
Špecifikácia a verifikácia programov
v Peanovej aritmetike

DIZERTAČNÁ PRÁCA

Ján Komara

UNIVERZITA KOMENSKÉHO V
BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A
INFORMATIKY

KATEDRA APLIKOVANEJ INFORMATIKY

Teoretická informatika 11-80-9

Vedúci dizertačnej práce
doc. PhDr. Ján Šefránek, CSc.

BRATISLAVA 2009

Vyhlasujem, že predložená práca je moj́ım

pôvodným dielom, ktoré som vypracoval

samostatne s použit́ım zdrojov uvedených v

zozname literatúry.

Abstrakt

V tejto práci sa zaoberáme matematickými základmi návrhu programova-
cieho jazyka a jeho formálneho systému. Pri našom pŕıstupe programy sú
vlastnosti totálnych funkcíı nad oborom prirodzených č́ısel sṕlňajúce isté
vstupné podmienky. To nám umožňuje analýzu nekončiacich sa programov
v rámci formalizmu totálnych funkcíı. Dátové štruktúry aritmetizujeme do
prirodzených č́ısel pomocou párovacej funkcie. Špecifikačno-verifikačný sys-
tém je klasická prvorádová formalizácia aritmetiky, ktorá sa volá Peanova
aritmetika. Náš hlavný pŕınos spoč́ıva v návrhu programovacieho jazyka s tak-
mer neohraničenou rekurziou a s flexibilnou syntaxou programátorských kon-
štrukcíı, ktorým je expreśıvny jazyk podmienkových výrazov. Navyše tento
jazyk je plne sformalizovaný v Peanovej aritmetike. Časť týchto idey už bola
implementovaná v programovacom jazyku CL vrátane interakt́ıvneho doka-
zovacieho systému.

Kľúčové slová: Deklarat́ıvne programovanie, Rekurźıvne funkcie, Špeci-
fikácia a verifikácia programov, Peanova aritmetika.

Specification and Verification of Programs
in Peano Arithmetic

DISSERTATION

Ján Komara

COMENIUS UNIVERSITY BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS

AND INFORMATICS
DEPARTMENT OF APPLIED

INFORMATICS

Theoretical informatics 11-80-9

Supervisor
doc. PhDr. Ján Šefránek, CSc.

BRATISLAVA 2009

Hereby I declare that I wrote this thesis

myself with the help of no more than the

referenced sources and the work represents

the original contribution of the author

unless stated otherwise.

Abstract

In this work we are concerned with the problem of mathematical explica-
tion of a programming language and its formal system. In our approach pro-
grams are properties of total functions over natural numbers satisfying certain
preconditions. This allows analysis of non-terminating programs within the
framework of total functions. Data structures are arithmetized into natural
numbers with the help of a pairing function. The specification-verification
system is based on the classical first order formalization of arithmetic known
as Peano Arithmetic. Our main contribution lies in the design of the pro-
gramming language with almost unrestricted recursion and with extensible
syntax of programming construct (expressive language of conditionals). More-
over, the language is completely formalized within Peano Arithmetic. Some
of these ideas have already been implemented in the declarative programming
language and proof assistant CL.

Keywords: Declarative Programming, Recursive Functions, Specification
and Verification of Programs, Peano Arithmetic.

Preface

Goals. The main objective of this work is to give a mathematical explication
of a programming language together with its formal system. We are looking
for a solution in the paradigm of declarative programming which combines
simple semantics with expressive power of programming constructs.

Current state of the area. Declarative programming is a modern trend of
programming because programs, being definitions (properties) of mathemati-
cal objects can be rigorously analysed. This aspect allows formal specification
of programs as well as formal verification of their properties. This is a very
active field of research as demonstrated by at least a dozen projects listed
below. Some of them come with an integrated proof assistant.

Current specification-verification languages widely differ in the strength
of the theory they used. We mention here just some of them. The languages
Vdm [18, 9] and Raise [14] are based on a first order logic with partial
functions. The Z specification language [48] is based on a typed first order
set theory. Algebraic specification languages are Obj [10, 11] and Larch [15].
Higher order logic is used by many systems such as Pvs [8, 35, 36], Ehdm

[32], Isabelle [37, 33]. and Hol [12]. Some systems like Coq [17, 3] and
Nuprl [7, 1] are based on intuitionistic higher order logics.

In our research we have been influenced also by the systems Nqthm [4]
and Acl2 [20, 19, 13]. The system Nqthm is a theorem prover developed by
R.S. Boyer and J.S. Moore in 1970’s. Its logic is a first order quantifier-free
theory of S-expressions as known from Lisp. The logic permits the user to
axiomatize inductively constructed data types and recursively define (total)
functions. The logic provides also well-founded induction on the ordinals up to
ǫ0 and the witnessed constraint of new function symbols giving the logic some
of the features of a high-order logic. A Computational Logic for Applicative
Common Lisp (Acl2) is a direct descendant of Nqthmintended for large
scale verification projects. While the logic of Nqthm is based on pure Lisp,
the logic of Acl2 is based on the applicative subset of Common Lisp. The
system is written in the logic it supports.

vii

viii Preface

Proposed solutions. Our approach is based on the thesis of Church assert-
ing that the class of effectively computable functions over natural numbers
coincides with general recursive functions as defined by Herbrand-Gödel. We
use Herbrand-Gödel-like recursive equations because they offer the program-
ming comfort with almost unrestricted kinds of recursion and the computa-
tion of recursive equations by reductions permits a fine degree of control over
the length of reduction sequences. We interpret the recursive equations into
natural numbers because the concept of natural numbers is well understood
even by beginners and the theory of recursive functions and arithmetic offers
a firm natural semantic background.

A possible objection by computer scientists that the domain of natural
numbers means unpleasant coding (arithmetization) of the rich set of data
structures as used in computer programming is answered by coding into nat-
ural numbers in the style of Lisp with a pairing function (instead of cons).
We obtain a degree of comfort as it is known from declarative programming
languages. The examples given in the last two chapters, where we deal with
programs operating over lists, binary trees and symbolic expressions, should
convince the reader.

The computational model is based on reduction of terms. Programs are
properties of (total) functions over natural numbers. Each program has as-
signed certain precondition describing which elements can be used as its
inputs. Regularity conditions for a program guarantee that computation ter-
minates correctly for every input satisfying its precondition, for other in-
puts computation might return wrong answer or even diverges. This con-
ception of programs being properties with preconditions allows analysis of
non-terminating programs within the framework of total functions.

For efficient computation one needs strong schemes of recursion and case
analysis. Our strongest definitional schemes are regular recursive definitions
into well-founded relations. The language of expressions is extended with
a powerful generalization of (non-extensible) case constructs and pattern
matching known from declarative programming languages. These new con-
structs, called case discrimination terms in this text, have flexible syntax
which legality must be certified by a formal proof. Each case discrimination
term has assigned certain precondition prescribing for which inputs the case
analysis must be pairwise-disjoint and exhaustive.

This should be contrasted with the discipline of Total Functional Pro-
gramming discussed in [51, 52]. In order to avoid the problems with partial
functions, Turner proposed a language with limited expressivity of some pro-
gramming constructs (notably recursion and case analysis) to exclude non-
terminating programs. A similar approach to ours has been used in [56] to
tackle the problem of non-termination but there are some significant differ-
ences between both methods. The idea of extensible syntax of case constructs
is not new: in [56, 30] they consider approach which expressivity is similar
to ours. We think however that our proposed solution has certain advan-

Preface ix

tages because our case constructs are just ordinary expressions with simple
semantics. This approach has been already studied by the author in [28].

We are interested not only in a programming language but also in ver-
ification of its programs. By restricting ourselves to the domain of natural
numbers we can use the first order formalization of arithmetic called Peano
Arithmetic as our specification-verification system. This is probably the most
simple formal theory suitable for the theory of programming languages. But
we still have to introduce the derived concepts as used in programming, data
structures or recursive programs, for instance. This is done by showing that
these new concepts can be introduced and then prove their properties in some
of definitional extensions of Peano Arithmetic.

Contributions. In the part dealing with recursive bootstrapping of Peano
Arithmetic we have contributed the following:

• A quick and easy introduction of coding into Peano Arithmetic (Chap. 2).
We use a modified version of Cantor pairing function to develop the coding
of tuples and finite sequences. The pairing function is then used in recursive
bootstrapping of Peano Arithmetic in the next chapter.

• A novel proof that Peano Arithmetic admits definitions by nested simple
recursion (Sect. 3.5). We have already investigated the scheme in [25] but
we hope that this new presentation, which is supplied with a detailed
formal proof for the first time, is much simpler and easier to follow.

• Showing that Peano Arithmetic admits definitions by powerful recursive
schemes such as recursion with measure (Sect. 4.2), well-founded recursion
(Sect. 4.3) and regular recursion (Sect. 4.4). The first two schemes are
reduced to nested simple recursion by the technique already developed
in [25, 54]. Dropping the syntactic restrictions imposed on well-founded
recursion leads to regular recursive definitions. This is our most general
scheme of recursion formalized within Peano Arithmetic.

• By allowing programs to be properties obeying certain input conditions
we may have non-terminating algorithms but they can be analysed fully
within the framework of Peano Arithmetic (Sect. 4.5).

In the part dealing with theory of programming our main contribution is in
the choice of a simple semantics of a programming language and in the design
of its formal system. This is discussed in Chap. 5. More specifically, we have
contributed the following:

• Design of a programming language with extensible syntax of programming
constructs (Sect. 5.2). We add to the language of Peano Arithmetic case
discrimination terms, which are powerful generalizations of case constructs
known from declarative programming languages. These new constructs
have flexible syntax which legality must be certified by a formal proof in
Peano Arithmetic.

• Design of a programming language with almost unrestricted recursion
(Sect. 5.2). We will show that Peano Arithmetic admits a very flexible

x Preface

kind of extensions by regular recursive definitions in which user-defined
conditionals can be used. This is our most expressive scheme of recur-
sive definitions formalized within PA. Clausal form of such definitions is
discussed in Sect. 5.4.

• Arithmetization of common data structures needed in the computer pro-
gramming with the level of comfort comparable to that in the declarative
programming languages. Formalization of structural recursion/induction
as shown in Chaps. 6 and 7, where we use these constructs to define func-
tions operating over lists, binary trees and symbolic expressions.

• The use of Peano Arithmetic as a single framework for the design of a
programming language and its specification-verification system.

Finally, we mention here also two of our contributions which did not come
into this text. Nevertheless, they play important part either in the part where
we borrow from mathematical logic or in the part where we are concerned
with the design of the logical framework for verification of programs:

• In [28] we gave a simple finitary proof of conservativity of Skolem axioms.
(see Thm. 1.3.11). The proof is based on the ideas developed in [22, 23].

• In [26] we have proved the admissibility of so-called predicate induction
rules, which are very expressive schemes of induction derived from recur-
sive definitions of predicates. Boyer and Moore [4] were the first to use
such rules, and similar rules are used in Hol [31, 12]

Many of the forementioned contributions are joint results of the scientific
collaboration of the author and his colleague Pavol Voda.

Implementations. We have already achieved some practical results in the
application of our theoretical investigation in the area of computer program-
ming. We have provided our own design and implementation of the declar-
ative programming language CL (Clausal Language) [42, 24]. It comes with
its own theorem prover which enables to formalize and prove properties of
programs in Peano Arithmetic. The system was designed and implemented in
1997–2003. The authors are J. Kľuka (interface), J. Komara (proof system)
and P.J. Voda (processor).

We use the programming and verification system CL in the following
courses of undergraduate/graduate study at our university:

• Declarative Programming, where we teach the introduction into declarative
programming within the formalism of primitive recursive functions.

• Theory of Declarative Programming, where we teach theory of declarative
programming languages within the framework of the classical recursion
theory (primitive, general and partial recursive functions).

• Specification and Verification of Programs, where we teach the introduc-
tion into first order arithmetic and where we use Peano Arithmetic as a
specification, implementation and verification framework.

• Computability Theory, where we teach the classical theory of computability
based on Turing machines.

Preface xi

Our experience shows that the undergraduate students have no problems
defining functions in Peano arithmetic and have little problems doing formal
proofs of their properties. This is primarily because they have a good intuition
about the domain of natural numbers.

The interested reader will find in our homepage the executable file of an
implementation of the system as well as the lecture notes for the courses we
teach with the system (see [42, 28, 27]).

Acknowledgements. The author would like to thank his colleague Pavol
Voda for his enormous contribution to this text. We have worked jointly over
many years and the clausal language was designed and implemented as our
common project in the form of the system CL. The author would also like
to thank Ján Šefránek for his support during the last years.

Contents

Prerequisites and Notation . 1

1 Natural Numbers . 5
1.1 Declarative Programming . 5
1.2 Recursive Functions . 12
1.3 First Order Logic . 21
1.4 Peano Arithmetic . 27

2 Beginning of Arithmetization . 33
2.1 Pairing Function . 34
2.2 Contracted Iteration . 39
2.3 Tuples . 48
2.4 Finite Sequences . 50

3 Primitive Recursive Schemes . 53
3.1 Primitive Recursion . 53
3.2 Course of Values Recursion . 58
3.3 Backward Recursion . 61
3.4 Recursion with Parameter Substitution . 68
3.5 Nested Simple Recursion . 88

4 General Recursive Schemes . 105
4.1 Introduction . 106
4.2 Recursion with Measure . 115
4.3 Well-Founded Recursion . 120
4.4 Regular Recursion . 131
4.5 Computation Model . 139

5 Programming Language . 145
5.1 Introduction . 145
5.2 Syntax . 151
5.3 Regular Recursion . 157

xiii

xiv Contents

5.4 Clausal Definitions . 160

6 Programs Operating on Lists . 167
6.1 Lists . 167
6.2 Operations on Lists . 176
6.3 Combinatorial Functions over Lists . 183
6.4 Sorting of Lists . 189

7 Programs Operating on Trees . 195
7.1 Binary Trees . 196
7.2 Binary Search Trees . 203
7.3 Braun Trees and Flexible Arrays . 212
7.4 Symbolic Expressions . 228
7.5 Universal Function . 235

8 Conclusion . 245

List of Figures . 247

List of Symbols . 249

Bibliography . 253

Index . 257

Prerequisites and Notation

The only prerequisite is a knowledge of naive set theory and familiarity with
basic logic notation. Important facts from the mathematical logic which are
assumed to be known will be introduced in the next chapter.

Logical notation. We will use the symbol ≡ as the syntactical identity over
syntactical objects such as terms and formulas. Also we will use ≡ as the
syntactical identity over finite sequences of such objects.

Terms are formed from variables and constants by applications of function
symbols in the usual way. Closed terms do not have free variables. We use
lower Greek letters τ, ρ, θ as syntactic variables ranging over terms.

We will write x⃗ in contexts like f(x⃗), where f is an n-ary function
symbol, as an abbreviation for a sequence of n variables x1, . . . , xn, i.e.
we have f(x⃗) ≡ f(x1, . . . , xn). Generally, f(τ⃗) will be an abbreviation for
f(τ1, . . . , τn), where τ⃗ is the sequence τ1, . . . , τn of terms. We will also write
f g(τ⃗) instead of f(g(τ⃗)).

When we write τ[f ; x⃗] we indicate that the term τ may apply the n-ary
function symbol f and variables from among the m-variables x⃗. For an n-
ary function symbol g and for an m-tuple of terms ρ⃗ we write τ[g; ρ⃗] for
the term obtained from the term τ by the substitution of terms ρ⃗ for the
corresponding variables of x⃗ as well as by the replacement of all applications
f(θ⃗) by applications g(θ⃗).

An atomic formula is either a predicate application or an identity τ = ρ.
Formulas are formed from atomic formulas and propositional constants by
applications of propositional connectives and quantifiers in the usual way:

⊺ (true) ϕ ∧ ψ (conjunction) ϕ↔ ψ (equivalence)
� (falsehood) ϕ ∨ ψ (disjunction) ∀xϕ (universal quantifier)
¬ϕ (negation) ϕ→ ψ (implication) ∃xϕ (existential quantifier).

Closed formulas (i.e. sentences) do not have free variables. We will use lower
Greek letters ϕ,ψ as syntactic variables ranging over formulas.

1

2 Prerequisites and Notation

In order to improve readability of formulas, we let all binary propositional
connectives group to the right. We assign the highest precedence to the quan-
tifiers and the negation. Next lower precedence has the conjunction and then
the disjunction. The connectives of implication and equivalence have the low-
est precedence. For instance, the formula ϕ1 → ϕ2 ↔ ¬ϕ3 ∨ ∃xϕ4 ∨ ϕ5 should
be read as ϕ1 → (ϕ2 ↔ ¬(ϕ3 ∨ ((∃xϕ4) ∨ ϕ5))).

By τ ≠ ρ we designate the formula ¬τ = ρ. We generalize some of the
propositional connectives to for finite sequences. The generalized conjunc-
tion ⋀n

i=1 ϕi stands for ϕ1 ∧⋯∧ϕn if n ≥ 1 and for ⊺ if n = 0. We define the
generalized disjunction ⋁n

i=1 ϕi similarly. By ∀x⃗ϕ and ∃x⃗ϕ we designate the
formulas ∀x1 . . .∀xnϕ and ∃x1 . . .∃xnϕ, respectively. By ∀ϕ we denote the
universal closure of the formula ϕ.

Similar conventions as those for terms will be adopted also for formulas.
Only substitution requires a brief explanation. Whenever we write ϕ[τ⃗] it
is assumed that the bound variables of the formula ϕ[x⃗] are first renamed
so that they do not appear in the terms τ⃗ . Recall that a formula does not
change its meaning if one of its bound variables is changed to another.

Natural numbers. If we do not state explicitly n-ary functions and predi-
cates are over the domain of natural numbers

N = {0,1,2,3,4,5, . . .}.
We implicitly assume that we have n ≥ 1; this means that our functions
and predicates have always non-zero arity. Furthermore, n-ary functions are
always total, i.e. with the domain being the whole Cartesian product Nn.

Natural numbers are closed under the operations of addition x + y and
multiplication x × y (written xy for short) but not under subtraction x − y
and division x

y
. For instance, we have 3 − 5 = −2 < 0 and 1 < 5

3
< 2.

Instead of subtraction we will use modified subtraction x∸ y which is over
natural numbers and it is defined by

x ∸ y = ⎧⎪⎪⎨⎪⎪⎩
x − y if x ≥ y,

0 otherwise.

The modified subtraction has the following basic properties:

y ≤ x→ x = y + (x ∸ y) x ≤ y → x ∸ y = 0.

Note that we then have 5 ∸ 3 = 2 and 3 ∸ 5 = 0.
Instead of division we will use euclidean division. Recall that for every

natural numbers x and y ≠ 0 there exist unique natural numbers q and r < y
such that x = qy + r holds. The numbers q and r are called respectively the
quotient and the remainder of the euclidean division of x by y. We denote
by x ÷ y the binary integer division function and by x mod y the binary
remainder function yielding respectively the quotient and remainder of the

Prerequisites and Notation 3

euclidean division of the number x by y. The functions are defined to satisfy:

x ÷ y =
⎧⎪⎪⎨⎪⎪⎩
q if y ≠ 0 and x = qy + r for some r < y,

0 otherwise.

x mod y =

⎧⎪⎪⎨⎪⎪⎩
r if y ≠ 0 and x = qy + r for some q such that r < y,

0 otherwise.

The functions have the following basic properties:

x ÷ 0 = x mod 0 = 0

y ≠ 0 → x = (x ÷ y)y + x mod y ∧ x mod y < y.

For instance, we have 5 ÷ 3 = 1 and 5 mod 3 = 2.
The binary exponentiation function xy has a following recursive definition:

x0 = 1

xy+1 = xxy .

Note that we have xy = 0 ↔ x = 0 ∧ y ≠ 0 and xy = 1 ↔ x = 1 ∨ y = 0.
For an n-ary predicate R, we denote by R∗ its characteristic function which

is an n-ary function such that

R∗(x⃗) =
⎧⎪⎪⎨⎪⎪⎩
1 if R(x⃗),
0 if not R(x⃗).

Note that the value 1 means truth while the value 0 means falsehood. We
designate by x =∗ y, x ≤∗ y and x <∗ y the characteristic functions of the binary
predicates x = y, x ≤ y and x < y, respectively. We adopt the same convention
also for other binary predicates written in infix notation.

References and meta-logical notation. Chapters are divided into sec-
tions and these into consecutively numbered paragraphs such as definitions,
theorems and remarks. Thus 5.3.4 is the 4th paragraph of the 3rd section of
the 5th chapter. When a reference is made to a numbered equation within
the same paragraph, both chapter and section numbers are omitted.

The word “iff” abbreviates “if and only if”; “s.t.” abbreviates “such that”;
“IH” abbreviates “induction hypothesis” and “IHs” is the plural form of
“IH”. The symbol ⇒ denotes the word “implies”, while the symbol ⇔ means
“implies and is implied by”. Finally note that the conclusion of a proof is
usually indicated by the symbol ⊓⊔.

Chapter 1

Natural Numbers

We begin by introducing the paradigm of declarative programming and give
some arguments over programming over natural numbers within the frame-
work of (total) functions (Sect. 1.1). To make this text self-contained we have
included three sections where we survey some basic facts from recursion the-
ory and mathematical logic. In Sect. 1.2 we give a brief overview of primitive
and µ-recursive functions. The subsequent two sections discuss first order
theories in general (Sect. 1.3) and Peano Arithmetic in detail (Sect. 1.4).

1.1 Declarative Programming

1.1.1 Introduction. The style of programming where programs modify
memory by obeying sequences of commands is called imperative program-
ming. The term declarative programming is used for the style of programming
where programs are definitions (properties) of mathematical objects such as
functions or predicates. To illustrate this paradigm we give here a few typi-
cal algorithms written declaratively. At the end of this section we give some
arguments in favour of declarative programming over natural numbers.

1.1.2 Euclidean algorithm. The greatest common divisor of two numbers
x and y, where at least one is non-zero, is the largest number that divides
them both; we designate it by gcd(x, y). The function gcd is uniquely deter-
mined by the following specification:

gcd(0,0) = 0

x ≠ 0 ∨ y ≠ 0 → gcd(x, y) ∣ x ∧ gcd(x, y) ∣ y
(x ≠ 0 ∨ y ≠ 0) ∧ z ∣ x ∧ z ∣ y → z ≤ gcd(x, y).

Here, the x ∣ y is the binary divisibility predicate holding if the number x
divides the number y, i.e. if we have y = xz for some number z.

5

6 1 Natural Numbers

An efficient algorithm for computing the greatest common divisor was
described by the ancient mathematician Euclid which relies on the following
property of divisibility:

x > y ∧ z ∣ y → z ∣ x↔ z ∣ x ∸ y
This means that the greatest common divisor does not change if the smaller
number is subtracted from the larger. Thus gcd(x, y) is gcd(x ∸ y, y) if x > y
and gcd(x, y ∸ x) if x < y.

The algorithm of Euclid can be expressed by the following declarative
program which is also a recursive definition of the greatest divisor function:

gcd(x, y) = if x ≠ 0 ∧ y ≠ 0 then

case

x > y⇒ gcd(x ∸ y, y)
x = y⇒ x

x < y⇒ gcd(x, y ∸ x)
end

else

max(x, y).
Here, the max(x, y) is the maximum of the numbers x and y. The definition
is legal because the arguments of both recursive applications go down in the
measure max(x, y) as we have

x ≠ 0 ∧ y ≠ 0 ∧ x > y → max(x ∸ y, y) < max(x, y)
x ≠ 0 ∧ y ≠ 0 ∧ x < y → max(x, y ∸ x) < max(x, y).

The properties are called the conditions of regularity of the definition. They
guarantee that the functional equation has a unique solution.

The expression on the right side of the definition applies two conditionals.
The first one is an ordinary test on whether or not x ≠ 0 ∧ y ≠ 0. The second
conditional is trichotomy discrimination on the numbers x, y by examining
which one of the following properties x < y, x = y and x > y holds.

We can use the defining equation as a computation rule from left to right
to evaluate applications of the greatest divisor function. For instance, the
following is the reduction sequence for evaluation of gcd(21,12):

gcd(21,12) = gcd(9,12) = gcd(9,3) = gcd(6,3) = gcd(3,3) = 3.

Regularity conditions guarantee that computation of gcd using the defining
identity always terminates.

1.1.3 Euclidean algorithm revisited. The program for the greatest di-
visor function described in the previous paragraph is less optimal than it
should be due to repeated test x ≠ 0 ∧ y ≠ 0 in each recursive call. We obtain

1.1 Declarative Programming 7

a better one by computing the greatest divisor using the following identity
as reduction rule:

gcd(x, y) = case

x > y⇒ gcd(x ∸ y, y)
x = y⇒ x

x < y⇒ gcd(x, y ∸ x)
end.

The program works correctly for those inputs that satisfy the following prop-
erty: x ≠ 0 ∧ y ≠ 0. This is called the precondition of the program. Note that
if we write the above program together with its precondition

x ≠ 0 ∧ y ≠ 0 → gcd(x, y) = case

x > y ⇒ gcd(x ∸ y, y)
x = y ⇒ x

x < y ⇒ gcd(x, y ∸ x)
end,

we obtain an assertion in the form of conditional identity which is also the
property of the greatest divisor function.

The following properties are called the (extended) conditions of regularity
of the program:

x ≠ 0 ∧ y ≠ 0 ∧ x > y → max(x ∸ y, y) < max(x, y) ∧ x ∸ y ≠ 0 ∧ y ≠ 0

x ≠ 0 ∧ y ≠ 0 ∧ x < y → max(x, y ∸ x) < max(x, y) ∧ x ≠ 0 ∧ y ∸ x ≠ 0.

These conditions guarantee that computation of the greatest divisor function
for inputs x, y satisfying the input condition always terminates yielding the
correct result gcd(x, y). Note that we require not only that recursion goes
down in the measure max(x, y) but also that the arguments of recursive
applications satisfy the precondition of the program.

For inputs violating the precondition of the program computation might
not terminate as it shown in the following reduction sequence:

gcd(1,0) = gcd(1 ∸ 0,0) = gcd(1,0) = ⋯ .
This means that if we allow unrestricted recursion in programs we would have
to deal with partial functions. By insisting that inputs should satisfy precon-
ditions of programs we remain within the framework of (total) functions.

1.1.4 Fibonacci numbers. The function fib(n) yielding the n-th element
of the sequence of Fibonacci satisfies the following recurrences:

fib(0) = 0

fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n).

8 1 Natural Numbers

This is an example of course of values recursive definition, where the argu-
ments of recursive applications decrease in the relation <: we have n+1 < n+2
for the first recursive application and n < n + 2 for the second.

We can use the recurrences directly for computation. For instance:

fib(4) = fib(3) + fib(2) = (fib(2) + fib(1)) + fib(2) =
= ((fib(1) + fib(0)) + fib(1)) + fib(2) = ((1 + fib(0)) + fib(1)) + fib(2) =
= ((1 + 0) + fib(1)) + fib(2) = (1 + fib(1)) + fib(2) = (1 + 1) + fib(2) =
= 2 + fib(2) = 2 + (fib(1)+ fib(0)) = 2 + (1 + fib(0)) =
= 2 + (1 + 0) = 2 + 1 = 3.

The only problem is that the computation sequence is too long. In order to
compute the number fib(n) one needs to use the defining recurrences approx-
imately fib(n) times. The Fibonacci function grows as fast as the exponential
function and to compute the function in this way is simply too wasteful.

We give here more satisfactory implementation of the Fibonacci function
by an imperative program. The following Pascal-like program computes
fib(n + 1) into the variable a:

a ∶= 1; b ∶= 0;
while n ≠ 0 do

n ∶= n − 1; c ∶= a; a ∶= a + b; b ∶= c;
The reader will note that the while-loop is executed only n times. This ex-
ample is usually given as the ‘standard argument’ against declarative pro-
gramming where the recursive version is clearly inferior to the imperative.

The argument is fallacious as one should define an auxiliary ternary func-
tion g(n,a, b) with two accumulators a and b by primitive recursion:

g(0, a, b) = a
g(n + 1, a, b) = g(n,a + b, a)

and then we take the following identity as an alternate program for fib(n):
fib(0) = 0

fib(n + 1) = g(n,1,0). (1)

The number of recursions of g(n,a, b) is exactly the same as the number of
iterations of the loop of the imperative program. Moreover, a good compiler
can remove the so-called tail recursion in the definition of f and compile it
similarly as the while-loop in the above Pascal-like program.

It remains to show that the identity (1) is true. For that we need the
following property of the auxiliary function g:

∀k g(n,fib(k + 1),fib(k)) = fib(n + 1 + k) (2)

1.1 Declarative Programming 9

which is proved by induction on n. In the base case take any k and we have

g(0,fib(k + 1),fib(k)) = fib(k + 1) = fib(0 + 1 + k).
In the induction step take any k and we have

g(n + 1,fib(k + 1),fib(k)) = g(n,fib(k + 1) + fib(k),fib(k + 1)) =
= g(n,fib(k + 2),fib(k + 1)) = g(n,fib(k + 1 + 1),fib(k + 1)) IH

=

= fib(n + 1 + k + 1) = fib(n + 1 + 1 + k).
We are now ready to prove (1):

fib(n + 1) = fib(n + 1 + 0) (2)
= g(n,fib(0 + 1),fib(0)) =

= g(n,fib(1),fib(0)) = g(n,1,0).
1.1.5 Arithmetization of word domains. In the examples discussed so
far the domain of values over which the functions were operated was the
domain of natural numbers. But what about complex data structures used in
computer programming? Is not the restriction to natural numbers unrealistic
one? The answer lies in the coding of data structures into the domain of
natural numbers. The process of going from operations over certain domain
to the operations over the codes of elements of the domain in N is called the
arithmetization of the domain. In this paragraph we illustrate the problem
of arithmetization for word domains.

Consider the two-elements alphabet Σ = {1,2}. We can code words over
Σ with the help of dyadic successors functions explicitly defined by:

x1 = 2x + 1

x2 = 2x + 2.

It is not difficult to see that every natural number has a unique representa-
tion as a dyadic numeral which are terms built up from the constant 0 by
applications of dyadic successors. This is called dyadic representation of nat-
ural numbers. Consider, for instance, the first eight words from the sequence
of words over the alphabet Σ which is ordered first on the length and then
within the same length lexicographically:

∅,1,2,11,12,21,22,111.

The corresponding dyadic numerals are shown in Fig. 1.1. Arithmetization is
so straightforward that, from now on, we will usually identify dyadic words
with their code numbers.

The dyadic size function ∣x∣d yields the number of dyadic successors in the
dyadic numeral denoting the number x. The function is the arithmetization
of the word-size function taking a word over Σ and yielding its length. The

10 1 Natural Numbers

0 = 0

01 = 2 × 0 + 1 = 1 × 20 = 1

02 = 2 × 0 + 2 = 2 × 20 = 2

011 = 2 × (2 × 0 + 1) + 1 = 1 × 21 + 1 × 20 = 3

012 = 2 × (2 × 0 + 1) + 2 = 1 × 21 + 2 × 20 = 4

021 = 2 × (2 × 0 + 2) + 1 = 2 × 21 + 1 × 20 = 5

022 = 2 × (2 × 0 + 2) + 2 = 2 × 21 + 2 × 20 = 6

0111 = 2 × (2 × (2 × 0 + 1) + 1) + 1 = 1 × 22 + 1 × 21 + 1 × 20 = 7.

Fig. 1.1 Dyadic representation of natural numbers

function is defined by

∣0∣d = 0

∣x1∣d = ∣x∣d + 1

∣x2∣d = ∣x∣d + 1.

This is a correct definition because recursion decreases the argument since
we clearly have x < x1 and x < x2.

The binary function x ⋆ y, called dyadic concatenation, yields a number
whose dyadic representation is obtained from dyadic representations of x and
y by appending the digits of y after the digits of x. The dyadic concatenation
function x⋆y is the arithmetization of the word function concatenating words
over the alphabet Σ. The function is defined by

x ⋆ 0 = x (1)

x ⋆ y1 = (x ⋆ y)1 (2)

x ⋆ y2 = (x ⋆ y)2. (3)

We can use the identities for computations. For instance, we have

021 ⋆ 0121
(2)
= (021 ⋆ 012)1 (3)

= (021 ⋆ 01)21
(2)
= (021 ⋆ 0)121

(1)
= 021121.

Note that during the computation there is no need to convert the values into
other, say decimal, notation.

The connection between dyadic concatenation and dyadic size is captured
by the following property:

x ⋆ y = x2∣y∣d + y.

This is proved by complete induction on y. So take any y and consider three
cases. If y = 0 then we have

1.1 Declarative Programming 11

x ⋆ 0 = x = x20 + 0 = x2∣0∣d + 0.

If y = z1 for some z then z < y and thus

x ⋆ z1 = (x ⋆ z)1 IH
= (x2∣z∣d + z)1 = x2∣z∣d+1 + z1 = x2∣z1∣

d + z1.

The case when y is z2 for z is proved similarly.

1.1.6 Arguments in favour of declarative programming over natural

numbers. To understand the meaning of an imperative program requires to
understand its effect on an entire memory which can be changed during the
execution of the program. This impose a great difficulty in reasoning about
the correctness of such programs. The main advantage of the imperative
programming languages over the declarative ones is efficiency – imperative
programs can usually run some times faster as their declarative counterparts.

On the other hand, if we care about the correctness of our programs then
the proofs are much easier for declarative programs. For instance, proving
that the declarative program from Par. 1.1.2 implements the greatest common
divisor can be done within the elementary arithmetic.

In the above examples the domain of values over which the functions oper-
ated was the domain natural numbers. Computer programming, in addition
to the standard numerical types, involves a large number of data structures
such as n-tuples, multidimensional arrays (vectors and matrices), lists, stacks,
tables, trees, graphs, etc. How do we propose to deal with such a bewildering
variety in the seemingly restricted setting of functions over natural numbers?
As we have shown already in Par. 1.1.5, the answer lies in the coding of data
structures into the domain of natural numbers.

A possible objection that the domain N means unpleasant coding of the
rich set of data structures used in computer programming is answered by
coding into N in the style of Lisp with a pairing function (instead of cons).
We obtain a degree of comfort as it is known from declarative programming
languages. The examples in Chaps. 6–7 should convince the reader.

Many modern functional programming languages allowed arbitrary forms
of recursive programs. With unrestricted recursion the best we can do is to
compute partial functions. To overcome this obstacle, we propose that pro-
grams are properties of (total) functions satisfying certain input conditions.
We do not insist that programs have to be definitions.

Each program P is a property of some function f which can be used as a
computational rule to calculate this function. The program P has assigned
a precondition describing which elements can be used as inputs. Regularity
conditions for the program P guarantee that computation terminates for
every input x⃗ which satisfies its precondition yielding the correct value f(x⃗).
for other inputs computation might return wrong answer or even diverge.
This will be proved in Sect. 4.5.

12 1 Natural Numbers

1.2 Recursive Functions

1.2.1 Introduction. In this section we review some basic facts about two
(sub-)classes of effectively computable functions: primitive recursive (p.r.)
functions and µ-recursive functions (see also [21, 41, 43, 54]). The section
contains only basic development. We will show, for instance, that many well-
known arithmetic functions and predicates are primitive recursive. We will
also show some simple closure properties of both classes (closure under ex-
plicit definitions or bounded minimalization). Further investigation is the
object of study of the next chapters.

1.2.2 Basic primitive recursive functions. The zero function Z is such
that Z(x) = 0; the successor function S satisfies the equation S(x) = x + 1.
For every n ≥ 1 and 1 ≤ i ≤ n, the n-ary identity function In

i yields its i-th
argument, i.e. we have

In
i (x1, . . . , xn) = xi.

We usually write I instead of I1
1 and we have I(x) = x.

1.2.3 Composition. For everym ≥ 1 and n ≥ 1, the operator of composition
takes an m-ary function h and m n-ary functions g1, . . . , gm and yields an
n-ary function f satisfying:

f(x⃗) = h(g1(x⃗), . . . , gm(x⃗)).
1.2.4 Primitive recursion. For every n ≥ 1, the operator of primitive re-
cursion takes an n-ary function g and an (n+2)-ary function h and yields an(n+1)-ary function f such that

f(0, y⃗) = g(y⃗)
f(x + 1, y⃗) = h(x, f(x, y⃗), y⃗).

The first argument is the recursive argument whereas the remaining argu-
ments are parameters. Note that the definition has at least one parameter.

1.2.5 Primitive recursive functions. A sequence of functions f1, . . . , fk

is called a primitive recursive derivation of a function f if

(i) f = fk,
(ii) for every i such that 1 ≤ i ≤ k, the function fi is either one of the basic

primitive recursive functions or is obtained from some of the previous
functions f1, . . . , fi−1 by composition or primitive recursion.

A function is primitive recursive if it has a primitive recursive derivation. A
predicate is primitive recursive if its characteristic function is.

1.2 Recursive Functions 13

A class of functions is primitively recursively closed if it contains all basic
primitive recursive functions and it is closed under composition and primitive
recursion. It is easy to see that the class of primitive recursive functions is
the smallest primitively recursively closed class of functions. Note that the
properties of the class of primitive recursive functions discussed in the next
paragraphs depend only on the fact that the class is primitively recursively
closed. We will use this observation in Thm. 1.2.33.

1.2.6 Constant functions are primitive recursive. We first show, by
induction on m, that every unary constant function Cm(x) =m is primitive
recursive. In the base case we have C0 = Z is one of the basic p.r. functions.
In the induction step we assume that Cm is primitive recursive by IH and
define Cm+1 as primitive recursive by unary composition:

Cm+1(x) = S Cm(x).
The n-ary constant function Cn

m(x⃗) =m is obtained as primitive recursive by
the following composition:

Cn
m(x1, . . . , xn) = Cm In

1 (x1, . . . , xn).
1.2.7 Explicit definitions of functions. Every explicit definition

f(x1, . . . , xn) = τ[x1, . . . , xn]
can be viewed as a function operator which takes all functions applied in
the term τ and returns as a result the function f satisfying the identity. We
suppose here that the term τ does not apply the symbol f and that all its
free variables are among the indicated ones.

1.2.8 Theorem Primitive recursive functions are closed under explicit def-
initions of functions.

Proof. By induction on the structure of terms τ we prove that primitive
recursive functions are closed under explicit definitions of n-ary functions:

f(x⃗) = τ[x⃗].
If τ ≡ xi then the function f is the n-ary identity function In

i which is one
of the basic primitive recursive functions.

If τ ≡ m then the function f is the n-ary constant function Cn
m which is

primitive recursive by Par. 1.2.6.
If τ ≡ h(ρ1, . . . , ρm), where h is an m-ary primitive recursive function, then

the n-ary functions g1, . . . , gm defined explicitly by

g1(x⃗) = ρ1[x⃗] . . . gm(x⃗) = ρm[x⃗]

14 1 Natural Numbers

are primitive recursive by IH. The function f is obtained as primitive recursive
by the following composition

f(x⃗) = h(g1(x⃗), . . . , gm(x⃗)). ⊓⊔

1.2.9 Primitive recursive definitions. Let τ1[y⃗, z⃗] and τ2[y⃗, x, a, z⃗] be
terms containing at most the indicated variables free and neither of them
applies the function symbol f . Then the functional equations

f(y⃗,0, z⃗) = τ1[y⃗, z⃗]
f(y⃗, x + 1, z⃗) = τ2[y⃗, x, f(y⃗, x, z⃗), z⃗]

has a unique solution f . The definition is called primitive recursive definition
of f . The definition can be viewed as a function operator which takes all
functions applied in the terms τ1 and τ2 and yields the function f as a result.
Note that we do not exclude the case when the parameters y⃗ or z⃗ or both are
empty. Also the variable a does not have to occur freely in the term τ2.

Example. Note that the operator of iteration of unary function is a special
case of primitive recursive definitions. The operator takes a unary function f
and yields a binary function fn(x) satisfying:

f0(x) = x
fn+1(x) = f fn(x).

The function fn(x) is called the iteration of f . As a simple corollary of the
next theorem we obtain that primitive recursive functions are closed also
under iteration of unary functions.

1.2.10 Theorem Primitive recursive functions are closed under primitive
recursive definitions.

Proof. Let f be defined by the primitive recursive definition as in Par. 1.2.9
from p.r. functions. First we define explicitly two auxiliary functions

g(w, y⃗, z⃗) = τ1[y⃗, z⃗]
h(x, a,w, y⃗, z⃗) = τ2[y⃗, x, a, z⃗],

which are primitive recursive by Thm. 1.2.8. Next we define a p.r. function
f1 by primitive recursion (note that we have at least one parameter!):

f1(0,w, y⃗, z⃗) = g(w, y⃗, z⃗)
f1(x + 1,w, y⃗, z⃗) = h(x, f1(x,w, y⃗, z⃗),w, y⃗, z⃗).

We derive f as primitive recursive by the following explicit definition

1.2 Recursive Functions 15

f(y⃗, x, z⃗) = f1(x,0, y⃗, z⃗). ⊓⊔

1.2.11 Addition is primitive recursive. The addition function x+y is a
p.r. function by the following primitive recursive definition:

0 + y = y

(x + 1) + y = S(x + y).
Note that we have x + y = Sx(y) = Sy(x).
1.2.12 Multiplication is primitive recursive. The multiplication func-
tion x × y is a p.r. function by the following primitive recursive definition:

0 × y = 0

(x + 1) × y = x × y + y.
1.2.13 Exponentiation is primitive recursive. The exponentiation func-
tion xy is a p.r. function by the following primitive recursive definition:

x0 = 1

xy+1 = xxy .

1.2.14 Summation function. The summation function ∑n
i=0 i is a p.r.

function by the following primitive recursive definition:

0

∑
i=0

i = 0

n+1

∑
i=0

i =
n

∑
i=0

i + n + 1.

This is an example of parameterless primitive recursive definition.

1.2.15 Predecessor function is primitive recursive. The unary pre-
decessor function x ∸ 1 is defined by the following explicit definition with
monadic discrimination on x:

0 ∸ 1 = 0

(x + 1) ∸ 1 = x.

The definition has a form of parameterless primitive recursive definition,
where the term on the right hand side of the second identity is without any
recursive application. Hence the predecessor function is primitive recursive.

16 1 Natural Numbers

1.2.16 Modified subtraction is primitive recursive. The modified sub-
traction function x ∸ y is a p.r. function by primitive recursive definition:

x ∸ 0 = x

x ∸ (y + 1) = (x ∸ y)∸ 1.

Note that the last occurrence of the symbol ∸ in the second equation be-
longs to the application of the predecessor function. Note also that we have
x ∸ y = P y(x), where P (y) = y ∸ 1.

1.2.17 Case discrimination function is primitive recursive. The case
discrimination function D is defined by

D(x, y, z) = v↔ x ≠ 0 ∧ v = y ∨ x = 0 ∧ v = z.

The function is primitive recursive by the following explicit definition which
uses monadic discrimination on the first argument:

D(0, y, z) = z
D(x + 1, y, z) = y.

1.2.18 Equality predicate is primitive recursive. The characteristic
function x =∗ y of the equality predicate x = y is primitive recursive by the
following explicit definition:

(x =∗ y) =D(x ∸ y + (y ∸ x),0,1).
This is because we have x = y↔ x ∸ y + (y ∸ x) = 0.

1.2.19 Bounded minimalization. For every n ≥ 1, the operator of bounded
minimalization takes an (n+1)-ary function g and yields an (n+1)-ary func-
tion f satisfying:

f(x, y⃗) =
⎧⎪⎪⎨⎪⎪⎩
the least z ≤ x s.t. g(z, y⃗) = 1 holds if ∃z ≤ xg(z, y⃗) = 1;

0 if there is no such number.

This is usually abbreviated to

f(x, y⃗) = µz ≤ x[g(z, y⃗) = 1].
1.2.20 Theorem Primitive recursive functions are closed under the opera-
tor of bounded minimalization.

Proof. Suppose that f is obtained by the bounded minimalization

f(x, y⃗) = µz ≤ x[g(z, y⃗) = 1]

1.2 Recursive Functions 17

of a primitive recursive function g. Clearly we have

g(f(x, y⃗), y⃗) = 1 → f(x + 1, y⃗) = f(x, y⃗)
g(f(x, y⃗), y⃗) ≠ 1 ∧ g(x + 1, y⃗) = 1 → f(x + 1, y⃗) = x + 1

g(f(x, y⃗), y⃗) ≠ 1 ∧ g(x + 1, y⃗) ≠ 1 → f(x + 1, y⃗) = 0.

We derive f as a p.r. function by the following primitive recursive definition:

f(0, y⃗) = 0

f(x + 1, y⃗) =D(g(f(x, y⃗), y⃗) =∗ 1, f(x, y⃗),D(g(x + 1, y⃗) =∗ 1, x + 1,0)). ⊓⊔

1.2.21 Boolean functions are primitive recursive. The boolean func-
tions are defined by

(¬∗x) = y↔ x ≠ 0 ∧ y = 0 ∨ x = 0 ∧ y = 1

(x ∧∗ y) = z↔ x ≠ 0 ∧ y ≠ 0 ∧ z = 1 ∨ (x = 0 ∨ y = 0) ∧ z = 0

(x ∨∗ y) = z↔ (x ≠ 0 ∨ y ≠ 0) ∧ z = 1 ∨ x = 0 ∧ y = 0 ∧ z = 0

(x→∗ y) = z↔ (x = 0 ∨ y ≠ 0) ∧ z = 1 ∨ x ≠ 0 ∧ y = 0 ∧ z = 0

(x↔∗ y) = z↔ x ≠ 0 ∧ y ≠ 0 ∧ z = 1 ∨ x = 0 ∧ y = 0 ∧ z = 1 ∨
x ≠ 0 ∧ y = 0 ∧ z = 0 ∨ x = 0 ∧ y ≠ 0 ∧ z = 0.

Note that we identify non-zero values with truth and 0 with falsehood.
The functions are primitive recursive by the following explicit definitions:

(¬∗x) =D(x,0,1)
(x ∧∗ y) =D(x,D(y,1,0),0)
(x ∨∗ y) = (¬∗(¬∗x ∧∗ ¬∗y))
(x→∗ y) = (¬∗x ∨∗ y)
(x↔∗ y) = ((x→∗ y) ∧∗ (y→∗ x)).

1.2.22 Formulas with bounded quantifiers. Bounded quantifiers are
formulas of the form ∀x ≤ τ ϕ and ∃x ≤ τ ϕ, where the variable x is not free
in τ . The bounded quantifiers abbreviate the formulas ∀x(x ≤ τ → ϕ) and
∃x(x ≤ τ ∧ ϕ), respectively. Strict bounded quantifiers ∀x < τ ϕ and ∃x < τ ϕ
are defined similarly.

Bounded formulas are formulas which are built from atomic formulas by
propositional connectives and bounded quantifiers.

1.2.23 Explicit definitions of predicates with bounded formulas.

Explicit definitions of predicates with bounded formulas are of a form

P (x1, . . . , xn)↔ ϕ[x1, . . . , xn],

18 1 Natural Numbers

where ϕ is a bounded formula with at most the indicated n-tuple of variables
free and without any application of the predicate symbol P .

Every such definition can be viewed as a function operator which takes
all functions occurring in the formula ϕ (this also includes the characteristic
functions of every predicate occurring in ϕ) and which yields as a result the
characteristic function P∗ of the predicate P .

1.2.24 Theorem Primitive recursive predicates are closed under explicit
definitions of predicates with bounded formulas.

Proof. We show that the class of primitive recursive predicates is closed un-
der explicit definitions P (x⃗)↔ ϕ[x⃗] of n-ary predicates by induction on the
structure of bounded formulas ϕ.

If ϕ ≡ τ = ρ then the characteristic function P∗ of P is primitive recursive
by the following explicit definition: P∗(x⃗) = (τ[x⃗] =∗ ρ[x⃗]).

If ϕ ≡ R(τ⃗) then, since R∗ is primitive recursive, we define P∗ as primitive
recursive by explicit definition: P∗(x⃗) = R∗(τ⃗[x⃗]).

If ϕ ≡ ¬ψ then we use IH and define an n-ary p.r. predicate R by explicit
definition: R(x⃗)↔ ψ[x⃗]. Now we define P∗ as primitive recursive by the fol-
lowing explicit definition: P∗(x⃗) = (¬∗R∗(x⃗)).

If ϕ ≡ ψ ∧ χ then we obtain as primitive recursive two auxiliary n-ary pred-
icates R(x⃗)↔ ψ[x⃗] and Q(x⃗)↔ χ[x⃗] by IH. We define P∗ as primitive re-
cursive by explicit definition: P∗(x⃗) = (R∗(x⃗) ∧∗ Q∗(x⃗)).

If ϕ ≡ ∃y ≤ τ ψ[y, x⃗] then we use IH and define an auxiliary (n + 1)-ary
p.r. predicate R by explicit definition: R(y, x⃗)↔ ψ[y, x⃗]. Then we define an
auxiliary witnessing p.r. function f by bounded minimalization:

f(z, x⃗) = µy ≤ z[R∗(y, x⃗) = 1].
The characteristic function P∗ of the predicate P has the following explicit
definition: P∗(x⃗) = R∗(f(τ[x⃗], x⃗), x⃗) as a p.r. function.

The remaining cases are treated similarly. ⊓⊔

1.2.25 Comparison predicates are primitive recursive. The standard
comparison predicates are primitive recursive by explicit definitions:

x ≤ y ↔ ∃z ≤ y x = z x ≥ y↔ y ≤ x

x < y ↔ y ≰ x x > y↔ y < x.

1.2.26 Divisibility is primitive recursive. The binary divisibility pred-
icate x ∣ y is a p.r. predicate by the following explicit definition:

x ∣ y↔ ∃z ≤ y y = xz.

1.2.27 Definitions by bounded minimalization. Definitions of func-
tions by bounded minimalization are of the form

1.2 Recursive Functions 19

f(x⃗) = ⎧⎪⎪⎨⎪⎪⎩
the least y ≤ τ[x⃗] s.t. ϕ[x⃗, y] holds if ∃y ≤ τ[x⃗]ϕ[x⃗, y];
0 if there is no such number.

Here τ[x⃗] is a term and ϕ[x⃗, y] a bounded formula with at most the indicated
variables free, both without any application of the symbol f . Every such
definition can be viewed as a function operator taking all functions and the
characteristic functions of all predicates occurring in either the term τ or
formula ϕ and yielding the function f .

In the sequel we abbreviate the definition to

f(x⃗) = µy ≤ τ[x⃗][ϕ[x⃗, y]].
We permit also strict bounds in definitions by bounded minimalization; i.e.
we allow definitions of the form

f(x⃗) = µy < τ[x⃗][ϕ[x⃗, y]]
as abbreviation for f(x⃗) = µy ≤ τ[x⃗][y < τ[x⃗] ∧ϕ[x⃗, y]].
1.2.28 Theorem Primitive recursive functions are closed under definitions
of functions with bounded minimalization.

Proof. Consider an n-ary function f defined by the bounded minimalization

f(x⃗) = µy ≤ τ[x⃗][ϕ[x⃗, y]]
from primitive recursive functions and predicates. We can define f by the
following series of definitions:

P (y, x⃗)↔ ϕ[x⃗, y]
g(z, x⃗) = µy ≤ z[P∗(y, x⃗) = 1]
f(x⃗) = g(τ[x⃗], x⃗).

By Thm. 1.2.24 and Thm. 1.2.20, the characteristic function P∗ of P and the
auxiliary function g are primitive recursive, and so is the function f . ⊓⊔

1.2.29 Integer division is primitive recursive. The integer division
function x ÷ y is a p.r. function by the following bounded minimalization:

x ÷ y = µq ≤ x[x < (q + 1)y].
1.2.30 Remainder is primitive recursive. The binary remainder func-
tion x mod y is a p.r. function by the following explicit definition:

x mod y =D(y, x ∸ (x ÷ y)y,0).

20 1 Natural Numbers

1.2.31 Regular minimalization. For every n ≥ 1, the operator of regular
minimalization takes an (n+1)-ary function g satisfying the following condi-
tion of regularity:

∀x⃗∃y g(y, x⃗) = 1

and yields an n-ary function f such that

f(x⃗) = the least y such that g(y, x⃗) = 1 holds,

This is usually abbreviated to

f(x⃗) = µy[g(y, x⃗) = 1].
1.2.32 µ-Recursive functions. The class of µ-recursive functions is the
smallest class of functions containing the zero, successor and identity func-
tions and which is closed under composition, primitive recursion and regular
minimalization. A predicate is µ-recursive if its characteristic function is.

