by the robot. Whenever 
requested, the module can generate a new plan after a 
problematic place in the map has been reached. 

The second component, localization using map, is 
responsible for the most accurate localization of the robot on 
the map. It is using the information from the compensated 
compass (IMU) for heading, from GPS for position estimation, 
and from the position encoders to estimate the distance traveled 
and turns made. All the information is integrated and with the 
help of the map and the path plan, the target distribution is 
determined using a probabilistic Monte-Carlo estimation. The 
output of the localization module is a probabilistic distribution 
over the expected heading in the very next correct movement, 
and the expected distance to the next crossing or target.  

The third module, path recognition, is the most important 
one for the actual control of the motors, and has a priority over 
the localization module. It receives the image from the front 
camera and recognizes which parts of the image correspond to 
the path, and which of them correspond to other surfaces. The 
next section explains this procedure in more details. The output 
of this module is again a probabilistic distribution over the 
space of possible headings that can be projected to the input 
frame, where the headings leading to more “path” areas are 
more likely than those leading to less “path” area. Input from 
the odometry and gyroscopes helps this module to improve its 
estimation of the path using its previous estimations and the 
relative displacement of the robot. 

The obstacle recognition module is responsible for 
detecting obstacles in the planned path of the robot and for 
stopping the robot in case of a possible collision early enough 
so that avoidance could be attempted by the coordination 
module. The robot is currently equipped with three ultrasonic 
distance sensors (front ahead, front left, front right), and thus 
the module reports on its output whether the path is blocked 
completely, or only partially, and also what is the size of the 
expected free buffer in front of the robot. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Overall controller  architecture. 

The most complex module is the coordination module. Its 
purpose is to take the prioritized outputs from the other three 
modules, and to determine the best possible angular and linear 
velocity for the next instant movement. When the confidence 
of the module is getting low, the robot slows down. If the 
confidence falls even lower, the robot stops, and starts rotating 
left or right, depending, which direction is expected to be more 
promising, until it finds a heading, where the module 
confidence is sufficiently high again. If such heading is not 
found, the robot attempts to return back in the reverse direction 
as it arrived to the problematic location, possibly moving in the 
reverse of the planned direction on the map. After returning 
back a short distance, it retries. The retries are repeated several 
times while gradually extending the back-up distance. If all 
attempts to pass the problematic location fail, the planning 
module is asked to generate a different path. 

The controller is arranged in a behavior-based manner, 
individual behaviors are developed and tested independently 
before they are integrated in a common controller.  

V. PATH RECOGNITION 

Our goal was to use artificial neural networks in order to 
help the robot navigate and stay on the path. We obtained many 
images from a park with trails, and we have manually marked 
the regions in these images that correspond to the traversable 
path. This input was used to train the neural network (a 
standard multi-layer perceptron) to recognize the path. See 
figure 5 for an example of such manually classified image. 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Manual preparation of training images. 

Sending the whole image to the network as the input would 
obviously be infeasible. Instead, we first tried to scale the 
image to a lower resolution of 400x300 pixels, and divide it 
into 100 rectangular regions of equal sizes that covered the 
whole image. Each region formed an input to a neural network, 
and the whole region was about to be classified as “path” or 
“not path”. However, the resulting resolution of the classified 
image was not satisfactory, even after a further reduction of the 
region size so that the image was divided into 2500 segments. 
Therefore, we decided to use a sliding region. For almost every 
pixel in the image, we define a corresponding region – it's 
larger neighborhood, which forms the input vector. The 
classification output produced by the network for each pixel in 
the image is then a real number from 0 to 1, estimating how 
much the network believes the pixel lies on the path. Two 
examples of images that were not used in the training phase are 
shown in the Fig.6. 

  

 

 

 

 

 

 

 

 

 

 

Figure 6. Examples of path recognition. 

We used the RPROP training algorithm for multilayer 
perceptron, in particular the implementation that is present in 
the OpenCV package. The training used tens to hundreds of 
manually classified images from various places in a park with 

various path surfaces, light and shadow conditions. Since this 
is still an ongoing work and only preliminary results are 
available, we restrain from a statistical analysis of the results at 
this moment, and refer the reader to the page dedicated to the 
project with detailed results and data [5]. 

Once the network is trained and produces the classifications 
for the image frame pixels, the path recognition module enters 
a second phase, when it tries to evaluate all possible travel 
directions (headings) with respect to the chances that the robot 
will stay on the path. For this purpose, the module analyzes a 
family of triangles of the same area with the base at the bottom 
of the frame and the third vertex placed in the middle of the 
image. For each such triangle, we compute an average path 
likelihood. The triangle for which the path is most likely, i.e. 
where most pixels lay on the path, is likely to be the correct 
new heading. However, the module outputs a full distribution 
over all possible headings so that the coordination module can 
take advantage of this information, for instance to determine 
different directions at a heading, or when trying to resolve 
ambiguous cases. Fig.7 depicts the analyzed family of 
triangles. Two example pictures are further analyzed in Fig. 8, 
where the bars show how “likely” it is that following in the 
various directions is a “good” idea in order for the robot not to 
leave the path. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Triangles representing different turning projected to the image of 

recognized path. 

VI. CONCLUSIONS AND FUTURE WORK 

We have designed and implemented a robotic hardware and 
software platform to be used in the Robotour contest for 
outdoor robots navigating in park environment. The hardware 
platform is implemented in a general way and most 
components of the software platform can be reused in other 
applications, the robot can be extended with stereo vision or 
manipulator. We have designed, implemented and tested in this 
context a new method for path recognition, which is based on 
artificial neural network that is trained on a set of static images 
that are similar to the environment where the robot is to be 
operating. We are currently working on integrating all the 
components of our prototype so that it could perform in its first 



Robotour contest this year. In the remaining 10 months of the 
project, we will analyze the results from our participation, and 
propose, implement, and verify improvements so that the robot 
can serve both as a competitive platform in the contest and as 
an educational tool in the course Algorithms for AI Robotics, 
which is provided at our department to students of Applied 
Informatics. 
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Figure 8. Two scenes after path recognition. The bars show the average pixel 

intensity of pixels inside of triangles for a range of different rotations for both 

of the resulting images (blue/dark for the left image, red/bright for the right 
image). 

 

 

 

 


