
Robotour Solution as a Learned Behavior Based

on Artificial Neural Networks

Miroslav Nadhajský and Pavel Petrovič

Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University,

Mlynská dolina, 842 48 Bratislava, Slovakia, miroslav.nadhajsky@st.fmph.uniba.sk, ppetrovic@acm.org,

Abstract—Our contribution describes a mobile robot platform

that has been built for the purpose of the contest Robotour –

robotika.cz outdoor delivery challenge. The robot is a standard

differential-drive robot with a good quality consumer market

digital video camera with a lightweight, but high-performance

laptop computer used as the main control board. Supplementary

board is used to control motors and sensors of the robot. The

robot utilizes a behavior-based architecture and its vision module

that is responsible for track-following is utilizing an artificial

neural network that was trained on a set of images. This is a

novel solution that has not been used in Robotour contest

previously, and our early experiments demonstrate promising

results.

Keywords – robotour, navigation, artificial neural networks,

learning robots

I. INTRODUCTION

Applications of robotics technology in both production and
personal use are becoming possible with the development of
new materials, motors, sensors and vision, ever decreasing cost
of computing and memory capacity, and development of new
algorithms and control strategies. Robots must be able to
operate in dynamic and unpredictable environments. Therefore,
one of the most important challenges to be solved reliably is
robot navigation – in both indoor and outdoor environments.
The robots must be able to localize themselves on a supplied
map, create their own map representations of the explored
environment, and they must be able to navigate their
environments safely, without colliding with obstacles, or
failing to follow the paths, roads, trails, and tracks. The real
improvements in the technology typically occur when there is a
large motivational pressure to produce a working solution. This
might either be a goal to produce a final product, or alternately,
with somewhat more relaxed requirements and settings, which
are suitable for experimentation, and research, when the goal is
to develop a robot to participate in a robotics contest.

Robotour – robotika.cz outdoor delivery challenge,
organized by the Czech association robotika.cz, is an annual
meeting of teams building and/or programming outdoor robots
that navigate in a city park filled with trails, trees, grass,
benches, statues, water ponds, bridges, and people. The task
changes every year, but the main challenges are 1) be able to
localize and navigate on a map supplied by the organizers, and
2) be able to follow the trails and paths without colliding with

the obstacles or leaving the path without reaching the goal. See
[1] for the exact rules of this year's contest.

Various solutions for the challenge were developed,
however, in most cases, they did not take advantage of
advanced artificial intelligence algorithms. In particular, only
few different vision algorithms were developed until today,
several teams shared the successful solution of [2], and many
solutions rely on the use of odometry, compass, and GPS. We
would like to address this area, and prepare a solution for the
contest in 2010 or 2011 that will utilize AI algorithms. The
second author has participated in the competition team several
times in the past, and collected some experience and
motivation for a new attempt. In this article, we describe the
principles our solution is based on and is currently being built.
In the following sections, we describe the mechanics and the
hardware, robot overall architecture, the software components,
and the AI methods that we aim to use. Finally we summarize
the experience with building and programming the robot up to
date.

II. MECHANICS

The robot is a simple robot with differential-drive
kinematics with one supporting free-rolling caster wheel. The
length of the sides of its square base is 45 cm; the air-inflated
wheels of a diameter 15.3 cm are mounted on the outside of the
base, in the front of the robot. The total weight is about 6 kg
without any load. The robot provides a storage space of ca. 20
x 20 x 45 cm to carry a heavy load (approx. 5 kg), which can
be placed close to the center of rotation, above the propelled
wheels, so that it does not have a negative impact on
maneuverability of the robot. The main control unit is a
portable computer, mounted in a flat plastic frame with a foam
to compensate the shocks. The lead acid 12V 9Ah rechargeable
battery, being the heaviest component, is stored under the base,
between the wheels, keeping the centre of gravity low. Color
camera with a true optical image stabilizer and CCD image
sensor is mounted using anti-shock foam on a U-shape
construction frame built of aluminum profiles, together with
GPS and IMU sensor, see Fig.1. The camera is inclined 10°
downwards. The IMU sensor must be mounted far from any
sources of electric and magnetic fields, such as motors and
wires. Placing GPS high compensates also for obstacles in the
surrounding terrain, which may hinder the GPS satellites
signal. The robot is built from raw materials, except of the
motors, wheels and consoles that hold them, which are all part

of a set from Parallax. The aluminium framework allows
mounting a rain shield for the computer and the camera when
necessary.