1.2.33 Theorem µ-Recursive functions are closed under explicit definitions
of functions, primitive recursive definitions, and definitions of functions with
bounded minimalization. µ-Recursive predicates are closed under explicit def-
initions of predicates with bounded formulas.

Proof. It follows from the fact that the class of µ-recursive functions is prim-
itively recursively closed and from the proofs of the corresponding theorems
for primitive recursive functions and predicates. ⊓⊔

1.2.34 Definitions by regular minimalization. Definitions of functions
by regular minimalization are of the form

f(x⃗) = the least y such that ϕ[x⃗, y] holds,

where ϕ[x⃗, y] is a bounded formula with at most the indicated variables free
and without any application of the symbol f . Moreover we require that the
formula ϕ satisfies the following condition of regularity:

∀x⃗∃yϕ[x⃗, y].
Every such definition can be viewed as a function operator taking all functions
and the characteristic functions of all predicates occurring in the formula ϕ
and yielding the function f .

In the sequel we will abbreviate the definition to

f(x⃗) = µy[ϕ[x⃗, y]].

1.3 First Order Logic 21

1.2.35 Theorem µ-Recursive functions are closed under definitions of func-
tions with regular minimalization.

Proof. Consider an n-ary function f defined by the bounded minimalization

f(x⃗) = µy[ϕ[x⃗, y]]
from µ-recursive functions and predicates. We can define f by the following
series of definitions:

P (y, x⃗)↔ ϕ[x⃗, y]
f(x⃗) = µy[P∗(y, x⃗) = 1].

By Par. 1.2.33 the char. function P∗ of P is µ-recursive and so is f . ⊓⊔

1.3 First Order Logic

1.3.1 Introduction. In order to establish the terminology we start with
a quick review of the standard syntactic and semantic notions for the first
order logic and theories. The reader may refer for details to [44, 2].

1.3.2 First order languages. A first order language L is given by de-
numerable (finite or infinite) set of non-logical symbols, which are function
and predicate symbols. This includes constants and propositional variables
as they have the zero arity. Terms and formulas of L are formed in usual way.

The first order language L2 is an extension of the first language L1 if every
nonlogical symbol of L1 is a nonlogical symbol of L2.

1.3.3 Semantics. A first order structure M for a first order language L
consists of a non-empty domain together with an interpretation of function
and predicate symbols of L. The denotation τM of closed terms and the
notion a formula ϕ of L is true in the structure M, written as M⊧ ϕ, is
defined in the usual way.

A structure M is a model of a set of formulas T if every formula of T
is true in M. A formula ϕ is a logical consequence of a set of formulas T ,
written as T ⊧ ϕ, if it is true in every model of T . We abbreviate ∅ ⊧ ϕ to
⊧ ϕ. A formula is logically valid if ⊧ ϕ, i.e. if it is true in every structure.

Let M1 be a structure for a first order language L1 and L2 an extension
of L1. By adding interpretation of nonlogical symbols of L2 ∖L1 we obtain a
structure M2 for L2. We call M2 an expansion of M1 to L2.

1.3.4 Example of a formal system. We consider here a Hilbert-style
axiom system H. Such systems are completely specified by their logical axioms
and inference rules. The logical axioms of H are all (propositional) tautologies,

22 1 Natural Numbers

all equality axioms, which are formulas of the form

τ = τ τ = ρ → ρ = τ τ = ρ ∧ ρ = θ → τ = θ

τ1 = ρ1 ∧⋯∧ τn = ρn → f(τ1, . . . , τn) = f(ρ1, . . . , ρn)
τ1 = ρ1 ∧⋯ ∧ τn = ρn → P (τ1, . . . , τn) → P (ρ1, . . . , ρn),

and all quantifier axioms, which are formulas of the form

∀xϕ[x] → ϕ[τ] ϕ[τ] → ∃xϕ[x].
Its inference rules are modus ponens, generalization rules, and axiom rules
introducing formulas from a fixed set of formulas T (listed in that order):

ϕ→ ψ ϕ

ψ

ϕ→ ψ[x]
ϕ→ ∀xψ[x]

ψ[x] → ϕ

∃xψ[x] → ϕ ϕ
ϕ ∈ T.

We suppose here that the variable x is not free in ϕ. Formulas of the set T
are usually referred as non-logical axioms of the system H.

By a proof of a formula ψ from a set of formulas T in the system H we
mean a sequence of formulas ψ1, . . . , ψn such that

(i) ψ ≡ ψn,
(ii) for every i such that 1 ≤ i ≤ n, the formula ψi is either one of its logical

axioms or it is a conclusion of one of its inference rules obtained from
some of the previous formulas ψ1, . . . , ψi−1 or it is a formula from T .

We say ψ is provable in T if there is a proof of ψ from the set T .

1.3.5 Formal systems and provability. We write T ⊢ ϕ if the formula ϕ
is provable from the set of formulas T ; we write ⊢ ϕ if the set T is empty.
To demonstrate provability, we will usually use natural language as a formal
system. However, the reader is invite to use his own favourite formal system
satisfying the following theorem; for instance, the Hilbert system H from the
previous paragraph is one of such formal systems.

1.3.6 Theorem T ⊢ ϕ if and only if T ⊧ ϕ.

1.3.7 First order theories. A first order theory T of a first order language
L is any set of formulas of L. Formulas from the set T are called the axioms
of the theory T . We shall designate the language of the theory T by LT . A
formula ϕ of LT is called a theorem of T if T ⊢ ϕ. The theory T is consistent if
it does not prove contradiction, i.e. if � is not a theorem of T . By Thm. 1.3.6,
a theory is consistent iff it has a model.

We will write T ⊢ T ′ if every axiom of T ′ is a theorem of T . A theory T ′ is
an extension of a theory T if LT ′ is an extension of LT and every theorem of
T is also theorem of T ′. A conservative extension of T is an extension T ′ of
T such that every formula of LT which is a theorem of T ′ is also a theorem

1.3 First Order Logic 23

of T . The theories T and T ′ are equivalent if they have the same language
and the same theorems, i.e. if we have T ⊢ T ′ and T ′ ⊢ T .

1.3.8 Explicit definitions of predicates. Let T be a theory and ϕ[x⃗] a
formula of LT with all its free variables among the n indicated ones. Consider
the theory T ′ obtained from T by adding a new n-ary predicate symbol P
and the defining axiom:

P (x⃗)↔ ϕ[x⃗].
We say that T ′ is an extension of T by explicit definition of a predicate.

Given a formula ψ of LT ′ , we designate by ψ⋆ a formula of LT obtained
from ψ by replacing in it every application P (τ⃗) by ϕ[τ⃗]. The formula ψ⋆ is
called the translation of ψ into T . We clearly have

T ′ ⊢ ψ↔ ψ⋆. (1)

1.3.9 Theorem We have

(i) T ′ ⊢ ψ if and only if T ⊢ ψ⋆,
(ii) T ′ is a conservative extension of T ,
(iii) every model of T has a unique expansion to a model of T ′.

Proof. (i): We prove the direction (⇒) first; this will be demonstrated for the
Hilbert formal system H (see Par. 1.3.4). Suppose that ψ1, . . . , ψm is a proof
of the formula ψ in the theory T ′. By complete induction on i we prove that
every formula ψ⋆i is a theorem of T ; consequently ψ⋆ ≡ ψ⋆n is a theorem of T .

If ψi is a logical axiom then there are two subcases to consider. If ψi is the
equality axiom of a form

τ1 = ρ1 ∧⋯∧ τn = ρn → P (τ1, . . . , τn)→ P (ρ1, . . . , ρn)
then its translation ψ⋆i is a logically valid formula

τ1 = ρ1 ∧⋯∧ τn = ρn → ϕ[τ1, . . . , τn]→ ϕ[ρ1, . . . , ρn].
If this is not the case then the formula ψ⋆i is a logical axiom of the same kind
and hence trivially provable in T .

If ψi is a conclusion of an axiom rule introducing the formula

∀x⃗(P (x⃗)↔ ϕ[x⃗])
then its translation ψ⋆i is a logically valid formula

∀x⃗(ϕ[x⃗]↔ ϕ[x⃗]).
If the formula ψi is inferred from ψj and ψk ≡ ψj → ψi by modus ponens then
its translation ψ⋆i is inferred from ψ⋆j and ψ⋆k ≡ ψ

⋆
j → ψ⋆i by the same rule. By

24 1 Natural Numbers

IH, the formulas ψ⋆j and ψ⋆k are theorems of T and so is ψ⋆i . The remaining
inferences rules are treated similarly.

In the proof of the reverse direction (⇐)-direction assume that the formula
ψ⋆ is a theorem of T . The theory T ′ is an extension of T and thus ψ⋆ is a
theorem of T ′ as well. We apply 1.3.8(1) to obtain that ψ is a theorem of T ′.

(ii): Let ψ be a formula of LT which is a theorem of the theory T ′. By (i),
its translation ψ⋆ is a theorem of T . But ψ⋆ ≡ ψ and we are done.

(iii): Obvious. ⊓⊔

1.3.10 Skolem axioms. Let T be a theory whose language does not contain
the n-ary function symbol f . Let further ϕ[x⃗, y] be a formula of LT with all
its free variables among the n + 1 indicated ones. The formula

∃y ϕ[x⃗, y]→ ϕ[x⃗, f(x⃗)] (1)

is called the Skolem axiom for ϕ and f .
Extension of T to T ′ by the addition of the symbol f to its language and

of the axiom (1) to its axioms is called a Skolem extension of T . The next
theorem shows that T ′ is a conservative extension of T .

1.3.11 Theorem Skolem extensions are conservative extensions.

Proof. A model-theoretic proof is easy. A syntactic proof is much harder;
the reader is invited to consult Shoenfield’s book [44]. For our contribution
in this topic, see the proof in [28], which is based on the ideas developed in
[22, 23]. ⊓⊔

1.3.12 Contextual definitions of functions. Let T be a theory whose
language does not contain the n-ary function symbol f . Let further ϕ[x⃗, y]
be a formula of LT in which no other variable than the n + 1 indicated ones
is free. Suppose that T proves the existence and uniqueness conditions for ϕ:

T ⊢ ∀x⃗∃y ϕ[x⃗, y] T ⊢ ϕ[x⃗, y1] ∧ϕ[x⃗, y2]→ y1 = y2.

Let T ′ be the theory obtained from T by adding f and the defining axiom

f(x⃗) = y↔ ϕ[x⃗, y].
We say that T ′ is an extension of T by contextual definition of f .

Given a formula ψ of LT ′ , we designate by ψ⋆ a formula of LT obtained
from ψ by replacing in it each its subformula ψ1[f(τ⃗)] by the formula
∃z(ϕ[τ⃗ , z] ∧ψ1[z]) (or, alternatively, by the formula ∀z(ϕ[τ⃗ , z]→ ψ1[z])).
Here, the z is a new variable. The formula ψ⋆ is called the translation of ψ
into T . We clearly have

T ′ ⊢ ψ↔ ψ⋆. (1)

1.3 First Order Logic 25

Note also that the following formula is always provable

⊢ ∀y(f(x⃗) = y↔ ϕ[x⃗, y])↔ ϕ[x⃗, f(x⃗)] ∧ ∀y(ϕ[x⃗, y]→ f(x⃗) = y).
In the sequel we will use this observation without referring to it.

1.3.13 Theorem We have

(i) T ′ ⊢ ψ if and only if T ⊢ ψ⋆,
(ii) T ′ is a conservative extension of T ,
(iii) every model of T has a unique expansion to a model of T ′.

Proof. (ii): Consider the extension Tf of T by adding the function symbol f
and nothing else. From the uniqueness condition for ϕ we get

Tf ⊢ ∀y(f(x⃗) = y ↔ ϕ[x⃗, y])↔ ϕ[x⃗, f(x⃗)].
On the other hand, the existence condition for ϕ yields

Tf ⊢ (∃y ϕ[x⃗, y]→ ϕ[x⃗, f(x⃗)])↔ ϕ[x⃗, f(x⃗)].
By combining these facts together we can see that

Tf ⊢ ∀y(f(x⃗) = y↔ ϕ[x⃗, y])↔ (∃y ϕ[x⃗, y]→ ϕ[x⃗, f(x⃗)]).
Thus T ′ is equivalent to the Skolem extension T ′′ of T with the axiom:

∃y ϕ[x⃗, y]→ ϕ[x⃗, f(x⃗)].
By Thm. 1.3.11, the theory T ′′ is conservative over T and so is T ′.

(i): For every formula ψ of LT ′ , we have T ′ ⊢ ψ iff, by 1.3.12(1), T ′ ⊢ ψ⋆
iff T ⊢ ψ⋆ since T ′ is conservative over T .

(iii): Obvious. ⊓⊔

1.3.14 Extensions by definitions. We say that a theory T ′ is an extension
by definition of a theory T if the theory T ′ is equivalent to a theory obtained
from T either by an explicit definition of a predicate or by a contextual
definition of a function.

A theory T ′ is an extension by definitions of a theory T if T ′ is obtained
from T by a finite number of extensions by definition.

1.3.15 Theorem If T ′ is an extension by definitions of T then

(i) there is an effective translation of the formulas ψ of LT ′ to the formulas
ψ⋆ of LT such that for every formula ψ of LT ′ we have

T ′ ⊢ ψ if and only if T ⊢ ψ⋆,

(ii) T ′ is a conservative extension of T ,

26 1 Natural Numbers

(iii) every model of T has a unique expansion to a model of T ′.

Proof. It follows directly from Thm. 1.3.9 and Thm. 1.3.13. ⊓⊔

1.3.16 Implicit definitions of functions. Let T be a theory and ϕ[x⃗, y]
a formula of LT as in Par. 1.3.12. Let T ′ be the theory obtained from T by
adding a new n-ary function symbol f and the defining axiom

ϕ[x⃗, f(x⃗)].
We say that T ′ is an extension of T by implicit definition of a function.

1.3.17 Theorem Implicit definitions of functions are extensions by defini-
tions.

Proof. Let T ′ be the extension of the theory T by the implicit definition
of f as in the previous paragraph. It suffices to show that the theory T ′ is
equivalent to the extension T ′′ of T by the contextual definition:

f(x⃗) = y↔ ϕ[x⃗, y].
Let us denote by Tf the extension of T by adding the function symbol f .

From the uniqueness condition for ϕ we get

Tf ⊢ ∀y(f(x⃗) = y↔ ϕ[x⃗, y])↔ ϕ[x⃗, f(x⃗)]
from which the equivalence of T ′ and T ′′ follows immediately. ⊓⊔

1.3.18 Explicit definitions of functions. Let τ[x⃗] be a term of a theory
T in which no other variables than the n indicated ones are free. Let T ′ be the
theory obtained from the theory T by adding a new n-ary function symbol
f and the defining axiom

f(x⃗) = τ[x⃗].
We say that T ′ is an extension of T by explicit definition of a function.

1.3.19 Theorem Explicit definitions of functions are extensions by defini-
tions.

Proof. Let T ′ be the extension of T by the explicit definition of f as in the
previous paragraph and T ′′ an extension of T by the contextual definition

f(x⃗) = y↔ y = τ[x⃗],
whose existence and uniqueness conditions

⊢ ∀x⃗∃y y = τ[x⃗] ⊢ y1 = τ[x⃗] ∧ y2 = τ[x⃗]→ y1 = y2

1.4 Peano Arithmetic 27

are always provable. The equivalence of T ′ and T ′′ follows from

⊢ f(x⃗) = τ[x⃗]↔∀y(f(x⃗) = y↔ y = τ[x⃗]).
But T ′′ is an extension of T by definition and so is T ′. ⊓⊔

1.4 Peano Arithmetic

1.4.1 Introduction. In this section we introduce the classical first order
axiomatic system for natural numbers called Peano arithmetic (PA). In the
following discussion we state many properties of PA without proofs. The
reader is advised to consult [16] for details.

1.4.2 Peano arithmetic. The language LPA consists of the constant 0,
the unary function symbol S, two binary function symbols + and ×, and
two binary predicate symbols ≤ and <. We will use standard conventions in
writing terms and formulas of PA. We use infix notation for binary symbols;
e.g. we write x + y instead of +(x, y), similarly for ×, ≤ and <.

We denote by N the intended interpretation of the language LPA with the
domain of natural numbers N and with the interpretation of its symbols in
the above order as the zero number, the successor function (adding one), the
addition and multiplication functions, and the non-strict and strict less-than
linear order relations.

The axioms of PA consist of the following eight formulas:

0 ≠ S(x)
S(x) = S(y)→ x = y

0 + y = y

S(x) + y = S(x + y)
0 × y = 0

S(x) × y = x × y + y
x ≤ y↔ ∃zx + z = y

x < y↔ ∃zx + S(z) = y
together with all mathematical induction axioms

ϕ[0] ∧ ∀x(ϕ[x] → ϕ[S(x)]) → ∀xϕ[x].
The induction formula ϕ[x]may contain, in addition to the induction variable
x, zero or more free variables as parameters. Clearly, every axiom of PA is
true in the intepretation N . The first order structure N is called the standard
model of PA. We use the symbol ⊢PA ϕ of provability in PA.

28 1 Natural Numbers

1.4.3 Remark. Many basic facts about addition, multiplication and order
relations can be formalize in PA together with their proofs; for example, one
can easily prove that addition is commutative, associative and distributive
over multiplication. In the sequel, we will not explicitly refer to the properties
of the basic arithmetic functions and relations of PA. We mention here only
one property, which is called called monadic case analysis :

⊢PA x = 0 ∨ ∃y x = S(y).
The property can be proved by a straightforward induction on x.

1.4.4 The principle of complete induction. For every formula ϕ[x], the
formula of complete induction on x for ϕ is the following one:

∀x(∀y(y < x→ ϕ[y]) → ϕ[x]) → ∀xϕ[x]. (1)

It is assumed here that the variable y is different from the induction variable
x and it does not occur freely in ϕ. The induction formula ϕ may contain
additional variables as parameters.

1.4.5 Theorem PA proves the principle of complete induction for each for-
mula of LPA.

Proof. The principle of complete induction 1.4.4(1) is reduced to mathemat-
ical induction as follows. Under the assumption that ϕ is progressive:

∀x(∀y(y < x→ ϕ[y]) → ϕ[x]), (†1)

we prove first, by induction on n, the following auxiliary property

∀z(z < n → ϕ[z]). (†2)

In the base case there is nothing to prove. In the induction step take any
z < S(n) and consider two cases. If z < n then we obtain ϕ[z] by IH. If z = n
then by instantiating of (†1) with x ∶= z we obtain

∀y(y < n → ϕ[y]) → ϕ[z].
Now we apply IH to get ϕ[z].

With the auxiliary property proved we obtain that ϕ[x] holds for every x
by instantiating of ∀n(†2) with n ∶= S(x) and z ∶= x. ⊓⊔

1.4.6 The least number principle. For every formula ϕ[x], the formula
of the least number principle for ϕ is the following one:

∃xϕ[x] → ∃x(ϕ[x] ∧ ∀y(y < x→ ¬ϕ[y])). (1)

1.4 Peano Arithmetic 29

We assume here that y is different from x and that it does not occur in ϕ.
The formula ϕ may contain additional variables as parameters.

1.4.7 Theorem PA proves the least number principle for each formula of
LPA.

Proof. The claim follows from Thm. 1.4.5 by noting that the least number
principle 1.4.6(1) is logically equivalent to the principle of complete induction
for the formula ¬ϕ[x]:

∀x(∀y(y < x→ ¬ϕ[y])→ ¬ϕ[x]) → ∀x¬ϕ[x]. ⊓⊔

1.4.8 Extensions of PA. Now we consider the problem of introducing new
functions and predicates into PA. Since we do not wish the extended theory
to be inconsistent we are interested in extensions by definitions of PA. Recall
that such extensions are conservative and thus they do not prove any new
theorems in the language before the extension. Since the original theory PA is
consistent, the same holds for any extension by definitions of PA. Moreover,
any argument formally expressed in the extended language can be effectively
translated back into the language of PA. New function and predicate symbols
introduced by this kind of extensions are thus only a notational convenience
which give us expressivity but not power.

For these reasons we keep the notation PA for the current extension by
definitions of PA. We will be using the symbol of provability ⊢PA ϕ in this
relativized sense. We will also use the expression “standard model of PA”
in the relativized sense to designate the unique expansion of the standard
model N of PA to the model of the current extension of PA. The uniqueness
of expansion is guaranteed by Thm. 1.3.15. Only in situations where we will
be introducing new schemes of extension of PA we will temporary revert to
designating the extensions of PA by symbols T , T ′, etc.

1.4.9 Theorem If T is an extension by definitions of PA then it proves the
principle of mathematical induction, the principle of complete induction, and
the least number principle for each formulas of LT .

Proof. Consider the following induction axiom for a formula ϕ of LT :

ϕ[0] ∧ ∀x(ϕ[x] → ϕ[S(x)]) → ∀xϕ[x]. (†1)

Its translation into PA is the induction axiom for the formula ϕ⋆ of LPA:

ϕ⋆[0] ∧ ∀x(ϕ⋆[x]→ ϕ⋆[S(x)]) → ∀xϕ⋆[x] (†2)

The formula (†2) is an axiom of PA and hence trivially provable in PA.
Therefore, by Thm. 1.3.15, the induction axiom (†1) is a theorem of T .

The other two principles are derived in T similarly. ⊓⊔

30 1 Natural Numbers

1.4.10 Decimal constants. In the sequel, we will often use decimal con-
stants in our discussion. For instance, we can introduce the decimal con-
stants 1, 2 and 3 into PA by the explicit definitions 1 = S(0), 2 = S S(0) and
3 = S S S(0). Other decimal constants are defined similarly. With the help of
the constant 1 we can rewrite the principle of mathematical induction in a
more convenient form:

⊢PA ϕ[0] ∧ ∀x(ϕ[x] → ϕ[x + 1])→ ∀xϕ[x].
1.4.11 Comparison predicates. The inverse of the comparison predicates
≤ and < are introduced into PA by the following explicit definitions:

x ≥ y↔ y ≤ x

x > y↔ y < x.

1.4.12 Modified subtraction. The modified subtraction function x ∸ y is
introduced into PA by the following contextual definition:

x ∸ y = z ↔ x ≤ y ∧ z = 0 ∨ y ≤ x ∧ x = y + z.

1.4.13 Integer division and remainder. The existence and uniqueness
conditions of euclidean division can be easily expressed and proved in PA:

⊢PA y ≠ 0 → ∃q∃r(x = qy + r ∧ r < y)
⊢PA r1 < y ∧ r2 < y ∧ q1y + r1 = q2y + r2 → q1 = q2 ∧ r1 = r2.

The integer division x ÷ y and remainder function x mod y are introduced
into PA by the following contextual definitions:

x ÷ y = q↔ y = 0 ∧ q = 0 ∨ y ≠ 0 ∧ ∃r(x = qy + r ∧ r < y)
x mod y = r↔ y = 0 ∧ r = 0 ∨ y ≠ 0 ∧ ∃q(x = qy + r ∧ r < y).

1.4.14 Divisibility predicate. The binary divisibility predicate x ∣ y is
introduced into PA explicitly by

x ∣ y↔ ∃z y = xz.

1.4.15 Extensions by regular minimalization. Definitions of functions
by regular minimalization (see Par. 1.2.34) are formalized as follows. Let T
be an extension by definitions of PA. Let further ϕ[x⃗, y] be a formula of LT

in which no other variables than the n + 1 indicated ones are free. Suppose
that the theory T proves the condition of regularity for ϕ:

T ⊢ ∀x⃗∃y ϕ[x⃗, y].

1.4 Peano Arithmetic 31

Let T ′ be the theory obtained from the theory T by adding a new n-ary
function symbol f and the defining axiom:

ϕ[x⃗, f(x⃗)] ∧ ∀y < f(x⃗)¬ϕ[x⃗, y].
We say that T ′ is an extension of T by regular minimalization. As before we
abbreviate the above definition by f(x⃗) = µy[ϕ[x⃗, y]].
1.4.16 Theorem If T is an extension by definitions of PA then any exten-
sion of T by regular minimalization is an extension by definition.

Proof. Let T ′ be an extension of T by regular minimalization as in Par. 1.4.15
and T ′′ an extension of T by the implicit definition of f

ϕ[x⃗, f(x⃗)] ∧ ∀z < f(x⃗)¬ϕ[x⃗, z]
for the formula ϕ[x⃗, y] ∧ ∀z < y ¬ϕ[x⃗, z]. Since the defining axioms of both
extensions are variant of each other, the theories T ′ and T ′′ are equivalent.
By Thm. 1.3.17, T ′′ is conservative over T and so is T ′.

It remains to check the legality of the implicit definition, i.e. that the
theory T proves its existence and uniqueness conditions

T ⊢ ∃y(ϕ[x⃗, y] ∧ ∀z < y ¬ϕ[x⃗, z])
T ⊢ ϕ[x⃗, y1] ∧ ∀z < y1 ¬ϕ[x⃗, z] ∧ϕ[x⃗, y2] ∧ ∀z < y2 ¬ϕ[x⃗, z]→ y1 = y2.

The existence condition is a straightforward consequence of the condition of
regularity for ϕ and the least number principle

T ⊢ ∃y ϕ[x⃗, y]→ ∃y(ϕ[x⃗, y] ∧ ∀z(z < y → ¬ϕ[x⃗, z]).
In the proof of the uniqueness property, assume its antecedent and consider
three cases. If y1 < y2 then we obtain the contradiction ¬ϕ[x⃗, y1] from the
assumption ∀z < y2 ¬ϕ[x⃗, z]. If y1 > y2 then we derive a similar contradiction.
So it must be y1 = y2. ⊓⊔

1.4.17 Extensions by bounded minimalization. Definitions of func-
tions by bounded minimalization (see Par. 1.2.27) are formalized as follows.
Let T be an extension by definitions of PA. Let further ϕ[x⃗, y] be a formula
of LT in which no other variables than the n + 1 indicated ones are free and
τ[x⃗] a term of LT with all its free variables among the indicated ones.

Suppose that T ′ is the theory obtained from the theory T by adding a new
n-ary function symbol f and the defining axiom:

f(x⃗) ≤ τ[x⃗] ∧ϕ[x⃗, f(x⃗)] ∧ ∀y < f(x⃗)¬ϕ[x⃗, y] ∨ ∀y ≤ τ[x⃗]¬ϕ[x⃗, y] ∧ f(x⃗) = 0.

We say that T ′ is an extension of T by bounded minimalization As before we
abbreviate the above definition by f(x⃗) = µy≤τ [ϕ].

32 1 Natural Numbers

1.4.18 Theorem If T is an extension by definitions of PA then any exten-
sion of T by bounded minimalization is an extension by definition.

Proof. Note that the bounded minimalization

f(x⃗) = µy ≤ τ[x⃗][ϕ[x⃗, y]]
is equivalent to the regular minimalization

f(x⃗) = µy[y ≤ τ[x⃗] ∧ ϕ[x⃗, y] ∨ ∀z ≤ τ[x⃗]¬ϕ[x⃗, z] ∧ y = 0],
which condition of regularity is always provable. The claim is now a direct
consequence of Thm. 1.4.16. ⊓⊔

Chapter 2

Beginning of Arithmetization

The most difficult part of the recursive development of PA is the formalization
of some kind of coding of finite sequences. The encoding is needed to show
that various recursion schemes can be formalized within PA. The most famous
encoding is via Gödel’s β-function and relies on a rather non-trivial Chinese
Remainder Theorem. For that reason many authors use a slightly simpler
method of coding which is based on the binary representation of N. This
approach requires a derivation of exponentiation, which is done achieved the
help of a temporary, usually highly non-trivial, coding of finite sets.

In our approach we look for a solution to the programming language Lisp

which offers excellent coding of programming data structures into the domain
of S-expressions. The domain is freely generated from denumerable many
atoms by a binary operation cons . We obtain the coding convenience of Lisp

with help of a suitable pairing function. Numbers which are not in the range
of the pairing function play the role of atoms while the pairing function itself
plays the role of the operation cons . As we will see later there is no advantage
in having infinitely many atoms; just one, say 0, suffices.

The Cantor pairing function J(x, y) = ∑x+y
i=0 i + x is a classical example of

pairing function. The function is a bijection and hence there are no atoms. By
increasing J by one we obtain the so-called modified Cantor pairing function⟨x, y⟩ = J(x, y) + 1, which has the number 0 as the only atom. This simple
modification enables us to use the coding techniques of Lisp with a degree
of comfort comparable to that in other functional programming languages.
Examples from the second part of this text should convince the reader.

Basic properties of the pairing function ⟨x, y⟩ are studied in Sect. 2.1. The
next section contains probably the most difficult part of this text: we prove
that PA is closed under a restricted form of iteration of unary functions.
The formalization of the scheme is based on elementary facts about p-ary
representation of numbers (p is a prime); essentially no coding is needed for
this. The scheme is then used in the last two sections where we investigate
the coding of tuples and finite sequences based on the pairing function.

33

34 2 Beginning of Arithmetization

2.1 Pairing Function

2.1.1 Introduction. In this section we will be studying the properties of
the binary function ⟨x, y⟩, which is the standard Cantor pairing function
when offset by one:

⟨x, y⟩ = x+y

∑
i=0

i + x + 1,

Figure 2.1 shows the initial segment of values of this modified pairing function
of Cantor in tabular form.

⟨x, y⟩ 0 1 2 3 4 5 6 ⋯

0 1 2 4 7 11 16 22 ⋯
1 3 5 8 12 17 23 30 ⋯
2 6 9 13 18 24 31 39 ⋯
3 10 14 19 25 32 40 49 ⋯
4 15 20 26 33 41 50 60 ⋯
5 21 27 34 42 51 61 72 ⋯
6 28 35 43 52 62 73 85 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Fig. 2.1 The modified Cantor pairing function

2.1.2 Summation function. The summation function

n

∑
i=0

i = 0 + 1 + 2 +⋯ + n

can be introduced into PA by the following explicit definition as p.r. function

n

∑
i=0

i = n(n + 1) ÷ 2.

2.1.3 Recurrent properties of the summation function. We have

⊢PA

0

∑
i=0

i = 0 (1)

⊢PA

n+1

∑
i=0

i =
n

∑
i=0

i + n + 1. (2)

In the sequel we will use these properties without explicitly referring to them.

Proof. (1): Obvious. (2): It follows from

2.1 Pairing Function 35

n+1

∑
i=0

i = (n + 1)(n + 1 + 1)÷ 2 = (n(n + 1) + 2(n + 1)) ÷ 2 =

= n(n + 1)÷ 2 + n + 1 =
n

∑
i=0

i + n + 1. ⊓⊔

2.1.4 Ordering properties of the summation function. We have

⊢PA k1 ≤ n1 ∧ k2 ≤ n2 →
n1

∑
i=0

i + k1 ≤
n2

∑
i=0

i + k2 ↔ n1 < n2 ∨ n1 = n2 ∧ k1 ≤ k2

(1)

⊢PA k1 ≤ n1 ∧ k2 ≤ n2 →
n1

∑
i=0

i + k1 =
n2

∑
i=0

i + k2 ↔ n1 = n2 ∧ k1 = k2. (2)

Proof. First we prove

⊢PA ∀m(n ≤m→
n

∑
i=0

i ≤
m

∑
i=0

i) (†1)

by induction on n. The base case is obvious. In the induction step take any
m such that n + 1 ≤m. Then m =m1 + 1 for some m1 s.t. n ≤m1. We obtain

n+1

∑
i=0

i =
n

∑
i=0

i + n + 1
IH
≤

m1

∑
i=0

i + n + 1 ≤
m1

∑
i=0

i +m1 + 1 =
m1+1

∑
i=0

i.

Note that the induction hypothesis is applied with m1 in place of m.
(1): Under the assumptions k1 ≤ n1 and k2 ≤ n2 we consider three cases.

The case when n1 = n2 is obvious; the case n1 < n2 follows from (†1). So
suppose that n1 > n2. The desired claim follows from

n2

∑
i=0

i + k2 <
n2

∑
i=0

i + n2 + 1 =
n2+1

∑
i=0

i
(†1)
≤

n1

∑
i=0

i ≤
n1

∑
i=0

i + k1.

(2): It follows from (1). ⊓⊔

2.1.5 Additional properties of the summation function. We have

⊢PA n ≤
n

∑
i=0

i (1)

⊢PA ∃nx <
n

∑
i=0

i (2)

⊢PA ∃n(n

∑
i=0

i ≤ x <
n+1

∑
i=0

i). (3)

36 2 Beginning of Arithmetization

Proof. (1): By a straightforward induction on n. (2): By induction on x. The
base case follows from 0 < 1 = ∑1

i=0 i. In the induction step, we obtain from
IH that x < ∑n

i=0 i for some n. Now we consider two cases. If x + 1 < ∑n
i=0 i

then we are done. Otherwise we have x+1 = ∑n
i=0 i, but now the claim follows

from the inequality ∑n
i=0 i < ∑

n+1
i=0 i.

(3): We need the following auxiliary property

⊢PA x <
k

∑
i=0

i→ ∃n(n

∑
i=0

i ≤ x <
n+1

∑
i=0

i), (†1)

which is proved by induction on k. In the base case there is nothing to prove.
In the induction step assume x < ∑k+1

i=0 i and consider two cases. If x ≥ ∑k
i=0 i

then it suffices to take k for n. Otherwise we have x < ∑k
i=0 i and now the

claim follows directly from IH.
With the auxiliary property (†1) proved we obtain (3) from (2). ⊓⊔

2.1.6 Modified Cantor pairing function. The modified Cantor pairing
function is introduced into PA by the next explicit definition as a p.r. function

⟨x, y⟩ = x+y

∑
i=0

i + x + 1.

From now on by a pairing function we always mean the modified Cantor
pairing function ⟨x, y⟩.
2.1.7 Basic properties of the pairing function. We have

⊢PA ⟨x1, x2⟩ = ⟨y1, y2⟩→ x1 = y1 ∧ x2 = y2 (1)

⊢PA x < ⟨x, y⟩ ∧ y < ⟨x, y⟩ (2)

⊢PA x = 0 ∨ ∃y∃z x = ⟨y, z⟩. (3)

Property (1) is called the pairing property and it says that the function is an
injection. Property (2) is needed for induction and/or recursion. From (2) we
get that 0 ≠ ⟨x, y⟩ for every x and y. This means that 0 is not in the range
of the pairing function and plays the role of the atom nil of Lisp. From this
and (3) we can see that the pairing function is onto the set N ∖ {0}, i.e. that
0 is the only atom.

Proof. (1): It follows from

⟨x1, x2⟩ = ⟨y1, y2⟩⇔ x1+x2

∑
i=0

i + x1 + 1 =
y1+y2

∑
i=0

i + y1 + 1
2.1.4(2)
⇔

⇔ x1 + x2 = y1 + y2 ∧ x1 = y1 ⇔ x1 = y1 ∧ x2 = y2.

(2): The first conjunct is obvious and the second one follows from

2.1 Pairing Function 37

y < x + y + x + 1
2.1.5(1)
≤

x+y

∑
i=0

i + x + 1 = ⟨x, y⟩.
(3): Assume x ≠ 0. By 2.1.5(3) there is a number n such that

n

∑
i=0

i + 1 ≤ x <
n+1

∑
i=0

i + 1.

Clearly x = ∑n
i=0 i + y + 1 for some y. From this get

n

∑
i=0

i + y + 1 = x <
n+1

∑
i=0

i + 1 =
n

∑
i=0

i + n + 1 + 1

and therefore y ≤ n. Let z be the number such that n = y + z. We obtain

x =
y+z

∑
i=0

i + y + 1 = ⟨y, z⟩. ⊓⊔

2.1.8 Ordering properties of the pairing function. We have

⊢PA ⟨x1, x2⟩ ≤ ⟨y1, y2⟩↔ x1 + x2 < y1 + y2 ∨ x1 + x2 = y1 + y2 ∧ x1 ≤ y1 (1)

⊢PA ⟨x1, x2⟩ < ⟨y1, y2⟩↔ x1 + x2 < y1 + y2 ∨ x1 + x2 = y1 + y2 ∧ x1 < y1. (2)

Proof. (1): It follows from

⟨x1, x2⟩ ≤ ⟨y1, y2⟩⇔ x1+x2

∑
i=0

i + x1 + 1 ≤
y1+y2

∑
i=0

i + y1 + 1
2.1.4(1)
⇔

⇔ x1 + x2 < y1 + y2 ∨ x1 + x2 = y1 + y2 ∧ x1 ≤ y1.

(2): It follows from 2.1.7(1) and (1). ⊓⊔

2.1.9 Pair representation of natural numbers. The class of pair nu-
merals consists of terms obtained from 0 by finitely many pairing operations.
It can be easily proved by complete induction that every natural number x
can be uniquely presented as a pair numeral. We call this the pair represen-
tation of natural numbers. Pair numerals can be visualized as finite binary
trees.

Zeroes are leaves and a pair numeral ⟨τ1, τ2⟩ is a tree with two sons τ1 and
τ2. Figure 2.2 enumerates the finite binary trees corresponding to the pair
numerals. We will denote by ∣x∣p the number of nodes of the tree correspond-
ing to the pair numeral τ = x. In other words, ∣x∣p is the number of pairing
operations needed to construct the pair numeral τ = x.

In order to obtain a simple recursive characterization of subelementary
complexity classes (such as PTIME) one should use a pairing function such
that ∣x∣p = Ω(lg(x)) (see [53]). The system CLuses such a function but for

38 2 Beginning of Arithmetization

0

r

1 = ⟨0, 0⟩

r

�� @@

2 = ⟨0, 1⟩

r

�� @@r

�� @@

3 = ⟨1, 0⟩

r

�� @@r

�� @@

4 = ⟨0, 2⟩

r

�� @@r

�� @@r

�� @@

5 = ⟨1, 1⟩

r

�� @@r

�� @@
r

��@@

6 = ⟨0, 3⟩

r

�� @@r

�� @@r

�� @@

7 = ⟨0, 3⟩

r

�� @@r

�� @@r

�� @@

8 = ⟨1, 2⟩

r

�� @@r

�� @@
r

��@@r

�� @@

9 = ⟨2, 1⟩

r

�� @@r

�� @@r

�� @@

r

��@@

10 = ⟨3, 0⟩

r

�� @@r

�� @@r

�� @@

11 = ⟨0, 4⟩

r

�� @@r

�� @@r

�� @@r

�� @@

12 = ⟨1, 3⟩

r

�� @@r

�� @@
r

�� @@r

�� @@

13 = ⟨2, 2⟩

r

�� @@r

�� @@r

�� @@

r

��@@

14 = ⟨3, 1⟩

r

�� @@r

�� @@
r

��@@

r

��@@

15 = ⟨4, 0⟩

r

�� @@r

�� @@r

�� @@r

�� @@

16 = ⟨0, 5⟩

r

�� @@r

�� @@r

�� @@
r

��@@

17 = ⟨1, 4⟩

r

�� @@

r

�� @@r

��@@r

�� @@r

�� @@

18 = ⟨2, 3⟩

r

�� @@r

�� @@

r

�
�

�

@
@

@r

�� @@r

��@@

19 = ⟨3, 2⟩

r

�� @@
r

�� @@

r

�� @@r

��@@r

�� @@

20 = ⟨4, 1⟩

r

�� @@r

�� @@r

�� @@

r

�� @@r

��@@

21 = ⟨5, 0⟩

r

�� @@r

�� @@r

�� @@
r

��@@

22 = ⟨0, 6⟩

r

�� @@r

�� @@r

�� @@r

�� @@

Fig. 2.2 Pair representation of natural numbers

2.2 Contracted Iteration 39

the purposes of this paper this requirement is not important and we use a
much simpler pairing function which does not satisfy the requirement.

2.1.10 Projection functions. From the basic properties of the pairing
function we can see that every non-zero number x can be uniquely writ-
ten in the form x = ⟨y, z⟩ for some y, z. The numbers y and z are called the
first and the second projection of x, respectively.

The first projection function π1 and second projection π2 are unary func-
tions satisfying

⊢PA π1(0) = 0 ⊢PA π2(0) = 0
⊢PA π1⟨x, y⟩ = x ⊢PA π2⟨x, y⟩ = y.

The projection functions are introduced into PA by contextual definitions:

π1(x) = y↔ x = 0 ∧ y = 0 ∨ ∃z x = ⟨y, z⟩
π2(x) = z↔ x = 0 ∧ z = 0 ∨ ∃y x = ⟨y, z⟩.

Both projections are primitive recursive as we might equally well have intro-
duced them by bounded minimalization as shown here

π1(x) = µy < x[∃z < xx = ⟨y, z⟩] π2(x) = µz < x[∃y < xx = ⟨y, z⟩].

2.2 Contracted Iteration

2.2.1 Introduction. We now turn to the problem of formalization of the
iteration of the second projection within PA. That is, we wish to introduce
into PA the binary function πn

2 (x) such that

⊢PA π0
2(x) = x

⊢PA πn+1
2 (x) = π2 πn

2 (x).
The demonstration of this fact is far from obvious. We will not able to derive
the iteration πn

2 (x) directly, but we will do this by encoding its computation
from these recurrences.

The derivation of πn
2 (x) depends only on the following two simple proper-

ties of the second projection:

⊢PA π2(0) = 0

⊢PA x ≠ 0 → π2(x) < x.
This allows us to formulate our problem in a slightly general way.

2.2.2 Extensions by contracted iteration. Let T be an extension by
definitions of PA. Let further f be a unary function of T such that

40 2 Beginning of Arithmetization

⊢PA f(0) = 0 (1)

⊢PA x ≠ 0 → f(x) < x. (2)

Consider the theory T ′ obtained from T by adding a new binary function
symbol fn(x), the defining axioms

⊢PA f0(x) = x (3)

⊢PA fn+1(x) = f fn(x), (4)

and the scheme of mathematical induction for the formulas of LT ′ containing
the symbol fn(x). We say that T ′ is an extension of T by contracted iteration.

Fixing notation. We keep the notation introduced in this paragraph fixed
until the end of this section where we prove in Thm. 2.2.17 that the theory
T ′ is an extension by definition of T . We will be working in an extension
by definitions of the theory T . We will keep the notation T also for this
(inessential) extension of T .

2.2.3 The outline of the proof. For the introduction of contracted iter-
ation into PA we will develop a temporary coding of finite sequences based
on the standard notation of natural numbers. Recall that, given a base p > 1,
every number x > 0 can be uniquely written in the form

x = x0p
0 + x1p

1 + x2p
2 +⋯+ xn−1x

n−1 + xnp
n,

where x1, . . . , xn are single digits of x in the base p, i.e.

x0 < p x1 < p x2 < p . . . xn−1 < p 0 < xn < p.

We can think of the number x as the code of the finite sequence x0, . . . , xn.
We will write y ∈p x if y = xi for some i.

We plan to introduce the contracted iteration by encoding the computation
of fn(x) from its natural recurrences 2.2.2(3)(4). For that we define a ternary
course of values predicate Cvsp(s, x) which holds if the number s is the code
of the course of values sequence

⟨f0(x),0⟩, ⟨f1(x),1⟩, ⟨f2(x),2⟩, . . . , ⟨fn−1(x), n − 1⟩, ⟨fn(x), n⟩
in the base p, i.e.

s =
n

∑
i=0

⟨f i(x), i⟩ × pi and ⟨f i(x), i⟩ < p for every i = 0, . . . , n.

Note that we do not need to consider all combinations of arguments in the
definition of the course values predicate. Namely from 2.2.2(1)(2) we can
easily see that the following holds for some n ≤ x:

2.2 Contracted Iteration 41

x = f0(x) > f1(x) > ⋯ > fn−1(x) > 0 = fn(x) = fn+1(x) = ⋯ .
The contracted iteration fn(x) can be introduced by

fn(x) = y↔ n ≤ x ∧ ∃p∃s(Cvsp(s, x) ∧ ⟨y,n⟩ ∈p s) ∨ n > x ∧ y = 0.

Note also that for our purposes it suffices to consider encoding of sequences
containing only nonzero elements.

The rest of this section is organized as follows. First we develop the coding
of finite sequences, where we consider only notations with a prime base. Then
we investigate the properties of course of values sequences. Finally we prove
in Thm. 2.2.17 that the contracted iteration can be formalized within PA.

2.2.4 Prime numbers. Recall that a number ≥ 2 is said to be prime if
its only divisors are one and itself. This is captured in PA by the following
explicit definition

Prime(p)↔ p > 1 ∧ ∀d(d ∣ p→ d = 1 ∨ d = p).
Many properties of prime numbers can be easily formalized in PA together
with their proofs; for example the second theorem of Euclid:

⊢PA ∃p(x < p ∧ Prime(p)), (1)

and the Fundamental theorem of arithmetic:

⊢PA Prime(p)↔ p > 1 ∧ ∀x∀y(p ∣ xy → p ∣ x ∨ p ∣ y). (2)

Both properties will be needed below.

2.2.5 Powers of primes. A number q is a power of the number p if q = pi

for some i. If p is prime we can define the predicate of being a power of p
without recourse to exponential as we have the following for every q:

q is a power of p iff every divisor of q is either 1 or is divisible by p.

This is formally captured by the following definition

Powp(q)↔∀d(d ∣ q → d = 1 ∨ p ∣ d)
of the binary predicate Powp(q).
2.2.6 Discrimination property of powers of primes. We have

⊢PA Prime(p)→ Powp(q)↔ q = 1 ∨ ∃q1(q = pq1 ∧Powp(q1)). (1)

Proof. We need the following properties:

42 2 Beginning of Arithmetization

⊢PA Powp(0)→ p = 1 (†1)

⊢PA Powp(1) (†2)

⊢PA Powp(pq)→ Powp(q) (†3)

⊢PA Prime(p) ∧ Powp(q)→ Powp(pq) (†4)

(†1): Suppose, by contradiction, that we have Powp(0) for some p ≠ 1.
Then ∀d(d = 1 ∨ p ∣ d) by definition. Now either p = 0 and then 0 ∣ 2 or p > 1
and then p ∣ (p + 1). In either case we have a contradiction.

(†2): This is trivial. (†3): Straightforward.
(†4): Under the assumption of the claim take any d such that d ∣ pq. We

then have pq = dx for some x. We have also d = yp + r for some y and r < p. By
combining both equations we obtain that pq = ypx + rx. From this p ∣ rx and
thus, by the Fundamental theorem of arithmetic (see 2.2.4(2)), the number
p divides either r or x. The first case leads to contradiction with r < p. So it
must be p ∣ x, i.e. x = pz for some z. We have pq = dpz and thus q = dz. As a
consequence d ∣ q and thus, since q is a power of p, we have either q = 1 or
p ∣ d.

We are in position to prove the equivalence (1). The (←)-direction is a
straightforward consequence of (†2) and (†4). In the proof of the reverse
direction (→) under the assumptions of the claim we consider two cases ac-
cording to (†1). If q = 1 then the claim holds trivially. If q > 1 then from the
assumption Powp(q) we obtain p ∣ q by noting that q ∣ q. This means that we
have q = pq1 for some q1. Now it suffices to apply (†3) to get Powp(q1). ⊓⊔

2.2.7 Finite sequences in a prime base. We now return to the problem
of arithmetization of finite sequences as described in Par. 2.2.3. Let p be a
prime number. Let further s = ∑j xjp

j be the code of the finite sequence of
nonzero numbers x0, x1, . . . in the base p. We wish to introduce into PA the
ternary predicate x ∈p s which holds if x = xi for some xi. First note that

∑
j

xjp
j =∑

j>i

xjp
j + xip

i +∑
j<i

xjp
j = (∑

j>i

xjp
j−i−1)ppi + xip

i +∑
j<i

xjp
j .

From this we obtain

the predicate x ∈p s holds iff there is a power q of p and numbers a and b < q such
that s = apq + xq + b holds.

The last condition can be easily formalized within PA.
In order to shorten our presentation first we introduce into PA the follow-

ing 4-ary auxiliary predicate:

x ∈qp s↔ x ≠ 0 ∧ x = s ÷ q mod p.

The predicate has a simple meaning:

x ∈p
i

p s iff x is the i-th non-zero digit in the p-ary representation of s.

2.2 Contracted Iteration 43

The ternary membership predicate x ∈p s is defined explicitly by

x ∈p s↔ ∃q(Powp(q) ∧ x ∈qp s).
In the sequel we will write x ∉qp s and x ∉p s as an abbreviation for ¬(x ∈qp s)
and ¬(x ∈p s), respectively.

In addition to the membership predicate we will also need two operations
for creating finite sequences. The empty sequence is coded by the number 0.
The ternary insertion operation s∪p {x} adds the number x to the sequence
s in the base p. The function has the following simple explicit definition:

s ∪p {x} = sp + x.
From now on we will identify (finite) sequences with their codes and we

say the sequence s instead of the code the sequence s.

2.2.8 Basic properties of the auxiliary predicate x ∈qp s. We have

⊢PA x ∉qp 0 (1)

⊢PA 0 < x < p → y ∈1p s ∪p {x}↔ y = x (2)

⊢PA 0 < x < p → y ∈pq
p s ∪p {x}↔ y ∈qp s. (3)

Proof. (1): It follows from

⊢PA s = 0 ∨ q = 0 ∨ p = 0 → s ÷ q mod p = 0.

(2): First note that for x < p we have the following

(sp + x) ÷ 1 mod p = (sp + x) mod p = x mod p = x (†1)

If 0 < x < p then we obtain

y ∈1p s ∪p {x}⇔ y ≠ 0 ∧ y = (sp + x) ÷ 1 mod p
(†1)⇔ y ≠ 0 ∧ y = x⇔ y = x.

(3): First note that for x < p we have the following

(sp + x) ÷ (pq)mod p = (sp + x) ÷ p ÷ q mod p = s ÷ q mod p. (†2)

If 0 < x < p then we obtain

y ∈pq
p s ∪p {x}⇔ y ≠ 0 ∧ y = (sp + x) ÷ (pq)mod p

(†
2
)

⇔

⇔ y ≠ 0 ∧ y = s ÷ q mod p⇔ y ∈qp s. ⊓⊔

2.2.9 Basic properties of the membership predicate. We have

44 2 Beginning of Arithmetization

⊢PA x ∉p 0 (1)

⊢PA Prime(p) ∧ 0 < x < p → y ∈p s ∪p {x}↔ y ∈p s ∨ y = x. (2)

Proof. (1) follows from 2.2.8(1). (2): If Prime(p) and 0 < x < p then we have

y ∈p s ∪p {x}⇔∃q(Powp(q) ∧ y ∈qp s ∪p {x}) 2.2.6(1)
⇔

⇔∃q(Powp(q) ∧ y ∈pq
p s ∪p {x}) ∨ y ∈1p s ∪p {x} 2.2.8(2)(3)

⇔

⇔∃q(Powp(q) ∧ y ∈qp s) ∨ y = x⇔ y ∈p s ∨ y = x. ⊓⊔

2.2.10 Course of values sequences. Now we are ready to define the
ternary course of values predicate Cvsp(s, x) discussed in Par. 2.2.3. The
predicate is defined explicitly by

Cvsp(s, x)↔∀y(⟨y,0⟩ ∈p s → y = x) ∧
∀y∀n(⟨y,n + 1⟩ ∈p s → ∃z(y = f(z)∧ ⟨z,n⟩ ∈p s)).

2.2.11 Uniqueness of course of values sequences. We have

T ⊢
2

⋀
i=1

(Cvspi
(si, x) ∧ ⟨yi, n⟩ ∈pi

si)→ y1 = y2. (1)

Proof. By a straightforward induction on n as ∀y1∀y2(1). ⊓⊔

2.2.12 Bounded property of course of values sequences. We have

T ⊢ n ≤ x ∧Cvsp(s, x) ∧ ⟨y,n⟩ ∈p s → ⟨y,n⟩ ≤ ⟨x,0⟩. (1)

T ⊢ n ≤ x ∧Cvsp(s, x) ∧ ⟨y,n⟩ ∈p s → ⟨f(y), n + 1⟩ < p. (2)

Proof. First we prove the following two auxiliary properties

T ⊢ n < x ∧ ⟨y,n⟩ ≤ ⟨x,0⟩→ ⟨f(y), n + 1⟩ ≤ ⟨x,0⟩ (†1)

T ⊢ Cvsp(s, x) ∧ ⟨y,n⟩ ∈p s→ ⟨x,0⟩ ∈p s. (†2)

(†1): Assume n < x and ⟨y,n⟩ ≤ ⟨x,0⟩. We consider two cases. If y = 0 then
f(0) = 0 by 2.2.2(1) and therefore

⟨f(0), n + 1⟩ = ⟨0, n + 1⟩ ≤ ⟨0, x⟩ ≤ ⟨x,0⟩.
If y ≠ 0 then f(y) < y by 2.2.2(2) and thus

⟨f(y), n + 1⟩ < ⟨f(y) + 1, n⟩ ≤ ⟨y,n⟩ ≤ ⟨x,0⟩.
(†2): By a straightforward induction on n as ∀y(†2).