Figure 1. 3D Model of the robot showing main parts. In real implementation,

we have mounted only one caster wheel as it proved to be sufficient, and

allowed more accurate control.

Figure 2. The resulting constructed robot from the side, front, and back. The
control electronics is installed under the PC. The robot has already been tested

in outdoor settings and has traveled a distance of several km.

III. HARDWARE ARCHITECTURE

The robot is propelled by two 12V DC motors with built-in
transmission, rotating at up to 150 rpm and consuming 1.5A at
no load. The encoders with 36 ticks per rotation are used for
speed and position feedback and are equipped with on-board
microcontrollers that are directly connected to the motor
drivers HB25, supplying them with the proper PWM signal to
keep the requested speed. In this way, the main microcontroller
board, which is the SBot control board, designed in our group
originally for SBot mobile robot, is freed from the low-level
motor control, and dedicates this task to both of the encoders
that have an implementation of a standard P (proportional)
controller and are connected using the same 1-wire serial bus.
Unfortunately, we found that the original firmware for the
encoders supplied by Parallax did not satisfy our needs for
several reasons. Most importantly, the encoders were not
designed for dynamic change of speed, but only for simple
positional commands that accelerate from zero speed to a fixed
predefined speed, and then decelerate after traveling the
required distance. They do not allow to change the speed in the
middle of such positional command. However, movements,
where the speed and rotation is changed arbitrarily at any time,
are required in the Robotour task, where the robot has to

dynamically respond to the visual feedback when it has to align
its movement with the shape of the path. Fortunately, Parallax
makes the source-code for the encoders firmware available,
and thus we could modify it to suit our application and support
immediate smooth changes of the instant speed.

The obstacles are detected using the standard SRF-08 and
Maxbotix LV EZ1 ultrasonic distance sensors that are
connected to the main control board.

Outdoor robots are typically equipped with a global
positioning device, i.e. GPS, and it is the case for our robot too.
Information from the GPS module that is connected directly to
the main computer using USB port, however, is not so reliable
due to atmospheric and other occlusions, and serves only as a
guidance for map localization. It is confronted with visual input
and complemented by the current heading obtained from
compass sensor. The compass sensor is part of the complex 9
DOF IMU sensor that includes several axes of gyroscopes,
accelerometers, and magnetometers, thus compensating for
various robot inclinations when traveling uphill or downhill.
This is important since the simple compass sensors provide
incorrect information once the robot and thus also the sensor is
tilted.

Finally, for the visual input, we chose to use a standard
video camera Panasonic SDR-T50, due to a very good ratio of
parameters/price. The video camera is built around a CCD
sensor, which has the advantage over the CMOS image sensors
of taking the image instantly. Cheap CMOS cameras therefore
suffer from a serious vertical distortion when the camera is
moving, since the different rows of the image are scanned at
different times. In addition, the camera has a built-in true
optical image stabilizer, which further compensates for
distortions due to the movement. Unfortunately, we found this
stabilizer to be insufficient, and thus we have supported it with
an anti-shock foam placed between the camera and the
platform where it is tightened using flexible textile tape. The
camera renders its image either as 16:9 or 4:3 image, however,
it sends a wider signal down to its video output jack connector,
which is further connected to a USB frame grabber card and
the main computer. The main computer is a 2-core powerful
PC with a GPU that can be used for the intensive image
processing computation. The computer and the Sbot control
board are connected using a serial port or a virtual serial port
over radio BlueTooth connection. In debugging and testing
applications, the robot can be controlled using a wireless
gamepad connected using a proprietary 2.4GHz radio link.

In general, the robot is designed in such a way that it can be
used in many different applications. For instance, a stereo
vision system or an arm with a gripper can be installed in the
cargo hold area. Additional sensors can be easily mounted on
the aluminum profiles or wooden base. Fig. 3 shows overall
system architecture.

Figure 3. System hardware architecture.

IV. SOFTWARE CONTROLLER ARCHITECTURE

The software architecture is tailored for the Robotour
contest. In this year's contest, the goal for the robot is to
navigate to the target without knowing its starting location. It is
only given the target coordinates and an official map of the
park. It may not use other map information. The software
controller is logically divided into five main components, see
Fig.4.

The first component, planning, uses the map with the
destination location and generates a path plan for the robot to
follow. It tries to minimize the number and complexity of the
crossings as these are the most critical places and candidates
for navigational errors. The component outputs a sequence of
locations that are to be visited by the robot. Whenever
requested, the module can generate a new plan after a
problematic place in the map has been reached.

The second component, localization using map, is
responsible for the most accurate localization of the robot on
the map. It is using the information from the compensated
compass (IMU) for heading, from GPS for position estimation,
and from the position encoders to estimate the distance traveled
and turns made. All the information is integrated and with the
help of the map and the path plan, the target distribution is
determined using a probabilistic Monte-Carlo estimation. The
output of the localization module is a probabilistic distribution
over the expected heading in the very next correct movement,
and the expected distance to the next crossing or target.

The third module, path recognition, is the most important
one for the actual control of the motors, and has a priority over
the localization module. It receives the image from the front
camera and recognizes which parts of the image correspond to
the path, and which of them correspond to other surfaces. The
next section explains this procedure in more details. The output
of this module is again a probabilistic distribution over the
space of possible headings that can be projected to the input
frame, where the headings leading to more “path” areas are
more likely than those leading to less “path” area. Input from
the odometry and gyroscopes helps this module to improve its
estimation of the path using its previous estimations and the
relative displacement of the robot.

The obstacle recognition module is responsible for
detecting obstacles in the planned path of the robot and for
stopping the robot in case of a possible collision early enough
so that avoidance could be attempted by the coordination
module. The robot is currently equipped with three ultrasonic
distance sensors (front ahead, front left, front right), and thus
the module reports on its output whether the path is blocked
completely, or only partially, and also what is the size of the
expected free buffer in front of the robot.

Figure 4. Overall controller architecture.

The most complex module is the coordination module. Its
purpose is to take the prioritized outputs from the other three
modules, and to determine the best possible angular and linear
velocity for the next instant movement. When the confidence
of the module is getting low, the robot slows down. If the
confidence falls even lower, the robot stops, and starts rotating
left or right, depending, which direction is expected to be more
promising, until it finds a heading, where the module
confidence is sufficiently high again. If such heading is not
found, the robot attempts to return back in the reverse direction
as it arrived to the problematic location, possibly moving in the
reverse of the planned direction on the map. After returning
back a short distance, it retries. The retries are repeated several
times while gradually extending the back-up distance. If all
attempts to pass the problematic location fail, the planning
module is asked to generate a different path.

The controller is arranged in a behavior-based manner,
individual behaviors are developed and tested independently
before they are integrated in a common controller.

V. PATH RECOGNITION

Our goal was to use artificial neural networks in order to
help the robot navigate and stay on the path. We obtained many
images from a park with trails, and we have manually marked
the regions in these images that correspond to the traversable
path. This input was used to train the neural network (a
standard multi-layer perceptron) to recognize the path. See
figure 5 for an example of such manually classified image.

Figure 5. Manual preparation of training images.