2.2 Contracted Iteration 45

(1): By induction on n as ∀y(1). The base case follows directly from the
definition. In the induction step take any y such that n + 1 ≤ x, Cvsp(s, x),
and ⟨y,n + 1⟩ ∈p s. By definition there is z such that y = f(z) and ⟨z,n⟩ ∈p s.
We then have ⟨z,n⟩ ≤ ⟨x,0⟩ by IH and thus ⟨f(z), n + 1⟩ ≤ ⟨x,0⟩ by (†1).

(2): Assume n ≤ x, Cvsp(s, x) and ⟨y,n⟩ ∈p s. We have ⟨x,0⟩ ∈p s by (†2)
and hence ⟨x,0⟩ < p. From (1) we get ⟨y,n⟩ ≤ ⟨x,0⟩ < p. ⊓⊔

2.2.13 Extension properties of course of values sequences. The fol-
lowing two properties

T ⊢ Prime(p) ∧ ⟨x,0⟩ < p→ Cvsp(0 ∪p {⟨x,0⟩}, x) (1)

T ⊢ Prime(p) ∧ n < x ∧Cvsp(s, x) ∧ ⟨y,n⟩ ∈p s→ Cvsp(s ∪p {⟨f(y), n + 1⟩}, x)
(2)

show the way how to construct course of values sequences.

Proof. (1): Let Prime(p) and ⟨x,0⟩. From the results of Par. 2.2.9 we get

⟨y,n⟩ ∈p 0 ∪p {⟨x,0⟩}⇔ ⟨y,n⟩ ∈p 0 ∨ ⟨y,n⟩ = ⟨x,0⟩⇔
⇔ ⟨y,n⟩ = ⟨x,0⟩⇔ y = x ∧ n = 0.

Consequently, the number 0∪p{⟨x,0⟩} is a course of values sequence for fn(x)
in the base p.

(2): Suppose that n < x, Cvsp(s, x) and ⟨y,n⟩ ∈p s. Let us denote by s′ the
number s ∪p {⟨f(y), n + 1⟩}. We wish to show that s′ is a course of values
sequence for fn(x) in the base p, i.e.

∀u(⟨u,0⟩ ∈p s′ → u = x) (†1)

∀u∀k(⟨u, k + 1⟩ ∈p s′ → ∃z(u = f(z)∧ ⟨z, k⟩ ∈p s′)). (†2)

Property (†1) follows from

⟨u,0⟩ ∈p s′ 2.2.9(2)
⇒ ⟨u,0⟩ ∈p s ∨ ⟨u,0⟩ = ⟨f(y), n + 1⟩⇒ ⟨u,0⟩ ∈p s⇒ u = x

since s is a course of values sequence for fn(x) in the base p.
In the proof of (†2) suppose that ⟨u, k + 1⟩ ∈p s′. We consider two cases

according to 2.2.9(2). If ⟨u, k + 1⟩ ∈p s then from the assumption Cvsp(s, x)
we obtain that there is a number z such that u = f(z) and ⟨z, k⟩ ∈p s. By
2.2.9(2) again, we have ⟨z, k⟩ ∈p s′ and thus we are done. Otherwise we have⟨u, k + 1⟩ = ⟨f(y), n + 1⟩, i.e. u = f(y) and k = n. By 2.2.9(2) again, ⟨y,n⟩ ∈p s′
and we are done. ⊓⊔

2.2.14 The graph of the contracted iteration. By G(n,x, y) we denote
the graph of the iteration of f which is a ternary predicate defined by

G(n,x, y)↔ n ≤ x ∧ ∃p∃s(Prime(p) ∧Cvsp(s, x) ∧ ⟨y,n⟩ ∈p s) ∨ n > x ∧ y = 0.

46 2 Beginning of Arithmetization

2.2.15 Extension properties the graph. We have:

T ⊢ G(0, x, x) (1)

T ⊢ G(n,x, y)→ G(n + 1, x, f(y)). (2)

Proof. (1): By the second theorem of Euclid (see 2.2.4(1)) there is a prime
number p > ⟨x,0⟩. By 2.2.13(1) the number 0 ∪p {⟨x,0⟩} is a course of values
sequence for fn(x) in the base p. We have also ⟨x,0⟩ ∈p 0 ∪p {⟨x,0⟩} and thus
G(0, x, x) by definition.

(2): First note that we have

T ⊢ n ≥ x ∧G(n,x, y) → y = 0. (†1)

The claim holds trivially for n > x. If n = x then we have ⟨y, x⟩ ≤ ⟨x,0⟩ by
2.2.12(1) and thus y + x ≤ x + 0 from which we get y = 0.

Under the assumption G(n,x, y) we consider two cases. If n + 1 ≤ x then
n ≤ x and thus there is a course of values sequence s for fn(x) containing the
pair ⟨y,n⟩. Then, by 2.2.13(2), the number s ∪p {⟨f(y), n + 1⟩} is a course
of values sequence for fn(x) containing the pair ⟨f(y), n + 1⟩, i.e. we have
G(n + 1, x, f(y)). If n + 1 > x, i.e. n ≥ x, we get y = 0 from above and since
f(0) = 0 we clearly have G(n + 1, x, f(y)) from the assumption G(n,x, y). ⊓⊔

2.2.16 Existence and uniqueness conditions for the graph. We have

T ⊢ ∃yG(n,x, y) (1)

T ⊢ G(n,x, y1) ∧G(n,x, y2)→ y1 = y2. (2)

Proof. (1): It follows from 2.2.15(1)(2) by a straightforward induction on x.
The uniqueness property (2) is proved by considering two cases. If n > x then
y1 = 0 = y2 from the definition of the graph. The case when n ≤ x follows from
the uniqueness property 2.2.11(1) of course of values sequences. ⊓⊔

2.2.17 Theorem If T is an extension by definitions of PA then any exten-
sion of T by contracted iteration is an extension by definition.

Proof. Let T ′ be an extension of T by contracted iteration as in Par. 2.2.2
and T ′′ an extension of T by the contextual definition

fn(x) = y↔ G(n,x, y),
where G is as in Par. 2.2.14. We have LT ′′ = LT ′ and T ′′ is an extension by
definition of T . In order to prove the theorem it suffices to show that the
theories T ′ and T ′′ have the same theorems.

We first show T ′′ ⊢ T ′. The theory T ′′ is an extension by definitions of
PA, and therefore, by Thm. 1.4.9, it proves the principle of mathematical

2.2 Contracted Iteration 47

induction for each formula of LT ′ containing the symbol fn(x). It remains
to show that T ′′ proves both defining axioms of the unary iteration of f .

We have G(0, x, f0(x)) from the definition of the iteration and G(0, x, x)
by 2.2.15(1). Consequently f0(x) = x by the uniqueness of the graph.

The second defining axiom is proved as follows. By definitionG(n,x, fn(x))
and thus G(n + 1, x, f fn(x)) by the second extension property of the graph.
On the other hand, we have also G(n + 1, x, fn+1(x)) by definition. Now the
uniqueness of the graph applies and we get fn+1(x) = f fn(x).

Vice versa, in order to show T ′ ⊢ T ′′ it suffices to show

T ′ ⊢ G(n,x, fn(x))
by Thm. 1.3.17. The property is proved by induction on n.1 The base case
follows immediately from the first defining axiom and 2.2.15(1). In the in-
duction step we have G(n,x, fn(x)) by IH and thus G(n + 1, x, f fn(x)) by
2.2.15(2). Consequently G(n + 1, x, fn+1(x)) by definition. ⊓⊔

2.2.18 Basic properties of the contracted iteration. We have

T ⊢ fn+1(x) = fn f(x) (1)

T ⊢ ∃n ≤ xfn(x) = 0 (2)

T ⊢ fn(0) = 0. (3)

Proof. (1): By induction on n. The base case follows from

f0+1(x) = f f0(x) = f(x) = f0 f(x).
In the induction step we have

fn+1+1(x) = f fn+1(x) IH
= f fn f(x) = fn+1 f(x).

(2): By complete induction on x. Take any x and consider two cases. If x = 0
then f0(0) = 0 and thus it suffices to set n ∶= 0. Otherwise we have x = ⟨v,w⟩
for some v,w. Since w < x then by IH there is a number m ≤ w such that
fm(w) = 0. We then obtain

fm+1⟨v,w⟩ (1)
= fm f⟨v,w⟩ = fm(w) = 0.

We have m + 1 ≤ w + 1 ≤ ⟨v,w⟩ and thus it suffices to set n ∶=m + 1.
(3): By a straightforward induction on n. ⊓⊔

2.2.19 Iteration of the second projection. As a straightforward corol-
lary of Thm. 2.2.17 and the previous paragraph we obtain that there is a

1 This is the only place that we use the principle of mathematical induction for a formula
containing the symbol fn(x) inside the theory T ′.

48 2 Beginning of Arithmetization

binary function πn
2 (x) of PA such that

⊢PA π0
2(x) = x (1)

⊢PA πn+1
2 (x) = π2 πn

2 (x) (2)

and also

⊢PA πn+1
2 (x) = πn

2 π2(x) (3)

⊢PA ∃n ≤ xπn
2 (x) = 0 (4)

⊢PA πn
2 (0) = 0. (5)

2.3 Tuples

2.3.1 Introduction. In this section we introduce a particular encoding of
ordered n-tuples of natural numbers based on our pairing function ⟨x, y⟩. Our
aim is to assign to each element (x1, . . . , xn) of the Cartesian product Nn a
number ⌜(x1, . . . , xn)⌝n, called the code of (x1, . . . , xn), so that different codes
are assigned to different n-tuples. Moreover we would like to have decoding
effective. This means we can effectively decide whether a number is the code
of an n-tuple and if it is, find that tuple. We will use this encoding throughout
the rest of this text.

2.3.2 Arithmetization of tuples. Encoding of Cartesian products Nn,
where n ≥ 0, is defined inductively on n as follows:

⌜∅⌝0 = 0

⌜x⌝1 = x
⌜(x1, x2, . . . , xn)⌝n = ⟨x1, ⌜(x2, . . . , xn)⌝n−1⟩ if n ≥ 2.

The reader will note that the code of an 1-tuple x is the number itself and the
code of the empty tuple ∅ is the number 0. Note also that ⌜(x, y)⌝2 = ⟨x, y⟩.

The reader will also note that these encodings may overlap. Consider, for
instance, the number 2. We have 2 = ⟨0,1⟩ and 1 = ⟨0,0⟩. Therefore

2 = ⟨0,1⟩ = ⌜(0,1)⌝2
2 = ⟨0,1⟩ = ⟨0, ⟨0,0⟩⟩ = ⟨0, ⌜(0,0)⌝2⟩ = ⌜(0,0,0)⌝3.

Hence, the number 2 is the code both of the ordered pair (0,1) ∈ N2 and the
ordered triple (0,0,0) ∈ N3.

2.3.3 Notational conventions. We will adopt the following conventions
for the pairing function ⟨x, y⟩. We postulate that the pairing operator groups

2.3 Tuples 49

to the right, i.e. ⟨x, y, z⟩ abbreviates ⟨x, ⟨y, z⟩⟩. If τ⃗ ≡ (τ1, . . . , τn) is an n-tuple
of terms then the term ⟨τ⃗ ⟩ stands for ⟨τ1, . . . , τn⟩ when n ≥ 2, for τ1 when
n = 1, and for 0 when n = 0. Note that we then have

⌜(x1, . . . , xn)⌝n = ⟨x1, . . . , xn⟩
for every n and every element (x1, . . . , xn) of Nn.

2.3.4 Predicate holding of the codes of tuples. For n ≥ 2, we have

⊢PA ∃x1 . . .∃xn x = ⟨x1, . . . , xn⟩↔ πn−2
2 (x) ≠ 0.

Consequently, the binary predicate Tuple(n,x), which holds when x is the
code of an n-tuple, is primitive recursive by the following explicit definition

Tuple(n,x)↔ n = 0 ∧ x = 0 ∨ n = 1 ∨ n ≥ 2 ∧ πn−2
2 (x) ≠ 0.

2.3.5 Projection function for tuples. The ternary projection function[x]ni selects the i-th element of the n-tuple coded by x, i.e.

⊢PA [⟨x1, . . . , xn⟩]ni = xi (1)

for every i = 1, . . . , n. We clearly have

⊢PA x = ⟨x1, . . . , xn⟩→ n−1

⋀
i=1

xi = π1 πi−1
2 (x) ∧ xn = πn−1

2 (x)
for n ≥ 2. Thus we can define [x]ni explicitly as a p.r. function by

[x]ni =D(i <∗ n,π1πi∸1
2 (x),πn∸1

2 (x)).
The projection function satisfies

⊢PA [x1]11 = x1

⊢PA [⟨x1, x⟩]n+21 = x1

⊢PA [⟨x1, x⟩]n+2i+2 = [x]n+1i+1 .

2.3.6 Contraction to unary functions. As a simple application of the
arithmetization of n-tuples we obtain the following natural correspondence
between n-ary and unary functions. If f is an n-ary function then its con-
traction is the unary function ⟨f⟩ such that

⟨f⟩(x) =
⎧⎪⎪⎨⎪⎪⎩
f(x1, . . . , xn) if x = ⟨x1, . . . , xn⟩ for some numbers x1, . . . , xn,

0 if there are no such numbers.

Note that the contraction of an unary function is the function itself.

50 2 Beginning of Arithmetization

We can define the contraction of f explicitly by

⟨f⟩(x) =D(Tuple∗(n,x), f([x]n1 , . . . , [x]nn),0).
Vice versa, we can recover f from its contraction by

f(x1, . . . , xn) = ⟨f⟩(⟨x1, . . . , xn⟩).
Thus a function is primitive recursive if and only if its contraction is.

2.4 Finite Sequences

2.4.1 Introduction. Now we consider the problem of the arithmetization
of finite sequences of natural numbers. Mathematically speaking, finite se-
quences are just tuples of variable length and so the set of all such sequences
is the infinite union ⋃n∈N Nn. We cannot use the method of codings of tuples
of fixed length since such encodings overlap. Our uniform encoding of finite
sequences is based on the fact that the number 0 is the atom, i.e. it is not in
the range of the pairing function ⟨x, y⟩.
2.4.2 Arithmetization of finite sequences. A uniform method for cod-
ing of finite sequences of numbers into N is obtained as follows. We assign
the code 0 to the empty sequence ∅. A non-empty sequence x1, . . . , xn is
coded by the number ⟨x1, x2, . . . , xn,0⟩ as shown in Fig. 2.3. The num-
ber ⟨x1, x2, . . . , xn,0⟩ is often called the sequence number of the sequence
x1, . . . , xn.

The reader will note that the assignment of codes is one to one: i.e. every
finite sequence of natural numbers is coded by exactly one natural number,
and vice versa, every natural number is the code of exactly one finite sequence
of natural numbers.

⟨x, 0⟩ ⟨x, y, 0⟩ ⟨x, y, z, 0⟩ ⟨x1, x2, . . . , xn, 0⟩

r

�� @@
x 0

r

�� @@r

�� @@x

y 0

r

�� @@r

�� @@r

�� @@

x

y

z 0

r

�� @@r

�� @@
p
p
p
r

�� @@

x1

x2

xn 0

Fig. 2.3 Arithmetization of finite sequences

2.4 Finite Sequences 51

2.4.3 Length of sequences. The code x = ⟨x1, x2, . . . , xn,0⟩ of the se-
quence x1, . . . , xn has the length n. The function L(x) yielding the length
of x is introduced into PA by the bounded minimalization as a p.r. function:

L(x) = µn ≤ x[πn
2 (x) = 0].

The function satisfies

⊢PA L(0) = 0 (1)

⊢PA L ⟨v,w⟩ = L(w) + 1. (2)

Proof. First note that from the definition of L and 2.2.19(4) we obtain that

⊢PA πL(x)
2 (x) = 0 (†1)

⊢PA πn
2 (x) = 0 → L(x) ≤ n. (†2)

Note also that we have

⊢PA πn+1
2 ⟨v,w⟩ = 0 ↔ πn

2 (w) = 0 . (†3)

(1): We have π0
2(0) = 0 and thus L(0) ≤ 0 by (†2), i.e. L(0) = 0. (2): We

have πL(w)
2 (w) = 0 by (†1) and hence πL(w)+1

2 ⟨v,w⟩ = 0 by (†3). From this and
(†2) we obtain L⟨v,w⟩ ≤ L(w) + 1. The reverse inequality is proved as follows.

We have πL⟨v.w⟩
2 ⟨v.w⟩ = 0 by (†1). Now since π0

2⟨v,w⟩ = ⟨v,w⟩ ≠ 0 it must be

L⟨v,w⟩ ≠ 0 and thus πL⟨v.w⟩∸1
2 (w) = 0 by (†3). From this and (†2) we conclude

that L(w) ≤ L⟨v,w⟩ ∸ 1, i.e. that we have L(w) + 1 ≤ L⟨v,w⟩. ⊓⊔

2.4.4 Indexing function. The indexing function (x)i yields the (i + 1)-st
element of the sequence x, i.e.

(⟨x0, . . . , xi, . . . , xn−1,0⟩)i = xi.

The function is defined explicitly by

(x)i = π1 πi
2(x)

as a primitive recursive function.
The recurrent properties of the indexing function are:

⊢PA (⟨v,w⟩)0 = v (1)

⊢PA (⟨v,w⟩)i+1 = (w)i . (2)

Proof. (1): It follows from (⟨v,w⟩)0 = π1 π0
2⟨v,w⟩ = π1⟨v,w⟩ = v. The second

property (2) follows from

52 2 Beginning of Arithmetization

(⟨v,w⟩)i+1 = π1 πi+1
2 ⟨v,w⟩ = π1 πi

2 π2⟨v,w⟩ = π1 πi
2(w) = (w)i . ⊓⊔

2.4.5 Uniqueness of arithmetization. We say that a number y is an
element of x if there is i < L(x) such that y = (x)i. The following property

⊢PA x = y ↔ L(x) = L(y) ∧ ∀i(i < L(x)→ (x)i = (y)i) (1)

asserts that the codes of sequences are uniquely determined by their length
and their elements.

Proof. Property ∀y(1) is proved by complete induction on x. Take any y and
consider four cases according to whether x or y is 0 or not. We will show here
only the case when x = ⟨v1,w1⟩ and y = ⟨v2,w2⟩ for some v1,w1, v2,w2; the
remaining cases are straightforward. We have w1 < x and thus

⟨v1,w1⟩ = ⟨v2,w2⟩⇔ v1 = v2 ∧w1 = w2
IH
⇔

v1 = v2 ∧L(w1) = L(w2) ∧ ∀j(j < L(w1)→ (w1)j = (w2)j) (∗1)⇔

(⟨v1,w1⟩)0 = (⟨v2,w2⟩)0 ∧L⟨v1,w1⟩ = L⟨v2,w2⟩ ∧
∧ ∀j(j + 1 < L⟨v1,w1⟩→ (⟨v1,w1⟩)j+1 = (⟨v2,w2⟩)j+1) (∗2)⇔

L⟨v1,w1⟩ = L⟨v2,w2⟩ ∧ ∀i(i < L⟨v1,w1⟩→ (⟨v1,w1⟩)i = (⟨v2,w2⟩)i).
The step marked by (∗1) follows from the basic properties of the length
and indexing functions; the second one marked by (∗2) is just monadic case
analysis on the bound variable i. Note also that the induction hypothesis is
applied with w2 in place of y. ⊓⊔

Chapter 3

Primitive Recursive Schemes

We are now going to investigate various schemes of extensions of PA which
support recursive definitions of primitive recursive functions. We start by
showing PA admits definitions by primitive recursion. More precisely, we will
prove in Sect. 3.1 that extensions of PA by primitive recursion are extensions
by definitions. In the proof we use coding of finite sequences based on the
modified Cantor pairing function introduced in the previous chapter.

The method of course of values sequences can be easily adapted to show
that PA admits definitions by course of values recursion as shown in Sect. 3.2.
By a reverting the flow of computation we obtain the scheme backward re-
cursion which admissibility is proved in the next section. In Sect. 3.4 we
will investigate recursive definitions for which parameters change in recursive
applications. This is called recursion with parameter substitution. The admis-
sibility of the scheme is proved by arithmetization of computation trees.

The hardest part of our recursive bootstrapping is the demonstration that
PA admits definitions of functions by nested simple recursion. The scheme has
a form of primitive recursion where parameters may be arbitrarily substituted
for even with nested recursive applications. R. Péter has proved in [39] that
primitive recursive functions are closed under such recursion. We have already
investigated the scheme in [25], but we hope that this new presentation, which
is supplied with a detailed formal proof for the first time, is much simpler
and easier to follow (see Sect. 3.5).

3.1 Primitive Recursion

3.1.1 Introduction. We already know that some primitive recursive func-
tions (e.g. x÷y or ∑n

i=0 i) can be easily introduced into PA. For other primitive
recursive functions, such as the exponentiation xy for instance, finding their
definition in PA is a quite challenging task.

53

54 3 Primitive Recursive Schemes

In this section we show that PA admits definitions by primitive recursion.
Namely, we prove that if functions g(y⃗) and h(x, z, y⃗) are already introduced
into PA then we can also introduce into PA a function f(x, y⃗) satisfying

⊢PA f(0, y⃗) = g(y⃗)
⊢PA f(x + 1, y⃗) = h(x, f(x, y⃗), y⃗).

Note that this is more than just merely stating that PA contains all primitive
recursive functions: we do not require that g and h are primitive recursive.

3.1.2 Extensions by primitive recursion. Let T be an extension by def-
initions of PA. Let ρ[y⃗] and τ[x, z, y⃗] be terms of LT in which no other vari-
ables than the indicated ones are free. Consider a theory T ′ obtained from
the theory T by adding a new (n+1)-ary function symbol f , the defining
axioms

f(0, y⃗) = ρ[y⃗] (1)

f(x + 1, y⃗) = τ[x, f(x, y⃗), y⃗], (2)

and the scheme of mathematical induction for the formulas of LT ′ containing
the symbol f . We say that T ′ is an extension of T by primitive recursion.

Fixing notation. We keep the notation introduced in this paragraph fixed
until the end of this section where we prove in Thm. 3.1.10 that the theory
T ′ is an extension by definition of the theory T . We will be working in an
extension by definitions of the theory T . We will keep the notation T also for
this extension of T .

3.1.3 The outline of the proof. We plan to extend the theory T by ex-
plicitly defining an (n+2)-ary predicate Cvs such that

Cvs(s, x, y⃗)↔ s = ⟨f(x, y⃗), f(x − 1, y⃗), . . . , f(2, y⃗), f(1, y⃗), f(0, y⃗),0⟩.
In other words, we would like to have

Cvs(s, x, y⃗)↔ L(s) = x + 1 ∧ ∀u < x (s)x∸u = f(u, y⃗).
The number s such that Cvs(s, x, y⃗) holds is called a course of values (c.v.)
sequence for f(x, y⃗). With the course of values predicate introduced into PA
we can define the function f in PA by the following contextual definition:

f(x, y⃗) = z ↔ ∃s(Cvs(s, x, y⃗) ∧ (s)0 = z).
3.1.4 Course of values sequences. The (n+2)-ary course of values pred-
icate Cvs has the following explicit definition:

3.1 Primitive Recursion 55

Cvs(s, x, y⃗)↔ L(s) = x+1 ∧ (s)x∸0 = ρ[y⃗]∧
∀u < x (s)x∸(u+1) = τ[u, (s)x∸u , y⃗].

3.1.5 Extension properties of course of values sequences. We have

T ⊢ Cvs(⟨ρ[y⃗],0⟩,0, y⃗) (1)

T ⊢ Cvs(s, x, y⃗)→ Cvs (⟨τ[x, (s)0 , y⃗], s⟩, x + 1, y⃗) . (2)

The first property says that the number ⟨ρ[y⃗],0⟩ is a course of values sequence
for f(0, y⃗). The second property shows how to built course of values sequences
by stages: if the number s is a course of sequence for f(x, y⃗) then the number⟨τ[x, (s)0 , y⃗], s⟩ is a course of values sequence for the next stage f(x + 1, y⃗).
Proof. (1): Directly from definition. (2): Take any number s which is a course
of values sequence for f(x, y⃗), i.e.

L(s) = x + 1 (†1)(s)x∸0 = ρ[y⃗] (†2)

∀u(u < x→ (s)x∸(u+1) = τ[u, (s)x∸u , y⃗]). (†3)

We show that ⟨τ[x, (s)0 , y⃗], s⟩ is a course of values sequence for f(x + 1, y⃗):
L ⟨τ[x, (s)0 , y⃗], s⟩ = (x + 1)+ 1 (†4)

(⟨τ[x, (s)0 , y⃗], s⟩)
x+1∸0

= ρ[y⃗] (†5)

∀u(u < x + 1 →(⟨τ[x, (s)0 , y⃗], s⟩)
x+1∸(u+1)

=

τ [u,(⟨τ[x, (s)0 , y⃗], s⟩)
x+1∸u

, y⃗]).
(†6)

(†4): It follows from

L ⟨τ[x, (s)0 , y⃗], s⟩ = L(s)+ 1
(†

1
)

= (x + 1) + 1.

(†5): It follows from

(⟨τ[x, (s)0 , y⃗], s⟩)
x+1∸0

= (⟨τ[x, (s)0 , y⃗], s⟩)
x+1

= (s)x (†2)= ρ[y⃗].
(†6): Take any u < x + 1 and consider two cases. If u < x then u + 1 ≤ x and
we have

56 3 Primitive Recursive Schemes

(⟨τ[x, (s)0 , y⃗], s⟩)
x+1∸(u+1)

= (⟨τ[x, (s)0 , y⃗], s⟩)
x∸(u+1)+1

=

= (s)x∸(u+1) (†
3
)

= τ[u, (s)x∸u , y⃗] =
= τ [u,(⟨τ[x, (s)0 , y⃗], s⟩)

x∸u+1
, y⃗] = τ [u,(⟨τ[x, (s)0 , y⃗], s⟩)

x+1∸u
, y⃗] .

Otherwise we have u = x and thus

(⟨τ[x, (s)0 , y⃗], s⟩)
x+1∸(x+1)

= (⟨τ[x, (s)0 , y⃗], s⟩)
0
= τ[x, (s)0 , y⃗] =

= τ[x,(⟨τ[x, (s)0 , y⃗], s⟩)
1
, y⃗] = τ[x,(⟨τ[x, (s)0 , y⃗], s⟩)

x+1∸x
, y⃗]. ⊓⊔

3.1.6 The existential and uniqueness properties of c.v. sequences.

The following properties express the fact that course of values sequences can
be uniquely constructed for all arguments:

T ⊢ ∃sCvs(s, x, y⃗) (1)

T ⊢ Cvs(s1, x, y⃗) ∧Cvs(s2, x, y⃗)→ s1 = s2. (2)

Proof. The existence property (1) is proved by a straightforward induction
on x, where both the base case and the induction step follow directly from
the extension properties of course of values sequences (see Par. 3.1.5).

The uniqueness property (2) is proved as follows. Assume Cvs(s1, x, y⃗) and
Cvs(s2, x, y⃗). Then the course of values sequences s1 and s2 have the same
length x + 1. According to 2.4.5(1) it suffices to show that both sequences
have the same elements up to the last index x, i.e. that we have

∀i(i ≤ x→ (s1)i = (s2)i). (†1)

For that we need the following auxiliary property

u ≤ x→ (s1)x∸u = (s2)x∸u , (†2)

which is proved by induction on u. The base case is straightforward:

(s1)x∸0 = ρ[y⃗] = (s2)x∸0 .
In the induction step assume u + 1 ≤ x. Then u ≤ x and we have

(s1)x∸(u+1) = τ[u, (s1)x∸u , y⃗] IH
= τ[u, (s2)x∸u , y⃗] = (s2)x∸(u+1) .

We are now in position to prove (†1). Take any i ≤ x. Then i+u = x for some
u ≤ x. We then have

(s1)i = (s1)x∸u (†
2
)

= (s2)x∸u = (s2)i . ⊓⊔

3.1 Primitive Recursion 57

3.1.7 The graph predicate. By G(x, y⃗, z) we denote the graph of the
function f which is a (n+2)-ary predicate explicitly defined by

G(x, y⃗, z)↔ ∃s(Cvs(s, x, y⃗) ∧ (s)0 = z).
3.1.8 Recurrent properties of the graph. We have

T ⊢ G(0, y⃗, ρ[y⃗]) (1)

T ⊢ G(x, y⃗, z)→ G(x + 1, y⃗, τ[x, z, y⃗]). (2)

Proof. It follows directly from the extension properties of c.v. sequences. ⊓⊔

3.1.9 The existential and uniqueness properties of the graph.

T ⊢ ∃z G(x, y⃗, z) (1)

T ⊢ G(x, y⃗, z1) ∧G(x, y⃗, z2) → z1 = z2. (2)

Proof. This is a straightforward consequence of the existential and uniqueness
properties of course of values sequences. ⊓⊔

3.1.10 Theorem If T is an extension by definitions of PA then any exten-
sion of T by primitive recursion is an extension by definition.

Proof. Let T ′ be an extension of T by primitive recursion as in Par. 3.1.2
and T ′′ an extension of T by the contextual definition

f(x, y⃗) = z ↔ G(x, y⃗, z),
where G is the graph predicate from Par. 3.1.7. We have LT ′′ = LT ′ and T ′′

is an extension by definition of T . In order to prove the claim it suffices to
show that both theories T ′ and T ′′ have the same theorems.

First we show that T ′′ ⊢ T ′. The theory T ′′ is an extension by definitions
of PA, and therefore, by Thm. 1.4.9, it proves the principle of mathematical
induction for each formula of LT ′ containing the symbol f . It remains to show
that T ′′ proves both defining axioms 3.1.2(1)(2) of f .

We have G(0, y⃗, f(0, y⃗)) by definition of f and G(0, y⃗, ρ[y⃗]) by first recur-
rent property of the graph. Now the uniqueness property of the graph applies
and we obtain f(0, y⃗) = ρ[y⃗]. This proves in T ′′ the first defining axiom of f .

We have G(x, y⃗, f(x, y⃗)) by definition of f . Second recurrent property of

the graph yields G(x, y⃗, τ[x, f(x, y⃗), y⃗]). By definition of f again we have also

G(x + 1, y⃗, f(x + 1, y⃗)) and thus f(x + 1, y⃗) = τ[x, f(x, y⃗), y⃗] by the unique-
ness of the graph. This proves in T ′′ the second defining axiom of f .

Vice versa, in order to prove T ′ ⊢ T ′′, it suffices to show

T ′ ⊢ G(x, y⃗, f(x, y⃗))

58 3 Primitive Recursive Schemes

in view of Thm. 1.3.17. This is proved by induction on x.1

The base case G(0, y⃗, f(0, y⃗)) is a direct consequence of the defining axiom
f(0, y⃗) = ρ[y⃗] and first recurrent property G(0, y⃗, ρ[y⃗]) of the graph.

In the induction step we obtain G(x, y⃗, f(x, y⃗)) from IH and thus, by
second recurrent property of the graph, we have G(x + 1, y⃗, τ[x, f(x, y⃗), y⃗]).
From this and the second definition axiom f(x + 1, y⃗) = τ[x, f(x, y⃗), y⃗] we can
conclude that G(x + 1, y⃗, f(x + 1, y⃗)) holds. ⊓⊔

3.1.11 Remark. A careful reader has noted that instead of adding infinitely
many induction axioms to the non-logical axioms of T ′ it was sufficient to
add only one induction axiom. Its sole purpose is to show that the definition
by primitive recursion has a unique solution. The induction formula can be
easily read off from the proof of Thm. 3.1.10. We will encounter a similar
situation with each of the remaining extension principles discussed in this
chapter.

3.2 Course of Values Recursion

3.2.1 Introduction. In this section we will study a simple generalization
of primitive recursion called course of values recursion. In this new scheme
the value at the (n+1)-stage depends not only on the value from the previous
n-th stage but on the values from <n-th stages as well. We show that course
of values recursion is admissible in PA by reducing it to primitive recursion.

3.2.2 Example. The scheme of course of values recursion is best explained
with an example. Consider again the function fib(n) from Par. 1.1.4 which
yields the n-th element of the sequence of Fibonacci:

fib(0) = 0

fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n).
These three identities can be re-written in a more compact form with the
help of the case discrimination function D (see Par. 1.2.17) as follows:

fib(0) = 0

fib(n + 1) =D(n,fib(n) + fib(n ∸ 1),1).
This is not a definition by primitive recursion since the value fib(n + 1) de-
pends not only on the value fib(n) but on the value fib(n ∸ 1)) as well.

1 This is the only place that we use the principle of mathematical induction for a formula
containing the symbol f inside the theory T ′.

3.2 Course of Values Recursion 59

3.2.3 Extensions by course of values recursion. Let T be an extension
by definitions of PA. Let further

ρ[y⃗], τ[x, z⃗, y⃗], ξ1[x, y⃗], . . . , ξk[x, y⃗]
be terms of LT with all their free variables indicated such that

T ⊢ ξ1[x, y⃗] ≤ x . . . T ⊢ ξk[x, y⃗] ≤ x. (1)

Consider a theory T ′ obtained from the theory T by adding a new (n+1)-ary
function symbol f , the defining axioms

f(0, y⃗) = ρ[y⃗] (2)

f(x + 1, y⃗) = τ [x, f(ξ1[x, y⃗], y⃗), . . . , f(ξk[x, y⃗], y⃗), y⃗] , (3)

and the scheme of complete induction for the formulas of LT ′ containing the
symbol f . We say that T ′ is an extension of T by course of values recursion.

Fixing notation. We keep the notation introduced in this paragraph fixed
until the end of this section where we prove in Thm. 3.2.6 that the theory
T ′ is an extension by definition of the theory T . We will be working in an
extension by definitions of the theory T . We will keep the notation T also for
this extension of T .

Remark. The definition can be viewed as a function operator which takes
all functions applied in the terms ρ, τ, ξ1, . . . , ξk and yields the function f as
a result. We will prove in Thm. 3.2.7 that the class of primitive recursive
functions is closed under the operator of course of values recursion.

3.2.4 The outline of the proof. We wish to introduce into T the course
of values function f(x, y⃗) yielding the course of values sequence for f(x, y⃗),
i.e. we would like to have

f(x, y⃗) = ⟨f(x, y⃗), f(x − 1, y⃗), . . . , f(2, y⃗), f(1, y⃗), f(0, y⃗),0⟩.
Note that then the following holds for every u ≤ x:

f(u, y⃗) = (f(x, y⃗))
x∸u

.

The function f can be thus defined explicitly by

f(x, y⃗) = (f(x, y⃗))
0
.

3.2.5 Course of values function. We define the (n+1)-ary course of value
function f(x, y⃗) as primitive recursive by the primitive recursive definition:

60 3 Primitive Recursive Schemes

f(0, y⃗) = ⟨ρ[y⃗],0⟩
f(x + 1, y⃗) = ⟨τ [x, (f(x, y⃗))

x∸ξ1[x,y⃗]
, . . . , (f(x, y⃗))

x∸ξk[x,y⃗]
, y⃗] , f(x, y⃗)⟩.

The following holds for i = 1, . . . , k:

T ⊢ (f(ξi[x, y⃗], y⃗))
0
= (f(x, y⃗))

x∸ξi[x,y⃗]
. (1)

Proof. First note that we have

T ⊢ (f(x1 + x2, y⃗))x2

= (f(x1, y⃗))0. (†1)

This is proved by induction on x2. The base case is obvious and the induction
step follows from

(f(x1 + x2 + 1, y⃗))
x2+1

= (⟨τ[. . .], f(x1 + x2, y⃗)⟩)
x2+1

=

= (f(x1 + x2, y⃗))x2

IH
= (f(x1, y⃗))0.

We are now ready to prove (1). We have ξi[x, y⃗] ≤ x by 3.2.3(1) and thus

ξi[x, y⃗] + (x ∸ ξi[x, y⃗]) = x (†2)

for every i = 1, . . . , k. We obtain

(f(ξi[x, y⃗], y⃗))
0

(†
1
)

= (f(ξi[x, y⃗] + (x ∸ ξi[x, y⃗]), y⃗))
x∸ξi[x,y⃗]

(†
2
)

=

= (f(x, y⃗))
x∸ξi[x,y⃗]

. ⊓⊔

3.2.6 Theorem If T is an extension by definitions of PA then any extension
of T by course of values recursion is an extension by definition.

Proof. Let T ′ be an extension of T by course of values recursion as in
Par. 3.2.3 and T ′′ an extension of T by the explicit definition

f(x, y⃗) = (f(x, y⃗))
0
,

where f is the course of values function from Par. 3.2.5. We have LT ′′ = LT ′

and T ′′ is an extension by definition of T by Thm. 1.3.19. It suffices to show
that both theories T ′ and T ′′ have the same theorems.

First we show T ′′ ⊢ T ′. The theory T ′′ is an extension by definitions of PA,
and therefore, by Thm. 1.4.9, it proves the principle of complete induction
for each formula of LT ′ containing f . It remains to show that T ′′ proves both
defining axioms 3.2.3(2)(3) of f . The first defining axiom follows from

f(0, y⃗) = (f(0, y⃗))
0
= (⟨ρ[y⃗],0⟩)

0
= ρ[y⃗].

3.3 Backward Recursion 61

The second defining axiom follows from

f(x + 1, y⃗) = (f(x + 1, y⃗))
0
=

= τ [x, (f(x, y⃗))
x∸ξ1[x,y⃗]

, . . . (f(x, y⃗))
x∸ξk[x,y⃗]

, y⃗] 3.2.5(1)
=

= τ [x,(f(ξ1[x, y⃗], y⃗))
0
, . . . ,(f(ξk[x, y⃗], y⃗))

0
, y⃗] =

= τ [x, f(ξ1[x, y⃗], y⃗), . . . , f(ξk[x, y⃗], y⃗), y⃗] .
Vice versa, in order to show T ′ ⊢ T ′′ it suffices to prove

T ′ ⊢ f(x, y⃗) = (f(x, y⃗))
0
.

This is proved by complete induction on x. There are two cases to consider.
If x = 0 then we have

f(0, y⃗) = ρ[y⃗] = (⟨ρ[y⃗],0⟩)
0
= (f(0, y⃗))

0
.

If x = x′ + 1 for some x′ then ξi[x′, y⃗] ≤ x′ < x′ + 1 by 3.2.3(1) and therefore

f(x′ + 1, y⃗) = τ[x′, f (ξ1[x′, y⃗], y⃗), . . . , f(ξk[x′, y⃗], y⃗), y⃗] k×IH
=

= τ [x′,(f(ξ1[x′, y⃗], y⃗))
0
, . . . ,(f(ξk[x′, y⃗], y⃗))

0
, y⃗] 3.2.5(1)

=

= τ [x′, (f(x′, y⃗))
x′∸ξ1[x′,y⃗]

, . . . , (f(x′, y⃗))
x′∸ξk[x′,y⃗]

, y⃗] = (f(x′ + 1, y⃗))
0
. ⊓⊔

3.2.7 Theorem Primitive recursive functions are closed under course of
values recursion.

Proof. By inspection of the proof of Thm. 3.2.6. ⊓⊔

3.3 Backward Recursion

3.3.1 Introduction. In this section we will study a simple modification of
course of values recursion which is called backward recursion. In this new
scheme the computation goes from 0 to an arbitrary but fixed upper bound.
We show that backward recursion is admissible in PA by reducing it to course
of values recursion.

3.3.2 Example. Suppose that f is defined by

f(x, y) = ⎧⎪⎪⎨⎪⎪⎩
g(y) if x ≥ b(y),
h(x, f(x + 1, y), y) if x < b(y).

62 3 Primitive Recursive Schemes

We have x < x + 1 ≤ b(y) for x < b(y) and therefore the definition is legal
because the value b(y)∸x decreases for the arguments of the (only) recursive
application f(x + 1, y):

x < b(y)→ b(y)∸ (x + 1) < b(y) < x.
We say that f is defined by backward recursion on the difference b(y)∸ x.

We want to show that if g, h and b are all p.r. functions then so is f . For
that we shall define a new binary function f̂ such that

v + x = b(y)→ f̂(v, y) = f(x, y). (1)

Under the assumption v + x = b(y), if the number x grows from 0 to the
upper bound b(y), the number v decreases from b(y) to 0. This suggests the

following p.r. derivation of f̂ . If 0 + x = b(y) then x = b(y) and so it must be

f̂(0, y) (1)
= f(b(y), y) = g(y).

If v+1+x = b(y) then v+x+1 = b(y) and x = b(y)∸(v+1), and so it must be

f̂(v + 1, y) (1)
= f(x, y) = h(x, f(x + 1, y), y) (1)

=

= h(x, f̂(v, y), y) = h(b(y)∸ (v + 1), f̂(v, y), y).
It suffices to define f̂ as a p.r. function by

f̂(0, y) = g(y)
f̂(v + 1, y) = h(b(y)∸ (v + 1), f̂(v, y), y).

Now from (1) we get

x ≤ b(y)→ f(x, y) = f̂(b(y)∸ x, y).
If x ≥ b(y) then b(y)∸x = 0 and thus f(x, y) = g(y) = f̂(0, y) = f̂(b(y)∸ x, y).
This means that we have also

x ≥ b(y)→ f(x, y) = f̂(b(y)∸ x, y).
By combining these last two properties together we obtain

f(x, y) = f̂(b(y) ∸ x, y).
We can take this identity as an explicit definition of f as a p.r. function.

3.3.3 Example. Our second example of backward recursion is the following
definition of a binary function f :

3.3 Backward Recursion 63

f(x, y) = ⎧⎪⎪⎨⎪⎪⎩
g(y) if x ≥ b(y),
h(x, f(ξ[x, y], y), y) if x < b(y),

where x < ξ[x, y] for every x, y. We clearly have

x < b(y)→ b(y)∸ (ξ[x, y] + 1) < b(y) < x
and therefore the recursion is legal because the difference b(y) ∸ x decreases
for the arguments of the recursive application f(ξ[x, y] + 1, y).

We want to show that if g, h, b and ξ are are all primitive recursive then
so is f . For that we shall define a new binary function f̂ such that

v + x = b(y)→ f̂(v, y) = f(x, y). (1)

If 0 + x = b(y) then x = b(y) and so it must be

f̂(0, y) (1)
= f(b(y), y) = g(y).

Suppose now v + 1 + x = b(y) and for simplicity assume that ξ[x, y] ≤ b(y).
We have x = b(y) ∸ (v + 1). Let further ξ̂[v, y] be a term defined by

ξ̂[v, y] ≡ b(y)∸ ξ[b(y)∸ (v + 1), y].
Then ξ̂[v, y] + ξ[x, y] = b(y) and so it must be

f̂(v + 1, y) (1)
= f(x, y) = h(x, f(ξ[x, y], y), y) (1)

=

= h(x, f̂(ξ̂[v, y], y), y) = h(b(y) ∸ (v + 1), f̂(ξ̂[v, y], y), y).
Note also that the inequality ξ̂[v, y] ≤ v holds as we have

ξ̂[v, y] = b(y) ∸ ξ[b(y)∸ (v + 1), y] ≤ b(y) ∸ ((b(y) ∸ (v + 1)) + 1) ≤
≤ b(y) ∸ (b(y)+ 1 ∸ (v + 1)) = b(y) ∸ (b(y)∸ v) ≤ v.

The following is a course of values recursive definition of f̂ as a p.r. function:

f̂(0, y) = g(y)
f̂(v + 1, y) = h(b(y)∸ (v + 1), f̂(ξ̂[v, y], y), y)

From (1) we get

x ≤ b(y)→ f(x, y) = f̂(b(y)∸ x, y).

64 3 Primitive Recursive Schemes

If x ≥ b(y) then b(y)∸x = 0 and thus f(x, y) = g(y) = f̂(0, y) = f̂(b(y)∸ x, y).
Consequently

x ≥ b(y)→ f(x, y) = f̂(b(y)∸ x, y).
By combining these last two properties together we obtain

f(x, y) = f̂(b(y) ∸ x, y).
We can take this identity as an explicit definition of f as a p.r. function.

3.3.4 The principle of backward induction. Properties of functions de-
fined by backward recursion are usually verified by backward induction. The
principle of backward induction is formalized within PA as follows.

For every formula ϕ[x, y⃗] and term θ[y⃗], the formula of backward induction
on the difference θ[y⃗] ∸ x for ϕ is the following one:

∀x∀y⃗(∀x1(θ[y⃗] ∸ x1 < θ[y⃗] ∸ x→ ϕ[x1, y⃗])→ ϕ[x, y⃗])→ ∀x∀y⃗ϕ[x, y⃗]. (1)

We assume here that the variable x1 is different from x, y⃗ and does not occur
freely in ϕ. The formula ϕ and the term θ may contain additional variables
as parameters.

3.3.5 Theorem If T is an extension by definitions of PA containing < then
it proves the principle of backward induction for each formula of LT .

Proof. The principle of backward induction 3.3.4(1) of LT is reduced to math-
ematical induction as follows. Under the assumption

∀x∀y⃗(∀x1(θ[y⃗] ∸ x1 < θ[y⃗] ∸ x→ ϕ[x1, y⃗])→ ϕ[x, y⃗]) (†1)

we first prove, by induction on n, the following auxiliary property

∀v(θ[w⃗] ∸ v < n→ ϕ[v, w⃗]). (†2)

In the base case there is nothing to prove. In the induction step take any v
such that θ[w⃗] ∸ v < n + 1 and consider two cases. If θ[w⃗] ∸ v < n then we ob-
tain ϕ[v, w⃗] by IH. If θ[w⃗] ∸ v = n then by instantiating of (†1) with x, y⃗ ∶= v, w⃗
we obtain

∀x1(θ[w⃗] ∸ x1 < n → ϕ[x1, w⃗])→ ϕ[v, w⃗].
Now we apply IH to get ϕ[x, y⃗].

With the auxiliary property proved we obtain that ϕ[x, y⃗] holds for every
x, y⃗ by instantiating of ∀n∀w⃗(†2) with n, w⃗, v ∶= θ[y⃗] ∸ x + 1, y⃗, x. ⊓⊔

3.3 Backward Recursion 65

3.3.6 Extensions by backward recursion. Let T be an extension by
definitions of PA. Let further

ρ[x, y⃗], τ[x, z⃗, y⃗], θ[y⃗], ξ1[x, y⃗], . . . , ξk[x, y⃗]
be terms of LT with all their free variables indicated. Suppose that

T ⊢ x < ξ1[x, y⃗] . . . T ⊢ x < ξk[x, y⃗]. (1)

Consider a theory T ′ obtained from the theory T by adding a new (n+1)-ary
function symbol f , the defining axioms

x ≥ θ[y⃗]→ f(x, y⃗) = ρ[x, y⃗] (2)

x < θ[y⃗]→ f(x, y⃗) = τ [x, f(ξ1[x, y⃗], y⃗), . . . , f(ξk[x, y⃗], y⃗), y⃗] . (3)

and the scheme of backward induction for the formulas of LT ′ containing the
symbol f . We say that T ′ is an extension of T by backward recursion on the
difference θ[y⃗] ∸ x.
Fixing notation. We keep the notation introduced in this paragraph fixed
until the end of this section where we prove in Thm. 3.3.8 that the theory
T ′ is an extension by definition of the theory T . We will be working in an
extension by definitions of the theory T . We will keep the notation T also for
this extension of T .

Remark. The definition can be viewed as a function operator which takes
all functions applied in the terms ρ, τ, θ, ξ1, . . . , ξk and yields the function f

as a result. We will prove in Thm. 3.3.9 that the class of primitive recursive
functions is closed under the operator of backward recursion.

3.3.7 Auxiliary function. We will introduce the function f with the help
of an auxiliary (n+1)-ary function f̂ such that

v + x = θ[y⃗]→ f̂(v, y⃗) = f(x, y⃗).
Let τ̂[v, z⃗, y⃗], ξ̂1[v, y⃗], . . . , ξ̂k[v, y⃗] be terms of LT defined by

66 3 Primitive Recursive Schemes

τ̂ [v, z1, . . . , zk, y⃗] ≡
τ[θ[y⃗] ∸ (v + 1),
D(ξ1[θ[y⃗] ∸ (v + 1), y⃗] <∗ θ[y⃗], z1, ρ[ξ1[θ[y⃗] ∸ (v + 1), y⃗], y⃗]), . . . ,
D(ξk[θ[y⃗] ∸ (v + 1), y⃗] <∗ θ[y⃗], zk, ρ[ξk[θ[y⃗] ∸ (v + 1), y⃗], y⃗]), y⃗]

ξ̂i[v, y⃗] ≡ θ[y⃗] ∸ ξi[θ[y⃗] ∸ (v + 1), y⃗].
For every i = 1, . . . , k we have

T ⊢ ξ̂i[v, y⃗] ≤ v. (1)

The function f̂ is defined by the following course of values recursion

f̂(0, y⃗) = ρ[θ[y⃗], y⃗]
f̂(v + 1, y⃗) = τ̂[v, f̂(ξ̂1[v, y⃗], y⃗), . . . , f̂(ξ̂k[v, y⃗], y⃗), y⃗].

In the sequel we will need the following property of f̂ :

T ⊢ x < θ[y⃗]→ f̂(θ[y⃗] ∸ x, y⃗) = (2)

= τ[x,D(ξ1[x, y⃗] <∗ θ[y⃗], f̂(θ[y⃗] ∸ ξ1[x, y⃗], y⃗), ρ[ξ1[x, y⃗], y⃗]), . . . ,
D(ξk[x, y⃗] <∗ θ[y⃗], f̂(θ[y⃗] ∸ ξk[x, y⃗], y⃗), ρ[ξk[x, y⃗], y⃗]), y⃗].

Proof. (1): It follows from

ξ̂i[v, y] = θ[y] ∸ ξi[θ[y] ∸ (v + 1), y] 3.3.6(1)
≤ θ[y] ∸ ((θ[y] ∸ (v + 1)) + 1) ≤

≤ θ[y] ∸ (θ[y] + 1 ∸ (v + 1)) = θ[y] ∸ (θ[y] ∸ v) ≤ v.
(2): If x < θ[y⃗] then x + v + 1 = θ[y⃗] for some v. We then have

θ[y⃗] ∸ x = v + 1 (†1)

θ[y⃗] ∸ (v + 1) = x (†2)

and also

(ξi[θ[y⃗] ∸ (v + 1), y⃗] <∗ θ[y⃗]) = (ξi[x, y⃗] <∗ θ[y⃗]) (†3)

f̂(ξ̂i[v, y⃗], y⃗) = f̂(θ[y⃗] ∸ ξi[θ[y⃗] ∸ (v + 1), y⃗], y⃗) = f̂(θ[y⃗] ∸ ξi[x, y⃗], y⃗). (†4)

3.3 Backward Recursion 67

We now obtain

f̂(θ[y⃗] ∸ x, y⃗) (†
1
)

= f̂(θ[v + 1, y⃗) =
= τ̂[v, f̂(ξ̂1[v, y⃗], y⃗), . . . , f̂(ξ̂k[v, y⃗], y⃗), y⃗] (†

2
),(†

3
),(†

4
)

=

= τ[x,D(ξ1[x, y⃗] <∗ θ[y⃗], f̂(θ[y⃗] ∸ ξ1[x, y⃗], y⃗), ρ[ξ1[x, y⃗], y⃗]), . . . ,
D(ξk[x, y⃗] <∗ θ[y⃗], f̂(θ[y⃗] ∸ ξk[x, y⃗], y⃗), ρ[ξk[x, y⃗], y⃗]), y⃗].

This proves (2). ⊓⊔

3.3.8 Theorem If T is an extension by definitions of PA then any extension
of T by backward recursion is an extension by definition.

Proof. Let T ′ be an extension of T by backward recursion as in Par. 3.3.6
and T ′′ an extension of T by the explicit definition

f(x, y⃗) =D(x <∗ θ[y⃗], f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]),
where f̂ is the function from Par. 3.3.7. We have LT ′′ = LT ′ and T ′′ is an
extension by definition of T by Thm. 1.3.19. It suffices to show that both
theories T ′ and T ′′ have the same theorems.

We show T ′′ ⊢ T ′ first. The theory T ′′ is an extension by definitions of PA
and therefore, by Thm. 3.3.5, it proves the principle of backward induction
for each formula of LT ′ containing the symbol f . It remains to derive both
defining axioms 3.3.6(2)(3) of f in T ′′. If x ≥ θ[y⃗] then we have

f(x, y⃗) =D(x <∗ θ[y⃗], f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]) =
=D(0, f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]) = ρ[x, y⃗].

This proves the first defining axiom of f in T ′′. If x < θ[y⃗] then we have

f(x, y⃗) =D(x <∗ θ[y⃗], f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]) =
=D(1, f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]) = f̂(θ[y⃗] ∸ x, y⃗) 3.3.7(2)

=

= τ[x,D(ξ1[x, y⃗] <∗ θ[y⃗], f̂(θ[y⃗] ∸ ξ1[x, y⃗], y⃗), ρ[ξ1[x, y⃗], y⃗]), . . . ,
D(ξk[x, y⃗] <∗ θ[y⃗], f̂(θ[y⃗] ∸ ξk[x, y⃗], y⃗), ρ[ξk[x, y⃗], y⃗]), y⃗] =

= τ[x, f(ξ1[x, y⃗], y⃗), . . . , f(ξk[x, y⃗], y⃗), y⃗].

68 3 Primitive Recursive Schemes

This proves the second defining axiom of f in T ′′.
Vice versa, in order to show T ′ ⊢ T ′′ it suffices to prove

T ′ ⊢ f(x, y⃗) =D(x <∗ θ[y⃗], f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]).
The property is proved by backward induction on the difference θ[y⃗] ∸ x. So
take any x, y⃗ and consider two cases by dichotomy. If x ≥ θ[y⃗] then we have

f(x, y⃗) = ρ[x, y⃗] =D(0, f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]) =
=D(x <∗ θ[y⃗], f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]).

If x < θ[y⃗] then θ[y⃗] ∸ ξi[x, y⃗] < θ[y⃗] ∸ x by 3.3.6(1) for all i = 1, . . . , k. Thus

f(x, y⃗) = τ[x, f(ξ1[x, y⃗], y⃗), . . . , f(ξk[x, y⃗], y⃗), y⃗] k×IH
=

= τ[x,D(ξ1[x, y⃗] <∗ θ[y⃗], f̂(θ[y⃗] ∸ ξ1[x, y⃗], y⃗), ρ[ξ1[x, y⃗], y⃗]), . . . ,
D(ξk[x, y⃗] <∗ θ[y⃗], f̂(θ[y⃗] ∸ ξk[x, y⃗], y⃗), ρ[ξk[x, y⃗], y⃗]), y⃗] 3.3.7(2)

=

= f̂(θ[y⃗] ∸ x, y⃗) =D(1, f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]) =
=D(x <∗ θ[y⃗], f̂(θ[y⃗] ∸ x, y⃗), ρ[x, y⃗]). ⊓⊔

3.3.9 Theorem Primitive recursive functions are closed under backward re-
cursion.

Proof. By inspection of the proof of Thm. 3.3.8. ⊓⊔

3.4 Recursion with Parameter Substitution

3.4.1 Introduction. In this section we will investigate in PA recursive def-
initions for which parameters change in recursive applications. This new
scheme is called recursion with parameter substitution.

3.4.2 Example of primitive recursion with parameter substitution.

Our first example of recursion with parameter substitution is the efficient
implementation of the sequence of Fibonacci (see Par. 1.1.4). Recall that the
fast program for the Fibonacci function

fib(0) = 0

fib(n + 1) = g(n,1,0)

3.4 Recursion with Parameter Substitution 69

is obtained with the help of the auxiliary ternary function g defined by

g(0, a, b) = a
g(n + 1, a, b) = g(n,a + b, a).

Note that the value g(n + 1, a, b) depends on the value g(n,a + b, a) from
the previous stage, where the terms a + b and a has been substituted for the
parameters a and b, respectively. We say that the function g(n,a, b) is defined
by primitive recursion on n with substitution in the parameters a and b.

3.4.3 Example of course of values recursion with parameter substi-

tution. The second example is the algorithm of Euclid for computing of the
greatest common divisor of two numbers:

gcd(0, y) = y
gcd(x + 1, y) = gcd(y mod (x + 1), x + 1),

which relies on the following property of divisibility:

⊢PA y ≠ 0 → z ∣ x ∧ z ∣ y↔ z ∣ y ∧ z ∣ x mod y.

These two equations have a form of a course of values recursive definition
because the first argument decreases in the recursive application:

y mod (x + 1) ≤ x < x + 1.

The only difference between the above definition and the one discussed in
Sect. 3.2 is that in this case the parameter changes in recursion. Namely, the
term x+ 1 is substituted for the parameter y in the second equation. We say
that the function gcd(x, y) is defined by course of values recursion on x with
substitution in the parameter y.

3.4.4 Extensions by recursion with substitution in parameters. Let
T be an extension by definitions of PA and f a new (n+1)-ary function
symbol. Let further

ρ[y⃗], τ[x, z⃗, y⃗], ξ1[x, y⃗], σ⃗1[x, y⃗], . . . , ξk[x, y⃗], σ⃗k[x, y⃗]
be terms of LT in which no other variables than the indicated ones are free
such that

T ⊢ ξ1[x, y⃗] ≤ x . . . T ⊢ ξk[x, y⃗] ≤ x.
Consider the theory T ′ obtained from the theory T by adding the function
symbol f , the defining axioms of f

70 3 Primitive Recursive Schemes

f(0, y⃗) = ρ[y⃗]
f(x + 1, y⃗) = τ [x, f(ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . , f(ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗] .

and the scheme of mathematical induction for the formulas of LT ′ containing
the symbol f . We say that T ′ is an extension of T by (course of values)
recursion with parameter substitution.

The assertion that T ′ is an extension by definition of T will be proved at
the end of this section. The proof proceeds in stages. First, we show that the
scheme of primitive recursion with parameter substitution with two recursive
applications (k = 2) and one parameter (n = 1) is admissible in PA. This
is proved in Thm. 3.4.14 by reducing the scheme to backward recursion.
Next, we extend the result to primitive recursion with arbitrary number of
recursive applications (Thm. 3.4.18) and parameters (Thm. 3.4.22). Finally,
we show how to reduce course of values recursion with parameter substitution
to primitive recursion (Thm. 3.4.27).

Remark. The definition can be viewed as a function operator which takes all
functions applied in the terms ρ, τ, ξ1, σ⃗1, . . . , ξk, σ⃗k and yields the function f
as a result. We will prove in Thm. 3.4.28 that the class of primitive recur-
sive functions is closed under the operator of course of values recursion with
parameter substitution.

Primitive Recursion with Parameter Substitution:

Case k = 2 and n = 1

3.4.5 Introduction. In this subsection we will investigate the scheme of
primitive recursion with substitution in one parameter (n = 1), where only
two different recursive applications are allowed (k = 2). The admissibility of
the scheme in PA will be shown in Thm. 3.4.14.

We will fix the notation used in this subsection as follows. Let T be an
extension by definitions of PA and T ′ an extension of T by primitive recursion
with parameter substitution with the defining axioms

f(0, y) = ρ[y] (1)

f(x + 1, y) = τ[x, f(x,σ1[x, y]), f(x,σ2[x, y]), y]. (2)

Here f is a new binary function symbol. We claim that T ′ is an extension of
T by definitions. We will prove this fact by reducing the scheme to backward
recursion.

We will be working in an extension by definitions of the theory T . We will
keep the notation T also for this extension of T .

3.4 Recursion with Parameter Substitution 71

3.4.6 The outline of of the proof. We will introduce the function f into
the theory T by the arithmetization of computation trees for f in which we use
as computational rules its defining axioms 3.4.5(1)(2). The computation of
the application f(x, y) can be visualized as a binary tree with labels consisting
of all applications f(xi, yi) which are needed to compute the value f(x, y).

Binary trees are coded as follows. The empty tree is coded by the number
0. A non-empty tree is coded by the number ⟨z, l, r⟩, where z is the label of its
root node, and l and r are the codes of its left and right subtrees, respectively.
Note that if t is the code of a non-empty tree then the label of its root node
is the first projection of t, i.e. the number π1(t).

We intend to introduce f into T with the help of its course of values func-
tion f . The function f(x, y) yields the computation tree for the application
f(x, y), i.e. we would like to have

f(0, y) = ⟨f(0, y),0,0⟩
f(x + 1, y) = ⟨f(x + 1, y), f(x,σ1[x, y]), f(x,σ2[x, y])⟩

in the standard model. The function f can then be defined explicitly by

f(x, y) = π1f(x, y)
as primitive recursive.

Figure 3.1 shows an example of computation tree f(x, y) for the applica-
tion f(x, y). Note that each node of the tree has the form f(xi, yi) for some
word i over two-symbol alphabet Σ = {1,2}. The dyadic word i represents the
path from the root to that node in obvious manner. Note that we can easily
recover the arguments of the application f(xi, yi) from the arguments of the
application f(x, y) and the path i. Clearly, the recursive argument xi is the
difference between x and the and the length of the dyadic word i. Moreover

y∅ = y yi1 = σ1[xi1, yi] yi2 = σ2[xi2, yi].
This gives us simple recurrences for computing the parameter yi.

By the results of Par. 1.1.5, there is simple correspondence between dyadic
words and dyadic representation of natural numbers. Recall that every natu-
ral number has a unique representation as a dyadic numeral which are terms
built up from the constant 0 by applications of the dyadic successors

x1 = 2x + 1 x2 = 2x + 2.

Dyadic representation allows simple coding of dyadic words into natural num-
bers. For instance, the code number of the dyadic word 221 is the number

0221 = 2 × (2 × (2 × 0 + 2) + 2) + 1 = 2 × 22 + 2 × 21 + 1 × 20 = 13.

72 3 Primitive Recursive Schemes

f(x, y)

f(x1, y1)

f(x11, y11)

f(x111, y111)
f(x1111, y1111)

f(x1112, y1112)

f(x112, y112)
f(x1121, y1121)

f(x1122, y1122)

f(x12, y12)

f(x121, y121)
f(x1211, y1211)

f(x1212, y1212)

f(x122, y122)
f(x1221, y1221)

f(x1222, y1222)

f(x2, y2)

f(x21, y21)

f(x211, y211)
f(x2111, y2111)

f(x2112, y2112)

f(x212, y212)
f(x2121, y2121)

f(x2122, y2122)

f(x22, y22)

f(x221, y221)
f(x2211, y2211)

f(x2212, y2212)

f(x222, y222)
f(x2221, y2221)

f(x2222, y2222)

Fig. 3.1 Computation tree of depth 5

Arithmetization is so straightforward that, from now on, we will usually iden-
tify dyadic words with their code numbers.

We intend to compute f(x, y) from bottom-up using backward recursion.
This is done with the help of the course of values subtree function f(x, y).i
which returns the subtree of the computation tree for f(x, y) at position
indexed by the dyadic path i. That is, we would like to have

π1f(x, y).i = f(xi, yi)
for every dyadic path i in the computation tree f(x, y). Hence

f(x, y) = π1f(x, y).0
and we can take the identity as an explicit definition of the course of values
function. Note that 0 is the code number of the empty dyadic word ∅.

3.4.7 Dyadic case analysis. Note that we have

3.4 Recursion with Parameter Substitution 73

⊢PA x = 0 ∨ ∃y x = x1 ∨ ∃y x = x2. (1)

This is called the principle of dyadic case analysis on the number x.

3.4.8 Dyadic size. The unary function ∣x∣d yields the number of dyadic
successors in the dyadic representation of x. The dyadic size function satisfies

⊢PA ∣0∣d = 0 (1)

⊢PA ∣x1∣d = ∣x∣d + 1 (2)

⊢PA ∣x2∣d = ∣x∣d + 1 (3)

and it is defined by course of values recursion as a p.r. function by

∣0∣d = 0

∣x + 1∣d = ∣x ÷ 2∣d + 1.

The following property will be needed later:

∣x∣d < n↔ x + 1 < 2n. (4)

In the sequel we will tacitly use the properties (1)-(3) of dyadic size.

Proof. (1): Directly from definition. (2): It follows from

∣x1∣d = ∣2x + 1∣d = ∣2x ÷ 2∣d + 1 = ∣x∣d + 1.

(3): This is proved similarly.
(4): By complete induction on x as ∀n(4). In the induction step take any

n and consider three cases according to 3.4.7(1). If x = 0 then we have

∣0∣d < n⇔ 0 < n⇔ 1 < 2n ⇔ 0 + 1 < 2n.

If x = y1 for some y then y < x and we obtain

∣y1∣d < n (2)
⇔ ∣y∣d + 1 < n⇔ ∃m (n =m + 1 ∧ ∣y∣d + 1 <m + 1)⇔
⇔ ∃m (n =m + 1 ∧ ∣y∣d <m) IH

⇔ ∃m (n =m + 1 ∧ y + 1 < 2m)⇔
⇔ ∃m (n =m + 1 ∧ 2y + 2 < 2m+1)⇔ 2y + 2 < 2n ⇔ y1 + 1 < 2n.

The case when x = y2 for some y has a similar proof. ⊓⊔

3.4.9 Dyadic concatenation. The binary function x ⋆ y yields a number
which dyadic representation is obtained from the dyadic representations of x
and y by appending the digits of y after the digits of x. The dyadic concate-
nation function x ⋆ y satisfies the identities

74 3 Primitive Recursive Schemes

⊢PA x ⋆ 0 = x (1)

⊢PA x ⋆ y1 = (x ⋆ y)1 (2)

⊢PA x ⋆ y2 = (x ⋆ y)2 (3)

and it is defined explicitly as a p.r. function by

x ⋆ y = x2∣y∣d + y.

We will need the following distributive property:

∣x ⋆ y∣d = ∣x∣d + ∣y∣d . (4)

In the sequel we will tacitly use the properties (1)-(3) of dyadic concatenation.

Proof. (1): We have x ⋆ 0 = x2∣0∣d + 0 = x20 = x. (2): It follows from

x ⋆ y1 = x2∣y1∣
d + y1 = x2∣y∣d+1 + 2y + 1 = 2 (x2∣y∣d + y) + 1 = (x ⋆ y)1.

(3): This is proved similarly.
(4): By complete induction on y. In the induction step we consider three

cases according to 3.4.7(1). If y = 0 then

∣x ⋆ 0∣d (1)
= ∣x∣d = ∣x∣d + 0 = ∣x∣d + ∣0∣d .

If y = z1 for some z then z < y and we obtain

∣x ⋆ z1∣d (2)
= ∣(x ⋆ z)1∣d = ∣x ⋆ z∣d + 1

IH
= ∣x∣d + ∣z∣d + 1 = ∣x∣d + ∣z1∣d .

The case when y = z2 for some z has a similar proof. ⊓⊔

3.4.10 Selector function for recursive arguments. By xi(x) we denote
the binary function which computes the recursive argument of the recursive
application of f at position indexed by the dyadic path i in the computation
tree for f(x, y). The function satisfies

⊢PA x0(x) = x (1)

⊢PA xi1(x) = xi(x) ∸ 1 (2)

⊢PA xi2(x) = xi(x) ∸ 1 (3)

and it is defined explicitly as a p.r. function by

xi(x) = x ∸ ∣i∣d .
We will need the following composition property of the selector function:

⊢PA xi⋆j(x) = xjxi(x). (4)

3.4 Recursion with Parameter Substitution 75

In the sequel we will tacitly use the properties (1)-(3).

Proof. (1): We have x0(x) = x ∸ ∣0∣d = x ∸ 0 = x. (2): It follows from

xi1(x) = x ∸ ∣i1∣d = x ∸ (∣i∣d + 1) = x ∸ ∣i∣d ∸ 1 = xi(x) ∸ 1.

(3): This is proved similarly. (4): It follows from

xi⋆j(x) = x ∸ ∣i ⋆ j∣d 3.4.9(4)
= x ∸ (∣i∣d + ∣j∣d) = x ∸ ∣i∣d ∸ ∣j∣d =

= xi(x) ∸ ∣j∣d = xjxi(x). ⊓⊔

3.4.11 Selector function for parameters. The ternary function yi(x, y)
computes the parameter of the recursive application of f at position indexed
by the dyadic path i in the computation tree for f(x, y). The function satisfies

T ⊢ y0(x, y) = y (1)

T ⊢yi1(x, y) = σ1[xi1(x),yi(x, y)] (2)

T ⊢yi2(x, y) = σ2[xi2(x),yi(x, y)] (3)

and it is defined by course of values recursion on i as a p.r. function:

y0(x, y) = y
yi+1(x, y) =D((i + 1)mod 2, σ1[xi+1(x),yi÷2(x, y)], σ2[xi+1(x),yi÷2(x, y)]).
The following is the composition property of the parameter selector function:

T ⊢ yi⋆j(x, y) = yj(xi(x),yi(x, y)). (4)

In the sequel we will use the properties (1)-(3) without explicit reference.

Proof. (1): From definition. (2): We have (2i + 1)mod 2 = 1 ≠ 0 and therefore

yi1(x, y) = y2i+1(x, y) = σ1[x2i+1(x),y2i÷2(x, y)] = σ1[xi1(x),yi(x, y)].
(3): This is proved similarly. (4): By complete induction on j. In the induction
step we consider three cases according to 3.4.7(1). If j = 0 then

yi⋆0(x, y) = yi(x, y) = y0(xi(x),yi(x, y)).
If j = k1 for some k then k < j and we obtain

yi⋆k1(x, y) = y(i⋆k)1(x, y) (2)
= σ1[x(i⋆k)1(x),yi⋆k(x, y)] =

= σ1[xi⋆k1(x),yi⋆k(x, y)] 3.4.10(4)
= σ1[xk1xi(x),yi⋆k(x, y)] IH

=

= σ1 [xk1xi(x),yk(xi(x),yi(x, y))] (2)
= yk1(xi(x),yi(x, y)).

The case when j = k2 for some k is similar. ⊓⊔

76 3 Primitive Recursive Schemes

3.4.12 Course of values subtree function. The ternary function f(x, y).i
returns the subtree of the computation tree for f(x, y) at position indexed
by the dyadic path i. It has the following basic properties:

T ⊢ ∣i∣d = x→ f(x, y).i = ⟨ρ[yi(x, y)],0,0⟩ (1)

T ⊢ ∣i∣d < x→ f(x, y).i = (2)

⟨τ[xi(x) ∸ 1,π1(f(x, y).i1),π1(f(x, y).i2),yi(x, y)],
f(x, y).i1, f(x, y).i2⟩.

The course of values subtree function f(x, y).i for f is defined by backward
recursion on the difference 2x ∸ 1 ∸ i as a p.r. function by

i ≥ 2x ∸ 1 → f(x, y).i = ⟨ρ[yi(x, y)],0,0⟩
i < 2x ∸ 1 → f(x, y).i = ⟨τ[xi(x) ∸ 1,π1(f(x, y).i1),π1(f(x, y).i2),yi(x, y)],

f(x, y).i1, f(x, y).i2⟩.
The composition property of the course of values subtree function is

T ⊢ ∣i ⋆ j∣d ≤ x→ f(x, y).(i ⋆ j) = f(xi(x),yi(x, y)).j. (3)

Proof. (1),(2): Directly from definition by noting that

i < 2x ∸ 1 ⇔ i + 1 < 2x 3.4.8(4)
⇔ ∣i∣d < x.

(3): By backward induction on the difference x ∸ ∣j∣d. So take any i, j, x such
that ∣i ⋆ j∣d ≤ x and consider two cases. If ∣i ⋆ j∣d = x then ∣i∣d + ∣j∣d = x by
3.4.9(4) and therefore ∣j∣d = x ∸ ∣i∣d = xi(x). We obtain

f(x, y).(i ⋆ j) (1)
= ⟨ρ[yi⋆j(x, y)],0,0⟩ 3.4.11(4)

= ⟨ρ[yj(xi(x),yi(x, y))],0,0⟩ (1)
=

= f(xi(x),yi(x, y)).j
So suppose that ∣i ⋆ j∣d < x. We then have ∣i∣d + ∣j∣d < x by 3.4.9(4) and there-
fore ∣j∣d < x ∸ ∣i∣d = xi(x) and

∣i ⋆ j1∣d 3.4.9(4)
= ∣i∣d + ∣j1∣d = ∣i∣d + ∣j∣d + 1 ≤ x.

From ∣j∣d < x we obtain ∣j∣d < ∣j∣d + 1 = ∣j1∣d ≤ x and thus x ∸ ∣j1∣d < x ∸ ∣j∣d.
Therefore

3.4 Recursion with Parameter Substitution 77

f(x, y).(i ⋆ j) (2)
=

= ⟨τ[xi⋆j(x) ∸ 1,π1(f(x, y).(i ⋆ j)1),π1(f(x, y).(i ⋆ j)2),yi⋆j(x, y)],
f(x, y).(i ⋆ j)1, f(x, y).(i ⋆ j)2⟩ 3.4.10(4),3.4.11(4)

=

= ⟨τ[xjxi(x) ∸ 1,π1(f(x, y).(i ⋆ j1)),π1(f(x, y).(i ⋆ j2)),
yj(xi(x),yi(x, y))], f(x, y).(i ⋆ j1), f(x, y).(i ⋆ j2)⟩ 2×IH

=

= ⟨τ[xjxi(x) ∸ 1,π1(f(xi(x),yi(x, y)).j1),π1(f(xi(x),yi(x, y)).j2),
yj(xi(x),yi(x, y))], f(xi(x),yi(x, y)).j1, f(xi(x),yi(x, y)).j2⟩ (2)

=

= f(xi(x),yi(x, y)).j. ⊓⊔

3.4.13 Course of values function. The binary function f(x, y) returns
the computation tree for f(x, y). The function satisfies

T ⊢ f(0, y) = ⟨ρ[y],0,0⟩ (1)

T ⊢f(x + 1, y) = ⟨τ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y]), y],
f(x,σ1[x, y]), f(x,σ2[x, y])⟩

(2)

and it is defined explicitly with the help of the course of values subtree func-
tion f(x, y).i for f as follows

f(x, y) = f(x, y).0.
Proof. (1): We have ∣0∣d = 0 and thus

f(0, y) = f(0, y).0 3.4.12(1)
= ⟨ρ[y0(0, y)],0,0⟩ = ⟨ρ[y],0,0⟩.

(2): First note that the following holds

T ⊢ ∣i∣d ≤ x→ f(x, y).i = f(xi(x),yi(x, y)). (†1)

Indeed, if ∣i∣d ≤ x then ∣i ⋆ 0∣d = ∣i∣d ≤ x and therefore

f(x, y).i = f(x, y).(i ⋆ 0) 3.4.12(3)
= f(xi(x),yi(x, y)).0 = f(xi(x),yi(x, y)).

Further note that we have also

x01(x + 1) = x0(x + 1) ∸ 1 = x + 1 ∸ 1 = x (†2)

y01(x + 1, y) = σ1[x01(x + 1),y0(x + 1, y)] (†2)= σ1[x, y] . (†3)

78 3 Primitive Recursive Schemes

We have ∣0∣d = 0 < x + 1 and therefore

f(x + 1, y) = f(x + 1, y).0 3.4.12(2)
=

= ⟨τ[x0(x + 1) ∸ 1,π1(f(x + 1, y).01),π1(f(x + 1, y).02),y0(x + 1, y)],
f(x + 1, y).01, f(x + 1, y).02⟩ =

= ⟨τ[x,π1(f(x + 1, y).01),π1(f(x + 1, y).02), y],
f(x + 1, y).01, f(x + 1, y).02⟩ (†

1
)

=

= ⟨τ[x,π1f(x01(x + 1),y01(x + 1, y)),π1f(x02(x + 1),y02(x + 1, y)), y],
f(x01(x + 1),y01(x + 1, y)), f(x02(x + 1),y02(x + 1, y))⟩ (†

2
),(†

3
)

=

= ⟨τ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y]), y], f(x,σ1[x, y]), f(x,σ2[x, y])⟩.
This proves the property (2). ⊓⊔

3.4.14 Theorem If T is an extension by definitions of PA then any exten-
sion of T by primitive recursion with parameter substitution for the case k = 2
and n = 1 is an extension by definition.

Proof. Let T ′ be an extension of T by recursion with parameter substitution
as in Par. 3.4.5 and T ′′ an extension of T by the explicit definition

f(x, y) = π1f(x, y),
where f is the course of values function for f from Par. 3.4.13. We have
LT ′′ = LT ′ and T ′′ is an extension by definition of T by Thm. 1.3.19. It suffices
to show that the theories T ′ and T ′′ have the same theorems.

First we show T ′′ ⊢ T ′. The theory T ′′ is an extension by definitions of PA
and thus, by Thm. 1.4.9, it proves the principle of mathematical induction
for each formula of LT ′ containing f . It remains to show that T ′′ proves both
defining axioms 3.4.5(1)(2) of f . The first defining axiom follows from

f(0, y) = π1f(0, y) 3.4.13(1)
= π1⟨ρ[y],0,0⟩ = ρ[y].

The second defining axiom follows from

f(x + 1, y) = π1f(x + 1, y) 3.4.13(2)
= τ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y]), y] =

= τ[x, f(x,σ1[x, y]), f(x,σ2[x, y]), y].
Vice versa, in order to show T ′ ⊢ T ′′ it suffices to prove

3.4 Recursion with Parameter Substitution 79

T ′ ⊢ ∀y f(x, y) = π1f(x, y).
This is proved by induction on x. In the base case take any y and we have

f(0, y) = ρ[y] = π1⟨g(y),0,0⟩ 3.4.13(1)
= π1f(0, y).

In the induction step take any y and we obtain

f(x + 1, y) = τ[x, f(x,σ1[x, y]), f(x,σ2[x, y]), y] 2×IH
=

= τ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y]), y] 3.4.13(2)
= π1f(x + 1, y). ⊓⊔

3.4.15 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution for the case k = 2 and n = 1.

Proof. By inspection of the proof of Thm. 3.4.14. ⊓⊔

Primitive Recursion with Parameter Substitution:

Case n = 1

3.4.16 Introduction. In this subsection we will show that the scheme of
primitive recursion with substitution in one parameter is admissible in PA.
This will be proved in Thm. 3.4.18 by reducing the number of recursive
applications. This leads eventually to primitive recursion with substitution
in one parameter and two recursive applications.

We will fix the notation used in this subsection as follows. Let T be an
extension by definitions of PA and T ′ an extension of T by primitive recursion
with parameter substitution with the defining axioms

f(0, y) = ρ[y] (1)

f(x + 1, y) = τ [x, f(x,σ1[x, y]), . . . , f(x,σk+1[x, y]), y] . (2)

Here f is a new binary function symbol. We claim that T ′ is an extension of
T by definitions.

We will be working in an extension by definitions of the theory T . We will
keep the notation T also for this extension of T .

3.4.17 Reduction of the number of recursive applications. We will
reduce the above definition for k ≥ 2 to a new one, where only k recursive
applications are allowed. This new definition is for a binary function f̂(u, v)
such that f̂(2x, y) = f(x, y) and it is of the form

80 3 Primitive Recursive Schemes

f̂(0, v) = ρ[v]
f̂(u + 1, v) = τ̂ [u, f̂(u, σ̂1[u, v]), . . . , f̂(u, σ̂k[u, v]), v]

for suitable terms τ̂ [u, w⃗, v], σ̂1[u, v], . . . , σ̂k[u, v]. Note that this is primitive
recursion on u with substitution in the parameter v with k recursive appli-
cations. We will take then the identity f(x, y) = f̂(2x, y) as an alternative,
explicit definition of f .

The idea behind reduction of recursive applications is as follows. We would
like to have f̂(2x, y) = f(x, y) and so it must be

T ⊢ f̂(2(x + 1), y) = τ [x, f̂(2x,σ1[x, y]), . . . , f̂(2x,σk+1[x, y]), y] . (1)

For the values of the form f̂(2x + 1, v) we require

f̂(2x + 1, ⟨1, y⟩) = ⟨f(x,σ1[x, y]), . . . , f(x,σk[x, y])⟩
f̂(2x + 1, ⟨2, y⟩) = f(x,σk+1[x, y]).

Note that the application f̂(2x + 1, ⟨1, y⟩) returns a number which codes k

values f(x,σ1[x, y]), . . . , f(x,σk[x, y]) of the function f .
These informal arguments can be rewritten without mentioning the func-

tion f as follows:

T ⊢f̂(2x + 1, ⟨1, y⟩) = ⟨f̂(2x,σ1[x, y]), . . . , f̂(2x,σk[x, y])⟩ (2)

T ⊢f̂(2x + 1, ⟨2, y⟩) = f̂(2x,σk+1[x, y]). (3)

T ⊢ f̂(2x + 2, y) = τ[x, [f̂(2x + 1, ⟨1, y⟩)]k
1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
,

f̂(2x + 1, ⟨2, y⟩), y]
(4)

This means that the terms τ̂ , σ̂1, . . . , σ̂k. satisfy the properties

T ⊢τ̂ [2x + 1, z, zk+1, . . . , y] = τ [x, [z]k1 , . . . , [z]kk , zk+1, y] (5)

T ⊢ τ̂[2x, z1, . . . , zk, ⟨1, y⟩] = ⟨z1, . . . , zk⟩ (6)

T ⊢ τ̂[2x, zk+1, . . . , ⟨2, y⟩] = zk+1 (7)

and

T ⊢ σ̂1[2x + 1, y] = ⟨1, y⟩ (8)

T ⊢ σ̂2[2x + 1, y] = ⟨2, y⟩ (9)

3.4 Recursion with Parameter Substitution 81

T ⊢
k

⋀
i=1

σ̂i[2x, ⟨1, y⟩] = σi[x, y] (10)

T ⊢ σ̂1[2x, ⟨2, y⟩] = σk+1[x, y]. (11)

For that it is sufficient to set

τ̂[u,w1, . . . ,wk, v] ≡ D(u mod 2, τ[u ÷ 2, [w1]k1 , . . . , [w1]kk ,w2, v],
D(π1(v) =∗ 1, ⟨w1, . . . ,wk⟩,w1))

and

σ̂1[u, v] ≡ D(u mod 2, ⟨1, v⟩,
D(π1(v) =∗ 1, σ1[u ÷ 2,π2(v)], σk+1[u ÷ 2,π2(v)]))

σ̂2[u, v] ≡D(u mod 2, ⟨2, v⟩, σ2[u ÷ 2,π2(v)])
σ̂i[u, v] ≡ σi[u ÷ 2,π2(v)] for i = 3, . . . , k.

Proof. (5)-(11): Directly from definition. (2): It follows from

f̂(2x + 1, ⟨1, y⟩) =
= τ̂[2x, f̂(2x, σ̂1[2x, ⟨1, y⟩]), . . . , f̂(2x, σ̂k[2x, ⟨1, y⟩]), ⟨1, y⟩] (10)

=

= τ̂[2x, f̂(2x,σ1[x, y]), . . . , f̂(2x,σk[x, y]), ⟨1, y⟩] (6)
=

= ⟨f̂(2x,σ1[x, y]), . . . , f̂(2x,σk[x, y])⟩.
(3): It follows from

f̂(2x + 1, ⟨2, y⟩) = τ̂[2x, f̂(2x, σ̂1[2x, ⟨2, y⟩]), . . . , ⟨2, y⟩] (11)
=

= τ̂[2x, f̂(2x,σk+1[x, y]), . . . , ⟨2, y⟩] (7)
= f̂(2x,σk+1[x, y]).

(4): It follows from

f̂(2x + 2, y) = f̂(2x + 1 + 1, y) =
= τ̂[2x + 1, f̂(2x + 1, σ̂1[2x + 1, y]), f̂(2x + 1, σ̂2[2x + 1, y]), . . . , y] (8),(9)

=

= τ̂[2x + 1, f̂(2x + 1, ⟨1, y⟩), f̂(2x + 1, ⟨2, y⟩), . . . , y] (5)
=

= τ[x, [f̂(2x + 1, ⟨1, y⟩)]k
1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
, f̂(2x + 1, ⟨2, y⟩), y].

82 3 Primitive Recursive Schemes

We are now in position to prove (1):

f̂(2(x + 1), y) = f̂(2x + 2, y) (4)
=

= τ[x, [f̂(2x + 1, ⟨1, y⟩)]k
1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
, f̂(2x + 1, ⟨2, y⟩), y] (2),(3)

=

= τ[x, f̂(2x,σ1[x, y]), . . . , f̂(2x,σk[x, y]), f̂(2x,σk+1[x, y]), y]. ⊓⊔

3.4.18 Theorem If T is an extension by definitions of PA then any exten-
sion of T by primitive recursion with parameter substitution for the case n = 1
is an extension by definition.

Proof. The claim is proved by (meta-)induction on the number k of recursive
applications in the defining axiom 3.4.16(2). The case k = 0 is in fact explicit
definition with monadic discrimination on the first argument and it follows
from Thm. 3.1.10. The cases k = 1 or k = 2 follow from Thm. 3.4.14. So
suppose that the claim holds for the case k ≥ 2. We will prove that the claim
holds also for the case k + 1.

Let T ′ be an extension of T by primitive recursion with parameter substi-
tution as in Par. 3.4.16 and T ′′ an extension of T by the explicit definition

f(x, y) = f̂(2x, y),
where f̂ is from Par. 3.4.17. We have LT ′ = LT ′′ and T ′′ is an extension by
definition of T by (meta-)IH. In order to prove the claim it suffices to show
that the theories T ′ and T ′′ have the same theorems.

First we show that T ′′ ⊢ T ′. The theory T ′′ is an extension by definitions
of PA and therefore, by Thm. 1.4.9, it proves the principle of mathematical
induction for each formula of LT ′ containing the symbol f . It remains to
show that T ′′ proves both defining axioms 3.4.16(1)(2) of f . The first defining
axiom follows from

f(0, y) = f̂(2 × 0, y) = f̂(0, y) = ρ[y].
The second defining axiom follows from

f(x + 1, y) = f̂(2(x + 1), y) 3.4.17(1)
=

= τ[x, f̂(2x,σ1[x, y]), . . . , f̂(2x,σk+1[x, y]), y] =
= τ[x, f(x,σ1[x, y]), . . . , f(x,σk+1[x, y]), y].

Now we show that T ′ ⊢ T ′′. For that it suffices to prove

T ′ ⊢ ∀y f(x, y) = f̂(2x, y).
This is proved by induction on x. In the base case take any y and we have

3.4 Recursion with Parameter Substitution 83

f(0, y) = ρ[y] = f̂(0, y) = f̂(2 × 0, y).
In the induction step take any y and we obtain

f(x + 1, y) = τ[x, f(x,σ1[x, y]), . . . , f(x,σk+1[x, y]), y] (k+1)×IH=

= τ[x, f̂(2x,σ1[x, y]), . . . , f̂(2x,σk+1[x, y]), y] 3.4.17(1)
=

= f̂(2(x + 1), y). ⊓⊔

3.4.19 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution for the case n = 1.

Proof. By inspection of the proof of Thm. 3.4.18. ⊓⊔

Primitive Recursion with Parameter Substitution

3.4.20 Introduction. In this subsection we will show that the scheme of
primitive recursion with substitution in arbitrary number of parameters is ad-
missible in PA. This will be proved in Thm. 3.4.22 by reducing it to primitive
recursion with substitution in one parameter.

We will fix the notation used in this subsection as follows. Let T be an
extension by definitions of PA and T ′ an extension of T by primitive recursion
with parameter substitution with the defining axioms

f(0, y⃗) = ρ[y⃗] (1)

f(x + 1, y⃗) = τ [x, f(x, σ⃗1[x, y⃗]), . . . , f(x, σ⃗k[x, y⃗]), y⃗] . (2)

Here f is a new (n+1)-ary function symbol (n ≥ 1). We claim that T ′ is an
extension of T by definitions.

Below we will consider the case when the definition has at least two pa-
rameters, i.e. n ≥ 2. The case n = 0 is in fact parameterless primitive recursion
for which the claim has been already proved in Thm. 3.1.10. The case with
one parameter (n = 1) follows from Thm. 3.4.18.

We will be working in an extension by definitions of the theory T . We will
keep the notation T also for this extension of T .

3.4.21 Contraction of parameters. We will reduce the above scheme,
where n ≥ 2, to a new one for a binary function ⟨f⟩(x, y) so that

⟨f⟩(x, y) = f (x, [y]n1 , . . . , [y]nn) .
The n parameters y⃗ ≡ y1, . . . , yn are replaced by a single parameter y. We will
call the number y = ⟨y⃗⟩ ≡ ⟨y1, . . . , yn⟩ the contraction of the numbers y⃗.

84 3 Primitive Recursive Schemes

The contraction function ⟨f⟩(x, y) is defined by primitive recursion on x

with substitution in the (only) parameter y as a p.r. function by

⟨f⟩(0, y) = ρ [[y]n1 , . . . , [y]nn]
⟨f⟩(x + 1, y) = τ[x, ⟨f⟩(x, ⟨σ⃗1[x, [y]n1 , . . . , [y]nn]⟩), . . . ,

⟨f⟩(x, ⟨σ⃗k[x, [y]n1 , . . . , [y]nn]⟩), [y]n1 , . . . , [y]nn].
3.4.22 Theorem If T is an extension by definitions of PA then any exten-
sion of T by primitive recursion with parameter substitution is an extension
by definition.

Proof. Let T ′ be an extension of T by primitive recursion with parameter
substitution as in Par. 3.4.20, where the number of parameters is at least two
(n ≥ 2).2 Let further T ′′ be an extension of T by the explicit definition

f(x, y⃗) = ⟨f⟩(x, ⟨y⃗⟩),
where ⟨f⟩ is the contraction function of f from Par. 3.4.21. We have LT ′ = LT ′′

and T ′′ is an extension by definition of T by Thm. 3.4.18. In order to prove the
claim it suffices to show that the theories T ′ and T ′′ have the same theorems.

We show T ′′ ⊢ T ′ first. The theory T ′′ is an extension by definitions of
PA and therefore, by Thm. 1.4.9, it proves the principle of mathematical
induction for each formula of LT ′ containing the symbol f . It remains to
show that T ′′ proves both defining axioms 3.4.20(1)(2) of f . The first defining
axiom follows from

f(0, y⃗) = ⟨f⟩(0, ⟨y⃗⟩) = ρ [[⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] 2.3.5(1)
= ρ[y⃗].

The second defining axiom follows from

f(x + 1, y⃗) = ⟨f⟩(x + 1, ⟨y⃗⟩) =
= τ[x, ⟨f⟩(x, ⟨σ⃗1[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn]⟩), . . . ,
⟨f⟩(x, ⟨σ⃗k[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn]⟩), [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] 2.3.5(1)

=

= τ [x, ⟨f⟩(x, ⟨σ⃗1[x, y⃗]⟩), . . . , ⟨f⟩(x, ⟨σ⃗k[x, y⃗]⟩), y⃗] =
= τ [x, f(x, σ⃗1[x, y⃗]), . . . , f(x, σ⃗k[x, y⃗]), y⃗] .

Now we show that T ′ ⊢ T ′′. For that it suffices to prove

T ′ ⊢ ∀y⃗ f(x, y⃗) = ⟨f⟩(x, ⟨y⃗⟩).
2 The cases n = 0 or n = 1 follow from Thm. 3.1.10 or Thm. 3.4.16, respectively.

3.4 Recursion with Parameter Substitution 85

This is proved by induction on x. In the base case take any y⃗ and we have

f(0, y⃗) = ρ[y⃗] 2.3.5(1)
= ρ [[⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] = ⟨f⟩(0, ⟨y⃗⟩).

In the induction step take any y⃗ and we obtain

f(x + 1, y⃗) = τ [x, f(x, σ⃗1[x, y⃗]), . . . , f(x, σ⃗k[x, y⃗]), y⃗] k×IH
=

= τ [x, ⟨f⟩(x, ⟨σ⃗1[x, y⃗]⟩), . . . , ⟨f⟩(x, ⟨σ⃗k[x, y⃗]⟩), y⃗] 2.3.5(1)
=

= τ[x, ⟨f⟩(x, ⟨σ⃗1[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn]⟩), . . . ,
⟨f⟩(x, ⟨σ⃗k[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn]⟩), [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] =

= ⟨f⟩(x + 1, ⟨y⃗⟩). ⊓⊔

3.4.23 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution.

Proof. By inspection of the proof of Thm. 3.4.22. ⊓⊔

Course of Values Recursion with Parameter

Substitution

3.4.24 Introduction. In this subsection we will show that the general
scheme of course of values recursion with parameter substitution is admis-
sible in PA. This will be proved in Thm. 3.4.27 by it to primitive recursion
with parameter substitution.

The notation used in this subsection is fixed as follows. Let T be an ex-
tension by definitions of PA and T ′ an extension of T by course of values
recursion with parameter substitution with the defining axioms

f(0, y⃗) = ρ[y⃗] (1)

f(x + 1, y⃗) = τ [x, f(ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . , f(ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗] , (2)

where

T ⊢ ξ1[x, y⃗] ≤ x . . . T ⊢ ξk[x, y⃗] ≤ x. (3)

Here f is a new (n+1)-ary function symbol. We claim that T ′ is an extension
of T by definitions.

We will be working in an extension by definitions of the theory T . We will
keep the notation T also for this extension of T .

86 3 Primitive Recursive Schemes

3.4.25 Approximation function. We will introduce the function f(x, y⃗)
into the theory T with the help of its approximation function f +(z, x, y⃗). The
additional argument z plays the role of the depth of recursion counter. It
estimates the depth of recursion needed to compute the value f(x, y⃗). If z is
sufficiently large then we have f +(z, x, y⃗) = f(x, y⃗). As we will see below every
number z > x gives us sufficient estimation of the depth of recursion. This
will allow us to introduce f into PA explicitly by f(x, y⃗) = f +(x + 1, x, y⃗).

The (n+2)-ary function f +(z, x, y⃗) satisfies

T ⊢ f +(0, x, y⃗) = 0 (1)

T ⊢ f +(z + 1,0, y⃗) = ρ[y⃗] (2)

T ⊢f +(z + 1, x + 1, y⃗) = τ[x,f +(z, ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . ,
f +(z, ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗],

(3)

and it is defined by primitive recursion on z with substitution in the param-
eters x, y⃗ as a p.r. function by

f +(0, x, y⃗) = 0

f +(z + 1, x, y⃗) =D(x, τ[x ∸ 1, f +(z, ξ1[x ∸ 1, y⃗], σ⃗1[x ∸ 1, y⃗]), . . . ,
f +(z, ξk[x ∸ 1, y⃗], σ⃗k[x ∸ 1, y⃗]), y⃗], ρ[y⃗]).

3.4.26 Monotonicity of the approximation function. We have

T ⊢ x < z1 ∧ x < z2 → f +(z1, x, y⃗) = f +(z2, x, y⃗). (1)

The property asserts that the application f +(z, x, y⃗) yields the same result
for every number z > x.

Proof. The property is proved by induction on z1 as ∀x∀y⃗∀z2(1). In the base
case there is nothing to prove. In the induction step take any numbers x, y⃗, z2
such that x < z1+1 and x < z2. Then z2 = z

′
2+1 for some z′2. We consider two

cases. If x = 0 then we have

f +(z1 + 1,0, y⃗) 3.4.25(2)
= ρ[y⃗] 3.4.25(2)

= f +(z′2 + 1,0, y⃗).
If x = x′ +1 for some x′ then ξi[x′, y⃗] ≤ x′ < z1 and ξi[x′, y⃗] ≤ x′ < z′2 for every
i = 1, . . . , k by 3.4.24(3), We obtain

f +(z1 + 1, x′ + 1, y⃗) 3.4.25(3)
=

= τ[x′, f +(z1, ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . , f +(z1, ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] k×IH
=

3.4 Recursion with Parameter Substitution 87

= τ[x′, f +(z′2, ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . , f +(z′2, ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] 3.4.25(3)
=

= f +(z′2 + 1, x′ + 1, y⃗). ⊓⊔

3.4.27 Theorem If T is an extension by definitions of PA then any ex-
tension of T by course of values recursion with parameter substitution is an
extension by definition.

Proof. Let T ′ be an extension of T by course of values recursion with param-
eter substitution as in Par. 3.4.24. Let further T ′′ be an extension of T by
the explicit definition

f(x, y⃗) = f +(x + 1, x, y⃗),
where f + is the approximation function of f from Par. 3.4.25. We have
LT ′ = LT ′′ and T ′′ is an extension by definition of T by Thm. 1.3.18. In
order to prove the claim it suffices to show that the theories T ′ and T ′′ have
the same theorems.

First we show that T ′′ ⊢ T ′. The theory T ′′ is an extension by definitions
of PA and therefore, by Thm. 1.4.9, it proves the principle of mathematical
induction for each formula of LT ′ containing the symbol f . It remains to
show that T ′′ proves both defining axioms 3.4.24(1)(2) of f . The first defining
axiom follows from

f(0, y⃗) = f +(0 + 1,0, y⃗) 3.4.25(2)
= ρ[y⃗].

The second defining axiom is proved as follows. Recall that by 3.4.24(3) we
have ξi[x, y⃗] < x + 1 for every i = 1, . . . , k. We then obtain

f(x + 1, y⃗) = f +(x + 1 + 1, x + 1, y⃗) 3.4.25(3)
=

= τ[x, f +(x + 1, ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . ,
f +(x + 1, ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗] 3.4.26(1)

=

= τ[x, f +(ξ1[x, y⃗] + 1, ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . ,
f +(ξk[x, y⃗] + 1, ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗] =

= τ[x, f(ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . , f(ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗].
We now show that T ′ ⊢ T ′′. For that it suffices to prove

T ′ ⊢ ∀y⃗ f(x, y⃗) = f +(x + 1, x, y⃗).
This is proved by complete induction on x. So take any y⃗ and consider two
cases. If x = 0 then we have

88 3 Primitive Recursive Schemes

f(0, y⃗) = ρ[y⃗] 3.4.25(2)
= f +(0 + 1,0, y⃗).

If x = x′+1 for some x′ then ξi[x′, y⃗] < x′ + 1 for every i = 1, . . . , k by 3.4.24(3),
We then obtain

f(x′ + 1, y⃗) = τ[x′, f(ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . , f(ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] k×IH
=

= τ[x′, f +(ξ1[x′, y⃗] + 1, ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . ,
f +(ξk[x′, y⃗] + 1, ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] 3.4.26(1)

=

= τ[x′, f +(x′ + 1, ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . ,
f +(x′ + 1, ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] 3.4.25(3)

=

= f +(x′ + 1 + 1, x′ + 1, y⃗). ⊓⊔

3.4.28 Theorem Primitive recursive functions are closed under course of
values recursion with parameter substitution.

Proof. By inspection of the proof of Thm. 3.4.27. ⊓⊔

3.5 Nested Simple Recursion

3.5.1 Introduction. In this section we will investigate recursive definitions
for which parameters may be arbitrarily substituted for, even with nested
recursive applications. For instance:

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x,σ[x, y, f(x, y)]), y).

The function f is an example of a 1-recursive function in the hierarchy of
multiply recursive functions. Péter has proved in [39, 40] that primitive re-
cursive functions are closed under 1-recursion. The scheme of 1-recursion is
usually called nested simple recursion and we will also adopt this convention.

3.5.2 Notation. Let τ[f] be a term which may apply an n-ary function
symbol f and x⃗ pairwise different n variables. We will use the special lambda
notation τ[λ̇x⃗.ρ[x⃗]], for the term obtained from τ by the replacement of all

applications f(θ⃗) in it by terms ρ[θ⃗].
3.5.3 Extensions by nested simple recursion. Let T be an extension
by definitions of PA and f a new (n+1)-ary function symbol. Let further ρ[y⃗]
be a term of LT and τ[f ;x, y⃗] a term of the extended language LT ∪ {f} in

3.5 Nested Simple Recursion 89

which no other variables than the indicated ones are free. Consider the theory
T ′ obtained from T by adding the symbol f , the defining axioms

f(0, y⃗) = ρ[y⃗] (1)

f(x + 1, y⃗) = τ[λ̇x1y⃗.f(x, y⃗);x, y⃗], (2)

and the scheme of mathematical induction for the formulas of LT ′ containing
the symbol f . We say that T ′ is an extension of T by nested simple recursion.

We will show at the end of this section in Thm. 3.5.19 that the theory T ′ is
an extension by definition of T . The proof proceeds in stages. First, we prove
the claim for the scheme with with two recursive applications (k = 2) and
one parameter (n = 1). This is proved in Thm. 3.5.11 by reducing the scheme
to course of values recursion with parameter substitution. Next, we extend
this result to the scheme with arbitrary number of recursive applications
(Thm. 3.5.15). Finally, we prove the claim for the scheme with arbitrary
number of parameters (Thm. 3.5.19).

We may assume that the function f is applied in τ at least once because
otherwise there would be nothing to prove. In order to simplify our discussion
we transform the equation (2) into equivalent one by ‘unnesting’ all recursive
applications of f in the term τ :

k

⋀
i=1

f(x, σ⃗i[x, y⃗, z⃗i−1]) = zi → f(x + 1, y⃗) = θ[x, z⃗, y⃗]. (3)

Here z⃗i abbreviates z1, . . . , zi and the terms σ1, . . . , σk, θ contain at most the
indicated variables and do not apply f .

Remark. The definition can be viewed as a function operator which takes
all auxiliary functions applied in the terms ρ, τ and yields the function f as
a result. We will prove in Thm. 3.5.20 that the class of primitive recursive
functions is closed under the operator of nested simple recursion.

Nested Simple Recursion: Case k = 2 and n = 1

3.5.4 Introduction. In this subsection we will investigate the scheme of
nested simple recursion with two different recursive applications (k = 2) and
one parameter (n = 1). The admissibility of the scheme in PA will be shown
in Thm. 3.5.11.

We will fix the notation used in this subsection as follows. Let T be an
extension by definitions of PA and T ′ an extension of T by nested simple
recursion with the defining axioms

90 3 Primitive Recursive Schemes

f(0, y) = ρ[y] (1)

f(x + 1, y) = θ[x, f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])]), y]. (2)

Here f is a new binary function symbol. We claim that T ′ is an extension
of T by definitions. We will prove this fact by reducing the above scheme to
previous recursive schemes.

We will be working in an extension by definitions of the theory T . We will
keep the notation T also for this extension of T .

3.5.5 The outline of the proof. We will introduce the function f into
the theory T by arithmetization of its computation trees in which we use as
computational rules the defining axioms 3.5.4(1)(2). The evaluation of the
application f(x, y) can be visualized as a full binary tree of depth x+ 1 with
labels consisting of all applications f(xi, yi) which are needed to compute
the value f(x, y).

Binary trees are coded as follows. The empty tree is coded by the number
0. A non-empty tree is coded by the number ⟨z, l, r⟩, where z is the label of its
root node, and l and r are the codes of its left and right subtree, respectively.
Note that if t is the code of a non-empty tree then the label of its root node
is the first projection of t, i.e. the number π1(t).

We intend to introduce f with the help of its course of values function f .
The function f(x, y) yields the computation tree for the application f(x, y):

f(0, y) = ⟨f(0, y),0,0⟩
f(x + 1, y) = ⟨f(x + 1, y), f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])])⟩.

We will introduce the course of values function into the theory T as a p.r.
function. Hence, the following explicit definition f(x, y) = π1f(x, y). intro-
duces f into T as a p.r. function.

Note that the natural evaluation strategy for calculating f(x, y) corre-
sponds to postorder traversal of the computation tree f(x, y) for f(x, y).
Consider, for instance, the computation tree from Fig. 3.2. The sequence

f(x0, y0), f(x1, y1), f(x2, y2), . . . , f(xi, yi), . . . (1)

of its labels consists of all applications which are needed to compute its root
value. Note that the parameter yi of each application f(xi, yi) depends only
on those values f(xj , yj) which are directly before it (j < i). This means
that the order in which the sequence (1) is sorted corresponds to postorder
traversal of the computation tree. We will extend this indexing scheme also
for binary trees (already shown in Fig. 3.2).