Sending the whole image to the network as the input would
obviously be infeasible. Instead, we first tried to scale the
image to a lower resolution of 400x300 pixels, and divide it
into 100 rectangular regions of equal sizes that covered the
whole image. Each region formed an input to a neural network,
and the whole region was about to be classified as “path” or
“not path”. However, the resulting resolution of the classified
image was not satisfactory, even after a further reduction of the
region size so that the image was divided into 2500 segments.
Therefore, we decided to use a sliding region. For almost every
pixel in the image, we define a corresponding region – it's
larger neighborhood, which forms the input vector. The
classification output produced by the network for each pixel in
the image is then a real number from 0 to 1, estimating how
much the network believes the pixel lies on the path. Two
examples of images that were not used in the training phase are
shown in the Fig.6.

Figure 6. Examples of path recognition.

We used the RPROP training algorithm for multilayer
perceptron, in particular the implementation that is present in
the OpenCV package. The training used tens to hundreds of
manually classified images from various places in a park with

various path surfaces, light and shadow conditions. Since this
is still an ongoing work and only preliminary results are
available, we restrain from a statistical analysis of the results at
this moment, and refer the reader to the page dedicated to the
project with detailed results and data [5].

Once the network is trained and produces the classifications
for the image frame pixels, the path recognition module enters
a second phase, when it tries to evaluate all possible travel
directions (headings) with respect to the chances that the robot
will stay on the path. For this purpose, the module analyzes a
family of triangles of the same area with the base at the bottom
of the frame and the third vertex placed in the middle of the
image. For each such triangle, we compute an average path
likelihood. The triangle for which the path is most likely, i.e.
where most pixels lay on the path, is likely to be the correct
new heading. However, the module outputs a full distribution
over all possible headings so that the coordination module can
take advantage of this information, for instance to determine
different directions at a heading, or when trying to resolve
ambiguous cases. Fig.7 depicts the analyzed family of
triangles. Two example pictures are further analyzed in Fig. 8,
where the bars show how “likely” it is that following in the
various directions is a “good” idea in order for the robot not to
leave the path.

Figure 7. Triangles representing different turning projected to the image of

recognized path.

VI. CONCLUSIONS AND FUTURE WORK

We have designed and implemented a robotic hardware and
software platform to be used in the Robotour contest for
outdoor robots navigating in park environment. The hardware
platform is implemented in a general way and most
components of the software platform can be reused in other
applications, the robot can be extended with stereo vision or
manipulator. We have designed, implemented and tested in this
context a new method for path recognition, which is based on
artificial neural network that is trained on a set of static images
that are similar to the environment where the robot is to be
operating. We are currently working on integrating all the
components of our prototype so that it could perform in its first

Robotour contest this year. In the remaining 10 months of the
project, we will analyze the results from our participation, and
propose, implement, and verify improvements so that the robot
can serve both as a competitive platform in the contest and as
an educational tool in the course Algorithms for AI Robotics,
which is provided at our department to students of Applied
Informatics.

ACKNOWLEDGMENT

This work has been done with the support of the grant
“Podpora kvality vzdelávania na vysokých školách“ from
Nadacia Tatra banky.

REFERENCES

[1] Robotour - robotika.cz outdoor delivery challenge, Rules, online:
http://robotika.cz/competitions/robotour/cs last accessed: August 1st
2010.

[2] K. Košnar, T. Krajník, and L. Přeučil, “Visual Topological Mapping,” in
European Robotics Symposium 2008, Heidelberg: Springer, 2008, pp.
333–342.

[3] G. Bradsky, A. Kaehler, Learnning OpenCV: Computer Vision with the
OpenCV Library, O'Reilly Media, Inc., 2008.

[4] D. Guštafík, SBot v2.0 – Educational Robot for Clubs and Classrooms,
User manual to Sbot robot, 2008, online: http://webcvs.robotika.sk/cgi-
bin/cvsweb/~checkout~/robotika/sbot/2.0/doc/dokumentacia_en.pdf

[5] M. Nadhajský, Robotour diploma project page, 2010, online:
http://virtuallab.kar.elf.stuba.sk/~mnadhajsky/

Figure 8. Two scenes after path recognition. The bars show the average pixel

intensity of pixels inside of triangles for a range of different rotations for both

of the resulting images (blue/dark for the left image, red/bright for the right
image).