Let us now consider a finite sequence of full binary trees of depth x + 1

t0, t1, t2, . . . , ti, . . . , t2x+1∸1

3.5 Nested Simple Recursion 91

where each tree ti+1 satisfies the following condition: the subtree of ti+1 at
position i is a computation tree for f(xi, yi). We will call such trees partial
computation trees for f(x, y). Note that the last tree t2x+1∸1 is in fact a (full)
computation tree for f(x, y).

This suggests the following method for building the computation tree for
f(x, y). We start by creating a ’dummy’ full binary tree t0 of depth x + 1.
Suppose now that after i < 2x+1-steps we have a partial computation tree ti
for f(x, y), The tree is updated at position i by the value f(xi, yi) whereby
we obtain a new partial computation tree ti+1 for f(x, y). After 2x+1 steps
we obtain a full computation tree for f(x, y).

f(x14, y14)

f(x6, y6)

f(x2, y2)

f(x0, y0) f(x1, y1)

f(x5, y5)

f(x3, y3) f(x4, y4)

f(x13, y13)

f(x9, y9)

f(x7, y7) f(x8, y8)

f(x12, y12)

f(x10, y10) f(x11, y11)

Fig. 3.2 Postorder traversal of a computation tree of depth 4

3.5.6 Full binary trees. The function Full(n) creates a full binary tree of
the depth n. The function is defined by primitive recursion as a p.r. function:

Full(0) = 0

Full(n + 1) = ⟨0,Full(n),Full(n)⟩.
3.5.7 Local node condition. The application V (x, y, l, r) determines the
correct value f(x, y) from the subtrees l and r of a partial computation tree⟨z, l, r⟩ for f(x, y). The function is primitive recursive by the following explicit
definition (with monadic discrimination):

V (0, y, l, r) = ρ[y]
V (x + 1, y, l, r) = θ[x,π1(l),π1(r), y]

3.5.8 Local update. The 4-ary function U (t, i, x, y) updates the partial
computation tree t for f(x, y) at position i by the expected value f(xi, yi).
The function has the following basic properties

T ⊢ i < 2x ∸ 1 → U (⟨z, l, r⟩, i, x, y) = ⟨z,U (l, i, x ∸ 1, σ1[x ∸ 1, y]), r⟩ (1)

92 3 Primitive Recursive Schemes

T ⊢ j < 2x ∸ 1 → U (⟨z, l, r⟩,2x ∸ 1 + j, x, y) =
⟨z, l,U (r, j, x ∸ 1, σ2[x ∸ 1, y,π1(l)])⟩ (2)

T ⊢ U (⟨z, l, r⟩,2x+1 ∸ 2, x, y) = ⟨V (x, y, l, r), l, r⟩. (3)

Note that both ’recursive’ applications of the function U on the right-hand
side of the conditional equations (1) and (2) are applied to lesser arguments l <⟨z, l, r⟩ and r < ⟨z, l, r⟩ than the one on the left. We will use this observation to
find a course of values recursive definition of U as follows. The transformation
of the specification properties into course of values derivation of U is based
on the following simple properties of the projection functions:

⊢PA ∃z∃l∃r t = ⟨z, l, r⟩↔ π2(t) ≠ 0

⊢PA t = ⟨z, l, r⟩→ z = π1(t) ∧ l = π1π2(t) ∧ r = π2
2(t)

⊢PA π1(t + 1) ≤ t ∧ π1π2(t + 1) ≤ t ∧ π2
2(t + 1) ≤ t.

Now let ξ be the term

ξ[t, l1, r1, i, x, y] ≡ D(π2(t),
D(i+1 <∗ 2x,

⟨π1(t), l1,π2
2(t)⟩,

D(i+2 <∗ 2x+1,

⟨π1(t),π1π2(t), r1⟩,
⟨V (x, y,π1π2(t),π2

2(t)),π1π2(t),π2
2(t)⟩)),0).

The function U (t, i, x, y) is defined by course of values recursion on t with
substitution in parameters as a p.r. function by

U (0, i, x, y) = 0

U (t + 1, i, x, y) = ξ[t + 1,U (π1π2(t + 1), i, x ∸ 1, σ1[x ∸ 1, y]),
U (π2

2(t + 1), i ∸ (2x ∸ 1), x ∸ 1, σ2[x ∸ 1, y,π2
1π2(t + 1)]),

i, x, y].
It is clear that the function U satisfies (1)-(3).

3.5.9 Global update. The 4-ary function Mi(x, y, t) updates the partial
computation tree t for f(x, y) at each position j < i by the expected value

3.5 Nested Simple Recursion 93

f(xi, yi). The function is defined by primitive recursion on i as a p.r. function:

M0(x, y, t) = t
Mi+1(x, y, t) = U (Mi(x, y, t), i, x, y).

It has the following properties which will be needed in the sequel:

T ⊢ i + 1 ≤ 2x+1 →Mi(x + 1, y, ⟨z, l, r⟩) = ⟨z,Mi(x,σ1[x, y], l), r⟩ (1)

T ⊢ i + 1 ≤ 2x+1 ∧Mi(x,σ1[x, y], l) = l1 →
M2x+1∸1+i(x + 1, y, ⟨z, l, r⟩) = ⟨z, l1,Mi(x,σ2[x, y,π1(l1)], r)⟩. (2)

Proof. (1): By induction on i. In the base case, clearly 0 + 1 ≤ 2x+1 and thus

M0(x + 1, y, ⟨z, l, r⟩) = ⟨z, l, r⟩ = ⟨z,M0(x,σ1[x, y], l), r⟩.
In the induction step, if (i + 1) + 1 ≤ 2x+1 then i + 1 ≤ 2x+1 and therefore

Mi+1(x + 1, y, ⟨z, l, r⟩) = U (Mi(x, y, ⟨z, l, r⟩), i, x, y) IH
=

= U (⟨z,Mi(x,σ1[x, y], l), r⟩, i, x, y) 3.5.8(1)
=

= ⟨z,U (Mi(x,σ1[x, y], l), i, x, y), r⟩ = ⟨z,Mi+1(x,σ1[x, y], l), r⟩.
(2): By induction on i. In the base case suppose that Mi(x,σ1[x, y], l) = l1.
We clearly have 0 + 1 ≤ 2x+1 and thus

M2x+1∸1+0(x + 1, y, ⟨z, l, r⟩) = M2x+1∸1(x + 1, y, ⟨z, l, r⟩) (1)
=

= ⟨z,M2x+1∸1(x,σ1[x, y], l), r⟩ = ⟨z, l1, r⟩ = ⟨z, l1,M0(x,σ2[x, y,π1(l1)], r)⟩.
In the induction step, assume (i + 1) + 1 ≤ 2x+1 and Mi(x,σ1[x, y], l) = l1.
Then i + 1 ≤ 2x+1 and we obtain

M2x+1∸1+(i+1)(x + 1, y, ⟨z, l, r⟩) = M2x+1∸1+i+1(x + 1, y, ⟨z, l, r⟩) =
= U (M2x+1∸1+i(x + 1, y, ⟨z, l, r⟩),2x+1 ∸ 1 + i, x, y) IH

=

= U (⟨z, l1,Mi(x,σ2[x, y,π1(l1)], r)⟩,2x+1 ∸ 1 + i, x, y) 3.5.8(2)
=

= ⟨z, l1,U (Mi(x,σ2[x, y,π1(l1)], r),2x+1 ∸ 1 + i, x, y)⟩ =
= ⟨z, l1,M2x+1∸1+i+1(x,σ2[x, y,π1(l1)], r)⟩ =
= ⟨z, l1,M2x+1∸1+(i+1)(x,σ2[x, y,π1(l1)], r)⟩.

94 3 Primitive Recursive Schemes

3.5.10 Course of values function. The binary function f(x, y) returns
the computation tree for f(x, y). The course of values function for f satisfies

T ⊢ f(0, y) = ⟨ρ[y],0,0⟩ (1)

T ⊢ f(x,σ1[x, y]) = l ∧ f(x,σ2[x, y,π1(l)]) = r →
f(x + 1, y) = ⟨θ[x,π1(l),π1(r), y], l, r⟩

(2)

and it is defined explicitly as a p.r. function by

f(x, y) = M2x+1∸1(x, y,Full(x + 1)).
Proof. (1): It follows from

f(0, y) = M20+1∸1(0, y,Full(0 + 1)) =M1(0, y,Full(1)) = M1(0, y, ⟨0,0,0⟩) =
= U (M0(0, y, ⟨0,0,0⟩),0,0, y) = U (⟨0,0,0⟩,0,0, y) 3.5.8(3)

=

= ⟨V (0, y,0,0),0,0⟩ = ⟨ρ[y],0,0⟩.
(2): Suppose that

f(x,σ1[x, y]) = l
f(x,σ2[x, y,π1(l)]) = r.

Then, by definition, we have

M2x+1∸1(x,σ1[x, y],Full(x + 1)) = l (†1)

M2x+1∸1(x,σ2[x, y,π1(l)],Full(x + 1)) = r (†2)

and therefore

f(x + 1, y) = M2x+1+1∸1(x + 1, y,Full(x + 1 + 1)) =
= M2x+2∸2+1(x + 1, y, ⟨0,Full(x + 1),Full(x + 1)⟩) =
= U (M2x+2∸2(x + 1, y, ⟨0,Full(x + 1),Full(x + 1)⟩),2x+2 ∸ 2, x + 1, y) =
= U (M2x+1∸1+(2x+1∸1)(x + 1, y, ⟨0,Full(x + 1),Full(x + 1)⟩),

2x+2 ∸ 2, x + 1, y) (†1), 3.5.9(2)
=

= U (⟨0,M2x+1∸1(x,σ1[x, y],Full(x + 1)),
M2x+1∸1(x,σ2[x, y,π1(l)],Full(x + 1))⟩,2x+2 ∸ 2, x + 1, y) (†1), (†2)=

3.5 Nested Simple Recursion 95

= U (⟨0, l, r⟩,2x+2 ∸ 2, x + 1, y) 3.5.8(3)
= ⟨V (x + 1, y, l, r), l, r⟩ =

= ⟨θ[x,π1(l),π1(r), y], l, r⟩. ⊓⊔

3.5.11 Theorem If T is an extension by definitions of PA then any ex-
tension of T by nested simple recursion for the case k = 2 and n = 1 is an
extension by definition.

Proof. Let T ′ be an extension of T by nested simple recursion as in Par. 3.5.4
and T ′′ an extension of T by the explicit definition

f(x, y⃗) = π1f(x, y⃗),
where f is the course of values function for f (see Par. 3.5.10). We have
LT ′′ = LT ′ and T ′′ is an extension by definition of T by Thm. 1.3.19. So it
suffices to show that the theories T ′ and T ′′ have the same theorems.

We prove T ′′ ⊢ T ′ first. The theory T ′′ is an extension by definitions of
PA, and therefore, by Thm. 1.4.9, it proves the principle of mathematical
induction for each formula of LT ′ containing f . It remains to show that the
theory T ′′ proves both defining axioms 3.5.4(1)(2) of f . The first defining
axiom follows from

f(0, y) = π1f(0, y) 3.5.10(1)
= π1⟨ρ[y],0,0⟩ = ρ[y].

The second defining axiom follows from

f(x + 1, y) = π1f(x + 1, y) 3.5.10(2)
=

= θ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y,π1f(x,σ1[x, y])]), y] =
= θ[x, f(x,σ1[x, y]),π1f(x,σ2[x, y, f(x,σ1[x, y])]), y] =
= θ[x, f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])]), y].

Vice versa, in order to show T ′ ⊢ T ′′ it suffices to prove

T ′ ⊢ ∀y f(x, y) = π1f(x, y).
This is proved by induction on x. In the base case take any y and we have

f(0, y) = ρ[y] = π1⟨g(y),0,0⟩ 3.5.10(1)
= π1f(0, y).

In the induction step take any y and we obtain

f(x + 1, y) = θ[x, f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])]), y] IH
=

= θ[x, f(x,σ1[x, y]),π1f(x,σ2[x, y, f(x,σ1[x, y])]), y] IH
=

96 3 Primitive Recursive Schemes

= θ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y,π1f(x,σ1[x, y])]), y] 3.5.10(2)
=

= π1f(x + 1, y). ⊓⊔

3.5.12 Theorem Primitive recursive functions are closed under nested sim-
ple recursion for the case k = 2 and n = 1.

Proof. By inspection of the proof of Thm. 3.5.11. ⊓⊔

Nested Simple Recursion: Case n = 1

3.5.13 Introduction. In this subsection we will show that the scheme of
nested simple recursion with one parameter is admissible in PA. This will
be proved in Thm. 3.5.15 by reducing the number of recursive applications.
This leads eventually to nested simple recursion with one parameter and two
recursive applications.

We will fix the notation used in this subsection as follows. Let T be an
extension by definitions of PA and T ′ an extension of T by primitive recursion
with parameter substitution with the defining axioms

f(0, y) = ρ[y] (1)

k+1

⋀
i=1

f(x,σi[x, y, z⃗i−1]) = zi → f(x + 1, y) = θ[x, z1, . . . , zk+1, y]. (2)

Here f is a new binary function symbol. We claim that T ′ is an extension of
T by definitions.

We will be working in an extension by definitions of the theory T . We will
keep the notation T also for this extension of T .

3.5.14 Reduction of the number of recursive applications. We will
reduce the above definition for k ≥ 2 to a new one, where only k recursive
applications are allowed. This new definition is for a binary function f̂(u, v)
such that f̂(2x, y) = f(x, y) and it is of the form

f̂(0, v) = ρ[v]
k

⋀
i=1

f̂(u, σ̂i[u, v, w⃗i−1]) = wi → f̂(u + 1, v) = θ̂[u,w1, . . . ,wk, v]
for suitable terms θ̂[u, w⃗, v], σ̂1[u, v, w⃗0], . . . , σ̂k[u, v, w⃗k−1]. Here w⃗i abbrevi-
ates w1, . . . ,wi. Note that this is nested simple recursion on u with substitu-
tion in the parameter v with k recursive applications. We will take then the
identity f(x, y) = f̂(2x, y) as an alternative, explicit definition of f .

3.5 Nested Simple Recursion 97

The idea behind reduction of recursive applications is as follows. We would
like to have f̂(2x, y) = f(x, y) and so it must be

T ⊢
k+1

⋀
i=1

f̂(2x,σi[x, y, z⃗i−1]) = zi → f̂(2(x + 1), y) = θ[x, z1, . . . , zk+1, y]. (1)

For the values of the form f̂(2x + 1, v) we require

k

⋀
i=1

f(x,σi[x, y, z⃗i−1]) = zi → f̂(2x + 1, ⟨1, y⟩) = ⟨z1, . . . , zk⟩
f̂(2x + 1, ⟨2, y, z⃗k⟩) = f(x,σk+1[x, y, z⃗k]).

Note that the application f̂(2x + 1, ⟨1, y⟩) returns a number which codes k

values f(x,σ1[x, y, z⃗0]), . . . , f(x,σk[x, y, z⃗k−1]) of the function f for some z⃗.
These informal arguments can be rewritten without mentioning the func-

tion f as follows:

T ⊢
k

⋀
i=1

f̂(2x,σi[x, y, z⃗i−1]) = zi → f̂(2x + 1, ⟨1, y⟩) = ⟨z1, . . . , zk⟩ (2)

T ⊢ f̂(2x + 1, ⟨2, y, z⃗k⟩) = f̂(2x,σk+1[x, y, z⃗k]) (3)

T ⊢ f̂(2x + 2, y) = θ[x, [f̂(2x + 1, ⟨1, y⟩)]k
1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
,

f̂(2x + 1, ⟨2, y, f̂(2x + 1, ⟨1, y⟩)⟩), y].
(4)

This means that the terms τ̂ , σ̂1, . . . , σ̂k. satisfy the properties

T ⊢ θ̂[2x + 1, z, zk+1, . . . , y] = θ [x, [z]k1 , . . . , [z]kk , zk+1, y] (5)

T ⊢ θ̂[2x, z1, . . . , zk, ⟨1, y⟩] = ⟨z1, . . . , zk⟩ (6)

T ⊢θ̂[2x, zk+1, . . . , ⟨2, y, z⟩] = zk+1 (7)

and

T ⊢ σ̂1[2x + 1, y] = ⟨1, y⟩ (8)

T ⊢ σ̂2[2x + 1, y, z] = ⟨2, y, z⟩ (9)

T ⊢
k

⋀
i=1

σ̂i[2x, ⟨1, y⟩, z⃗i−1] = σi[x, y, z⃗i−1] (10)

T ⊢ σ̂1[2x, ⟨2, y, z⃗k⟩] = σk+1[x, y, z⃗k]. (11)

For that it is sufficient to set

98 3 Primitive Recursive Schemes

θ̂[u,w1, . . . ,wk, v] ≡ D(u mod 2, θ [u ÷ 2, [w1]k1 , . . . , [w1]kk ,w2, v] ,
D(π1(v) =∗ 1, ⟨w1, . . . ,wk⟩,w1))

and

σ̂1[u, v] ≡ D(u mod 2, ⟨1, v⟩,
D(π1(v) =∗ 1, σ1[u ÷ 2,π2(v)],

σk+1[u ÷ 2,π1π2(v), [π2
2(v)]k1 , . . . , [π2

2(v)]kk]))
σ̂2[u, v,w1] ≡D(u mod 2, ⟨2, v,w1⟩, σ2 [u ÷ 2,π2(v),w1])
σ̂i[u, v, w⃗i−1] ≡ σi [u ÷ 2,π2(v), w⃗i−1] for i = 3, . . . , k.

Proof. (5)-(11): Directly from definition. (2): Let us denote by z1, . . . , zk the

numbers such that f̂(2x,σi[x, y, z⃗i−1]) = zi for every i = 1, . . . , k. We then have

f̂(2x, σ̂i[2x, ⟨1, y⟩, z⃗i−1]) (10)
= f̂(2x,σi[x, y, z⃗i−1]) = zi (†1)

for every i = 1, . . . , k. From this we obtain

f̂(2x + 1, ⟨1, y⟩) (†1)
= θ̂[2x, z1, . . . , zk, ⟨1, y⟩] (6)

= ⟨z1, . . . , zk⟩.
(3): It follows from

f̂(2x + 1, ⟨2, y, z⃗k⟩) = θ̂[2x, f̂(2x, σ̂1[2x, ⟨2, y, z⃗k⟩]), . . . , ⟨2, y⟩] (11)
=

= θ̂[2x, f̂(2x,σk+1[x, y, z⃗k]), . . . , ⟨2, y⟩] (7)
= f̂(2x,σk+1[x, y, z⃗k]).

(4): It follows from

f̂(2x + 2, y) = f̂(2x + 1 + 1, y) =
= θ̂[2x + 1, f̂(2x + 1, σ̂1[2x + 1, y]),

f̂(2x + 1, σ̂2[2x + 1, y, f̂(2x + 1, σ̂1[2x + 1, y])]), . . . , y] (8),(9)
=

3.5 Nested Simple Recursion 99

= θ̂[2x + 1, f̂(2x + 1, ⟨1, y⟩), f̂(2x + 1, ⟨2, y, f̂(2x + 1, ⟨1, y⟩)⟩), . . . , y] (5)
=

= θ[x, [f̂(2x + 1, ⟨1, y⟩)]k
1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
,

f̂(2x + 1, ⟨2, y, f̂(2x + 1, ⟨1, y⟩)⟩), y].
We are now in position to prove (1). Suppose that

k+1

⋀
i=1

f̂(2x,σi[x, y, z⃗i−1]) = zi

Then by (2) and (3) we obtain

f̂(2x + 1, ⟨1, y⟩) = ⟨z1, . . . , zk⟩ (†2)

f̂(2x + 1, ⟨2, y, z⃗k⟩) = zk+1. (†3)

We now have

f̂(2(x + 1), y) = f̂(2x + 2, y) (4)
=

= θ[x, [f̂(2x + 1, ⟨1, y⟩)]k
1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
,

f̂(2x + 1, ⟨2, y, f̂(2x + 1, ⟨1, y⟩)⟩), y] (†2),(†3)
=

= θ[x, [⟨z1, . . . , zk⟩]k1 , . . . , [⟨z1, . . . , zk⟩]kk , zk+1, y] 2.3.5(1)
=

= θ[x, z1, . . . , zk, zk+1, y]. ⊓⊔

3.5.15 Theorem If T is an extension by definitions of PA then any exten-
sion of T by nested simple recursion for the case n = 1 is an extension by
definition.

Proof. The claim is proved by (meta-)induction on the number k of recursive
applications in the defining axiom 3.5.13(2). The case k = 0 is in fact explicit
definition with monadic discrimination and it follows from Thm. 3.1.10. The
cases k = 1 or k = 2 follow from Thm. 3.5.11. So suppose that the claim holds
for the case k ≥ 2. We will prove that the claim holds also for the case k + 1.

So let T ′ be an extension of T by primitive recursion with parameter sub-
stitution as in Par. 3.5.13 and T ′′ an extension of T by the explicit definition

f(x, y) = f̂(2x, y),

100 3 Primitive Recursive Schemes

where f̂ is from Par. 3.5.14. We have LT ′ = LT ′′ and T ′′ is an extension by
definition of T by (meta-)IH. In order to prove the claim it suffices to show
that the theories T ′ and T ′′ have the same theorems.

First we show that T ′′ ⊢ T ′. The theory T ′′ is an extension by definitions
of PA and therefore, by Thm. 1.4.9, it proves the principle of mathematical
induction for each formula of LT ′ containing the symbol f . It remains to
show that T ′′ proves both defining axioms 3.5.13(1)(2) of f . The first defining
axiom follows from

f(0, y) = f̂(2 × 0, y) = f̂(0, y) = ρ[y].
The second defining axiom is proved as follows. Let us denote by z1, . . . , zk+1

the numbers such that

k+1

⋀
i=1

f(x,σi[x, y, z⃗i−1]) = zi.

Directly from definition we have

k+1

⋀
i=1

f̂(2x,σi[x, y, z⃗i−1]) = zi.

We then obtain

f(x + 1, y) = f̂(2(x + 1), y) 3.5.14(1)
= θ[x, z1, . . . , zk+1, y].

Now we show that T ′ ⊢ T ′′. For that it suffices to prove

T ′ ⊢ ∀y f(x, y) = f̂(2x, y).
This is proved by induction on x. In the base case take any y and we have

f(0, y) = ρ[y] = f̂(0, y) = f̂(2 × 0, y).
In the induction step take any y and let us denote by z1, . . . , zk+1 the numbers
such that

k+1

⋀
i=1

f(x,σi[x, y, z⃗i−1]) = zi

By (k+1) applications of IH we obtain

k+1

⋀
i=1

f̂(2x,σi[x, y, z⃗i−1]) = zi.

We then have

3.5 Nested Simple Recursion 101

f(x + 1, y) = θ[x, z1, . . . , zk+1, y] 3.5.14(1)
= f̂(2(x + 1), y). ⊓⊔

3.5.16 Theorem Primitive recursive functions are closed under nested sim-
ple recursion for the case n = 1.

Proof. By inspection of the proof of Thm. 3.5.15. ⊓⊔

Nested Simple Recursion

3.5.17 Introduction. In this subsection we will show that the scheme of
nested simple recursion with arbitrary number of parameters is admissible
in PA. This will be proved in Thm. 3.5.19 by reducing it to nested simple
recursion with one parameter.

We will fix the notation used in this subsection as follows. Let T be an
extension by definitions of PA and T ′ an extension of T by nested simple
recursion with the defining axioms

f(0, y⃗) = ρ[y⃗] (1)

k

⋀
i=1

f(x, σ⃗i[x, y⃗, z⃗i−1]) = zi → f(x + 1, y⃗) = θ[x, z⃗, y⃗]. (2)

Here f is a new (n+1)-ary function symbol. We claim that T ′ is an extension
of T by definitions.

Below we will consider the case when the definition has at least two pa-
rameters, i.e. n ≥ 2. The case n = 0 is in fact parameterless primitive recursion
for which the claim has been already proved in Thm. 3.1.10. The case with
one parameter (n = 1) follows from Thm. 3.5.15.

We will be working in an extension by definitions of the theory T . We will
keep the notation T also for this extension of T .

3.5.18 Contraction of parameters. We will reduce the above scheme,
where n ≥ 2, to a new one for a binary function ⟨f⟩(x, y) so that

⟨f⟩(x, y) = f (x, [y]n1 , . . . , [y]nn) .
The n parameters y⃗ ≡ y1, . . . , yn are replaced by a single parameter y. We will
call the number y = ⟨y⃗⟩ ≡ ⟨y1, . . . , yn⟩ the contraction of the numbers y⃗.

The contraction function ⟨f⟩(x, y) is defined by nested simple recursion
on x with one parameter y as a p.r. function by

102 3 Primitive Recursive Schemes

⟨f⟩(0, y) = ρ [[y]n1 , . . . , [y]nn] (1)

k

⋀
i=1

⟨f⟩(x, ⟨σ⃗i[x, [y]n1 , . . . , [y]nn , z⃗i−1]⟩) = zi →

⟨f⟩(x + 1, [y]n1 , . . . , [y]nn) = θ [x, z⃗, [y]n1 , . . . , [y]nn] .
(2)

3.5.19 Theorem If T is an extension by definitions of PA then any exten-
sion of T by nested simple recursion is an extension by definition.

Proof. Let T ′ be an extension of T by nested simple recursion as in Par. 3.5.17,
where the number of parameters is at least two (n ≥ 2).3 Let further T ′′ be
an extension of T by the following explicit definition

f(x, y⃗) = ⟨f⟩(x, ⟨y⃗⟩),
where ⟨f⟩ is the contraction function of f from Par. 3.5.18. We have LT ′ = LT ′′

and T ′′ is an extension by definition of T by Thm. 3.5.15. In order to prove the
claim it suffices to show that the theories T ′ and T ′′ have the same theorems.

First we show that T ′′ ⊢ T ′. The theory T ′′ is an extension by definitions
of PA and therefore, by Thm. 1.4.9, it proves the principle of mathematical
induction for each formula of LT ′ containing the symbol f . It remains to
show that T ′′ proves both defining axioms 3.5.17(1)(2) of f . The first defining
axiom follows from

f(0, y⃗) = ⟨f⟩(0, ⟨y⃗⟩) = ρ [[⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] 2.3.5(1)
= ρ[y⃗].

The second defining axiom is proved as follows. Let us denote by z⃗ the num-
bers such that the following holds

k

⋀
i=1

f(x, σ⃗i[x, y⃗, z⃗i−1]) = zi.

Then from definition we obtain

k

⋀
i=1

⟨f⟩(x, ⟨σ⃗i[x, y⃗, z⃗i−1]⟩) = zi

and thus, by 2.3.5(1), we have

k

⋀
i=1

⟨f⟩(x, ⟨σ⃗i[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn , z⃗i−1]⟩) = zi.

From this we obtain

f(x + 1, y⃗) = ⟨f⟩(x + 1, ⟨y⃗⟩) = θ [x, z⃗, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] 2.3.5(1)
= θ[x, z⃗, y⃗].

3 The cases n = 0 or n = 1 follow from Thm. 3.1.10 or Thm. 3.5.13, respectively.

3.5 Nested Simple Recursion 103

This proves the second defining axiom.
Now we show that T ′ ⊢ T ′′. For that it suffices to prove

T ′ ⊢ ∀y⃗ f(x, y⃗) = ⟨f⟩(x, ⟨y⃗⟩).
This is proved by induction on x. In the base case take any y⃗ and we have

f(0, y⃗) = ρ[y⃗] 2.3.5(1)
= ρ [[⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] = ⟨f⟩(0, ⟨y⃗⟩).

In the induction step take any y⃗ and let us denote by z⃗ the numbers such
that the following holds

k

⋀
i=1

f(x, σ⃗i[x, y⃗, z⃗i−1]) = zi.

By k applications of IH we obtain

k

⋀
i=1

⟨f⟩(x, ⟨σ⃗i[x, y⃗, z⃗i−1]⟩) = zi

and thus, by 2.3.5(1), we have

k

⋀
i=1

⟨f⟩(x, ⟨σ⃗i[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn , z⃗i−1]⟩) = zi.

From this we obtain

f(x + 1, y⃗) = θ[x, z⃗, y⃗] 2.3.5(1)
= θ [x, z⃗, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] = ⟨f⟩(x + 1, ⟨y⃗⟩). ⊓⊔

3.5.20 Theorem Primitive recursive functions are closed under nested sim-
ple recursion.

Proof. By inspection of the proof of Thm. 3.5.19. ⊓⊔

Chapter 4

General Recursive Schemes

For efficient computation computer programming requires definitions of func-
tions with almost arbitrary recursion. Since we do not wish the extended the-
ories to be inconsistent we restrict ourselves to regular recursive definitions.
Conditions of regularity for a recursive definition of the form f(x⃗) = τ[f ; x⃗]
means that there must be a well-founded relation ≺ in which the recursion
goes down; i.e. for each recursive application f(ρ⃗) in τ we have ρ⃗ ≺ x⃗ under
the assumption of all conditions governing that recursive application.

Conditions of regularity are strong semantic conditions which cannot be
turned into syntactic ones on accord of the incompleteness theorem of Gödel.
For that reason we start by considering a restrictive form of recursive def-
initions, called definitions by well-founded recursion. We require that every
recursive application f(ρ⃗) in τ is surrounded by the guard D(ρ⃗ ≺∗ x⃗, f(ρ⃗),0),
which guarantees that we go into recursion only if ρ⃗ ≺ x⃗.

First we consider a special case of well-founded recursion, where the well-
founded relation ≺ is of the form x⃗ ≺ y⃗↔ µ[x⃗] < µ[y⃗] for some measure µ[x⃗].
This is called recursion by measure and it is the most general scheme of recur-
sion which does not lead outside of primitive recursive functions. The admis-
sibility of measure and well-founded recursion in PA is proved in Thm. 4.2.7
and Thm. 4.3.10, respectively.

For regular recursive definitions we can drop the guarded conditions ρ⃗ ≺ x⃗
which surround the recursive applications of f in these restrictive forms of
recursion. The closure of PA under regular recursion is proved in Thm. 4.4.3.
Such definitions can be used as programs where we use the defining equalities
from left to right as reduction rules. This is shown in the next section.

In the last section we will discuss the computational model based on reduc-
tion of terms. Every program P is a property of some function f which can
be used as a computational rule to calculate this function. The program P

has assigned a precondition describing which elements can be used as inputs.
Regularity conditions for the program P guarantee that computation termi-
nates for every input x⃗ which satisfies its precondition yielding the correct
value f(x⃗). This is proved in Thm. 4.5.6.

105

106 4 General Recursive Schemes

4.1 Introduction

4.1.1 Introduction. In this section we give an overview of a simple pro-
gramming language for the definition of computable functions. We impose
strong semantic conditions called conditions of regularity on the correct form
of recursive definitions. In this language a correct functional equation of the
form f(x⃗) = τ[f ; x⃗] plays a dual role. Firstly, it defines a function and we can
use the definition to reason about the properties of that function. Secondly,
the defining equation can be used as a computation rule from left to right to
evaluate the applications of the defined function.

4.1.2 Partial functions. Some of the programs discussed in this section
do not halt for all inputs. By allowing non-termination, we have to consider,
at least for a while, partial functions as the meaning of computation. In this
paragraph we give a brief overview of partial functions.

A partial n-ary function f is a mapping with the domain S which is a
subset of the Cartesian product Nn and with the range a subset of N. The
partial function f is total or just a function, if S = Nn.

Partial functions with the same arity are ordered by the set inclusion
relation ⊆. If f ⊆ g then we say that the partial function g is an extension of
the partial function f and also that f is a restriction of g. Note that the least
n-ary partial function is the nowhere defined n-ary partial function ∅(n),
i.e. the partial function with the empty domain ∅ ⊆ Nn. Note that maximal
elements coincide with total partial functions.

The assignment of denotation to terms with partial functions is strict for
all partial functions f except for conditionals (see Par. 4.1.3). This means
that the term f(τ⃗) is defined if all terms τ⃗ are defined and τ⃗ is in the domain
of f . In the presence of partial functions, we will use the non-strict identity
τ ≃ ρ to express the fact that either both expressions are defined and denote
the same number or both are undefined.

4.1.3 Conditionals. The terms of defining equations are built-up non only
from variables, constants, previously defined functions and recursive applica-
tions, but also from conditionals. These are distinguished applications of the
ternary case discrimination function D.

The assignment of denotation to conditionals with partial functions is
non-strict. This means that a conditional D(τ1, τ2, τ3) is defined only if τ1 is
defined and then if the value τ1 is non-zero then the conditional denotes the
same number as the term τ2 and otherwise the conditional denotes the same
number as the term τ3. Note that in the first case the term τ3, and in the
second case the τ2, may be undefined without affecting the denotation of the
conditional.

The evaluation of each conditional D(τ1, τ2, τ3) is also non-strict ; first we
evaluate the subexpression τ1 and according to its value we evaluate either
τ2 if the value of τ1 is non-zero, or τ3 otherwise.

4.1 Introduction 107

In order to improve the readability of definitions we will visualize the
conditional D(τ1, τ2, τ3) by notation common in computer programming

if τ1 ≠ 0 then τ2 else τ3.

Conditionals of the form

if P∗(τ⃗1) ≠ 0 then τ2 else τ3

will be further abbreviated to

if P (τ⃗1) then τ2 else τ3,

or even to

case

P (τ⃗1)⇒ τ2
¬P (τ⃗1)⇒ τ3

end.

Similar abbreviation will be used also for complex formulas as those for pred-
icate applications.

4.1.4 Example. Consider the following explicit definition of the binary
function min(x, y) yielding the minimum of two numbers x and y:

min(x, y) = if (x ≤∗ y) ≠ 0 then x else y.

This can be abbreviated to

min(x, y) = if x ≤ y then xelse y

and further to

min(x, y) = case

x ≤ y⇒ x

x /≤ y⇒ y

end.

Note that x /≤ y↔ x > y and so the last identity can be written as

min(x, y) = case

x ≤ y⇒ x

x > y⇒ y

end.

The case-construct used in the definition is usually called dichotomy dis-
crimination on whether or not x ≤ y.

The following is the explicit definition the maximum function

108 4 General Recursive Schemes

max(x, y) = case

x ≥ y ⇒ x

x < y ⇒ y

end,

where we have adopted all abbreviations mentioned so far.

4.1.5 Example. For a more complex example consider the problem of find-
ing the median Median(x, y, z) of three numbers. The function satisfies

⊢PA x ≤ y ≤ z → Median(x, y, z) = y
⊢PA Median(x, y, z) = Median(y, x, z)
⊢PA Median(x, y, z) = Median(x, z, y)

and it is defined explicitly by

Median(x, y, z) = case

x ≤ y ⇒ case

y ≤ z ⇒ y

y > z ⇒ max(x, z)
end

x > y ⇒ case

y ≤ z ⇒ y

y > z ⇒ min(x, z)
end

end.

Note that case-constructs are nested in the definition.

4.1.6 Unrestricted recursion. Many modern declarative programming
languages allowed arbitrary forms of recursive programs. With unrestricted
recursion the best we can do is to compute partial functions as shown in the
following three simple examples. This means, if we allow unrestricted recur-
sion we have to deal with partial functions not only with (total) functions.

4.1.7 Example. First, consider the functional equation of the form

f(x) = f(x) + 1.

This is not a legal definition since there is no unary function satisfying the
identity. Using the equation as a rewriting rule, we obtain a program which
does not terminate for any input. For instance, the following reduction se-
quence for evaluation of the application f(0) never ends:

f(0) = f(0)+ 1 = f(0)+ 1 + 1 = f(0) + 1 + 1 + 1 = ⋯ .

This means that the program computes the nowhere defined unary partial
function ∅(1). On the other hand, the same partial function is the unique

4.1 Introduction 109

(hence minimal) solution of the functional equation

f(x) ≃ f(x) + 1

when solved in the class of unary partial functions.

4.1.8 Example. Next, consider the functional equation

f(x) = f(x).
Again, this is not a legal definition since it has infinitely many solutions:
in fact every unary function satisfies the identity. Using the equation as a
rewriting rule, we obtain a program which computes the partial function
∅(1). For instance, the following reduction sequence for evaluation of f(0)
does not terminate:

f(0) = f(0) = f(0) = ⋯
On the other hand, the partial function ∅(1) is the minimal (but not unique)
solution of the functional equation:

f(x) ≃ f(x).
4.1.9 Example. Finally, consider the functional equation

f(x) = f(x) × 0

This is a legal definition since the zero function Z(x) = 0 is its only solution.
On the other hand, using the equation as a program, we obtain an algorithm
which computes the partial function ∅(1) again. For instance, the following
reduction sequence for evaluation of f(0) does not terminate:

f(0) = f(0) × 0 = f(0)× 0 × 0 = f(0)× 0 × 0 × 0 = ⋯

As before, the partial function ∅ is the minimal (but not unique) solution of
the corresponding functional equation

f(x) ≃ f(x) × 0.

4.1.10 Kleene’s first recursion theorem. Functional equations from the
previous three examples have one thing in common from the computational
view: each one when taken as a program computes the same partial func-
tion ∅(1). On the other hand, there seems to be no correlation between the
solutions of these equations and the partial function they compute. Closer
scrutiny reveals that the partial function ∅(1) is the minimal solution of each
functional equation in the class of unary partial functions.

110 4 General Recursive Schemes

This is not a coincidence. In fact one can prove that every functional
equation of the form f(x⃗) ≃ τ[f ; x⃗] has a minimal solution in the class of
partial functions and that this distinguished solution can be computed using
the identity as a rewriting rule. This is called First Recursion Theorem and
it is due to Kleene (see [21]). It establishes the equivalence of the definitional
semantics (minimal solution in this case) with the computational.

4.1.11 Regular recursion with measure. In order to achieve the equiv-
alence of the definitional semantics with the computational within the class
of total functions, we restrict ourselves to regular recursive definitions with
measure. The condition of regularity for the functional equation of a form

f(x⃗) = τ[f ; x⃗]
means that there must be a measure µ[x⃗] in which the recursion goes down;
i.e. for each recursive application f(ρ⃗) in τ we have µ[ρ⃗] < µ[x⃗] under the
assumption of all conditions governing that recursive application. The regu-
larity conditions guarantees that the equation has a unique solution and that
the solution is computable using the defining identity as a rewriting rule from
left to right.

Below we give several examples of regular recursive definitions. The jus-
tification of this kind of recursion within PA is the subject of study in the
following sections.

4.1.12 Example. Consider the binary function f obtained from the func-
tions g and h by primitive recursion:

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x, y), y).

The recurrences can be written in the equivalent form using just one equation:

f(x, y) = if x ≠ 0 then h(x ∸ 1, f(x ∸ 1, y), y) else g(y).
This is an example of regular recursion where recursion goes down in the
first argument x. The following is the condition of regularity for the (only)
recursive application of f on the right-hand side of the identity:

⊢PA x ≠ 0 → x ∸ 1 < x.

The condition is trivially satisfied.

4.1.13 Example. Consider the following recursive definition of the integer
division function:

4.1 Introduction 111

x ÷ y = if y ≠ 0 then

case

x < y⇒ 0
x ≥ y⇒ (x ∸ y) ÷ y + 1

end

else

0

This is a definition by regular recursion in which the first argument x goes
down. Its condition of regularity

⊢PA y ≠ 0 ∧ x ≥ y → x ∸ y < x

is trivially satisfied.

4.1.14 Example. The program for x ÷ y from Par. 4.1.13 is less optimal
than it should be due to repeated test y ≠ 0 in each recursive call. We would
obtain a better one by computing the function using the identity

x ÷ y = case

x < y⇒ 0
x ≥ y⇒ (x ∸ y) ÷ y + 1

end

as a reduction rule. The program works correctly only for those inputs that
satisfy the property y ≠ 0. This is is called the precondition of the program.
Note that for the input y = 0 the evaluation of x ÷ 0 does not terminate.

Note that if we write the above program together with its precondition as
the following conditional equation

⊢PA y ≠ 0 → x ÷ y = case

x < y⇒ 0
x ≥ y⇒ (x ∸ y) ÷ y + 1

end

we obtain an assertion which is, in fact, a property of the integer division
function. The following is its (extended) condition of regularity:

⊢PA y ≠ 0 ∧ x ≥ y → x ∸ y < x ∧ y ≠ 0.

It consists of two parts. The first one is the same as before:

⊢PA y ≠ 0 ∧ x ≥ y → x ∸ y < x.

The second one is the so-called applicability condition (see [56]):

⊢PA y ≠ 0 ∧ x ≥ y → y ≠ 0

It says that the arguments of the recursive application satisfy the precondition
of the program. Both parts of the regularity condition are trivially satisfied.

112 4 General Recursive Schemes

4.1.15 Example. Consider now the recursive definition of the greatest di-
visor function of the form

gcd(x, y) = if x ≠ 0 ∧ y ≠ 0 then

case

x > y⇒ gcd(x ∸ y, y)
x = y⇒ x

x < y⇒ gcd(x, y ∸ x)
end

else

max(x, y)
based on the following property of the divisibility predicate:

⊢PA x > y ∧ z ∣ y → z ∣ x↔ z ∣ x ∸ y.
The definition is an example of regular recursion where recursion goes down
in the measure max(x, y). Its conditions of regularity

⊢PA x ≠ 0 ∧ y ≠ 0 ∧ x > y → max(x ∸ y, y) < max(x, y)
⊢PA x ≠ 0 ∧ y ≠ 0 ∧ x < y → max(x, y ∸ x) < max(x, y)

follow from

⊢PA a > b > 0 → a ∸ b < a.

4.1.16 Example. The program for gcd(x, y) from Par. 4.1.15 is less optimal
than it should be due to repeated test x ≠ 0∧ y ≠ 0 in each recursive call. We
would obtain a better one by computing the function using its property

⊢PA x ≠ 0 ∧ y ≠ 0 → gcd(x, y) = case

x > y⇒ gcd(x ∸ y, y)
x = y⇒ x

x < y⇒ gcd(x, y ∸ x)
end

as a reduction rule with the precondition x ≠ 0 ∧ y ≠ 0. The following are its
conditions of regularity

⊢PA x ≠ 0 ∧ y ≠ 0 ∧ x > y → max(x ∸ y, y) < max(x, y) ∧ x ∸ y ≠ 0 ∧ y ≠ 0

⊢PA x ≠ 0 ∧ y ≠ 0 ∧ x < y → max(x, y ∸ x) < max(x, y) ∧ x ≠ 0 ∧ y ∸ x ≠ 0.

4.1.17 Example. Violating the condition of applicability may leads to a
program that does not terminate for every input satisfying its precondition.
Indeed, consider the following property of the zero function:

⊢PA x ≠ 0 → Z(x) = Z(x ∸ 1)
Clearly, the recursion goes down in its argument as we have

4.1 Introduction 113

⊢PA x ≠ 0 → x ∸ 1 < x.

On the other, the applicability property

⊢PA x ≠ 0 → x ∸ 1 ≠ 0.

does not hold for x = 1. Note that the following reduction sequence for eval-
uation of the application Z(1) does not terminate:

Z(1) = Z(1 ∸ 1) = Z(0) = Z(0 ∸ 0) = Z(0) = ⋯ .
4.1.18 Example. Violating the condition of applicability may leads to a
program which computes wrong results even for inputs satisfying its precon-
dition. Consider the following property of the function x ÷ 2:

⊢PA ∃y x = 2y → x ÷ 2 = if x ≠ 0 then(x ∸ 1) ÷ 2 + 1
else

0.

Clearly, the recursion goes down in its argument as we have

⊢PA ∃y x = 2y ∧ x ≠ 0 → x ∸ 1 < x.

On the other, the following property

⊢PA ∃y x = 2y ∧ x ≠ 0 → ∃y x ∸ 1 = 2y.

does not hold for even numbers. Note that the following reduction sequence
for evaluation of 2 ÷ 2 yields wrong answer:

2 ÷ 2 = (2 ∸ 1) ÷ 2 + 1 = 1 ÷ 2 + 1 = (1 ∸ 1) ÷ 2 + 1 + 1 =

= 0 ÷ 2 + 1 + 1 = 0 + 1 + 1 = 2.

But the expected value is 1 = 2 ÷ 2.

4.1.19 Simultaneous recursion. Consider the following recursive defini-
tion of two binary functions f1 and f2:

f1(0, y) = g1(y)
f1(x + 1, y) = h1(x, f1(x, y), f2(x, y), y)

f2(0, y) = g2(y)
f2(x + 1, y) = h2(x, f1(x, y), f2(x, y), y).

Such a recursion is called simultaneous recursion. It can be reduced to ordi-
nary non-simultaneous recursion as follows.

114 4 General Recursive Schemes

For that we need a binary function f such that f(x, y) = ⟨f1(x, y), f2(x, y)⟩.
First we define explicitly two auxiliary functions g and h by

g(y) = ⟨g1(y), g2(y)⟩
h(x, z, y) = ⟨h1(x, [z]21 , [z]22 , y), h2(x, [z]21 , [z]22 , y)⟩.

The function f is then obtained from g and h by primitive recursion:

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x, y), y),

or equivalently by

f(x, y) = if x ≠ 0 then h(x ∸ 1, f(x ∸ 1, y), y) else g(y).
Finally, the functions f1 and f2 are defined explicitly by

f1(x, y) = [f(x, y)]21
f2(x, y) = [f(x, y)]21 .

General schemes of simultaneous recursion can be reduced to ordinary one
using a method similar to that above.

4.1.20 Example. Some schemes of recursion lead beyond primitive recur-
sion. For instance, consider the well-known Ackermann-Péter function (see
[38]) which grows faster than any primitive recursive function:

A(0, y) = 1

A(x + 1,0) = A(x,1)
A(x + 1, y + 1) = A(x,A(x + 1, y)).

The recurrences can be written in a more compact form by

A(x, y) = if x ≠ 0 then

if y ≠ 0 then

A(x ∸ 1,A(x, y ∸ 1))
else

A(x ∸ 1,1)
else

1.

The definition is an example of a definition by well-founded recursion which
is into the lexicographic ordering <lexof the set of pairs of natural numbers:

(x1, y1) <lex (x2, y2)↔ x1 < x2 ∨ x1 = x2 ∧ y1 < y2.

4.2 Recursion with Measure 115

This is because either the first argument of each recursive application de-
creases or it remains the same and the second argument decreases:

x ≠ 0 ∧ y = 0 → (x ∸ 1,1) <lex (x, y)
x ≠ 0 ∧ y ≠ 0 → (x, y ∸ 1) <lex (x, y)

x ≠ 0 ∧ y ≠ 0 → (x ∸ 1,A(x, y ∸ 1)) <lex (x, y).
We call these properties the conditions of regularity of the definition.

The lexicographic ordering is a well-founded relation, i.e. there is no infinite
descending chain of pairs of numbers:

(x1, y1) >lex (x2, y2) >lex ⋯ >lex (xn, yn) >lex ⋯.

This means that the calculation of the application A(x, y) always terminates.

4.2 Recursion with Measure

4.2.1 Introduction. Consider the functional equation of the form

f(x⃗) = τ[f ; x⃗]
in which every recursive application f(ρ⃗) in τ is surrounded by the guard

if µ[ρ⃗] < µ[x⃗] then f(ρ⃗) else 0.

Here, the µ[x⃗] is an arbitrary but fixed expression called measure. This is
called recursion with measure. That PA admits definitions by such recursion
is proved in Thm. 4.2.7.

Note that the guard guarantees that we go into recursion only if we have
µ[ρ⃗] < µ[x⃗]. By satisfying these conditions we obtain a regular recursive def-
inition. These are discussed in Sect. 4.4.

4.2.2 The principle of measure induction. For every formula ϕ[x⃗] and
term µ[x⃗], the formula of induction on x⃗ with measure µ[x⃗] for ϕ is the
following one:

∀x⃗(∀y⃗(µ[y⃗] < µ[x⃗]→ ϕ[y⃗])→ ϕ[x⃗]) → ∀x⃗ϕ[x⃗]. (1)

We assume here that the variables y⃗ are different from x⃗ and that they do
not occur freely in ϕ. The formula ϕ and the term µ may contain additional
variables as parameters.

Note that for x⃗ ≡ x and µ[x] ≡ x, the scheme of measure induction coincides
with the scheme of complete induction.

116 4 General Recursive Schemes

4.2.3 Theorem If T is an extension by definitions of PA then it proves the
principle of measure induction for each formula of LT .

Proof. The principle of measure induction 4.2.2(1) of LT is reduced to math-
ematical induction as follows. Under the assumption that ϕ is µ-progressive:

∀x⃗(∀y⃗(µ[y⃗] < µ[x⃗]→ ϕ[y⃗])→ ϕ[x⃗]), (†1)

we first prove, by induction on n, the following auxiliary property

∀z⃗(µ[z⃗] < n→ ϕ[z⃗]). (†2)

In the base case there is nothing to prove. In the induction step take any z⃗
such that µ[z⃗] < n+1 and consider two cases. If µ[z⃗] < n then we obtain ϕ[z⃗]
by IH. If µ[z⃗] = n then by instantiating of (†1) with x⃗ ∶= z⃗ we obtain

∀y⃗(µ[y⃗] < n→ ϕ[y⃗])→ ϕ[z⃗].
Now we apply IH to get ϕ[z⃗].

With the auxiliary property proved we obtain that ϕ[x⃗] holds for every x⃗
by instantiating of ∀n(†2) with n ∶= µ[x⃗] + 1 and z⃗ ∶= x⃗. ⊓⊔

4.2.4 Extensions by recursion with measure. Let T be an extension
by definitions of PA and f a new n-ary function symbol. Let further µ[x⃗] be
a term of LT and τ[f ; x⃗] a term of the extended language LT ∪ {f} in which
no other variables than the n indicated ones are free. Finally, let [f]µx⃗(y⃗) be
the restriction of f to the numbers y⃗ s.t. µ[y⃗] < µ[x⃗], i.e.

[f]µx⃗(y⃗) ≡D(µ[y⃗] <∗ µ[x⃗], f(y⃗),0).
Consider the theory T ′ obtained from the theory T by adding the function
symbol f , the defining axiom

f(x⃗) = τ[λ̇y⃗.[f]µx⃗(y⃗); x⃗], (1)

and the scheme of measure induction for all formulas of LT ′ containing the
symbol f . We say that T ′ is an extension of T by (course of values) recursion
with measure.

Note the use of special lambda notation (see Par. 3.5.2) in the defining
axiom (1). This means that every recursive application f(ρ⃗) in τ is replaced
by the restriction of f to the numbers ρ⃗ s.t. µ[ρ⃗] < µ[x⃗], i.e. by the term

[f]µx⃗(ρ⃗) ≡D(µ[ρ⃗] <∗ µ[x⃗], f(ρ⃗),0).
In the sequel we will use the notation τ[[f]µx⃗ ; x⃗] (or even τ[[f]; x⃗]) as an
abbreviation for the term on the right-hand side of the identity (1).

4.2 Recursion with Measure 117

Fixing notation. We keep the notation introduced in this paragraph fixed
until the end of this section where we prove in Thm. 4.2.7 that the theory
T ′ is an extension by definition of the theory T . We will be working in an
extension by definitions of the theory T . We will keep the notation T also for
this extension of T .

Remark. The definition can be viewed as a function operator which takes
all auxiliary functions applied in the terms µ, τ and yields the function f

as a result. We will prove in Thm. 4.2.8 that the class of primitive recur-
sive functions is closed under the operator of course of values recursion with
measure.

4.2.5 Approximation function. We wish to introduce the function f into
the theory T with the help of its approximation function f +(z, x⃗). The ad-
ditional argument z plays the role of the depth of recursion counter. It es-
timates the depth of recursion needed to compute the value f(x⃗). If z is
sufficiently large then we have f(x⃗) = f +(z, x⃗). As we will see below every
number z > µ[x⃗] gives us sufficient estimation of the depth of recursion. This
will allow us to introduce f into PA explicitly by f(x⃗) = f +(µ[x⃗] + 1, x⃗).

The approximation function is introduced with the help of approximation
terms ρ+[f +; z, x⃗] which are defined for all subterms ρ of τ to satisfy:

x+i ≡ xi (variable)
g(ρ1, . . . , ρk)+ ≡ g(ρ+1, . . . , ρ+k) (auxiliary function)
f(ρ1, . . . , ρn)+ ≡ f +(z, ρ+1, . . . , ρ+n). (recursive application)

Let us denote by [f +]µz,x⃗(y⃗) the restriction of f + to y⃗ s.t. µ[y⃗] < µ[x⃗], i.e.

[f +]µz,x⃗(y⃗) ≡D(µ[y⃗] <∗ µ[x⃗], f +(z, y⃗),0).
We define the approximation function f + by nested simple recursion:

f +(0, x⃗) = 0 (1)

f +(z + 1, x⃗) = τ+[λ̇y⃗.[f +]µz,x⃗(y⃗); z, x⃗]. (2)

Below we will use the notation τ+[[f +]µz,x⃗; z, x⃗] (or even τ+[[f +]; z, x⃗]) as an
abbreviation for the term on the right-hand side of the equation (2). We will
also use the notation (ρ1, . . . , ρm)+ as an abbreviation for (ρ+1, . . . , ρ+m).
4.2.6 Monotonicity of the approximation function. We have

T ⊢ µ[x⃗] < z1 ≤ z2 → f +(z1, x⃗) = f +(z2, x⃗). (1)

The property asserts that the application f +(z, x⃗) yields the same result for
all numbers z > µ[x⃗].

118 4 General Recursive Schemes

Proof. The property is proved by induction on z2 as ∀x⃗∀z1(1). In the base
case there is nothing to prove. In the induction step, take any numbers x⃗, z1
such that µ[x⃗] < z1 ≤ z2 + 1 and prove by inner induction of subterms ρ[f ; x⃗]
of the term τ the following identity

ρ+[[f +]; z1 ∸ 1, x⃗] = ρ+[[f +]; z2, x⃗]. (†1)

We continue by the case analysis of ρ. If ρ ≡ f(θ⃗) then by inner IH there are
numbers y⃗ ≡ y1, . . . , yn such that

θ+i [[f +]; z1 ∸ 1, x⃗] = yi = θ
+

i [[f +]; z2, x⃗]
for every i = 1, . . . , n. We consider two subcases. The subcase µ[y⃗] ≥ µ[x⃗] is
obvious. In the subcase µ[y⃗] < µ[x⃗] we have µ[y⃗] < z1 ∸ 1 ≤ z2 and thus

D(µ[y⃗] <∗ µ[x⃗], f +(z1 ∸ 1, y⃗),0) = f +(z1 ∸ 1, y⃗) outer IH
= f +(z2, y⃗) =

=D(µ[y⃗] <∗ µ[x⃗], f +(z2, y⃗),0).
The remaining cases when ρ ≡ xi or ρ ≡ g(θ⃗) are straightforward.

With the auxiliary property proved the induction step of the outer induc-
tion follows from

f +(z1, x⃗) = τ+[[f +]; z1 ∸ 1, x⃗] (†
1
)

= τ+[[f +]; z2, x⃗] = f +(z2 + 1, x⃗). ⊓⊔

4.2.7 Theorem If T is an extension by definitions of PA then any extension
of T by recursion with measure is an extension by definition.

Proof. Let T ′ be an extension of T by recursion

f(x⃗) = τ[[f]µx⃗; x⃗] (†1)

as in Par. 4.2.4 and T ′′ an extension of T by explicit definition

f(x⃗) = f +(µ[x⃗] + 1, x⃗), (†2)

where f + is the approximation function from Par. 4.2.5. We have LT ′ = LT ′′

and T ′′ is an extension by definition of T . In order to prove the claim it
suffices to show that the theories T ′ and T ′′ have the same theorems.

First we prove T ′′ ⊢ T ′. The theory T ′′ is an extension by definitions of
PA, and therefore, by Thm. 4.2.3, it proves the principle of measure induction
for each formula of LT ′ containing the symbol f . It remains to show that

T ′′ ⊢ f(x⃗) = τ[[f]µx⃗; x⃗] . (†3)

For that we need the following property which is proved by induction on the
structure of subterms ρ[f ; x⃗] of τ :

4.2 Recursion with Measure 119

T ′′ ⊢ ρ+[[f +];µ[x⃗], x⃗] = ρ[[f]; x⃗]. (†4)

Take any x⃗, any subterm ρ of τ , and continue by case analysis of ρ. The case
when ρ ≡ f(θ⃗) follows from

D(µ[θ⃗+[[f +];µ[x⃗], x⃗]] <∗ µ[x⃗], f +(µ[x⃗], θ⃗+[[f +];µ[x⃗], x⃗]),0) IH’s
=

=D(µ[θ⃗[[f]; x⃗]] <∗ µ[x⃗], f +(µ[x⃗], θ⃗[[f]; x⃗]),0) 4.2.6(1)
=

=D(µ[θ⃗[[f]; x⃗]] <∗ µ[x⃗], f +(µ[θ⃗[[f]; x⃗]] + 1, θ⃗[[f]; x⃗]),0) (†2)
=

=D(µ[θ⃗[[f]; x⃗]] <∗ µ[x⃗], f(θ⃗[[f]; x⃗]),0).
The remaining cases when ρ ≡ xi or ρ ≡ g(θ⃗) are straightforward. With the
auxiliary property proved the equality (†3) is obtained from

f(x⃗) (†
2
)

= f +(µ[x⃗] + 1, x⃗) 4.2.5(2)
= τ+[[f +];µ[x⃗], x⃗] (†

4
)

= τ[[f]; x⃗].
Now we prove T ′ ⊢ T ′′. For that it suffices to show

T ′ ⊢ f(x⃗) = f +(µ[x⃗] + 1, x⃗). (†5)

This is proved by induction on x⃗ with measure µ[x⃗]. So take any x⃗ and prove
by (the inner) induction on the structure of subterms ρ[f ; x⃗] of τ the property

T ′ ⊢ ρ[[f]; x⃗] = ρ+[[f +];µ[x⃗], x⃗]. (†6)

We continue by case analysis of ρ. The case when ρ ≡ f(θ⃗) follows from

D(µ[θ⃗[[f]; x⃗]] <∗ µ[x⃗], f(θ⃗[[f]; x⃗]),0) outer IH
=

=D(µ[θ⃗[[f]; x⃗]] <∗ µ[x⃗], f +(µ[θ⃗[[f]; x⃗]] + 1, θ⃗[[f]; x⃗]),0) 4.2.6(1)
=

=D(µ[θ⃗[[f]; x⃗]] <∗ µ[x⃗], f +(µ[x⃗], θ⃗[[f]; x⃗]),0) inner IH’s
=

=D(µ[θ⃗+[[f +];µ[x⃗], x⃗]] <∗ µ[x⃗], f +(µ[x⃗], θ⃗+[[f +];µ[x⃗], x⃗]),0).
The remaining cases when ρ ≡ xi or ρ ≡ g(θ⃗) are straightforward. With the
auxiliary property proved the equality (†5) is obtained from

f(x⃗) (†1)= τ[[f]; x⃗] (†6)
= τ+[[f +];µ[x⃗], x⃗] 4.2.5(2)

= f +(µ[x⃗] + 1, x⃗). ⊓⊔

4.2.8 Theorem Primitive recursive functions are closed under recursion
with measure.

Proof. By inspection of the proof of Thm. 4.2.7. ⊓⊔

120 4 General Recursive Schemes

4.3 Well-Founded Recursion

4.3.1 Introduction. Consider the functional equation of the form

f(x⃗) = τ[f ; x⃗]
in which every recursive application f(ρ⃗) in τ is surrounded by the guard

if ρ⃗ ≺ x⃗ then f(ρ⃗) else 0.

Here, the ≺ is an arbitrary but fixed well-founded relation over natural num-
bers. This is called well-founded recursion. That PA admits definitions by
such recursion is proved in Thm. 4.3.10.

The guard guarantees that we go into recursion only if ρ⃗ ≺ x⃗. By satisfying
these conditions we obtain a regular recursive definition. These are discussed
in Sect. 4.4.

4.3.2 Well-founded relations. Let x⃗ ≺ y⃗ be a 2n-ary relation over N.
We say that the relation ≺ is well-founded if there is no infinite descending
chain of the n-tuples of numbers: x⃗1 ≻ x⃗2 ≻ ⋯ ≻ x⃗n ≻ ⋯. It is well-known that
a predicate x⃗ ≺ y⃗ is well-founded if and only if the following holds

∀x⃗(∀y⃗(y⃗ ≺ x⃗→ P (y⃗))→ P (x⃗))→ ∀x⃗P (x⃗)
for every n-ary predicate over N.

Example. The standard ordering x < y of natural numbers is obviously a well-
founded relation. Another well-founded relation is the lexicographic ordering(x1, x2) <lex (y1, y2) of the set of pairs of natural numbers (see Par. 4.1.20).
In fact, each measure term µ[x⃗] gives us a well-founded relation over N:
namely the relation ≺ explicitly defined by x⃗ ≺ y⃗↔ µ[x⃗] < µ[y⃗].
4.3.3 The principle of well-founded induction. Let x⃗ ≺ y⃗ be a 2n-ary
predicate of a theory T . The formula of ≺-well-founded induction on x⃗ for a
formula ϕ of LT is the following one:

∀x⃗(∀y⃗(y⃗ ≺ x⃗→ ϕ[y⃗])→ ϕ[x⃗])→ ∀x⃗ϕ[x⃗]. (1)

We assume here that the variables y⃗ are different from x⃗ and that they do not
occur in ϕ. The formula ϕ may contain additional variables as parameters.

We say that the predicate ≺ is provably well-founded in T if the theory T
proves the principle of ≺-well-founded induction for each formula of LT . The
following claim asserts that the relation ≺ is provably well-founded in every
extension by definitions of T .

4.3 Well-Founded Recursion 121

4.3.4 Theorem If T ′ is an extension by definitions of T then it proves the
principle of ≺-well-founded induction for each formula of LT ′ .

Proof. Translation of the principle of ≺-well-founded induction for a formula
of LT ′ into the theory T yields a formula which is again the principle of ≺-
well-founded induction but now for a formula of LT . ⊓⊔

4.3.5 Extensions by well-founded recursion. Let T be an extension by
definitions of PA and f a new n-ary function symbol. Let τ[f ; x⃗] be a term
of the extended language LT ∪ {f} in which no other variables than the n
indicated are free. Let further ρ⃗ ≺ x⃗ be a provably well-founded relation in T .
Let finally [f]≺x⃗(y⃗) be the restriction of f to the numbers y⃗ s.t. y⃗ ≺ x⃗, i.e.

[f]≺x⃗(y⃗) ≡D(y⃗ ≺∗ x⃗, f(y⃗),0).
Consider the theory T ′ obtained from the theory T by adding the n-ary
function symbol f , the defining axiom

f(x⃗) = τ[λ̇y⃗.[f]≺x⃗(y⃗); x⃗], (1)

and the scheme of ≺-well-founded induction for all formulas of LT ′ containing
the symbol f . We say that T ′ is an extension of T by ≺-well-founded recursion.

Note the use of special lambda notation (see Par. 3.5.2) in the defining
axiom (1). This means that every recursive application f(ρ⃗) in τ is replaced
by the restriction of f to the numbers ρ⃗ s.t. ρ⃗ ≺ x⃗, i.e. by the term

[f]≺x⃗(ρ⃗) ≡D(ρ⃗ ≺∗ x⃗, f(ρ⃗),0).
In the sequel we will use the notation τ[[f]≺x⃗; x⃗] (or even τ[[f]; x⃗]) as an
abbreviation for the term on the right-hand side of the identity (1).

Fixing notation. We keep the notation introduced in this paragraph fixed
until the end of this section where we prove in Thm. 4.3.10 that the theory
T ′ is an extension by definition of the theory T . We will be working in an
extension by definitions of the theory T . We will keep the notation T also for
this extension of T .

Remark. The definition can be viewed as a function operator which takes
all auxiliary functions applied in the term τ and yields the function f as a
result. We will prove in Thm. 4.3.11 that the class of µ-recursive functions is
closed under the operator of well-founded recursion.

4.3.6 Approximation function. We wish to introduce the function f into
the theory T with the help of its approximation function f +(z, x⃗). The ad-
ditional argument z plays the role of the depth of recursion counter. If the
value f(x⃗) can be computed with the depth z then

122 4 General Recursive Schemes

f +(z, x1 + 1, . . . , xn + 1) = f(x1, . . . , xn) + 1,

where x⃗ + 1 is an abbreviation for x1 + 1, . . . , xn + 1. Otherwise, i.e. if the
depth z does not suffice, then we have f +(z, x1 + 1, . . . , xn + 1) = 0.

First we define the ternary approximation function D+ of D:

D+(x, y, z) =D(x,D(x ∸ 1, y, z),0).
The approximation function D+ clearly satisfies:

T ⊢D+(0, y, z) = 0 (1)

T ⊢D+(x + 1, y, z) =D(x, y, z) (2)

T ⊢D+(x + 1, y + 1, z + 1) =D(x, y, z) + 1 (3)

Next, for each k-ary function g (k ≥ 0) occurring in the term τ we have its
k-ary approximation function g+ defined as

g+(x1, . . . , xk) =
⎧⎪⎪⎨⎪⎪⎩
g(x1 ∸ 1, . . . , xk ∸ 1) + 1 if x1 ≠ 0, . . . , xk ≠ 0,

0 otherwise.

More formally

g+(x1, . . . , xk) =D(k

⋀∗
i=1

(xi ≠∗ 0), g(x1 ∸ 1, . . . , xk ∸ 1)+ 1,0),
where ∧∗k

i=1(xi ≠∗ 0) stands for (x1 ≠∗ 0)∧∗ ⋯ ∧∗ (xk ≠∗ 0). We have

T ⊢
k

⋁
i=1

xi = 0 → g+(x1, . . . , xk) = 0 (4)

T ⊢ g+(x1 + 1, . . . , xk + 1) = g(x1, . . . , xk) + 1 (5)

T ⊢ 0+ = 1. (6)

The approximation function x⃗ ≺+∗ y⃗ of the characteristic function x⃗ ≺∗ y⃗ of the
predicate x⃗ ≺ y⃗ is defined similarly as g+. We then have

T ⊢
n

⋁
i=1

xi = 0 ∨
n

⋁
i=1

yi = 0 → (x1, . . . , xn ≺
+

∗ y1, . . . , yn) = 0 (7)

T ⊢ (x1 + 1, . . . , xn + 1 ≺+∗ y1 + 1, . . . , yn + 1) =
= (x1, . . . , xn ≺

+

∗ y1, . . . , yn) + 1.
(8)

Note that by combining (2) and (8) we get

T ⊢D+((u1 + 1, . . . , un + 1 ≺+∗ v1 + 1, . . . , vn + 1), y, z) =
=D((u1, . . . , un ≺∗ v1, . . . , vn), y, z). (9)

4.3 Well-Founded Recursion 123

Approximation terms ρ+[f +; z, x⃗] are defined for all subterms ρ of τ to satisfy:

x+i ≡ xi + 1 (variable)
g(ρ1, . . . , ρk)+ ≡ g+(ρ+1, . . . , ρ+k) (auxiliary function)
f(ρ1, . . . , ρn)+ ≡ f +(z, ρ+1, . . . , ρ+n). (recursive application)

Let us denote by [f +]≺+z,x⃗(y⃗) the restriction of f + to y⃗ s.t. y⃗ ≺+ x⃗, i.e.

[f +]≺+z,x⃗(y⃗) ≡D(y⃗ ≺+∗ x⃗, f +(z, y⃗),0).
We define the approximation function f + by nested simple recursion:

f +(0, x⃗) = 0 (10)

f +(z + 1, x⃗) = τ+[λ̇y⃗.[f +]≺+z,x⃗(y⃗); z, x⃗]. (11)

By Thm. 3.5.19, extensions by nested simple recursion are extensions by
definition. Hence we may assume without loss of generality that the theory T
already contains the approximation function f + and that its defining axioms
are provable in T .

Below we will use the notation τ+[[f +]≺+z,x⃗; z, x⃗] (or even τ+[[f +]; z, x⃗]) as
an abbreviation for the term on the right-hand side of the equation (11).

Remark. In order to simplify the discussion below, we will often write τ⃗ + 1
as an abbreviation defined as

τ⃗ + 1 ≡ τ1 + 1, . . . , τn + 1,

where τ⃗ ≡ τ1, . . . , τn. We will need some of the following maximum functions

max(x1, . . . , xm) = y↔ m

⋀
i=1

xi ≤ y ∧
m

⋁
i=1

xi = y,

where m = 1,2,

4.3.7 Monotonicity of the approximation function. The next prop-
erty asserts that once evaluation of the application f(x⃗) succeeds with the
depth of recursion z1 then it will succeed with the same result for every larger
depth of recursion counter z2:

T ⊢ z1 ≤ z2 ∧ f +(z1, x⃗ + 1) = y + 1 → f +(z2, x⃗ + 1) = y + 1. (1)

The property can be generalized for approximation terms as follows. For every
subterm ρ[f ; x⃗] of the term τ we have

T ⊢ z1 ≤ z2 ∧ ρ+[[f +]; z1, x⃗ + 1] = y + 1 → ρ+[[f +]; z2, x⃗ + 1] = y + 1. (2)

124 4 General Recursive Schemes

Proof. (1): This is proved by induction on z2 as ∀z1∀x⃗∀y(1). The base case
is trivial. In the induction step take any z1, x⃗, y such that z1 ≤ z2 + 1 and

f +(z1, x⃗ + 1) = y + 1. (†1)

Note that it must be z1 ≠ 0. First we prove by the inner induction of subterms
ρ[f ; x⃗] of the term τ that we have

∀v(ρ+[[f +]; z1 ∸ 1, x⃗] = v + 1 → ρ+[[f +]; z2, x⃗] = v + 1). (†2)

So take any number v such that ρ+[[f +]; z1 ∸ 1, x⃗ + 1] = v + 1 and continue by
the case analysis of the term ρ.

The case when ρ ≡ xi is obvious. If ρ ≡ g(θ⃗), where g is a k-ary function
symbol, then we have

g+(θ⃗+[[f +]; z1 ∸ 1, x⃗ + 1]) = v + 1.

By 4.3.6(4), there are k numbers u1, . . . , uk s.t. θ+i [[f +]; z1 ∸ 1, x⃗ + 1] = ui + 1
for every i = 1, . . . , k. From the inner IH we obtain θ+i [[f +]; z2, x⃗ + 1] = ui + 1
for every i = 1, . . . , k. Consequently

g+(θ⃗+[[f +]; z2, x⃗ + 1]) = v + 1.

If ρ ≡ f(θ⃗) then we have

D+(θ⃗+[[f +]; z1 ∸ 1, x⃗ + 1] ≺+∗ x⃗ + 1, f +(z1 ∸ 1, θ⃗+[[f +]; z1 ∸ 1, x⃗ + 1]),0+) = v + 1.

By 4.3.6(1), it must be (θ⃗+[[f +]; z1 ∸ 1, x⃗ + 1] ≺+∗ x⃗ + 1) ≠ 0 and therefore, by
4.3.6(7), there are n numbers u⃗ ≡ u1, . . . , un such that

θ+i [[f +]; z1 ∸ 1, x⃗ + 1] = ui + 1

for every i = 1, . . . , n. By the inner IH we obtain

θ+i [[f +]; z2, x⃗ + 1]= ui + 1

for every i = 1, . . . , n. Therefore

D+(u⃗ + 1 ≺+∗ x⃗ + 1, f +(z1 ∸ 1, u⃗ + 1),0+) = v + 1

and thus, by 4.3.6(9), we have

D(u⃗ ≺∗ x⃗, f +(z1 ∸ 1, u⃗ + 1),0+) = v + 1.

By a simple case analysis on whether u⃗ ≺ x⃗ or not and by applying the outer
IH with z1 ∸ 1 in place of z1, u⃗ in place of x⃗, and v in place of y, we obtain

4.3 Well-Founded Recursion 125

D(u⃗ ≺∗ x⃗, f +(z2, u⃗ + 1),0+) = v + 1.

Working backwards we have

D+(u⃗ + 1 ≺+∗ x⃗ + 1, f +(z2, u⃗ + 1),0+) = v + 1

and thus

D+(θ⃗+[[f +]; z2, x⃗ + 1] ≺+∗ x⃗ + 1, f +(z2, θ⃗+[[f +]; z2, x⃗ + 1]),0+) = v + 1.

This concludes the proof of the inner induction step.
With the auxiliary property proved we finish the induction step of the

outer induction as follows:

y + 1
(†1)
= f +(z1, x⃗ + 1) = τ+[[f +]; z1 ∸ 1, x⃗ + 1] (†2)=

= τ+[[f +]; z2, x⃗ + 1] = f +(z2 + 1, x⃗ + 1).
This proves (1).

(2): By structural induction on subterms ρ[f ; x⃗] of the term τ as ∀y(2).
Take any number y, assume z1 ≤ z2 and ρ+[[f +]; z1, x⃗ + 1] = y + 1, and con-
tinue by the case analysis of the term ρ.

The case when ρ ≡ xi is obvious; the case ρ ≡ g(θ⃗) is proved by similar

arguments as above. So suppose that ρ ≡ f(θ⃗). We then have

D+(θ⃗+[[f +]; z1, x⃗ + 1] ≺+∗ x⃗ + 1, f +(z1, θ⃗+[[f +]; z1, x⃗ + 1]),0+) = v + 1.

A similar argument as above yields that there are numbers u⃗ ≡ u1, . . . , un

such that the following holds for every i = 1, . . . , n:

θ+i [[f +]; z1, x⃗ + 1] = ui + 1.

We apply IH n-times to obtain

θ+i [[f +]; z2, x⃗ + 1] = ui + 1

for every i = 1, . . . , n. Therefore

D+(u⃗ + 1 ≺+∗ x⃗ + 1, f +(z1, u⃗ + 1),0+) = v + 1

and thus, by 4.3.6(9), we have

D(u⃗ ≺∗ x⃗, f +(z1, u⃗ + 1),0+) = v + 1.

Now, by using (1), a simple case analysis on whether u⃗ ≺ x⃗ or not shows that

126 4 General Recursive Schemes

D(u⃗ ≺∗ x⃗, f +(z2, u⃗ + 1),0+) = v + 1

Working backwards we obtain

D+(u⃗ + 1 ≺+∗ x⃗ + 1, f +(z2, u⃗ + 1),0+) = v + 1

and hence

D+(θ⃗+[[f +]; z2, x⃗ + 1] ≺+∗ x⃗ + 1, f +(z2, θ⃗+[[f +]; z2, x⃗ + 1]),0+) = v + 1.

This concludes the proof of the induction step. ⊓⊔

4.3.8 The existence condition for the approximation function. The
following property states that for every input x⃗ there exists a value of the
depth of recursion for the evaluation of the application f(x⃗):

T ⊢ ∃y∃z f +(z, x⃗ + 1) = y + 1. (1)

Note that the value y for which the recursion counter z exists is uniquely
determined by the monotonicity of the approximation function.

Proof. In the proof we tacitly use the monotone properties of the approxi-
mation function and approximation terms. Property (1) is proved by ≺-well-
founded induction on x⃗. So take any numbers x⃗ and prove first by the inner
induction on the structure of subterms ρ[f ; x⃗] of term τ the following:

∃y∃z ρ+[[f +]; z, x⃗ + 1] = y + 1 . (†1)

We continue by the case analysis of ρ.
If ρ ≡ xi then we have x+i [[f +]; z, x⃗ + 1] = xi + 1 and therefore it suffices to

take y ∶= xi and z ∶= 0.
If ρ ≡ g(θ⃗), where g is a k-ary function symbol, then by the inner IH there

are numbers u1, . . . , uk, z1, . . . , zk such that for every i = 1, . . . , k we have

∀z(z ≥ zi → θ+i [[f +]; z, x⃗ + 1] = ui + 1). (†2)

Thus for every z ≥ max(z1, . . . , zk) we have (u⃗ ≡ u1, . . . , uk)

g+(θ⃗+[[f +]; z, x⃗ + 1]) (†2)
= g+(u⃗ + 1) 4.3.6(5)

= g(u⃗) + 1.

It suffices to take y ∶= g(u⃗) and z ∶= max(x1, . . . , xk).
If ρ ≡ f(θ⃗) then by the inner IH there are numbers u1, . . . , un, z1, . . . , zn

such that for every i = 1, . . . , n we have

∀z(z ≥ zi → θ+i [[f +]; z, x⃗ + 1] = ui + 1). (†3)

Thus we have the following for every z ≥ max(z1, . . . , zn) ∶

4.3 Well-Founded Recursion 127

D+(θ⃗+[[f +]; z, x⃗ + 1] ≺+∗ x⃗ + 1, f +(z, θ⃗+[[f +]; z, x⃗ + 1]),0+) (†
3
)

=

=D+(u⃗ + 1 ≺+∗ x⃗ + 1, f +(z, u⃗ + 1),0+) 4.3.6(9)
=

=D(u⃗ ≺∗ x⃗, f +(z, u⃗ + 1),0+).
Now if u⃗ ≺ x⃗ then from the outer IH we obtain numbers u0 and z0 such that

∀z(z ≥ z0 → f +(z, u⃗ + 1) = u0 + 1). (†4)

Thus for every z ≥ max(z0, z1, . . . , zn) we have

D(u⃗ ≺∗ x⃗, f +(z, u⃗ + 1),0+) = f +(z, u⃗ + 1) (†4)= u0 + 1.

It suffices to take y ∶= u0 and z ∶= max(z0, z1, . . . , zn). Otherwise we have u⃗ ⊀ x⃗
and thus for every z ≥ max(z1, . . . , zn) we get

D(u⃗ ≺∗ x⃗, f +(z, u⃗ + 1),0+) = 0+
4.3.6(6)
= 0 + 1.

It suffices to take y ∶= 0 and z = max(z1, . . . , zn).
We are now in position to finish the proof of the outer induction. By (†1)

applied to the term τ we obtain that the following holds for some y and z:

τ+[[f +]; z, x⃗ + 1] = y + 1 . (†5)

The induction step of the outer induction follows from

f +(z + 1, x⃗ + 1) = τ+[[f +]; z, x⃗ + 1] (†
5
)

= y + 1.

This proves (1). ⊓⊔

4.3.9 Depth of recursion counter. Consider the n-ary function δ(x⃗) de-
fined by the following minimalization

δ(x⃗) = µz[f +(z + 1, x⃗ + 1) ≠ 0].
Note that its condition of regularity

T ⊢ ∃z f +(z + 1, x⃗ + 1) ≠ 0.

follows from 4.3.8(1). The value δ(x⃗) + 1 is the depth of recursion needed to
evaluate the application f(x⃗).

The function satisfies

128 4 General Recursive Schemes

T ⊢ f +(z, x⃗ + 1) = f +(δ(x⃗) + 1, x⃗ + 1)↔ δ(x⃗) < z (1)

T ⊢ ρ+[[f +];δ(x⃗), x⃗ + 1] ≠ 0 (2)

T ⊢D(y⃗ ≺∗ x⃗, f +(z, y⃗ + 1),0+) ≠ 0 →

D(y⃗ ≺∗ x⃗, f +(z, y⃗ + 1),0+) =D(y⃗ ≺∗ x⃗, f +(δ(y⃗) + 1, y⃗ + 1),0+), (3)

where the property (2) holds for every subterm ρ[f ; x⃗] of τ .

Proof. First note that directly from the definition we obtain that

T ⊢ f +(δ(x⃗) + 1, x⃗ + 1) ≠ 0 (†1)

T ⊢ f +(z + 1, x⃗ + 1) ≠ 0 → δ(x⃗) ≤ z. (†2)

The last property can be written in the following equivalent form

T ⊢ f +(z, x⃗ + 1) ≠ 0 → δ(x⃗) < z (†3)

because f +(0, x⃗ + 1) = 0 by definition.
(1): Suppose that f +(z, x⃗ + 1) = f +(δ(x⃗) + 1, x⃗ + 1). Then by (†1), we have

f +(z, x⃗ + 1) ≠ 0 and thus δ(x⃗) < z by (†3). This proves the (→)-direction of
the claim. Vice versa, if δ(x⃗) < z then δ(x⃗) ≤ z ∸ 1 and thus

0
(†

1
)

≠ f +(δ(x⃗) + 1, x⃗ + 1) 4.3.7(1)
= f +(z ∸ 1 + 1, x⃗ + 1) = f +(z, x⃗ + 1).

This proves the reverse direction.
(2): This is proved by backward induction on the structure of subterms

ρ[f ; x⃗] of the term τ . If ρ ≡ τ then the claim follows from

τ+[[f +];δ(x⃗), x⃗ + 1] = f +(δ(x⃗) + 1, x⃗ + 1) (†1)
≠ 0.

The case when ρ ≡ xi is obvious. If ρ ≡ g(θ⃗), where g is an auxiliary k-ary
function, then we obtain from IH

g+(θ⃗+[[f +];δ(x⃗), x⃗ + 1]) ≠ 0,

and thus, by 4.3.6(5), we have

θ+i [[f +];δ(x⃗), x⃗ + 1] ≠ 0

for every i = 1, . . . , k. If ρ ≡ f(θ⃗) then we obtain from IH

D+(θ⃗+[[f +];δ(x⃗), x⃗ + 1] ≺+∗ x⃗ + 1, f +(δ(x⃗) ∸ 1, θ⃗+[[f +];δ(x⃗), x⃗ + 1]),0+) ≠ 0.

By 4.3.6(1), it must be

4.3 Well-Founded Recursion 129

(θ⃗+[[f +];δ(x⃗), x⃗ + 1] ≺+∗ x⃗ + 1) ≠ 0

and thus, by 4.3.6(7), we have

θ+i [[f +];δ(x⃗), x⃗ + 1] ≠ 0

for every i = 1, . . . , n.
(3): Under the antecedent of the claim we consider two cases. If y⃗ ≺ x⃗ then

f +(z, y⃗ + 1) =D(y⃗ ≺∗ x⃗, f +(z, y⃗ + 1),0+) ≠ 0

and thus δ(y⃗) < z by (†3). We then obtain

D(y⃗ ≺∗ x⃗, f +(z, y⃗ + 1),0+) = f +(z, y⃗ + 1) (1)
= f +(δ(y⃗) + 1, y⃗ + 1) =

=D(y⃗ ≺∗ x⃗, f +(δ(y⃗) + 1, y⃗ + 1),0+).
The case when y⃗ ⊀ x⃗ is straightforward. ⊓⊔

4.3.10 Theorem If T is an extension by definitions of PA then any exten-
sion of T by well-founded recursion is an extension by definition.

Proof. Let T ′ be an extension of T by the ≺-well-founded recursion

f(x⃗) = τ[[f]≺x⃗; x⃗]
as in Par. 4.3.5 and T ′′ an extension of T by the explicit definition

f(x⃗) = f +(δ(x⃗) + 1, x⃗ + 1) ∸ 1,

where f + and δ are as in Par. 4.3.6 and Par. 4.3.9, respectively. We have
LT ′′ = LT ′ and T ′′ is an extension by definition of T . In order to prove the
claim it suffices to show that the theories T ′ and T ′′ have the same theorems.

First we show T ′′ ⊢ T ′. The theory T ′′ is an extension by definition of
T , and therefore, by Thm. 4.3.4, it proves the principle of ≺-well-founded
induction for each formula of LT ′ containing the symbol f . It remains to
show that

T ′′ ⊢ f(x⃗) = τ[[f]; x⃗]. (†1)

For that we need the following auxiliary property which is proved by induction
on the structure of subterms ρ[f ; x⃗] of the term τ :

T ′′ ⊢ ρ+[[f +];δ(x⃗), x⃗ + 1] = ρ[[f]; x⃗] + 1. (†2)

We continue by the case analysis of ρ.
The case when ρ ≡ xi is obvious. If ρ ≡ g(θ⃗), where g is an auxiliary func-

tion, then we have

130 4 General Recursive Schemes

g+(θ⃗+[[f +];δ(x⃗), x⃗ + 1]) IH’s
= g+(θ⃗[[f]; x⃗] + 1) 4.3.6(5)

= g(θ⃗[[f]; x⃗]) + 1.

If ρ ≡ f(θ⃗) then

D+(θ⃗+[[f +];δ(x⃗), x⃗ + 1] ≺+∗ x⃗ + 1, f +(δ(x⃗), θ⃗+[[f +]; z, x⃗ + 1]),0+) ≠ 0 (†3)

by 4.3.9(2) and thus

D+(θ⃗+[[f +];δ(x⃗), x⃗ + 1] ≺+∗ x⃗ + 1, f +(δ(x⃗), θ⃗+[[f +]; z, x⃗ + 1]),0+) IH’s
=

=D+(θ⃗[[f]; x⃗] + 1 ≺+∗ x⃗ + 1, f +(δ(x⃗), θ⃗[[f]; x⃗] + 1),0+) 4.3.6(9)
=

=D(θ⃗[[f]; x⃗] ≺∗ x⃗, f +(δ(x⃗), θ⃗[[f]; x⃗] + 1),0+) (†
3
),4.3.9(3)
=

=D(θ⃗[[f]; x⃗] ≺∗ x⃗, f +(δ(θ⃗[[f]; x⃗]) + 1, θ⃗[[f]; x⃗] + 1),0+) =
=D(θ⃗[[f]; x⃗] ≺∗ x⃗, f(θ⃗[[f]; x⃗]) + 1,0+) 4.3.6(6)

=

=D(θ⃗[[f]; x⃗] ≺∗ x⃗, f(θ⃗[[f]; x⃗]),0) + 1.

This concludes the proof of (†2).
With the auxiliary property proved we obtain (†1) from

f(x⃗) = f +(δ(x⃗) + 1, x⃗ + 1) ∸ 1 = τ+[[f +];δ(x⃗), x⃗ + 1] ∸ 1
(†2)=

= τ[[f]; x⃗] + 1 ∸ 1 = τ[[f]; x⃗].
Now we prove T ′ ⊢ T ′′. For that it suffices to show

T ′ ⊢ f(x⃗) = f +(δ(x⃗) + 1, x⃗ + 1) ∸ 1. (†4)

This is proved by ≺-well-founded induction on x⃗. Take any x⃗ and prove first
by (the inner) induction on the structure of subterms ρ[f ; x⃗] of τ the property

ρ[[f]; x⃗] + 1 = ρ+[[f +];δ(x⃗), x⃗ + 1]. (†5)

We continue by the case analysis of ρ.
The case when ρ ≡ xi is obvious. If ρ ≡ g(θ⃗), where g is an auxiliary func-

tion, then we have

g(θ⃗[[f]; x⃗]) + 1
4.3.6(5)
= g+(θ⃗[[f]; x⃗] + 1) IH’s

= g+(θ⃗+[[f +];δ(x⃗), x⃗ + 1]).
If ρ ≡ f(θ⃗) then

D+(θ⃗+[[f +];δ(x⃗), x⃗ + 1] ≺+∗ x⃗ + 1, f +(δ(x⃗), θ⃗+[[f +]; z, x⃗ + 1]),0+) ≠ 0 (†6)

4.4 Regular Recursion 131

by 4.3.9(2) and thus

D(θ⃗[[f]; x⃗] ≺∗ x⃗, f(θ⃗[[f]; x⃗]),0) + 1
4.3.6(6)
=

=D(θ⃗[[f]; x⃗] ≺∗ x⃗, f(θ⃗[[f]; x⃗]) + 1,0+) outer IH
=

=D(θ⃗[[f]; x⃗] ≺∗ x⃗, f +(δ(θ⃗[[f]; x⃗]) + 1, θ⃗[[f]; x⃗] + 1),0+) (†
6
),4.3.9(3)
=

=D(θ⃗[[f]; x⃗] ≺∗ x⃗, f +(δ(x⃗), θ⃗[[f]; x⃗] + 1),0+) 4.3.6(9)
=

=D+(θ⃗[[f]; x⃗] + 1 ≺+∗ x⃗ + 1, f +(δ(x⃗), θ⃗[[f]; x⃗] + 1),0+) inner IH’s
=

=D+(θ⃗+[[f +];δ(x⃗), x⃗ + 1] ≺+∗ x⃗ + 1, f +(δ(x⃗), θ⃗+[[f +];δ(x⃗), x⃗ + 1]),0+).
This ends the proof of the inner induction formula (†5).

We are now in position to finish the proof of the induction step of the
outer induction. We have

f(x⃗) = τ[[f]; x⃗] = τ[[f]; x⃗] + 1 ∸ 1
(†5)
= τ+[[f +];δ(x⃗), x⃗ + 1] ∸ 1 =

= f +(δ(x⃗) + 1, x⃗ + 1) ∸ 1. ⊓⊔

4.3.11 Theorem µ-Recursive functions are closed under well-founded re-
cursion.

Proof. By inspection of the proof of Thm. 4.3.10. ⊓⊔

4.4 Regular Recursion

4.4.1 Introduction. Consider the following recursive definition of the func-
tion f , which is into the well-founded relation ≺:

f(x⃗) = τ[[f]≺x⃗; x⃗], (1)

where [f]≺x⃗ is the restriction of f :

[f]≺x⃗(y⃗) ≡ if y⃗ ≺ x⃗ then f(y⃗) else 0.

We can drop the guards ρ⃗ ≺ x⃗ around recursive applications of f in the defi-
nition if we restrict them to regular applications. The condition of regularity
means that for every recursive application f(ρ⃗) we have

Γ τ
f(ρ⃗)[f ; x⃗]→ ρ⃗[f ; x⃗] ≺ x⃗.

132 4 General Recursive Schemes

Here, the Γ τ
f(ρ⃗) is the governing condition of the term f(ρ⃗) in τ : it is the

conjunction of all conditions surrounding the recursive application f(ρ⃗) in
the term τ . Such definitions are called regular definitions. The definition (1)
can be then written in the equivalent form

f(x⃗) = τ[f ; x⃗] (2)

with the governing conditions removed. For regular definitions we have not
only the extensional property:

τ[[f]≺x⃗; x⃗] = τ[f ; x⃗]
but also a stronger intensional property that we can use the defining equation
(2) as a computational rule from left to right for the evaluation of f . This is
shown in the next section.

4.4.2 Extensions by regular recursion. The concept of regular recursive
definitions is formalized as follows. Let T be an extension by definitions of
PA and ≺ a well-founded relation of T .. Let further f be a new n-ary function
symbol and τ[f ; x⃗] a term in x⃗ of the theory Tf obtained from T by adding
the function symbol f .

To every occurrence of a subterm ρ in τ we define inductively on ∥τ∥ − ∥ρ∥
the governing condition Γ τ

ρ of ρ in τ . Here, the ∥τ∥ is the size, i.e. the number

of operations, of the term τ . If ρ ≡ τ or ρ is without conditionals then Γ τ
ρ ≡ ⊺

(i.e. always true). If ρ ≡D(θ1, θ2, θ3) then Γ τ
θ1
≡ Γ τ

ρ , Γ τ
θ2
≡ Γ τ

ρ ∧ θ1 ≠ 0 and

Γ τ
θ3
≡ Γ τ

ρ ∧ θ1 = 0.
We assign to each occurrence of the recursive application f(ρ⃗) in τ with

governing condition Γ τ
f(ρ⃗) the following condition of regularity:

Γ τ
f(ρ⃗) → ρ⃗ ≺ x⃗.

We denote by Reg≺τ [f] the conjunction of universal closures of all its condi-
tions of regularity.

We say that the term τ is regular in the well-founded relation ≺ if the ex-
tension T ′′ of T by (bounded) well-founded recursion f(x⃗) = τ[[f]≺x⃗; x⃗] proves

all its condition of regularity, i.e. we have T ′′ ⊢ Reg≺τ [f].
Consider the theory T ′ obtained from the theory T by adding the n-ary

function symbol f , the defining axiom

f(x⃗) = τ[f ; x⃗],
where τ is a regular term in ≺, the conditions of regularity Reg≺τ [f], and
the scheme of ≺-well-founded induction for the formulas of LT ′ containing
the symbol f . We say that T ′ is an extension of T by regular (well-founded)
recursion.

4.4 Regular Recursion 133

Remark. The definition can be viewed as a function operator which takes
all auxiliary functions applied in the term τ and yields the function f as a
result. We will prove in Thm. 4.4.5 that the class of µ-recursive functions is
closed under the operator of regular well-founded recursion.

Remark. The definition is said to be regular recursion with measure if

x⃗ ≺ y⃗↔ µ[x⃗] < µ[y⃗]
for a suitable measure µ[x⃗] of LT . In this case we will use the following
notation Regµ

τ [f] to denote its conditions of regularity.
Such definition can be viewed as a function operator which takes all auxil-

iary functions applied in the terms µ, τ and yields the function f as a result.
We will prove in Thm. 4.4.4 that the class of primitive recursive functions is
closed under the operator of regular recursion with measure.

4.4.3 Theorem If T is an extension by definitions of PA then any extension
of T by regular recursion is an extension by definition.

Proof. Let T ′ be an extension of T by regular recursion

f(x⃗) = τ[f ; x⃗] (†1)

and T ′′ an extension of T by (bounded) well-founded recursion

f(x⃗) = τ[[f]≺x⃗; x⃗] (†2)

as in Par. 4.4.2. We have LT ′′ = LT ′ and the theory T ′′ is an extension by
definition of the theory T by Thm. 4.3.10. In order to prove the claim it
suffices to show that the theories T ′ and T ′′ are equivalent.

First we prove T ′′ ⊢ T ′. First of all, the theory T ′′ contains the principle
of ≺-well-founded induction for every formula of LT ′ with the symbol f . Next
the term τ is regular and therefore T ′′ ⊢ Reg≺τ [f]. So it remains to show that

T ′′ ⊢ f(x⃗) = τ[f ; x⃗]. (†3)

For that we need the following auxiliary property which is proved by induction
on the structure of subterms ρ[f ; x⃗] of τ :

T ′′ ⊢ Γ τ
ρ [f ; x⃗]→ ρ[[f]≺x⃗; x⃗] = ρ[f ; x⃗]. (†4)

So take any numbers x⃗ and subterm ρ of τ such that Γ τ
ρ [f ; x⃗] holds, and

continue by case analysis of ρ.
The case when ρ ≡ xi is trivial. If ρ ≡ g(θ⃗) then the terms θ⃗ are governed

in τ by Γ τ
ρ and we obtain g(θ⃗[[f]; x⃗]) = g(θ⃗[f ; x⃗]) directly from IH.

134 4 General Recursive Schemes

If ρ ≡ f(θ⃗) then the terms θ⃗ are governed in τ by Γ τ
ρ . By regularity

θ⃗[f ; x⃗] ≺ x⃗ and thus

D(θ⃗[[f]; x⃗] ≺∗ x⃗, f(θ⃗[[f]; x⃗]),0) IH
= D(θ⃗[f ; x⃗] ≺∗ x⃗, f(θ⃗[f ; x⃗]),0) =
= D(1, f(θ⃗[f ; x⃗]),0) = f(θ⃗[f ; x⃗]).

If ρ ≡D(θ1, θ2, θ3) then the terms θ1, θ2, θ3 are governed in τ respectively
by Γ τ

ρ , Γ τ
ρ ∧ θ1 ≠ 0 and Γ τ

ρ ∧ θ1 = 0. We have by IH:

θ1[[f]; x⃗] = θ1[f ; x⃗] (†5)

θ1[f ; x⃗] ≠ 0 → θ2[[f]; x⃗] = θ2[f ; x⃗] (†6)

θ1[f ; x⃗] = 0 → θ3[[f]; x⃗] = θ3[f ; x⃗]. (†7)

Thus

D(θ1[[f]; x⃗], θ2[[f]; x⃗], θ3[[f]; x⃗]) (†
5
)

=

=D(θ1[f ; x⃗], θ2[[f]; x⃗], θ3[[f]; x⃗]) (†6),(†7)
= D(θ1[f ; x⃗], θ2[f ; x⃗], θ3[f ; x⃗]).

With the auxiliary property proved we obtain (†3) from

f(x⃗) = τ[[f]≺x⃗; x⃗] (†
4
)

= τ[f ; x⃗]
by noting that τ is governed in τ by ⊺.

Now we prove T ′ ⊢ T ′′. The theory T ′ contains the principle of ≺-well-
founded induction for every formula of LT ′′ with the symbol f . It remains to
show

T ′ ⊢ f(x⃗) = τ[[f]≺x⃗; x⃗] . (†8)

For that we need the following auxiliary property which is proved by induction
on the structure of subterms ρ[f ; x⃗] of τ :

T ′ ⊢ Γ τ
ρ [f ; x⃗]→ ρ[f ; x⃗] = ρ[[f]≺x⃗; x⃗], (†9)

Take any numbers x⃗ any subterm ρ of τ such that Γ τ
ρ [f ; x⃗] holds, and continue

by case analysis of the term ρ.
The case when ρ ≡ xi is trivial. If ρ ≡ g(θ⃗) then the terms θ⃗ are governed

in τ by Γ τ
ρ and we obtain g(θ⃗[f ; x⃗]) = g(θ⃗[[f]; x⃗]) directly from IH.

If ρ ≡ f(θ⃗) then the terms θ⃗ are governed in τ by Γ τ
ρ . We have θ⃗[f ; x⃗] ≺ x⃗

from the conditions of regularity Reg≺τ [f] and thus

4.4 Regular Recursion 135

f(θ⃗[f ; x⃗]) =D(1, f(θ⃗[f ; x⃗]),0) =D(θ⃗[f ; x⃗] ≺∗ x⃗, f(θ⃗[f ; x⃗]),0) IH
=

=D(θ⃗[[f]; x⃗] ≺∗ x⃗, f(θ⃗[[f]; x⃗]),0).
If ρ ≡D(θ1, θ2, θ3) then the terms θ1, θ2, θ3 are governed in τ respectively

by Γ τ
ρ , Γ τ

ρ ∧ θ1 ≠ 0 and Γ τ
ρ ∧ θ1 = 0. We have by IH:

θ1[f ; x⃗] = θ1[[f]; x⃗] (†10)

θ1[f ; x⃗] ≠ 0 → θ2[f ; x⃗] = θ2[[f]; x⃗] (†11)

θ1[f ; x⃗] = 0 → θ3[f ; x⃗] = θ3[[f]; x⃗]. (†12)

Thus

D(θ1[f ; x⃗], θ2[f ; x⃗], θ3[f ; x⃗]) (†11),(†12)
= D(θ1[f ; x⃗], θ2[[f]; x⃗], θ3[[f]; x⃗]) (†10)

=

=D(θ1[[f]; x⃗], θ2[[f]; x⃗], θ3[[f]; x⃗]).
With the auxiliary property proved we obtain (†8) from

f(x⃗) = τ[f ; x⃗] (†9)= τ[[f]≺x⃗; x⃗]
by noting that τ is governed in τ by ⊺. ⊓⊔

4.4.4 Theorem Primitive recursive functions are closed under regular re-
cursion with measure.

Proof. By inspection of the proof of Thm. 4.4.3 using Thm. 4.2.8. ⊓⊔

4.4.5 Theorem µ-Recursive functions are closed under regular well-founded
recursion.

Proof. By inspection of the proof of Thm. 4.4.3 using Thm. 4.3.11. ⊓⊔

4.4.6 Remark. We have already encountered regular recursive definitions
in Sect. 4.1. More elaborated examples will be studied in the next chapters.
Below you will find some examples of non-trivial nested regular recursive
definitions. Proving conditions of regularity in such cases usually requires
knowing something about the function defined in advance. The bounded ver-
sion of regular recursion comes here in rescue.

4.4.7 Example. We begin with the functional equation of the form (see
[13, 29, 47])

f(x) = if x ≠ 0 then f f(x ∸ 1) else 0. (1)

We claim that this is a recursive definition of the zero function regular in x.
The following formulas are its conditions of regularity:

136 4 General Recursive Schemes

⊢PA x ≠ 0 → x ∸ 1 < x (2)

⊢PA x ≠ 0 → f(x ∸ 1) < x. (3)

We need to check only the second property for the first one holds trivially.
For that, consider the following recursive definition associated with (1):

f(x) = if x ≠ 0 then [f]x[f]x(x ∸ 1) else 0. (4)

Here, the [f]x(y) is the restriction of f to y < x, i.e.

[f]x(y) ≡ if y < x then f(y) else 0.

We will show that the function f defined by (4) satisfies the second condition
of regularity. We provide two proofs of this fact.

One method is to prove directly (3) by complete induction on x. So suppose
that x ≠ 0 and consider two cases. If x = 1 then we have

f(1 ∸ 1) = f(0) = 0 < 1.

If x ≥ 2 then x ∸ 1 < x and therefore

f(x ∸ 2) < x ∸ 1. (5)

by IH applied to the number x ∸ 1. We now have

f(x ∸ 1) = [f]x∸1[f]x∸1(x ∸ 2) = [f]x∸1f(x ∸ 2) (5)
=

= f f(x ∸ 2) = f(f(x ∸ 2) + 1 ∸ 1) (5),IH
< f(x ∸ 2)+ 1

(5)
< x.

Note the second use of IH applied to the number f(x ∸ 2)+ 1 < x.
For an alternative proof of (3) we will use the following auxiliary property,

which is is proved by induction on x:

⊢PA f(x) = 0. (6)

The base is obvious. The induction step follows from

f(x + 1) = [f]x+1[f]x+1(x + 1 ∸ 1) = [f]x+1[f]x+1(x) =
= [f]x+1f(x) IH

= [f]x+1(0) = f(0) = 0.

We are now in position to prove (3). Suppose that x ≠ 0. We then have

f(x ∸ 1) (6)
= 0 ≤ x ∸ 1 < x.

4.4 Regular Recursion 137

4.4.8 Example. Next we consider the functional equation of the form

f(x) = if x < 101 then f f(x + 11) else x ∸ 10. (1)

We claim this is a recursive definition of the celebrated McCarthy 91 function:

f91(x) =
⎧⎪⎪⎨⎪⎪⎩
91 if x < 101,

x ∸ 10 if x ≥ 101.

The definition is regular in the measure 101 ∸ x and the following formulas
are its conditions of regularity:

⊢PA x < 101 → 101 ∸ (x + 11) < 101 ∸ x (2)

⊢PA x < 101 → 101 ∸ f(x + 11) < 101 ∸ x. (3)

We need to check only the second condition, for the first one follows from

⊢PA a < 101 → 101 ∸ b < 101 ∸ a↔ b > a.

For that consider the following recursive definition associated with (1):

f(x) = if x < 101 then [f]x[f]x(x + 11) else x ∸ 10. (4)

Here, the [f]x(y) is the restriction of f to y s.t. 101 ∸ y < 101 ∸ x, i.e.

[f]x(y) ≡ if 101∸ y < 101 ∸ x then f(y) else 0.

We will show that the function f defined by (4) satisfies the second condition
of regularity by proving its equivalent formulation

⊢PA x < 101 → f(x + 11) > x. (5)

We give here two proofs of this fact.
One method is to prove (5) directly by induction with measure 101∸x. So

suppose that x < 101 and consider two cases. If x + 11 ≥ 101 then we have

f(x + 11) = x + 11 ∸ 10 = x + 1 > x.

If x + 11 < 101 then x + 11 + 11 > x + 11 > x and thus

101 ∸ (x + 11 + 11) < 101 ∸ (x + 11) < 101 ∸ x.

By applying IH to the number x + 11 we obtain

f(x + 11 + 11) > x + 11. (6)

Hence

138 4 General Recursive Schemes

101∸ f(x + 11 + 11) < 101 ∸ (x + 11). (7)

From (6) we also obtain

101 ∸ (f(x + 11 + 11)∸ 11) < 101 ∸ x. (8)

Consequently

f(x + 11) = [f]x+11[f]x+11(x + 11 + 11) = [f]x+11f(x + 11 + 11) (7)
=

= f f(x + 11 + 11) (6)
= f(f(x + 11 + 11)∸ 11 + 11) (8),IH

>

> f(x + 11 + 11)∸ 11
(6)
> x + 11 ∸ 11 = x.

Note the second use of IH, now for the number f(x + 11 + 11) ∸ 11.
For an alternative proof of (5) we will use the following auxiliary property

of the function f defined by (4):

⊢PA x < 101 → f(x) = 91. (9)

This is proved by induction with measure 101 ∸ x. So suppose that x < 101.
We then have 101∸ (x + 11) < 101 ∸ x and thus

f(x) = [f]x[f]x(x + 11) = [f]xf(x + 11).
Consider now two cases. If x+11 < 101 then 91 > x and thus 101 ∸ 91 < 101 ∸ x.
We now proceed

[f]xf(x + 11) IH
= [f]x(91) = f(91) IH

= 91.

If x + 11 ≥ 101 then 101 ∸ (x + 1) < 101 ∸ x since x + 1 > x and thus

[f]xf(x + 11) = [f]x(x + 11 ∸ 10) = [f]x(x + 1) = f(x + 1) IH
= 91.

This proves (9). We are now in position to prove (5). Suppose that x < 101.
Consider two cases. If x + 11 < 101 then 90 > x and we obtain

f(x + 11) (9)
= 91 > 90 > x.

Otherwise x + 11 ≥ 101 and then

f(x + 11) = x + 11 ∸ 10 = x + 1 > x.

In either case f(x + 11) > x. Consequently 101 ∸ f(x + 11) < 101 ∸ x.

4.5 Computation Model 139

4.5 Computation Model

4.5.1 Introduction. In this section we will introduce computational model
based on reduction of terms. Every program P is a property of some func-
tion f which can be used as a rewriting rule to evaluate this function. The
program P has assigned a precondition describing ϕ[x⃗] which elements x⃗ can
be used as inputs. Regularity conditions for the program P guarantees that
computation terminates for every input x⃗ which satisfies the precondition ϕ
yielding the correct value f(x⃗). Regular recursive definitions are special cases
of such programs with always satisfied precondition ⊺.

4.5.2 Regular programs. Consider the following property of a function f :

⊢PA ϕ[x⃗]→ f(x⃗) = τ[f ; x⃗]. (1)

We assign to each occurrence of the recursive application f(ρ⃗) in τ with the
governing condition Γ τ

f(ρ⃗) the following (extended) condition of regularity:

ϕ[x⃗] ∧ Γ τ
f(ρ⃗) → ρ⃗ ≺ x⃗ ∧ ϕ[ρ⃗].

We say that the property (1) is a program regular in the well-founded relation
≺ if

⊢PA ϕ[x⃗] ∧ Γ τ
f(ρ⃗) → ρ⃗ ≺ x⃗ ∧ ϕ[ρ⃗]

for every condition of regularity of f in τ . The formula ϕ is called the pre-
condition of the program.

Fixing notation. We keep the notation introduced in this paragraph fixed
until the end of this section where we prove in Thm. 4.5.6 that the regular
program (1) computes the function f for every input x⃗ which satisfies its
precondition ϕ[x⃗]. By g1, . . . , gk we denote below are all auxiliary functions
occurring in the term τ .

4.5.3 Computational model. Computational terms (C-terms for short)
for the above regular program are closed terms which contains only the sym-
bols occurring in the program and the successor function S. We take x as an
abbreviation for the numeral Sx(0). We will need also a notation for n-tuple
of monadic numerals and define x1, . . . , xn as an abbreviation for x1, . . . , xn.

We now describe a possibly infinite process by which we can reduce a closed
C-term until we obtain a numeral which cannot be further reduced. If a closed
C-term ρ is not a numeral then it must contain at least one occurrence, called
the redex (for reducible expression), of one of the closed C-terms listed below
on the left-hand side:

140 4 General Recursive Schemes

D(0, θ2, θ3) ⊳1 θ3

D(x + 1, θ2, θ3) ⊳1 θ2

gi(y⃗) ⊳1 gi(y⃗)
f(x⃗) ⊳1 τ[f ; x⃗].

Note that the first occurrence of gi is a function symbol whereas the second
one is the corresponding denotation of this symbol (in the standard model).

One step reduction consists of locating the leftmost redex in ρ1 and re-
placing it by its contraction, which is the closed term on the corresponding
right-hand side. By the replacement we obtain again a closed C-term ρ2. We
note that the term ρ2 is uniquely determined by ρ1.

We say that ρ1 reduces to ρ2 in k steps, in symbols ρ1 ⊳k ρ2, if there
is a finite one step reduction sequence of length k ≥ 0 of closed C-terms
θ0, θ1, . . . , θk such that θ0 ≡ ρ1, θk ≡ ρ2, and for each i < k we obtain the term
θi+1 by one step reduction from the term θi. We write ρ1 ⊳ ρ2 if ρ1 ⊳k ρ2 for
some k.

It is not difficult to see that for every closed C-terms ρ, ρ1 and ρ2 we have

if ρ ⊳ ρ1 and ρ ⊳ ρ2 then ρ1 ⊳ ρ2 or ρ2 ⊳ ρ1.

Since we have x ⊳ ρ iff ρ ≡ x, we can see that if ρ reduces to a monadic numeral
then the numeral is uniquely determined.

4.5.4 Lemma For every x⃗ such that ϕ[x⃗], if f(x⃗) ⊳ y then f(x⃗) = y.
Proof. For that we need the following auxiliary property which holds for
every number k and for every subterm ρ[f ; x⃗] of the term τ :

for every x⃗ and y, if ϕ[x⃗] ∧ Γ τ
ρ [f ; x⃗] and ρ[f ; x⃗] ⊳k y then ρ[f ; x⃗] = y.

(†1)

Here Γ τ
ρ is the governing condition of ρ in τ .

The auxiliary property is proved by double induction: the outer one is by
complete induction on k and the inner by induction on the structure of the
subterm ρ[f ; x⃗] of τ . So take any x⃗ and y such that ϕ[x⃗] ∧ Γ τ

ρ [f ; x⃗] and

ρ[f ; x⃗] ⊳k y , (†2)

and continue by the case analysis of ρ.
If ρ ≡ xi then from (†2) we obtain k = 0 and xi ≡ y. Consequently xi = y.

If ρ ≡ 0 then from (†2) we obtain k = 0 and 0 ≡ y. Consequently 0 = y.

If ρ ≡ S(θ) then from (†2) we can conclude that there is a number v such
that θ[f ; x⃗] ⊳k v and S(v) ≡ y. By the inner IH we have θ[f ; x⃗] = v and there-

fore S(θ[f ; x⃗]) = S(v) = y.

4.5 Computation Model 141

If ρ ≡D(θ1, θ2, θ3) then the terms θ1, θ2, θ3 are governed in τ respectively
by Γ τ

ρ , Γ τ
ρ ∧ θ1 ≠ 0 and Γ τ

ρ ∧ θ1 = 0. From (†2) we obtain that there are num-

bers k1 < k and v1 such that θ1[f ; x⃗] ⊳k1
v1. By the outer IH θ1[f ; x⃗] = v1.

We consider two subcases. If v1 ≠ 0 then the governing condition Γ τ
θ2
[f ; x⃗] is

trivially satisfied and therefore we have the following for some number k2:

D(θ1[f ; x⃗], θ2[f ; x⃗], θ3[f ; x⃗]) ⊳k1
D(v1, θ2[f ; x⃗], θ3[f ; x⃗]) ⊳1 θ2[f ; x⃗] ⊳k2

y.

Also k1 + 1 + k2 = k. By another outer IH θ2[f ; x⃗] = y and hence

D(θ1[f ; x⃗], θ2[f ; x⃗], θ3[f ; x⃗]) =D(v1, θ2[f ; x⃗], θ3[f ; x⃗]) = θ2[f ; x⃗] = y.
The subcase v1 = 0 is similar.

If ρ ≡ g(θ⃗), where g is an auxiliary m-ary function symbol, then the terms

θ⃗ ≡ θ1, . . . , θm are governed in τ by Γ τ
ρ . From (†2) we obtain that there are

numbers k⃗ ≡ k1, . . . , km and v⃗ ≡ v1, . . . , vm such that θi[f ; x⃗] ⊳ki
vi for every

i = 1, . . . ,m. Moreover

g(θ⃗[f ; x⃗]) ⊳∑i ki
g(v⃗) ⊳1 g(v⃗) ≡ y

and ∑i ki + 1 = k. For every i = 1, . . . ,m we have ki < k and thus θi[f ; x⃗] = vi

by the outer IH. Consequently g(θ⃗[f ; x⃗]) = g(v⃗) = y.
If ρ ≡ f(θ⃗) then the terms θ⃗ ≡ θ1, . . . , θn are governed in τ by Γ τ

ρ . From

(†2) we obtain that there are numbers k⃗ ≡ k1, . . . , kn and v⃗ ≡ v1, . . . , vn such
that θi[f ; x⃗] ⊳ki

vi for every i = 1, . . . , n. Moreover

f(θ⃗[f ; x⃗]) ⊳∑i ki
f(v⃗) ⊳1 τ[f ; v⃗] ⊳l y

for some number l such that ∑i ki + 1 + l = k. Clearly ki < k and l < k. By the
outer IH’s we have θi[f ; x⃗] = vi for every i = 1, . . . , n and τ[f ; v⃗] = y. Conse-

quently f(θ⃗[f ; x⃗]) = f(v⃗) = τ[f ; v⃗] = y.
With the auxiliary property (†1) proved we are now ready to prove the

desired claim. If ϕ[x⃗] and f(x⃗) ⊳ y then

f(x⃗) ⊳1 τ[f ; x⃗] ⊳k y

for some number k. From (†1) we obtain τ[f ; x⃗] = y by noting that the term
τ is governed in τ by ⊺. Consequently f(x⃗) = τ[f ; x⃗] = y. ⊓⊔

4.5.5 Lemma For every x⃗ such that ϕ[x⃗], if f(x⃗) = y then f(x⃗) ⊳ y.
Proof. By ≺-well-founded induction on x⃗ we prove that

for every y, if ϕ[x⃗] and f(x⃗) = y then f(x⃗) ⊳k y for some k. (†1)

142 4 General Recursive Schemes

Take any y such that ϕ[x⃗] and f(x⃗) = y, and prove by the inner induction
on the structure of subterms ρ[f ; x⃗] of the term τ the following property:

for every z, if Γ τ
ρ [f ; x⃗] and ρ[f ; x⃗] = z then ρ[f ; x⃗] ⊳k z for some k. (†2)

Here Γ τ
ρ is the governing condition of ρ in τ . So take any subterm ρ[f ; x⃗] of

τ such that Γ τ
ρ [f ; x⃗] holds and any number z such that

ρ[f ; x⃗] = z, (†3)

and continue by the case analysis of ρ.
If ρ ≡ xi then xi = z from (†3) and thus xi ≡ z ⊳0 z. It suffices to take k = 0.

If ρ ≡ 0 then 0 = z from (†3) and thus 0 ≡ z ⊳0 z. It suffices to take k = 0.
If ρ ≡ S(θ) then the term θ is governed in τ by Γ τ

ρ . From (†3) we obtain

that there is a number v such that θ[f ; x⃗] = v and S(v) = z. By the inner IH,
there exists a number k such that θ[f ; x⃗] ⊳k v. Hence S(θ[f ; x⃗]) ⊳k S(v) ≡ z.

If ρ ≡D(θ1, θ2, θ3) then the terms θ1, θ2, θ3 are governed in τ respectively
by Γ τ

ρ , Γ τ
ρ ∧ θ1 ≠ 0 and Γ τ

ρ ∧ θ1 = 0. From the assumption (†3) we obtain that
there is a number v1 such that

θ1[f ; x⃗] = v1 ∧ (v1 ≠ 0 ∧ θ2[f ; x⃗] = z ∨ v1 = 0 ∧ θ3[f ; x⃗] = z).
By the inner IH, there exists a number k1 such that θ1[f ; x⃗] ⊳k1

v1. Now

we consider two subcases. If v1 ≠ 0 then the governing condition Γ τ
θ2
[f ; x⃗]

is trivially satisfied and therefore, by the inner IH, there exists a number k2

such that θ2[f ; x⃗] ⊳k2
z. We thus obtain

D(θ1[f ; x⃗], θ2[f ; x⃗], θ3[f ; x⃗]) ⊳k1
D(v1, θ2[f ; x⃗], θ3[f ; x⃗]) ⊳1 θ2[f ; x⃗] ⊳k2

z.

It suffices to take k = k1 + 1 + k2. The subcase v1 = 0 is similar.

If ρ ≡ g(θ⃗), where g is an auxiliary m-ary function symbol, then the terms

θ⃗ ≡ θ1, . . . , θm are governed in τ by Γ τ
ρ . From (†3) we obtain that there are

numbers v⃗ ≡ v1, . . . , vm such that

m

⋀
i=1

θi[f ; x⃗] = vi ∧ g(v⃗) = z.
By the inner IH, there exist numbers k⃗ ≡ k1, . . . , km such that θi[f ; x⃗] ⊳ki

vi

for every i = 1, . . . ,m. We thus have

g(θ⃗[f ; x⃗]) ⊳∑i ki
g(v⃗) ⊳1 g(v⃗) ≡ z.

It suffices to take k = ∑i ki + 1.

If ρ ≡ f(θ⃗) then the terms θ⃗ ≡ θ1, . . . , θn are governed in τ by Γ τ
ρ . From

(†3) we obtain that there are numbers v⃗ ≡ v1, . . . , vn such that

4.5 Computation Model 143

n

⋀
i=1

θi[f ; x⃗] = vi ∧ f(v⃗) = z.
By the inner IH there exist numbers k⃗ ≡ k1, . . . , kn such that θi[f ; x⃗] ⊳ki

vi

for every i = 1, . . . , n. By regularity v⃗ ≺ x⃗ and thus, by the outer IH applied
to the numbers v⃗, there exists a number l such that f(v⃗) ⊳l z. We obtain

f(θ⃗[f ; x⃗]) ⊳∑i ki
f(v⃗) ⊳l z.

It suffices to take k = ∑i ki + l.

With the auxiliary property proved we can now finish the proof of the
inductive step of the outer induction of (†1). From f(x⃗) = y we get τ[f ; x⃗] = y
and thus, by (†2) and by noting that the term τ is governed in τ by ⊺, there
is a number l such that τ[f ; x⃗] ⊳l y. We then obtain

f(x⃗) ⊳1 τ[f ; x⃗] ⊳l y.

It suffices to take k = 1 + l. ⊓⊔

4.5.6 Theorem For every x⃗ and y s.t. ϕ[x⃗], f(x⃗) = y if and only if f(x⃗) ⊳ y.
Proof. Directly from Lemma 4.5.4 and Lemma 4.5.5. ⊓⊔

4.5.7 Example. For given a function f(x) and predicate P (x), the unlim-
ited iteration of f is the unary function f∗(x) satisfying

f∗(x) = ⎧⎪⎪⎨⎪⎪⎩
fk(x) if Pfk(x) and k is the least such number,

0 if there is no such number.

We iterate the function f until the condition Pfk(x) is met. The iteration
can be introduced into PA with the following contextual definition:

f∗(x) = y↔ ∃k(Pfk(x) ∧ ∀l < k¬Pfk(x) ∧ y = fk(x))∨
¬∃k Pfk(x) ∧ y = 0.

Note that its existence and uniqueness conditions are trivially satisfied.
Computable functions are not closed under the operator of unlimited iter-

ation. That is, the function f∗ might not be computable even in cases when
both f and P are. Indeed, consider an interpreter of a simple programming
language over N. If the language is sufficiently strong then the interpreter is
a partial function with no total computable completion. On the other hand,
one can easily easily express a total completion of such interpreter with the
help of unlimited iteration f∗ for suitable f and P ; the function f realizes
one computation step and the predicates P decides when the computation
terminates.

144 4 General Recursive Schemes

Nevertheless, it is still possible to compute the application f∗(x) for some
inputs. Namely, the following property

⊢PA ∃k Pfk(x) → f∗(x) = if P (x) then x else f∗ f(x)
can be taken as a program for evaluating f∗(x) for the inputs x satisfying
the precondition ∃k Pfk(x). The program is regular in the measure m(x),
which is defined by regular minimalization

m(x) = µk[∃l Pf l(x) → Pfk(x)].
The following is the condition of regularity of the program

⊢PA ∃k Pfk(x) ∧ ¬P (x)→mf(x) <m(x) ∧ ∃k Pfkf(x).
The property follows from

⊢PA ∃k Pfk(x) ∧ ¬P (x) →mf(x) + 1 =m(x).

Chapter 5

Programming Language

In this chapter we describe a programming language with extensible syntax
of programming constructs. The language of expressions is extended with
a powerful generalization of case constructs and pattern matching known
from declarative programming languages. These new constructs, called case
discrimination terms, have flexible syntax which legality must be certified
by a formal proof in PA. Each case discrimination term has assigned certain
precondition prescribing for which inputs the case analysis must be provably
pairwise-disjoint and exhaustive.

In Sect. 5.1 we illustrate the language by giving several examples of defini-
tions of the integer square root function. In Sect. 5.2 we describe the language
of generalized terms, which are expressions with flexible syntax of case dis-
crimination. In Sect. 5.3 we show that PA admits a very flexible kind of
extensions by regular recursive definitions of functions. This is our most ex-
pressive scheme of recursive definitions formalized within PA. Such definitions
serve a dual purpose. They described extensionally the properties of the de-
fined functions and at the same time they serve intentionally as rules for the
computation of these objects. We can significantly improve the readability of
recursive definitions by writing them in clausal form (see Sect. 5.4). The lan-
guage of regular recursive definitions is then extended to include definitions
of predicates.

5.1 Introduction

5.1.1 Introduction. In this section we illustrate case discrimination terms
(conditionals) with some examples. These new constructs are generalizations
of case constructs and pattern matching known from declarative program-
ming languages. We do not dwell here on the syntax of these constructs as
we consider them almost self-explanatory.

145

146 5 Programming Language

Our conditionals have flexible syntax which legality must be certified by a
formal proof. Consider, for instance, the following explicit definition by cases :

f(x) = case

R(x) ⇒ 0
Q(x) ⇒ 1

end.

For the definition to be correct it is sufficient and necessary that the predi-
cates R and Q are mutually disjoint and complete, i.e. ¬(R(x) ∧Q(x)) and

R(x) ∨Q(x) for every number x. These conditions are strong semantic con-
ditions which can be checked in general by a formal proof. It may be even
the case that the conditions are undecidable in PA.

5.1.2 Case study: integer square root. We start our presentation of the
language by considering the problem of computing the integer square root⌊√x⌋ of a natural number x. The function ⌊√x⌋ can be introduced into PA
by the following contextual definition:

⌊√x⌋ = y↔ y2 ≤ x < (y + 1)2.
We also intend to demonstrate that simple recursion such as primitive re-
cursion does not always lead to a definition which, when used as rewriting
rules, is efficient. A computationally optimal definition usually needs a more
complex recursion/discrimination. Some of these examples are from [26, 28].

5.1.3 Primitive recursion. We can find a primitive recursive derivation
of the integer square root function by assuming as IH that

⌊√x⌋2 ≤ x < (⌊√x⌋ + 1)2
holds and then considering the relation between x + 1 and (⌊√x⌋ + 1)2. If

⌊√x⌋2 ≤ x < x + 1 < (⌊√x⌋ + 1)2
then it clearly suffices to set ⌊√x + 1⌋ ∶= ⌊√x⌋. Otherwise we must have

⌊√x⌋2 ≤ x < (⌊√x⌋ + 1)2 = x + 1 < (⌊√x⌋ + 2)2
and it suffices to set ⌊√x + 1⌋ ∶= ⌊√x⌋ + 1.

The idea is expressed by the following regular recursive definition:

5.1 Introduction 147

⌊√x⌋ = case

x = 0 ⇒ 0
x = y + 1 ⇒y

case

x < (⌊√y⌋ + 1)2 ⇒ ⌊√y⌋
x ≥ (⌊√y⌋ + 1)2 ⇒ ⌊√y⌋ + 1

end

end.

Its conditions of regularity

⊢PA x = y + 1 ∧ x < (⌊√y⌋ + 1)2 → y < x

⊢PA x = y + 1 ∧ x ≥ (⌊√y⌋ + 1)2 → y < x

are trivially satisfied.
The expression on the right side of the defining equation applies two

conditionals. The first one is monadic discrimination on whether x = 0 or
∃y x = y + 1. If the latter then there must be a unique number y s.t. x = y + 1.
We say that the local variable y gets its value by pattern matching, where we
match the input x against the pattern y + 1. The locality of the variable y is
indicated by the subscript y in the implication ⇒y. The second conditional
is dichotomy discrimination on whether or not x < (⌊√y⌋ + 1)2.

We can significantly improve the readability of recursive definitions by
writing them in clausal form; in this case by unfolding of two conditionals in
the above definition we obtain the following three clauses

⌊√x⌋ = 0 ← x = 0⌊√x⌋ = ⌊√y⌋← x = y + 1 ∧ x < (⌊√y⌋ + 1)2⌊√x⌋ = ⌊√y⌋ + 1 ← x = y + 1 ∧ x ≥ (⌊√y⌋ + 1)2.
The clauses are just ordinary formulas even though their implications are
customarily written in the converse form. This can be further simplified by
eliminating the variable x by substituting it for 0 in the first clause and for
y + 1 in the next two clauses. After simplification we obtain

⌊√0⌋ = 0⌊√y + 1⌋ = ⌊√y⌋← y + 1 < (⌊√y⌋ + 1)2⌊√y + 1⌋ = ⌊√y⌋ + 1 ← y + 1 ≥ (⌊√y⌋ + 1)2.
Finally, we rename the variable y by x in the last two clauses to obtain

⌊√0⌋ = 0⌊√x + 1⌋ = ⌊√x⌋← x + 1 < (⌊√x⌋ + 1)2⌊√x + 1⌋ = ⌊√x⌋ + 1 ← x + 1 ≥ (⌊√x⌋ + 1)2.
Note that the last set of clauses have the form of a primitive recursive defi-
nition with dichotomy discrimination in the recursive case.

148 5 Programming Language

5.1.4 Assignments. The program for ⌊√x⌋ from Par. 5.1.3, though quite
pleasant mathematically, is infeasible in practice for many reasons. One of
them is the twofold occurrence of ⌊√x⌋ in the recursive clauses: once in
the test and once in the result. This leads to the exponential explosion of
computation time. The explosion can be prevented by an assignment ⌊√x⌋ = r
in the following definition:

⌊√x⌋ = case

x = 0 ⇒ 0

x = y + 1⇒y let ⌊√y⌋ = r in

case

x < (r + 1)2⇒ r

x ≥ (r + 1)2⇒ r + 1
end

end.

Note that only x tests are needed. The following is its clausal form:

⌊√0⌋ = 0⌊√x + 1⌋ = r ← ⌊√x⌋ = r ∧ x + 1 < (r + 1)2⌊√x + 1⌋ = r + 1 ← ⌊√x⌋ = r ∧ x + 1 ≤ (r + 1)2.
5.1.5 Bottom-up program. The last program for ⌊√x⌋ which uses prim-
itive recursive and assignments can be improved as follows. Primitive recur-
sion is an example of top-down approach for solving problems; in this case
the computation of ⌊√x⌋ goes down from x to x − 1 until it reaches 0 and
then it does the comparisons and the incrementation by one on the way back.
We will shorten the computation of ⌊√x⌋ by using a bottom-up approach in

which we search (starting from 0) the smallest number r such that x < (r+1)2.
This is done with the help the binary function f(x, r) defined by

f(x, r) = case

x < (r + 1)2 ⇒ r

x ≥ (r + 1)2 ⇒ f(x, r + 1)
end.

This is an example of definition by backward recursion, where r2 grows to-
wards x, i.e. by recursion with measure x ∸ r2. Its condition of regularity

⊢PA x ≥ (r + 1)2 → x ∸ (r + 1)2 < x ∸ r2
is trivially satisfied. The following is the clausal form of the definition:

f(x, r) = r ← x < (r + 1)2
f(x, r) = f(x, r + 1)← x ≥ (r + 1)2.

The auxiliary function satisfies

⊢PA r2 ≤ x→ f(x, r)2 ≤ x < (f(x, r) + 1)2

5.1 Introduction 149

and thus we can take the following identity

⊢PA ⌊√x⌋ = f(x,0)
as an alternative program for computing the integer square root function.
Note that computation of ⌊√x⌋ now takes order ⌊√x⌋ time.

5.1.6 Bottom-up program revisited. We can improve the bottom-up
program for ⌊√x⌋ by saving the squaring operation (r + 1)2 in the test x <(r+1)2 which is repeatedly done for every recursive call. This can be done with
the help of a ternary function f(x, r, s) with the additional accumulator s such
that we have f(x, r, r2) = ⌊√x⌋ provided r2 ≤ x. As the second argument goes

from r to r + 1 the accumulator goes from s = r2 to s1 = (r + 1)2 = s + 2r + 1.
This arrangement reduces the squaring operation to the increment 2r + 1
which is very fast in binary representation of natural numbers.

The auxiliary accumulator function f(x, r, s) is defined by backward re-
cursion on the difference x ∸ r:

f(x, r, s) = let s + 2r + 1 = s1 in

case

x < s1 ⇒ r

x ≥ s1 ⇒ f(x, r + 1, s1)
end

Its condition of regularity

⊢PA s + 2r + 1 = s1 ∧ x ≥ s1 → x ∸ (r + 1) < x ∸ r
is trivially satisfied. The following is its clausal form

f(x, r, s) = r ← s + 2r + 1 = s1 ∧ x < s1
f(x, r, s) = f(x, r + 1, s1) ← s + 2r + 1 = s1 ∧ x ≥ s1.

The function satisfies

⊢PA r2 ≤ x→ f(x, r, r2)2 ≤ x < (f(x, r, r2) + 1)2
and thus we can take the following identity

⊢PA ⌊√x⌋ = f(x,0,0)
as an alternative program for computing the integer square root function.

5.1.7 A fast program by recursion on notation. All programs consid-
ering so far share the same shortcomings: recursion goes exponentially longer
that it should. We can obtain a fast O(lg(x)) program for ⌊√x⌋ by recalling
a high school algorithm working with the decimal, or rather centennial, no-
tation because it considers two decimal digits at a time. The recursion does
not work well in the decimal notation because we have ⌊√10x⌋ ≈ ⌊√10⌋ ⌊√x⌋

150 5 Programming Language

while it works well in the centennial notation because ⌊√100x⌋ ≈ 10 ⌊√x⌋.
The same works in the 4-ary representation of natural numbers, where for
every x there are unique numbers y and z such that x = 4y + z and z < 4 holds.

Note that we then have ⌊√4x⌋ ≈ 2 ⌊√x⌋.
Thus assume as IH that we have for y ≠ 0

⌊√y⌋2 ≤ y < (⌊√y⌋ + 1)2.
From the last we obtain y ≤ ⌊√y⌋2 + 2 ⌊√y⌋ and so we get for z < 4:

(2 ⌊√y⌋)2 ≤ 4y ≤ 4y + z ≤ 4 ⌊√y⌋2 + 8 ⌊√y⌋ + z <
< 4 ⌊√y⌋2 + 8 ⌊√y⌋ + 4 = (2 ⌊√y⌋ + 2)2.

This means that we have

2 ⌊√y⌋ ≤ ⌊√4y + z⌋ ≤ 2 ⌊√y⌋ + 1

and so the following identity is a fast program for ⌊√x⌋:
⌊√x⌋ = let x = 4y + z ∧ z < 4 in

case

y = 0 ⇒ (z ≠∗ 0)
y ≠ 0 ⇒ let 2 ⌊√y⌋ = s in

case

x < (s + 1)2 ⇒ s

x ≥ (s + 1)2 ⇒ s + 1
end

end.

The following is its condition of regularity

⊢PA x = 4y + z ∧ z < 4 ∧ y ≠ 0 → y < x,

which is trivially satisfied. Note that the expression on the right-hand side of
the defining equation applies two assignments and two conditionals.

The first construct is assignment and uses the fast pattern matching with
the numeric pattern x = 4y + z ∧ z < 4. The pattern is satisfied for every x

since there exist (unique) numbers y, z satisfying the identity. It can be viewed
as a generalization of let -constructs from functional programming languages.
Note that the local variables y, z are then referred in the subterm. This is
indicated by the subscript in iny,z. The pattern matching is fast, just consider
the last two binary digits of the binary representation of the number x.

The reader will also note that the second assignment 2 ⌊√y⌋ = s is crucial
to the speed of the program because without it we would have two recur-
sive invocations: once in the test and once in the result. Consequently, as
the depth of recursion is O(lg(x)), we would have O(2lg(x)) =O(x) recur-

5.2 Syntax 151

sive invocations and the definition would not be any faster than the one by
primitive recursion.

The reader should have no difficulties to understand the intended meaning
of the remaining constructs: the test on whether or not y = 0, and finally the
dichotomy discrimination on whether or not x < (s + 1)2.

The following is the clausal form of the above definition:

⌊√x⌋ = (z ≠∗ 0)← x = 4y + z ∧ z < 4 ∧ y = 0⌊√x⌋ = s← x = 4y + z ∧ z < 4 ∧ y ≠ 0 ∧ 2 ⌊√y⌋ = s ∧ x < (s + 1)2⌊√x⌋ = s + 1 ← x = 4y + z ∧ z < 4 ∧ y ≠ 0 ∧ 2 ⌊√y⌋ = s ∧ x ≥ (s + 1)2.

5.2 Syntax

5.2.1 Introduction. In this section we extend the language of terms with
a new construct – case discrimination terms. Case discrimination terms are
powerful generalizations of case constructs and pattern matching known from
declarative programming languages. These new constructs have flexible syn-
tax which legality must be certified by a formal proof. Some of them may
bind local variables and so they are instances of variable binding operators.

Patterns

5.2.2 Introduction. Examples of recursive definitions presented in Sect. 5.1
show a form of definitions known in the modern programming languages as
pattern matching. Pattern matching was introduced by Burstall in Hope [6]
and Turner in Sasl [50], and it enormously simplifies the form of definitions
by giving them a mathematical look where we can directly read the definition
as a direct assertion about the object being defined.

In the next paragraph we introduce the concept of pattern matching far
surpassing the one permitted in the current functional languages. Patterns
are usually just terms whereas we permit formulas. We can thus use the full
logical apparatus of propositional connectives and quantifiers in the defini-
tions of functions and predicates.

In order to shorten our discussion we will often say that a term τ is in x⃗

if all free variables of τ are among x⃗.

5.2.3 Patterns. Let T be an extension of PA, and let x⃗ and y⃗ be respec-
tively an n-tuple and m-tuple of variables (n,m ≥ 0). Let further Γ [x⃗] and
ϕ[x⃗, y⃗] be formulas of T with all their free variables among the indicated ones
such that

152 5 Programming Language

T ⊢ Γ [x⃗]→ ϕ[x⃗, y⃗] ∧ϕ[x⃗, z⃗]→ m

⋀
i=1

yi = zi. (1)

The formula ϕ is called a pattern (or single-valued formula), Γ is called a
guard of the pattern, and the variables x⃗ and y⃗ are called respectively the
input and output variables of the pattern. Property (1) is called the pattern’s
uniqueness condition.

The pattern ϕ is absolute if the guard Γ is trivial, i.e. if Γ ≡ ⊺. In order
to distinguish between the input and output variables of the pattern ϕ[x⃗, y⃗],
we will use the semicolon instead of the comma and write ϕ[x⃗; y⃗].
5.2.4 Annotation of patterns. For a given pattern ϕ[x⃗; y⃗], we wish ef-
fectively decide whether ∃y⃗ ϕ[x⃗; y⃗] holds or not, and then find effectively y⃗

if there are such numbers. Computation with a pattern is done with the
help of its characteristic and witnessing terms. A term χ[x⃗] in x⃗ is called a
characteristic term of the pattern ϕ[x⃗; y⃗] guarded by Γ [x⃗] if we have

T ⊢ Γ [x⃗]→ χ[x⃗] = 0 ∨ χ[x⃗] = 1

T ⊢ Γ [x⃗]→ ∃y⃗ ϕ[x⃗; y⃗]↔ χ[x⃗] = 1.

Terms ω⃗[x⃗] ≡ ω1[x⃗], . . . , ωm[x⃗] in x⃗ are called witnessing terms of the pattern
if the following holds

T ⊢ Γ [x⃗]→ ∃y⃗ ϕ[x⃗; y⃗]↔ ϕ[x⃗; ω⃗[x⃗]].
The characteristic and witnessing terms of the pattern clearly satisfy

T ⊢ Γ [x⃗]→ ϕ[x⃗; y⃗]↔ χ[x⃗] = 1 ∧
m

⋀
i=1

yi = ωi[x⃗]. (1)

5.2.5 Examples of patterns. We give here some examples of typical pat-
terns we will use later.

5.2.6 Numeric patterns. A monadic pattern is a pattern of the form
τ[x⃗] = y + 1. The pattern’s uniqueness condition holds trivially. Clearly τ ≠∗ 0
and τ ∸ 1 are respectively its characteristic and witnessing terms.

Let p be a constant such that ⊢PA p > 1. A p-ary numeric pattern is a pat-
tern of the form τ[x⃗] = py1 + y2 ∧ y2 < p. The pattern’s uniqueness condition
follows from the uniqueness of quotients and remainders. The characteristic
term of the pattern is the constant 1; this means that the pattern can be al-
ways satisfied. The sole purpose of the pattern is to introduce local variables.
The witnessing terms of the pattern are τ ÷ p for y1 and τ mod p for y2.

5.2.7 Assignments. An assignment is a pattern of the form τ[x⃗] = y. The
pattern’s uniqueness condition is trivially satisfied. The terms 1 and τ are
respectively its characteristic and witnessing terms.

5.2 Syntax 153

5.2.8 Tests. A tests is a pattern of the form ϕ[x⃗;] with empty set of output
variables. The pattern’s uniqueness condition is trivially satisfied. Note that
tests do not have witnessing terms.

5.2.9 Pair patterns. A pair pattern is a pattern of the form τ[x⃗] = ⟨y1, y2⟩.
The pattern’s uniqueness condition follows from the pairing property 2.1.7(1).
The characteristic term of the pattern is τ ≠∗0; its witnessing terms are π1(τ)
for y1 and π2(τ) for y2.

5.2.10 Pair constructor patterns. A constant pair constructor pattern
is a pattern of the form τ[x⃗] =Kc, where Kc is a constant such that
⊢PA Kc = ⟨c,0⟩. The Kc is called constant pair constructor and c is a con-
stant called the tag of the constructor. Note that we have

⊢PA τ =Kc ↔ τ ≠ 0 ∧ π1(τ) = c ∧ π2(τ) = 0.

Therefore τ ≠∗ 0 ∧∗ π1(τ) =∗ c ∧∗ π2(τ) =∗ 0 is its characteristic term.
A functional pair constructor pattern is a pattern of the form τ[x⃗] =Kc(y⃗),

where Kc(y⃗) is an m-ary function ⊢PA Kc(y⃗) = ⟨c, ⟨y⃗⟩⟩. The Kc is called func-
tional pair constructor and c is a constant called the tag of the constructor.
Note that we have

⊢PA ∃y⃗ τ =Kc(y⃗)↔ τ ≠ 0 ∧ π1(τ) = c ∧Tuple(m,π2(τ)).
Therefore τ ≠∗ 0 ∧∗ π1(τ) =∗ c ∧∗ Tuple∗(m,π2(τ)) is its characteristic term
of the pattern. Note also that

⊢PA ∃y⃗ τ =Kc(y⃗)↔ τ =Kc([π2(τ)]m1 , . . . , [π2(τ)]mm)
and so the terms [π2(τ)]m1 , . . . , [π2(τ)]mm are witnessing terms of the pattern.

Generalized Terms

5.2.11 Generalized terms. We now describe the syntax of generalized
terms, which are expressions with flexible syntax of case constructs and pat-
tern matching – called case discrimination terms. We will use α,β, . . . as
syntactic variables ranging over generalized terms.

Let T be an extension of PA. For an n-tuple of variables x⃗ and a guard
formula Γ [x⃗] in x⃗ we define the set of generalized terms in x⃗ of the theory T
guarded by Γ [x⃗] as the smallest set of expressions satisfying the following:

• Every term in x⃗ of T is a generalized term guarded by Γ [x⃗].
• The expression of the form (m ≥ 1):

154 5 Programming Language

Dω⃗1,...,ω⃗m

χ1,...,χm
(ϕ1[x⃗; y⃗1], β1[x⃗, y⃗1], . . . , ϕm[x⃗; y⃗m], βm[x⃗, y⃗m]) (1)

is a generalized term in x⃗ of T guarded by Γ [x⃗] if ϕi[x⃗; y⃗i] are patterns of
T guarded by Γ [x⃗] with characteristic terms χi and witnessing terms ω⃗i,
and βi[x⃗, y⃗i] are generalized terms in x⃗, y⃗i of T guarded by Γ [x⃗] ∧ϕi[x⃗; y⃗i].
Moreover, the patterns satisfies the following disjointness and complete-
ness conditions:

T ⊢ Γ [x⃗]→ m

⋀
i,j=1
i≠j

¬(∃y⃗iϕi[x⃗; y⃗i] ∧ ∃y⃗j ϕj[x⃗; y⃗j]) (2)

T ⊢ Γ [x⃗]→ m

⋁
i=1

∃y⃗i ϕi[x⃗; y⃗i]. (3)

Generalized terms of the form (1) are called case discrimination terms or
conditionals. The local variables y⃗i are said to be bound in the term (1). The
generalized term α guarded by Γ is absolute if the guard Γ is trivial, i.e. if
we have Γ ≡ ⊺.

5.2.12 Translation of generalized terms. We describe here the transla-
tion of generalized terms of T to ordinary terms of T by defining a meta-
theoretic function α⋆ yielding a term of T whose interpretation can be un-
derstood as the intended interpretation of α. In other words, the meaning
(denotation) of generalized terms is obtained by translation.

The translation is defined by induction on the construction of generalized
terms. If α is without conditionals then α⋆ ≡ α. Otherwise, we set

Dω⃗1,...,ω⃗m

χ1,...,χm
(ϕ1, β1[y⃗1], . . . , ϕm, βm[y⃗m])⋆ ≡

≡

(m−1)-times³¹¹·¹¹µ
D(χ1, β

⋆
1 [ω⃗1], . . . D(χm−1, β

⋆
m−1[ω⃗m−1], β⋆m[ω⃗m]) . . .).

From the properties of patterns and case discrimination terms we get

T ⊢ Γ → Dω⃗1,...,ω⃗m

χ1,...,χm
(. . . , ϕi, βi[y⃗i], . . .)⋆ = v↔ m

⋁
i=1

(χi = 1 ∧ β⋆i [ω⃗i] = v) (1)

T ⊢ Γ → Dω⃗1,...,ω⃗m

χ1,...,χm
(. . . , ϕi, βi[y⃗i], . . .)⋆ = v↔ m

⋁
i=1

∃y⃗i(ϕi ∧ β
⋆
i [y⃗i] = v) (2)

provided the conditional is guarded by Γ .
By giving the meaning to generalized terms, we will use them from now

on as ordinary terms of PA.

5.2.13 Notational conventions. In the sequel, we will often omit charac-
teristic and witnessing terms from the notation of conditionals and write

5.2 Syntax 155

D(ϕ1[x⃗; y⃗1], β1[x⃗, y⃗1], . . . , ϕm[x⃗; y⃗m], βm[x⃗, y⃗m]) (1)

as an abbreviation for the conditional 5.2.11(1).
We will visualize the conditional (1) by the notation known from functional

programming languages as it is shown here on the left side:

case

ϕ1[x⃗; y⃗1]⇒y⃗1
β1[x⃗, y⃗1]

⋮
ϕm[x⃗; y⃗m]⇒y⃗m

βm[x⃗, y⃗m]
end

case

ϕ1[x⃗; y⃗1]⇒y⃗1
β1[x⃗, y⃗1]

⋮
ϕm−1[x⃗; y⃗m−1]⇒y⃗m−1

βm−1[x⃗, y⃗m−1]
otherwise⇒ βm[x⃗]

end.

We write the conditional (1) even as it is shown on the right if the last pattern
ϕm is of the form ⋀m−1

i=1 ¬∃y⃗iϕi and hence without output variables.
In the next paragraphs we give some examples of typical case discrimina-

tion terms we will use later.

5.2.14 Negation discrimination. Negation discrimination terms are con-
ditionals of the form as it is shown here on the left side

case

R(τ⃗ [x⃗])⇒ β1[x⃗]
¬R(τ⃗ [x⃗])⇒ β2[x⃗]

end

case

τ1[x⃗] = τ2[x⃗]⇒ β1[x⃗]
τ1[x⃗] ≠ τ2[x⃗]⇒ β2[x⃗]

end

Equality tests are special cases of negation discrimination as it is shown here
on the right side.

5.2.15 Dichotomy and trichotomy discrimination. Dichotomy dis-
crimination and trichotomy discrimination terms are conditionals of the form

case

τ1[x⃗] ≤ τ2[x⃗]⇒ β1[x⃗]
τ1[x⃗] > τ2[x⃗]⇒ β2[x⃗]

end

case

τ1[x⃗] < τ2[x⃗]⇒ β1[x⃗]
τ1[x⃗] = τ2[x⃗]⇒ β2[x⃗]
τ1[x⃗] > τ2[x⃗]⇒ β3[x⃗]

end

listed in that order.

5.2.16 Discrimination on constant patterns. Discrimination on con-
stants are conditionals of a form

case

τ[x⃗] = c1 ⇒ β1[x⃗]
⋮

τ[x⃗] = ck ⇒ βk[x⃗]
otherwise⇒ βk+1[x⃗]

end,

156 5 Programming Language

where c1, . . . , ck are provably pairwise different constants, i.e. for every i ≠ j
we have ⊢PA ci ≠ cj .

5.2.17 Numeric discrimination. Monadic discrimination terms are con-
ditionals of the form

case

τ[x⃗] = 0⇒ β1[x⃗]
τ[x⃗] = y + 1⇒y β2[x⃗, y]

end

5.2.18 Assignments. Assignments are case discrimination terms with only
one alternative and their sole purpose is to introduce local variables. For
instance, the following are the most typical assignments used in computer
programming

case

τ[x⃗] = y⇒y β[x⃗, y]
end.

A similar construct is known in the functional programming languages as the
let -construct. For that reason we will often visualize the above assignment as

let τ[x⃗] = y in β[x⃗, y]
by the notation known from functional languages.

Our assignments can be viewed as a generalization of the let -constructs as
they can introduce more than one local variable. For instance

case

τ[x⃗] = 4y1 + y2 ∧ y2 < 4⇒y1,y2
β[x⃗, y1, y2]

end.

5.2.19 Pair discrimination. Pair discrimination terms

case

τ[x⃗] = 0⇒ β1[x⃗]
τ[x⃗] = ⟨y1, y2⟩⇒y1,y2

β2[x⃗, y1, y2]
end

5.2.20 Pair constructor discrimination. Pair constructor discrimina-
tion terms are conditionals of a form

case

τ[x⃗] =Kc1
(y⃗1)⇒y⃗1

β1[x⃗, y⃗1]
⋮

τ[x⃗] =Kcm
(y⃗m)⇒y⃗m

βm[x⃗, y⃗m]
otherwise⇒ βm+1[x⃗]

end,

5.3 Regular Recursion 157

whereKci
(y⃗i) are constant and/or functional pair constructors with provably

pairwise different tags ci.

5.3 Regular Recursion

5.3.1 Introduction. Consider a functional equation of the form

f(x⃗) = α[f ; x⃗] (1)

with a (absolute) generalized term α. In order to achieve the equivalence of
the definitional semantics with the computational within the class of total
functions, we restrict ourselves to regular recursive definitions. This means
that there must be a well-founded relation ≺ in which the recursion goes
down; i.e. for each recursive application f(ρ⃗) in α we have ρ⃗ ≺ x⃗ under the
assumption of all conditions governing that recursive application. For such
functional equations we not only have the extensional property that (1) has
a unique solution but we also have a stronger intensional property that we
can use the identity as a rewriting rule from left to right for evaluation of
that solution.

5.3.2 Extensions by regular recursion. The concept of regular recursive
definitions is formalized as follows. Let T be an extension by definitions of
PA and ≺ a well-founded relation of T . Let further f be a new n-ary func-
tion symbol and α[f ; x⃗] a (absolute) generalized term in x⃗ of the theory Tf

obtained from T by adding the function symbol f .
To every occurrence of a subterm β in α we define inductively on ∥α∥ − ∥β∥

the governing condition Γα
β of β in α. Here we denote by ∥α∥ the size, i.e.

the number of operations, of the term α. If β ≡ α or β is without condition-
als then Γα

β ≡ ⊺. If β ≡ Dω⃗1,...,ω⃗m
χ1,...,χm

(ϕ1, β1, . . . , ϕm, βm) then Γα
χi
≡ Γα

β , Γα

ω
j

i

≡ Γα
β

and Γα
βi
≡ Γα

β ∧ϕi, where ω⃗i ≡ ω
1
i , . . . , ω

ki

i .
We assign to each occurrence of the recursive application f(ρ⃗) in α with

governing condition Γα
f(ρ⃗) the following condition of regularity:

Γα
f(ρ⃗) → ρ⃗ ≺ x⃗.

We denote by Reg≺α the conjunction of universal closures of all its conditions
of regularity.

We say that the term α is regular in the well-founded relation ≺ if the
extension T ′′ of T by (bounded) well-founded recursion f(x⃗) = α⋆[[f]≺x⃗; x⃗]
proves all its condition of regularity, i.e. we have T ′′ ⊢ Reg≺α[f].

Consider the theory T ′ obtained from T by adding the symbol f , the
defining axiom

158 5 Programming Language

f(x⃗) = α[f ; x⃗],
where α is regular in ≺, the conditions of regularity Reg≺α[f], and the scheme
of ≺-well-founded induction for the formulas of LT ′ containing the symbol f .
We say that T ′ is an extension of T by regular recursion.

Remark. The definition can be viewed as a function operator which takes
all auxiliary functions applied in the term α and yields the function f as a
result. We will prove in Thm. 5.3.6 that the class of µ-recursive functions is
closed under the operator of regular well-founded recursion.

Remark. The definition is said to be regular recursion with measure if

x⃗ ≺ y⃗↔ µ[x⃗] < µ[y⃗]
for a suitable measure µ[x⃗] of LT . In this case we will use the following
notation Regµ

α[f] to denote its conditions of regularity.
Such definition can be viewed as a function operator which takes all auxil-

iary functions applied in the terms µ,α and yields the function f as a result.
We will prove in Thm. 5.3.5 that the class of primitive recursive functions is
closed under the operator of regular recursion with measure.

5.3.3 Lemma We have

Tf ⊢ Reg≺α[f]↔ Reg≺α⋆[f].
Proof outlined. Below we indicate only the local variables of subterms of α.
To every subterm β[y⃗] of α we can find terms χ[y⃗], ω⃗ such that

Tf ⊢ χ[y⃗] = 1 ∨ χ[y⃗] = 0

Tf ⊢ Γα
β [y⃗]↔ χ[y⃗] = 1 ∧⋀

i

yi = ωi. (†1)

Moreover, the term which corresponds to β[y⃗] in the translation of α is of
the form β⋆[ω⃗] with the governing condition such that

Tf ⊢ Γα⋆

β⋆[ω⃗] ↔ χ[ω⃗] = 1. (†2)

Now for the recursive application β[y⃗] ≡ f(ρ⃗[y⃗]), its condition of regularity

Γα
β [y⃗]→ ρ⃗[y⃗] ≺ x⃗

is equivalent, by (†1), to the formula

χ[y⃗] = 1 ∧⋀
i

yi = ωi → ρ⃗[y⃗] ≺ x⃗

5.3 Regular Recursion 159

and therefore also to the formula

χ[ω⃗] = 1 → ρ⃗[ω⃗] ≺ x⃗.
By (†2), the last assertion is equivalent to

Γα⋆

β⋆[ω⃗] → ρ⃗[ω⃗] ≺ x⃗.
This means that we have

Tf ⊢ ∀y⃗(Γα
β [y⃗]→ ρ⃗[y⃗] ≺ x⃗)↔ Γα

⋆

β⋆[ω⃗] → ρ⃗[ω⃗] ≺ x⃗. ⊓⊔

5.3.4 Theorem If T is an extension by definitions of PA then any extension
of T by regular recursion is an extension by definition.

Proof. By Lemma 5.3.3, the following functional equations f(x⃗) = α[f ; x⃗]
and f(x⃗) = α⋆[f ; x⃗] have equivalent conditions of regularity. The claim now
follows from Thm. 4.4.3. ⊓⊔

5.3.5 Theorem Primitive recursive functions are closed under regular re-
cursion with measure.

Proof. By inspection of the proof of Thm. 5.3.4 using Thm. 4.4.4. ⊓⊔

5.3.6 Theorem µ-Recursive functions are closed under regular well-founded
recursion.

Proof. By inspection of the proof of Thm. 5.3.4 using Thm. 4.4.5. ⊓⊔

5.3.7 Regular programs. Consider the following property of a function f :

⊢PA ϕ[x⃗]→ f(x⃗) = α[f ; x⃗]. (1)

We assign to each occurrence of the recursive application f(ρ⃗) in α with the
governing condition Γα

f(ρ⃗) the following (extended) condition of regularity:

ϕ[x⃗] ∧ Γα
f(ρ⃗) → ρ⃗ ≺ x⃗ ∧ ϕ[ρ⃗].

We say the property (1) is a program regular in the well-founded relation ≺ if

⊢PA ϕ[x⃗] ∧ Γα
f(ρ⃗) → ρ⃗ ≺ x⃗ ∧ ϕ[ρ⃗]

for every condition of regularity of f in α. The formula ϕ is called the precon-
dition of the program. Note that regular recursive definitions are examples
of regular programs.

By inspection of the proof of Lemma 5.3.3, we can easily see that (1) and
the following program with simple conditionals

160 5 Programming Language

⊢PA ϕ[x⃗]→ f(x⃗) = α⋆[f ; x⃗] (2)

have equivalent conditions of regularity. This means that for a regular pro-
gram (1) we can take the identity (2) as a computational rule for evaluation of
the function f satisfying (1). In other words, the operational (computational)
semantics of the regular program (1) is obtained by translation.

5.3.8 Efficiency of reductions. In order to facilitate not only effective
but also efficient computation we introduce mixed numerals as terms com-
posed by the successor function, the binary successor functions x0 = 2x and
x1 = 2x + 1, and pairing. It is now possible that two different mixed numerals
may denote the same number, e.g. the following mixed numerals

S(0) = 01 = ⟨0,0⟩.
denote the number 1. Mixed numerals have a simple representation in com-
puters. For instance, the mixed numeral ⟨τ1, τ2⟩ is represented by a pointer
to a Lisp-cell with pointers to the representations of mixed numerals τ1 and
τ2. The conversions between mixed numerals are effective because the basic
arithmetic operations such as addition, multiplication, division or remainder,
as well as the pairing function and its projections are primitive recursive
functions. The reader interested in more details in efficient computation with
generalized terms and mixed numerals should consult the text [28].

5.4 Clausal Definitions

5.4.1 Introduction. We can significantly improve the readability of ex-
plicit and recursive definitions of functions by writing them in clausal form.
A clausal definition of a function f is a set of clauses which can be unfolded
by a set of equivalent transformations from an explicit or recursive definition
of f .

5.4.2 Clauses. Clauses are Horn formulas, i.e. implications with formulas
in the consequent. Every clause can be presented in a form

ψ1 ∧⋯∧ψk → f(ρ⃗) = α, (1)

where α is a generalized term and the formulas ψ1, . . . , ψk do not apply
conditionals. Clauses used in definitions are customarily written with converse
implications:

f(ρ⃗) = α ← ψ1 ∧⋯∧ψk. (2)

5.4 Clausal Definitions 161

We adopt this custom and treat such a formula only as a notational variant
of (1). The identity f(ρ⃗) = α is the head of the clause (2) and the conjunction
on the right hand side constitutes the body of the clause. We do not exclude
the case when k = 0 when the body of the clause is empty. In such case clause
is written as f(ρ⃗) = α.

The clause (2) is terminal if it the term α does not contain conditionals, i.e.
it is built up only from variables and constants by applications of functions.
Otherwise, the clause is non-terminal.

5.4.3 Unfolding. Let T be an extension of PA and α the generalized term
of T . We now describe the unfolding transformation, which leads from an
equation

f(x⃗) = α[x⃗], (1)

where α may apply f , to a finite set of terminal clauses

{ϕ1, . . . , ϕm} (2)

satisfying the following property

T ⊢ ∀x⃗ f(x⃗) = α[x⃗]↔ ∀ϕ1 ∧⋯ ∧∀ϕm. (3)

The set of clauses (2) is called a clausal form of the equation (1).
In one unfolding step we take a non-terminal clause ψ of the form

f(x⃗) = D(θ1, β1, . . . , θk, βk)← ξ1 ∧⋯ ∧ ξl

and unfold the clause to the set of clauses {ψ1, . . . , ψk}, where every its clause
ψi is of the form (1 ≤ i ≤ k):

f(x⃗) = βi ← ξ1 ∧⋯∧ ξl ∧ θi.

Clearly, the clauses {ψ1, . . . , ψk} satisfies the following unfolding invariant :

T ⊢ ∀ψ↔ ∀ψ1 ∧⋯∧∀ψk. (4)

The unfolding process for the equation (1) is started from the initial clause
(1) and eventually leads to the set of terminal clauses (2). Property (3) follows
from the unfolding invariant (4).

5.4.4 Extensions by clausal definitions. Let T be an extension by def-
initions of PA and ≺ a well-founded order of T . Let further f be a new
n-ary function symbol and α[f ; x⃗] a generalized term in x⃗ regular in the
well-founded order ≺. Consider the theory T ′ obtained from T by adding the
symbol f , the set of clauses (defining axioms):

162 5 Programming Language

{ϕ1, . . . , ϕm} (1)

which is a clausal form of the equation

f(x⃗) = α[f ; x⃗], (2)

and the conditions of regularity Reg≺α[f ; x⃗]. We say that T ′ is an extension
of T by clausal definition. The identity (2) is called the closed form of the
clausal definition (1).

5.4.5 Theorem If T is an extension by definitions of PA then any extension
of T by clausal definitions is an extension by definition.

Proof. Let T ′ be an extension of T by clausal definition as in Par. 5.4.4. Let
further T ′′ be an extension of T by recursive definition

f(x⃗) = α[f ; x⃗]
regular in the well-founded order ≺. We have LT ′′ = LT ′ and T ′′ is an extension
by definition of T by Thm. 5.3.4. In order to prove the claim it suffices to
show that the theories T ′ and T ′′ are equivalent. But the last follows directly
from 5.4.3(3). ⊓⊔

5.4.6 Presentation of clausal definitions. We may further simplify a
clausal definition for the purposes of presentation to a human reader. For
instance, we may rename variables of one of its clauses. We may eliminate
variables of clauses in contexts like τ = x provided that the variable x does
not occur in the term τ by substituting it for the corresponding term. For
instance, the clause

ϕ[x] ← ϕ1[x] ∧ τ = x ∧ ϕ2[x]
is simplified into the equivalent clause

ϕ[τ] ← ϕ1[τ] ∧ϕ2[τ].
We may simplified a clausal definition by omitting from it one or more default
clauses which are clauses with the heads f(ρ⃗) = 0. Due to the omitted defaults
and because of the writing of implications in the direction ← only, a clausal
definition is more than the statement of the properties asserted by the non-
default clauses. In order to distinguish such a clausal definition from the mere
assertion of properties we always write clausal definitions aligned to the left.

Clausal definitions are probably best explained with examples. Chapters 6–
7 contain a lot of programs written in clausal form. The programs deal with
list and tree processing, as well as with symbolic problems. The reader will
note that the conditions of regularity of clausal definitions can be easily
read off from their recursive clauses. We recommend that readers interested

5.4 Clausal Definitions 163

in more details in programming and proving with clausal language should
download the text [28].

5.4.7 Example. Consider the following recursive definition:

f(x, y) = case

x = 0 ⇒ g(y)
x = x1 + 1 ⇒x1

h(x1, f(x1, y), y)
end,

The definition of is regular in the first argument since its regularity condition

⊢PA x = x1 + 1 → x1 < x

is trivially satisfied.
We obtain the clausal form of the above definition as follows. First, we

unfold the defining equation to the clauses

f(x, y) = g(y)← x = 0

f(x, y) = h(x1, f(x1, y), y)← x = x1 + 1.

Next, we simplify these two clauses by eliminating the local variable x from
their bodies: the variable x is substituted for 0 in the first clause and for
x1 + 1 in the second clause. After simplification we obtain

f(0, y) = g(y)
f(x1 + 1, y) = h(x1, f(x1, y), y).

Finally, we rename the variable x1 by x in the second clause whereby we
obtain the clausal form of the above recursive definition:

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x, y), y)

The condition of regularity of the clausal definition, which is of the form

⊢PA x < x + 1,

can be easily read off from its second clause.

5.4.8 Example. Consider now the recursive definition of integer divisor:

x ÷ y = if y ≠ 0 then

case

x < y⇒ 0
x ≥ y⇒ (x ∸ y) ÷ y + 1

end

else

0.

164 5 Programming Language

The definition is regular in the second argument since its regularity condition

⊢PA y ≠ 0 ∧ x ≥ y → x ∸ y < x

is trivially satisfied.
Its clausal form is obtained as follows. First, we unfold the definition to

the clauses

x ÷ y = 0 ← y = 0
x ÷ y = 0 ← y ≠ 0 ∧ x < y
x ÷ y = (x ∸ y) ÷ y + 1 ← y ≠ 0 ∧ x ≥ y.

Then the first clause is simplified by eliminating the local variable y from its
body. After simplification we obtain

x ÷ 0 = 0
x ÷ y = 0 ← y ≠ 0 ∧ x < y
x ÷ y = (x ∸ y) ÷ y + 1 ← y ≠ 0 ∧ x ≥ y.

Finally, we omit the first clause by default whereby we obtain

x ÷ y = 0 ← y ≠ 0 ∧ x < y
x ÷ y = (x ∸ y) ÷ y + 1 ← y ≠ 0 ∧ x ≥ y.

This is clausal form of the above recursive definition. Note that conditions of
regularity of both forms of recursive definition are the same.

Note also that this is a typical example where we wish to use the default
clauses, in this case

x ÷ 0 = 0

in order not to clutter the definition. We do not care what value is yielded
by the application x ÷ y for y = 0.

5.4.9 Clausal definitions of predicates. We can define a predicate R by
a clausal definition which defines its characteristic function R∗ and is such
that the heads of the clauses have the form R∗(ρ⃗) = 1 or R∗(ρ⃗) = 0 and all
applications of R∗ in the bodies are one of the following forms: R∗(ρ⃗) = 1,
R∗(ρ⃗) ≠ 0, or R∗(ρ⃗) = 0. We can present such a definition in a predicate form,
where we replace R∗(ρ⃗) = 1 and R∗(ρ⃗) ≠ 0 by R(ρ⃗), and R∗(ρ⃗) = 0 by ¬R(ρ⃗).
We can also remove all defaults which are clauses with the heads ¬R(ρ⃗).
5.4.10 Example. Consider the following recursive definition of the charac-
teristic function Even∗(x) of the predicate Even(x)↔ ∃y x = 2y:

5.4 Clausal Definitions 165

Even∗(x) = case

x = 0⇒ 1
x = y + 1⇒y

case

Even∗(y) ≠ 0⇒ 0
Even∗(y) = 0⇒ 1

end

end.

The definition is regular since its condition of regularity

x = y + 1 → y < x

is trivially satisfied.
Clausal form of the definition for the predicate Even(x) is obtained as

follows. First, we unfold the equation to the clauses

Even∗(x) = 1 ← x = 0
Even∗(x) = 0 ← x = y + 1 ∧ Even∗(y) ≠ 0
Even∗(x) = 1 ← x = y + 1 ∧ Even∗(y) = 0.

We simplify the clauses by eliminating the variable x from their bodies by
substituting it for 0 in the first clause and for y + 1 in the next two clauses.
After simplification we obtain the following clauses

Even∗(0) = 1
Even∗(y + 1) = 0 ← Even∗(y) ≠ 0
Even∗(y + 1) = 1 ← Even∗(y) = 0.

The clauses are then transformed into predicate form:

Even(0)
¬Even(y + 1)← Even(y)
Even(y + 1)← ¬Even(y).

Finally, we omit the second clause by default whereby we obtain the clausal
form of the above recursive definition in predicate form:

Even(0)
Even(y + 1)← ¬Even(y).

The final clauses forms the clausal definition of the predicate Even(x). Note
that the condition of regularity

⊢PA y < y + 1,

can be easily read off from the last clause. Note also that the default clause

¬Even(y + 1)← Even(y)

166 5 Programming Language

though omitted in the clausal definition, is important as a property of the
predicate. Without the default clause as a property we would not be able to
derive the following property of Even :

⊢PA Even(x)↔ x = 0 ∨ ∃y(x = y + 1 ∧ ¬Even(y)).

Chapter 6

Programs Operating on Lists

One of the most fundamental structures in computer programming are lists.
We begin by showing how lists together with their basic operations can be
arithmetized. We show also how structural recursion and induction on lists
can be formalized within PA. In Sects. 6.1 and 6.2 we give examples of various
simple list operations together with proofs of their specification properties.

In Sect. 6.3 we will study several combinatorial problems over lists. Such
problems are good examples for program synthesis. We begin by bootstrap-
ping of the specification predicate and then synthesize an algorithm that
satisfies it. By reverting the process we obtain the program correctness.

Finally, in Sect. 6.4, we will consider the problem of sorting of lists. We
will demonstrate the verification of two sorting algorithms: insertion sort
and merge sort. This requires again non-trivial bootstrapping of specification
predicates (ordered lists, permutations).

Most programs are by structural recursion but in some cases the problem
requires the use of more general recursion (recursion with measure). Their
properties can be proved by the corresponding induction principle.

6.1 Lists

6.1.1 Introduction. In this section we will show how to arithmetize lists
of natural numbers. In most functional programming languages the type Ln
of such lists can be defined by a union type:

Ln = Nil ∣ Cons(N,Ln).
A value of type Ln is therefore either the empty list Nil or a non-empty list
of the form Cons(v,w), where v is its first element of of type N and w is a
value of type Ln called the tail of that non-empty list. The constant Nil and
the function Cons are called constructors.

167

168 6 Programs Operating on Lists

6.1.2 Constructors of lists. Arithmetization of lists is done with the help
of the following two constructors: the first one is the number 0 and the second
is the pairing function ⟨v,w⟩. From the properties of the pairing function we
obtain

⊢PA 0 ≠ ⟨v,w⟩
⊢PA ⟨v1,w1⟩ = ⟨v2,w2⟩→ v1 = v2 ∧w1 = w2.

The first property says that the constructors are pairwise disjoint and the
second that the functional constructor ⟨v,w⟩ is an injective mapping.

We obtain the pattern matching style of definitions of functions operating
over lists with conditionals of the form

case

x = 0⇒ β1

x = ⟨v,w⟩⇒v,w β2[x, v,w].
end

This is called discrimination on the constructors of lists. Recall that such
conditionals are instances of pair discrimination terms discussed in Par. 5.2.9.

The above conditional is evaluated as follows. First note that the expres-
sion x =∗ 0 is the characteristic term of its first variant, and the expression
x ≠∗ 0 is the characteristic term of its second variant as we have

⊢PA ∃v∃wx = ⟨v,w⟩↔ x ≠ 0.

Note also that we have

⊢PA x = ⟨v,w⟩→ v = π1(x) ∧w = π2(x)
and therefore, the terms π1(x) and π2(x) are the witnessing terms for the
output variables v,w of the second variant of the conditional.

6.1.3 List representation of N. Recall that the pairing function ⟨x, y⟩
permits an extremely simple uniform coding of finite sequences over natural
numbers (see Sect. 2.4). We assign the code 0 to the empty sequence ∅. A
non-empty sequence x1, . . . , xn is coded by the number ⟨x1, x2, . . . , xn,0⟩ as
shown in Fig. 6.1

The reader will note that the assignment of codes is one to one, every finite
sequence of natural numbers is coded by exactly one natural number, and
vice versa, every natural number is the code of exactly one finite sequence
of natural numbers. This is called list representation of numbers. Codes of
finite sequences are called lists in computer science and this is how we will
be calling them from now on.

6.1.4 Case analysis on lists. From properties of the pairing function we
can see that every list x is either the empty list 0 or can be uniquely be

6.1 Lists 169

⟨x, 0⟩ ⟨x, y, 0⟩ ⟨x, y, z, 0⟩ ⟨x1, x2, . . . , xn, 0⟩

r

�� @@
x 0

r

�� @@r

�� @@x

y 0

r

�� @@r

�� @@r

�� @@

x

y

z 0

r

�� @@r

�� @@
p
p
p
r

�� @@

x1

x2

xn 0

Fig. 6.1 List representation of natural numbers

written in the form ⟨v,w⟩, where the number v is called the head of the list
x and the number w is called the tail of the list x. In particular

⊢PA x = 0 ∨ ∃v∃wx = ⟨v,w⟩.
This is called the principle of structural case analysis on the constructors of
the list x.

6.1.5 Structural induction on lists. The principle of structural induction
over lists can be informally stated as follows. To prove by list induction that
a property holds for every list it suffices to prove:

Base case: the property holds for the empty list 0.
Induction step: if the property holds for the list w then it holds also for the

list ⟨v,w⟩.
This is expressed formally in PA as follows. Let ϕ[x] be a formula of PA with
the indicated variable x free. The principle of list induction on x for ϕ[x] is
the following one:

⊢PA ϕ[0] ∧ ∀v∀w(ϕ[w] → ϕ[⟨v,w⟩])→ ϕ[x].
Note that the formula ϕ[x] may contain additional variables as parameters.

Proof. The principle of list induction is proved as follows. Under the assump-
tions ϕ[0] and ∀v∀w(ϕ[w] → ϕ[⟨v,w⟩]) we prove that ϕ[x] holds for every
x by complete induction on x. So take any x and consider two cases. If x = 0
then the claim follows directly from the first assumption. Otherwise, x is of
the form ⟨v,w⟩ for some v,w. By 2.1.6(2), we have w < ⟨v,w⟩ and thus ϕ[w]
by IH. We obtain ϕ[⟨v,w⟩] from the second assumption.

6.1.6 Structural recursion on lists. List induction is used to prove prop-
erties of functions defined by the scheme of list recursion. In its simplest form,
the operator of list recursion introduces a function f from two functions g
and h satisfying

170 6 Programs Operating on Lists

f(x, y) = case

x = 0⇒ g(y)
x = ⟨v,w⟩⇒ h(v,w, f(w,y), y)

end.

Note that this is a recursive definition regular in the first argument with
discrimination on the constructors of lists (output variables of the second
variant are omitted). The following identities form the clausal form of the
above definition

f(0, y) = g(y)
f(⟨v,w⟩, y) = h(v,w, f(w,y), y).

Note that this is a recursive definition regular in the first argument. Similar
schemes, when we allow terms with arbitrary number of parameters on the
right-hand side of the above identities, substitution in parameters, or even
nested recursive applications, will be also called definitions by list recursion.

6.1.7 List length. The function L(x) yields the length of the list x:

L ⟨x1, x2, . . . , xn,0⟩ = n.
It is defined by parameterless structural list recursion as a p.r. function:

L(0) = 0
L ⟨v,w⟩ = L(w) + 1.

6.1.8 List indexing. The binary function x[i] yields the (i+ 1)-st element
of the list x (counting from 0):

⟨x0, . . . , xi, . . . , xn−1,0⟩[i] =
⎧⎪⎪⎨⎪⎪⎩
xi if i < n,

0 otherwise.

The function is defined by primitive recursion on i with substitution in pa-
rameter as p.r. function:

⟨v,w⟩[0] = v⟨v,w⟩[i + 1] = w[i].
Note that 0[i] = 0 by default.

Usually we intend to apply the operations x[i] only in cases when i < L(x).
We can take the following property as alternative programs for computing
the function in such cases:

⊢PA i < L(x)→ x[i] = case

i = 0⇒ let x = ⟨v,w⟩ in v

i = j + 1⇒ let x = ⟨v,w⟩ in w[j]
end.

6.1 Lists 171

Its condition of regularity

⊢PA i < L(x) ∧ i = j + 1 ∧ x = ⟨v,w⟩→ w < x ∧ j < L(w)
is trivially satisfied.

6.1.9 Remark. The following property can be used as an alternative defi-
nition of list indexing:

⊢PA x[i] = π1 πi
2(x). (1)

This is proved by (mathematical) induction on i as ∀x(1) In the base case
take any x and consider two cases. If x = 0 then 0[0] = 0 = π1(0) = π1 π0

2(0);
if x = ⟨v,w⟩ for some v,w then ⟨v,w⟩[0] = v = π1⟨v,w⟩ = π1 π0

2⟨v,w⟩. In the
induction step take any x and consider the same two cases. If x = 0 then

0[i + 1] = 0 = π1(0) 2.2.19(5)
= π1 πi+1

2 (0).
Otherwise x = ⟨v,w⟩ for some v,w and we obtain

⟨v,w⟩[i + 1] = w[i] IH
= π1 πi

2(w) = π1 πi
2 π2⟨v,w⟩ = π1 πi+1

2 ⟨v,w⟩.
Note that the induction hypothesis is applied with w in place of x.

6.1.10 List concatenation. The binary function x ⊕ y concatenates two
lists together to form a new one:

⟨x1, . . . , xn,0⟩⊕ ⟨y1, . . . , ym,0⟩ = ⟨x1, . . . , xn, y1, . . . , ym,0⟩.
The function is defined by structural list recursion on x as a p.r. function by

0⊕ y = y⟨v,w⟩⊕ y = ⟨v,w ⊕ y⟩.
We can use the recurrences directly for computation. For example:

⟨1,2,3,0⟩⊕ ⟨4,5,0⟩ = ⟨1, ⟨2,3,0⟩⊕ ⟨4,5,0⟩⟩ = ⟨1,2, ⟨3,0⟩⊕ ⟨4,5,0⟩⟩ =
= ⟨1,2,3,0⊕ ⟨4,5,0⟩⟩ = ⟨1,2,3,4,5,0⟩

Note that during the computation there is no need to convert the values into
monadic (or binary) notation.

6.1.11 Basic properties of list concatenation. We have

⊢PA x⊕ y = 0 ↔ x = 0 ∧ y = 0 (1)

⊢PA x⊕ 0 = x (2)

⊢PA x⊕ (y ⊕ z) = (x⊕ y)⊕ z (3)

172 6 Programs Operating on Lists

⊢PA x⊕ y = x⊕ z → y = z (4)

⊢PA x⊕ ⟨a,0⟩ = y ⊕ ⟨b,0⟩→ x = y ∧ a = b (5)

⊢PA x⊕ z = y ⊕ z → x = y (6)

⊢PA L(x⊕ y) = L(x) +L(y) (7)

⊢PA i < L(x)→ (x⊕ y) [i] = x[i] (8)

⊢PA i < L(y)→ (x⊕ y) [L(x) + i] = y[i]. (9)

In the sequel we will use these properties without explicitly referring to them.
Note that (3) says that list concatenation is an associative operation. For this
reason we will not be using any parentheses in expressions like τ1 ⊕ τ2 ⊕ τ3.

Proof. (1): By case analysis on whether or not the list x is empty.
(2): By a straightforward structural list induction.
(3): This is proved by structural induction on the list x. The base case

follows from 0⊕ (y ⊕ z) = y ⊕ z = (0⊕ y)⊕ z. In the induction step we have

⟨v,w⟩⊕ (y ⊕ z) = ⟨v,w ⊕ (y ⊕ z)⟩ IH
= ⟨v, (w ⊕ y)⊕ z⟩ =

= ⟨v,w ⊕ y⟩⊕ z = (⟨v,w⟩⊕ y)⊕ z.
(4): By structural induction on the list x. The base case is obvious. The

induction step follows from

⟨v,w⟩⊕ y = ⟨v,w⟩⊕ z⇒ ⟨v,w ⊕ y⟩ = ⟨v,w ⊕ z⟩⇒ w ⊕ y = w ⊕ z
IH
⇒ y = z.

(5): By structural induction on the list x as ∀y(5). In the base case take
any y and consider two cases. If y = 0 then

0⊕ ⟨a,0⟩ = 0⊕ ⟨b,0⟩⇒ ⟨a,0⟩ = ⟨b,0⟩⇒ a = b⇒ 0 = 0 ∧ a = b.

The case when y = ⟨v2,w2⟩ for some v2,w2 leads to contradiction:

0⊕ ⟨a,0⟩ = ⟨v2,w2⟩⊕ ⟨b,0⟩⇒ ⟨a,0⟩ = ⟨v2,w2 ⊕ ⟨b,0⟩⟩⇒
⇒ 0 = w2 ⊕ ⟨b,0⟩ (1)

⇒ 0 = ⟨b,0⟩.
In the induction step, when x = ⟨v1,w1⟩ for some v1,w1, take any y and
consider two cases. The case y = 0 leads to contradiction by similar arguments
as above. So it must be y = ⟨v2,w2⟩ for some v2,w2. We then have

⟨v1,w1⟩⊕ ⟨a,0⟩ = ⟨v2,w2⟩⊕ ⟨b,0⟩⇒ ⟨v1,w1 ⊕ ⟨a,0⟩⟩ = ⟨v2,w2 ⊕ ⟨b,0⟩⟩⇒
⇒ v1 = v2 ∧w1 ⊕ ⟨a,0⟩ = w2 ⊕ ⟨b,0⟩ IH

⇒ v1 = v2 ∧w1 = w2 ∧ a = b⇒
⇒ ⟨v1,w1⟩ = ⟨v2,w2⟩ ∧ a = b.

Note that the induction hypothesis is applied with w2 in place of y.

6.1 Lists 173

(6): By structural induction on the list z as ∀x∀y(6). The base case is
follows from (2). In the induction step take any x, y and we have

x⊕ ⟨v,w⟩ = y ⊕ ⟨v,w⟩⇒ x⊕ ⟨v,0 ⊕w⟩ = y ⊕ ⟨v,0 ⊕w⟩⇒
⇒ x⊕ (⟨v,0⟩⊕w) = y ⊕ (⟨v,0⟩⊕w) (3)

⇒

⇒ (x⊕ ⟨v,0⟩)⊕w = (y ⊕ ⟨v,0⟩)⊕w IH
⇒

⇒ x⊕ ⟨v,0⟩ = y ⊕ ⟨v,0⟩ (5)
⇒ x = y.

Note that the induction hypothesis is applied with x⊕⟨v,0⟩ in place of x and
with y ⊕ ⟨v,0⟩ in place of y.

(7): By a straightforward structural induction on the list x.
(8): By structural induction on the list x as ∀i(8). In the base case there

is nothing to prove. In the induction step, when x = ⟨v,w⟩ for some v,w, take
any i s.t. i < L ⟨v,w⟩ = L(w) + 1, and consider two cases. If i = 0 then

(⟨v,w⟩⊕ y) [0] = ⟨v,w ⊕ y⟩[0] = v = ⟨v,w⟩[0].
If i = j + 1 for some j then j < L(w) and thus we obtain

(⟨v,w⟩⊕ y) [j + 1] = ⟨v,w ⊕ y⟩[j + 1] = (w ⊕ y) [j] IH
= w[j] = ⟨v,w⟩[j + 1].

Note that the induction hypothesis is applied with j in place of i.
(9): By a straightforward structural induction on the list x. ⊓⊔

6.1.12 List membership. The binary predicate x ε y holds if the number
x is an element of the list y:

x ε ⟨y1, . . . , yn,0⟩ if x = yi for some 1 ≤ i ≤ n.

The list membership predicate is defined explicitly as primitive recursive by

x ε y↔ ∃i(i < L(y)∧ x = y[i]).
Note that from the property 2.1.6(2) of the pairing function we get

⊢PA x ε y → x < y

and therefore

⊢PA ∀x(x ε y → ϕ[x])↔ ∀x ≤ y(x ε y → ϕ[x])
for every formula ϕ[x] of PA. The universal quantifier ∀x in the contexts like
∀x(x ε . . . → ⋯) can be bounded and thus it can be used in explicit definitions
of primitive recursive predicates. Similarly for existential quantifiers.

174 6 Programs Operating on Lists

6.1.13 Basic properties of list membership. We have

⊢PA x /ε 0 (1)

⊢PA x ε ⟨v,w⟩↔ x = v ∨ x ε w (2)

⊢PA x ε y ⊕ z ↔ x ε y ∨ x ε z (3)

⊢PA x ε y↔ ∃z1∃z2 y = z1 ⊕ ⟨x, z2⟩. (4)

In the sequel we will use the properties (1)–(3) without explicitly referring to
them. Note also that the last property (4) can be used as alternative definition
of the list membership predicate.

Proof. (1): Obvious. (2): This follows from

x ε ⟨v,w⟩⇔∃i(i < L ⟨v,w⟩ ∧ x = ⟨v,w⟩[i]) (∗1)⇔

0 < L(w) + 1 ∧ x = ⟨v,w⟩[0] ∨ ∃j(j + 1 < L(w) + 1 ∧ x = ⟨v,w⟩[j + 1])⇔
x = v ∨ ∃j(j < L(w) ∧ x = w[j])⇔ x = v ∨ x ε w.

The step marked by (∗1) is by case analysis on whether or not i = 0.
(3): By structural induction on the list y. The base case is trivial and the

induction step follows from

x ε ⟨v,w⟩⊕ z⇔ x ε ⟨v,w ⊕ z⟩ (2)
⇔ x = v ∨ x ε w ⊕ z

IH
⇔

⇔ x = v ∨ x ε w ∨ x ε z
(2)
⇔ x ε ⟨v,w⟩ ∨ x ε z.

(4): By structural induction on the list y. The base case follows from (1)
and 6.1.11(1). In the induction step we have

x ε ⟨v,w⟩ (2)
⇔ x = v ∨ x ε w

IH
⇔ x = v ∨ ∃z1∃z2w = z1 ⊕ ⟨x, z2⟩⇔

⇔ ⟨v,w⟩ = 0⊕ ⟨x,w⟩ ∨ ∃z1∃z2 ⟨v,w⟩ = ⟨v, z1⟩⊕ ⟨x, z2⟩ (∗2)⇔
⇔ ∃z1∃z2 ⟨v,w⟩ = z1 ⊕ ⟨x, z2⟩.

The step (∗2) is by case analysis on whether or not the list z1 is empty. ⊓⊔

6.1.14 List reversal. We wish to introduce into PA the function Rev(x)
which reverses the elements of the list x:

Rev ⟨x1, x2, . . . , xn,0⟩ = ⟨xn, . . . , x2, x1,0⟩.
The list reversal is defined by structural list recursion as a p.r. function:

Rev(0) = 0
Rev ⟨v,w⟩ = Rev(w)⊕ ⟨v,0⟩.

6.1 Lists 175

6.1.15 Basic properties of list reversal. We have

⊢PA Rev(x) = 0 ↔ x = 0 (1)

⊢PA Rev(x⊕ y) = Rev(y)⊕Rev(x) (2)

⊢PA Rev Rev(x) = x (3)

⊢PA Rev(x) = Rev(y)→ x = y (4)

⊢PA ∃y x = Rev(y) (5)

⊢PA LRev(x) = L(x) (6)

⊢PA y ε Rev(x)↔ y ε x. (7)

In the sequel we will use these properties without explicitly referring to them.

Proof. (1): By case analysis on whether or not the list x is empty.
(2): By structural induction on the list x. The base case is obvious and

the induction step follows from

Rev(⟨v,w⟩⊕ y) = Rev ⟨v,w ⊕ y⟩ = Rev(w ⊕ y)⊕ ⟨v,0⟩ IH
=

= Rev(y)⊕Rev(w)⊕ ⟨v,0⟩ = Rev(y)⊕Rev ⟨v,w⟩.
(3): By structural list induction. The base case is obvious and the induction

step follows from

Rev Rev(⟨v,w⟩⊕ y) = Rev Rev ⟨v,w ⊕ y⟩ = Rev(Rev(w ⊕ y)⊕ ⟨v,0⟩) (2)
=

= Rev ⟨v,0⟩⊕Rev Rev(w ⊕ y) IH
= ⟨v,0⟩⊕w ⊕ y = ⟨v,w⟩⊕ y.

(4): This follows from

Rev(x) = Rev(y)⇒ Rev Rev(x) = Rev Rev(y) (3)
⇒ x = y.

(5): This follows from (3) by setting y ∶= Rev(x).
(6),(7): By a straightforward structural induction on the list x. ⊓⊔

6.1.16 Fast reversal. The application Rev(x) repeatedly invokes list con-
catenation to append an element to the end of a list. Consequently, it takes
O(L(x)2) operations to compute Rev(x). This is clearly wasteful and we can
ask the question whether Rev(x) cannot be computed in O(L(x)) steps. By
accumulating the reversed list into an accumulator a we can perform the
reversal of x in O(L(x)) operations with the help of the binary accumulator
function f(x, a) defined by

f(0, a) = a
f(⟨v,w⟩, a) = f(w, ⟨v, a⟩).

The reader will note that this is a structural recursion on the list x with
substitution in the parameter a.

176 6 Programs Operating on Lists

The auxiliary function f satisfies the property

⊢PA ∀af(x, a) = Rev(x)⊕ a, (1)

from which, by instantiating a ∶= 0, we get the relation between Rev and its
accumulator version:

⊢PA Rev(x) = f(x,0).
Now we can take the last identity as a program computing Rev(x) with a
number of reduction steps proportional to the length of x.

It remains to show that (1) holds. The proof is by structural induction on
the list x. The base case is trivial. In the induction step take any a and we
obtain

f(⟨v,w⟩, a) = f(w, ⟨v, a⟩) IH
= Rev(w)⊕ ⟨v, a⟩ =

= Rev(w)⊕ ⟨v,0⟩⊕ a = Rev ⟨v,w⟩⊕ a.

6.2 Operations on Lists

6.2.1 Introduction. In this section we are concerned with the problem of
specification and verification of various useful simple operations over lists.
We will show how the algorithms can be implemented by using structural
recursion and how their specification properties can be proved by the corre-
sponding induction principles.

6.2.2 Map. The operation Mapf(x) applies an unary function f to each
element of the list x:

⊢PA LMapf(x) = L(x) (1)

⊢PA i < L(x)→ Mapf(x)[i] = f(x[i]) (2)

The mapping is defined by structural list recursion as a p.r. function in f by

Mapf(0) = 0

Mapf ⟨v,w⟩ = ⟨f(v),Mapf(w)⟩.
Verification. (1): By a straightforward structural list induction.

(2): By structural induction on the list x as ∀i(2). In the base case there
is nothing to prove. In the induction step, when x = ⟨v,w⟩ for some v,w, take
any i s.t. i < L ⟨v,w⟩ = L(w) + 1 and consider two cases. If i = 0 then

Mapf ⟨v,w⟩[0] = ⟨f(v),Mapf(w)⟩[0] = f(v) = f(⟨v,w⟩[0]).
If i = j + 1 for some j then j < L(w) and we thus obtain

6.2 Operations on Lists 177

Mapf ⟨v,w⟩[j + 1] = ⟨f(v),Mapf(w)⟩[j + 1] = Mapf (w)[j] IH
=

= f(w[j]) = f(⟨v,w⟩[j + 1]).
Note that the induction hypothesis is applied with j in place of i. ⊓⊔

6.2.3 Take and drop. The function Take(n,x) yields the initial segment
of a list x of the length n provided n ≤ L(x). The function satisfies

⊢PA n ≤ L(x) → LTake(n,x) = n (1)

⊢PA n ≤ L(x) → ∃y x = Take(n,x)⊕ y (2)

and it is defined by primitive recursion on n with substitution in parameter
as primitive recursive by

Take(0, x) = 0

Take(n + 1, ⟨v,w⟩) = ⟨v,Take(n,w)⟩.
Note the default Take(n + 1,0) = 0.

The function Drop(n,x) removes the initial segment of a list x of the
length n provided n ≤ L(x). The function satisfies

⊢PA n ≤ L(x)→ LDrop(n,x) = L(x) ∸ n (3)

⊢PA n ≤ L(x)→ ∃y x = y ⊕Drop(n,x) (4)

and it is defined by primitive recursion on n with substitution in parameter
as primitive recursive by

Drop(0, x) = x
Drop(n + 1, ⟨v,w⟩) = Drop(n,w).

Note the default Drop(n + 1,0) = 0.
Usually we intend to apply both operations Take(n,x) and Drop(n,x) only

in cases when n ≤ L(x). We can take the following properties as alternative
programs for computing the functions in such cases:

⊢PA n ≤ L(x) → Take(n,x) = case

n = 0⇒ 0

n =m + 1⇒ let x = ⟨v,w⟩ in ⟨v,Take(n,w)⟩
end.

⊢PA n ≤ L(x)→ Drop(n,x) = case

n = 0⇒ x

n =m + 1⇒ let x = ⟨v,w⟩ in Drop(n,w)
end.

Note that both programs share the same condition of regularity

⊢PA n ≤ L(x) ∧ n =m + 1 ∧ x = ⟨v,w⟩→ w < x ∧m ≤ L(w)

178 6 Programs Operating on Lists

which is trivially satisfied.

Verification. (1): This is proved by induction on n as ∀x(1). The base case
is obvious. In the induction step take any x such that n + 1 ≤ L(x). Then
x = ⟨v,w⟩ for some v,w, where n ≤ L(w). We obtain

LTake(n + 1, ⟨v,w⟩) = L ⟨v,Take(n,w)⟩ = LTake(n,w) + 1
IH
= n + 1.

Note that the induction hypothesis is applied with w in place of x.
(2): By induction on n as ∀x(2). In the base case it suffices to take y ∶= x

since Take(0, x)⊕ x = 0⊕ x = x. In the induction step assume n + 1 ≤ L(x).
Then x = ⟨v,w⟩ for some v,w. Since n ≤ L(w) we get from IH applied with
w in place of x that w = Take(n,w)⊕ y for some y. We then have

⟨v,w⟩ = ⟨v,Take(n,w)⊕ y⟩ = ⟨v,Take(n,w)⟩⊕ y = Take(n + 1, ⟨v,w⟩)⊕ y.
The remaining properties (3) and (4) are proved similarly. ⊓⊔

6.2.4 Interval. The binary function [m..n) returns the list of numbers
from m to n − 1 if m < n; the list is empty if m ≥ n. The function satisfies

⊢PA L [m..n) = n ∸m (1)

⊢PA i +m < n→ [m..n)[i] =m + i (2)

and it is defined by recursion with measure n ∸m as a p.r. function by

[m..n) = 0 ←m ≥ n[m..n) = ⟨m, [m + 1 .. n)⟩←m < n.

Note that this is an example of function definition by backward recursion.
We usually intend to apply the operation [m..n) only in cases whenm ≤ n.

For that we can take the following property as an alternative (conditional)
program for computing the function:

⊢PA m ≤ n → [m..n) = case

m = n⇒ 0

m ≠ n⇒ ⟨m, [m + 1 .. n)⟩
end

Its condition of regularity

⊢PA m ≤ n ∧m ≠ n→ n ∸ (m + 1) < n ∸m ∧m + 1 ≤ n

is trivially satisfied. Note that the program does not terminate for m > n.

Verification. (1): By induction with measure n ∸m. Take any m,n and con-
sider two cases. If m ≥ n then L [m..n) = L(0) = 0 = n ∸m. If m < n then
m <m + 1 ≤ n and we obtain

6.2 Operations on Lists 179

L [m..n) = L ⟨m, [m + 1 .. n)⟩ = L [m + 1 .. n) + 1
IH
= n ∸ (m + 1) + 1 = n ∸m.

(2): This is proved by induction with measure n ∸m as ∀i(2). Take any
m,n, i such that i +m < n and consider two cases. If i = 0 then we have

[m..n)[0] = ⟨m, [m + 1 .. n)⟩[0] =m =m + 0.

If i = j + 1 for some j then j + (m + 1) = j + 1 +m < n and thus

[m..n)[j + 1] = ⟨m, [m + 1 .. n)⟩[j + 1] = [m + 1 .. n)[j] IH
=

=m + 1 + j =m + (j + 1).
Note that the induction hypothesis is applied with j in place of i. ⊓⊔

6.2.5 Filter. Let A(x) be arbitrary but fixed unary predicate. The function
FilterA(x) removes all elements from a list which do not satisfy the predicate.
The function satisfies

⊢PA a ε FilterA(x)↔ a ε x ∧A(a) (1)

and it is defined by structural list recursion as a p.r. predicate in A:

FilterA(0) = 0

FilterA ⟨v,w⟩ = ⟨v,FilterA(w)⟩← A(v)
FilterA ⟨v,w⟩ = FilterA(w) ← ¬A(v).

Verification. Property (1) is proved by structural induction on the list x. The
base case is obvious. In the induction step, when x = ⟨v,w⟩ for some v,w, we
consider two cases. If A(v) then we have

a ε FilterA ⟨v,w⟩⇔ a ε ⟨v,FilterA(w)⟩⇔ a = v ∨ a ε FilterA(w) IH
⇔

a = v ∨ a ε w ∧A(a) (∗)⇔ (a = v ∨ a ε w) ∧A(a)⇔ a ε ⟨v,w⟩ ∧A(a).
The equivalence marked by (∗) is by case analysis on whether or not a = v.
The case when A(v) does not hold is similar. ⊓⊔

6.2.6 Removal of duplicates from lists. The function Nodoubles(x) re-
moves duplicates from a list. The function satisfies

⊢PA a ε Nodoubles(x)↔ a ε x (1)

⊢PA a ε Nodoubles(x)→ #aNodoubles(x) = 1 (2)

and it is defined by structural list recursion as a p.r. function:

Nodoubles(0) = 0
Nodoubles ⟨v,w⟩ = Nodoubles(w) ← v ε w

180 6 Programs Operating on Lists

Nodoubles ⟨v,w⟩ = ⟨v,Nodoubles(w)⟩← v /ε w.

Verification. (1): By a straightforward structural list induction.
(2): By structural induction on the list x. In the base case there is noth-

ing to prove. In the induction step, when x = ⟨v,w⟩ for some v,w, assume
a ε Nodoubles ⟨v,w⟩ and consider two cases. If v ε w then, by definition,
a ε Nodoubles(w). We obtain

#aNodoubles ⟨v,w⟩ = #aNodoubles(w) IH
= 1.

If v /ε w then by definition either a = v or a ε Nodoubles(w), and also

#aNodoubles ⟨v,w⟩ = (a =∗ v) +#aNodoubles(w). (†1)

Now consider two subcases. If a = v then v /ε Nodoubles(w) by (1) and thus

#vNodoubles ⟨v,w⟩ (†
1
)

= (v =∗ v) +#vNodoubles(w) 6.2.8(3)
= 1 + 0 = 1.

If a ≠ v then it must be a ε Nodoubles(w) and therefore

#aNodoubles ⟨v,w⟩ (†
1
)

= 0 +#aNodoubles(w) IH
= 0 + 1 = 1. ⊓⊔

6.2.7 List minimum. The function Minl(x) yields the minimal element of
a non-empty list. The function satisfies

⊢PA x ≠ 0 → Minl(x) ε x (1)

⊢PA x ≠ 0 ∧ a ε x→Minl(x) ≤ a (2)

and it is defined by list recursion as a p.r. function:

Minl ⟨v,0⟩ = v
Minl ⟨v,w⟩ = min(v,Minl(w))← w ≠ 0.

Note the default Minl(0) = 0.
We usually intend to apply the operation Minl(x) only in cases when

input lists are non-empty. For that we can take the following property as an
alternative (conditional) program for computing list minimum:

⊢PA x ≠ 0 → Minl(x) = let x = ⟨v,w⟩ in
case

w = 0⇒ v

w ≠ 0⇒min(v,Minl(w))
end.

Its condition of regularity

⊢PA x ≠ 0 ∧ x = ⟨v,w⟩ ∧w ≠ 0 → w < x ∧w ≠ 0

is trivially satisfied.

6.2 Operations on Lists 181

Verification. (1),(2): By a straightforward structural list induction on x. ⊓⊔

6.2.8 Multiplicity. The binary function #a (x) counts the number of oc-
currences of the element a in the list x. This is called the multiplicity of a in
x. The function satisfies

⊢PA #a⟨b,0⟩ = (a =∗ b) (1)

⊢PA #a (x⊕ y) = #a (x) +#a (y) (2)

and it is defined by structural list recursion as a p.r. function:

#a (0) = 0
#a⟨v,w⟩ = (a =∗ v) +#a (w).

We have also

⊢PA a ε x↔ #a (x) ≠ 0. (3)

⊢PA x = 0 ↔ ∀a#a (x) = 0. (4)

Verification. (1): Directly from definition.
(2): By structural induction on the list x. The base case is obvious. The

induction step follows from

#a (⟨v,w⟩⊕ y) = #a⟨v,w ⊕ y⟩ = (a =∗ v) +#a (w ⊕ y) IH
=

= (a =∗ v) +#a (w) +#a (y) = #a⟨v,w⟩ +#a (y) .
(3): By a straightforward structural induction on the list x.
(4): By a simple case analysis on whether or not the list x is empty. ⊓⊔

6.2.9 Permutations. We wish to introduce into PA the binary predicate
x ∼ y holding if the list x is a permutation of the list y. For example:

⟨1,2,3,0⟩ ⟨2,1,3,0⟩ ⟨2,3,1,0⟩ ⟨1,3,2,0⟩ ⟨3,1,2,0⟩ ⟨3,2,1,0⟩
are all permutations of the three-element list ⟨1,2,3,0⟩. The standard math-
ematical definition uses a second-order concept (bijections over finite sets)
which is not expressible directly in first-order arithmetic. Our definition of
the predicate in PA is based on the following simple observation:

two lists are permutations precisely when every number has the same multiplicity
in either list.

Thus we can define the predicate explicitly by

x ∼ y ↔ ∀a#a (x) =#a (y) .
Note that from 6.2.8(3) we get

182 6 Programs Operating on Lists

⊢PA x ∼ y↔ ∀a(a ε x→ #a (x) =#a (y)) ∧ ∀a(a ε y → #a (x) =#a (y)).
Consequently, the predicate x ∼ y is primitive recursive.

6.2.10 Basic properties of permutations. First note the predicate x ∼ y
constitutes an equivalence relation which is reflexive, symmetric and transi-
tive. This is expressed in that order by

⊢PA x ∼ x (1)

⊢PA x ∼ y → y ∼ x (2)

⊢PA x ∼ y ∧ y ∼ z → x ∼ z. (3)

Congruence properties of permutations are expressed by

⊢PA x ∼ y → ⟨a,x⟩ ∼ ⟨a, y⟩ (4)

⊢PA x ∼ y → L(x) = L(y) (5)

⊢PA x1 ∼ y1 ∧ x2 ∼ y2 → x1 ⊕ x2 ∼ y1 ⊕ y2 (6)

⊢PA x ∼ y ∧ a ε x→ a ε y. (7)

There is one cancellation law, namely:

⊢PA x1 ⊕ ⟨a,x2⟩ ∼ y1 ⊕ ⟨a, y2⟩↔ x1 ⊕ x2 ∼ y1 ⊕ y2. (8)

Finally, we have also the following recurrent properties of permutations:

⊢PA x ∼ 0 ↔ x = 0 (9)

⊢PA x ∼ ⟨v,w⟩↔ ∃z1∃z2(x = z1 ⊕ ⟨v, z2⟩ ∧w ∼ z1 ⊕ z2). (10)

In the sequel we will use these properties without explicitly referring to them.

Proof. Properties (1)–(3) hold trivially. Property (4) follows directly from the
definition. Properties (6)–(9) follow from the properties of the multiplicity
function (see Par. 6.2.8).

(10): In the direction (→) assume x ∼ ⟨v,w⟩. Then v ε x by (7) and thus,
by 6.1.13(4), we have x = z1 ⊕ ⟨v, z2⟩ for some z1, z2. Now it suffices to apply
(8) to get w ∼ z1 ⊕ z2. The reverse direction (←) follows from (8).

(5): This is proved as ∀y(5) by structural induction on the list x. The
base case is straightforward. In the induction step, when x = ⟨v,w⟩ for some
v,w, take any y such that ⟨v,w⟩ ∼ y. By (10), there are lists z1, z2 such that
y = z1 ⊕ ⟨v, z2⟩ and w ∼ z1 ⊕ z2. We then obtain

L ⟨v,w⟩ = L(w) + 1
IH
= L(z1 ⊕ z2) + 1 = L(z1) +L(z2) + 1 =

= L(z1) +L ⟨v, z2⟩ = L(z1 ⊕ ⟨v, z2⟩).

6.3 Combinatorial Functions over Lists 183

Note that the induction hypothesis is applied with z1 ⊕ z2 in place of y. ⊓⊔

6.3 Combinatorial Functions over Lists

6.3.1 Introduction. In this section we will study several combinatorial
problems over lists. Such problems are good examples for program synthe-
sis. We begin by bootstrapping of a specification and then synthesize an
algorithm that satisfies it. By reverting the process we obtain the program
correctness.

6.3.2 Suffixes. Let us start by considering the problem of generating the
last segments (suffixes) of a list. For example, the following lists are all suffixes
of the four-element list ⟨1,2,3,4,0⟩:

⟨1,2,3,4,0⟩ ⟨2,3,4,0⟩ ⟨3,4,0⟩ ⟨4,0⟩ 0.

The specification predicate x ⊐ y (x is suffix of y) is defined explicitly by

x ⊐ y↔ ∃z x = z ⊕ y.

Note that the existential quantifier in the definition can be bounded by ≤ x
and thus the predicate is primitive recursive. Our task is to find a program
for the function Suffixes(x) which returns a list of all suffixes of the list x:

⊢PA y ε Suffixes(x)↔ x ⊐ y, (1)

Note that the order of the elements in the list Suffixes(x) is irrelevant.
The implementation of Suffixes(x) is based on the following recurrent

properties of the specification predicate:

⊢PA 0 ⊐ y↔ y = 0 (2)

⊢PA ⟨v,w⟩ ⊐ y↔ y = ⟨v,w⟩ ∨w ⊐ y. (3)

Synthesizing both equivalences together leads to the following definition:

Suffixes(0) = ⟨0,0⟩
Suffixes ⟨v,w⟩ = ⟨⟨v,w⟩,Suffixes(w)⟩.

Note that this is a definition by structural list recursion of a p.r. function.

Verification. (2): Directly from 6.1.11(1). (3): We have

⟨v,w⟩ ⊐ y⇔ ∃z ⟨v,w⟩ = z ⊕ y (∗)⇔
⇔ ⟨v,w⟩ = 0⊕ y ∨ ∃z1∃z2 ⟨v,w⟩ = ⟨z1, z2⟩⊕ y⇔
⇔ y = ⟨v,w⟩ ∨ ∃z2w = z2 ⊕ y⇔ y = ⟨v,w⟩ ∨w ⊐ y.

184 6 Programs Operating on Lists

The step (∗) is by case analysis on whether or not the list z is empty.
(1): By structural induction on the list x. The base case is trivial:

y ε Suffixes(0)⇔ y ε ⟨0,0⟩⇔ y = 0
(2)
⇔ 0 ⊐ y.

The induction step follows from

y ε Suffixes ⟨v,w⟩⇔ y ε ⟨⟨v,w⟩,Suffixes(w)⟩⇔
⇔ y = ⟨v,w⟩ ∨ y ε Suffixes(w) IH

⇔ y = ⟨v,w⟩ ∨w ⊐ y (3)
⇔ ⟨v,w⟩ ⊐ y. ⊓⊔

6.3.3 Auxiliary function. Consider the binary function Mape(a,x) de-
fined by structural recursion on the list x as a p.r. function:

Mape(a,0) = 0

Mape(a, ⟨v,w⟩) = ⟨⟨a, v⟩,Mape(a,w)⟩.
The function satisfies:

⊢PA y εMape(a,x)↔ ∃z(z ε x ∧ y = ⟨a, z⟩). (1)

Verification. Property (1) is proved by structural induction on the list x. The
base case is obvious. The induction step follows from

y εMape(a, ⟨v,w⟩)⇔ y ε ⟨⟨a, v⟩,Mape(a,w)⟩⇔
⇔ y = ⟨a, v⟩ ∨ y εMape(a,w) IH

⇔ y = ⟨a, v⟩ ∨ ∃z(z ε w ∧ y = ⟨a, z⟩)⇔
⇔ ∃z((z = v ∨ z ε w) ∧ y = ⟨a, z⟩)⇔ ∃z(z ε ⟨v,w⟩ ∧ y = ⟨a, z⟩). ⊓⊔

6.3.4 Prefixes. Our next example is the problem of generating the initial
segments (prefixes) of a list. For example:

0 ⟨1,0⟩ ⟨1,2,0⟩ ⟨1,2,3,0⟩ ⟨1,2,3,4,0⟩
are all prefixes of the list ⟨1,2,3,4,0⟩. The specification predicate y ⊏ x, which
is read as y is prefix of x, is defined explicitly as primitive recursive by

y ⊏ x↔ ∃z x = y ⊕ z.

The aim is to find an algorithm for the function Prefixes(x) which returns a
list of all prefixes of the list x:

⊢PA y ε Prefixes(x)↔ y ⊏ x. (1)

The order of the elements in the resulting list is irrelevant.
The program for the operation Prefixes(x) is based on the following re-

current properties of the specification predicate:

6.3 Combinatorial Functions over Lists 185

⊢PA y ⊏ 0 ↔ y = 0 (2)

⊢PA y ⊏ ⟨v,w⟩↔ y = 0 ∨ ∃z(z ⊏ w ∧ y = ⟨v, z⟩). (3)

By combining these two equivalences together we obtain:

Prefixes(0) = ⟨0,0⟩
Prefixes ⟨v,w⟩ = ⟨0,Mape(v,Prefixes(w))⟩.

This is a definition by structural list recursion of a p.r. function.

Verification. (2): Directly from 6.1.11(1). (3): We have

y ⊏ ⟨v,w⟩⇔ ∃z ⟨v,w⟩ = y ⊕ z (∗)⇔
⇔ y = 0 ∨ ∃y1∃y2(y = ⟨y1, y2⟩ ∧ ∃z ⟨v,w⟩ = ⟨y1, y2⟩⊕ z)⇔
⇔ y = 0 ∨ ∃y2(y = ⟨v, y2⟩ ∧ ∃z w = y2 ⊕ z)⇔
⇔ y = 0 ∨ ∃y2(y = ⟨v, y2⟩ ∧ y2 ⊏ w)⇔ y = 0 ∨ ∃z(z ⊏ w ∧ y = ⟨v, z⟩).

The step (∗) is by case analysis on whether or not the list y is empty.
(1): By structural induction on the list x as ∀y(1). The base case follows

from (2). In the induction step when x = ⟨v,w⟩ take any y and we have

y ε Prefixes ⟨v,w⟩⇔ y ε ⟨0,Mape(v,Prefixes(w))⟩⇔
⇔ y = 0 ∨ y εMape(v,Prefixes(w)) 6.3.3(1)

⇔

⇔ y = 0 ∨ ∃z(z ε Prefixes(w) ∧ y = ⟨v, z⟩) IH
⇔

⇔ y = 0 ∨ ∃z(z ⊏ w ∧ y = ⟨v, z⟩) (3)
⇔ y ⊏ ⟨v,w⟩.

Note that the induction hypothesis is applied with z in place of y. ⊓⊔

6.3.5 Segments. In this paragraph we consider the problem of generating
the (contiguous) segments of a list. For example, the following lists are all
segments of the four-element list ⟨1,2,3,4,0⟩:

0 ⟨1,0⟩ ⟨1,2,0⟩ ⟨1,2,3,0⟩ ⟨1,2,3,4,0⟩
⟨2,0⟩ ⟨2,3,0⟩ ⟨2,3,4,0⟩ ⟨3,0⟩ ⟨3,4,0⟩ ⟨4,0⟩.

The specification predicate y ⊂ x (y is segment of x) is defined explicitly as
primitive recursive by

y ⊂ x↔ ∃z1∃z2 x = z1 ⊕ y ⊕ z2.

Our task is to find a program for the function Segments(x) which returns a
list of all segments of the list x:

⊢PA y ε Segments(x)↔ y ⊂ x. (1)

186 6 Programs Operating on Lists

Note that the order of the elements in the list Segments(x) is irrelevant.
Our implementation of Segments(x) is based on the following recurrent

properties of the specification predicate:

⊢PA y ⊂ 0 ↔ y = 0 (2)

⊢PA y ⊂ ⟨v,w⟩↔ ∃z(z ⊏ w ∧ y = ⟨v, z⟩) ∨ y ⊂ w. (3)

Synthesizing both equivalences together leads to the following definition:

Segments(0) = ⟨0,0⟩
Segments ⟨v,w⟩ =Mape(v,Prefixes(w))⊕ Segments(w).

Note that this is a definition by structural list recursion of a p.r. function.

Verification. (2): Directly from 6.1.11(1). (3): First note that

⊢PA 0 ⊂ x. (†1)

We then have

y ⊂ ⟨v,w⟩⇔ ∃z1∃z2 ⟨v,w⟩ = z1 ⊕ y ⊕ z2 (∗)⇔
⇔ ∃z2 ⟨v,w⟩ = 0⊕ y ⊕ z2 ∨ ∃z3∃z4∃z2 ⟨v,w⟩ = ⟨z3, z4⟩⊕ y ⊕ z2 ⇔
⇔ ∃z2 ⟨v,w⟩ = y ⊕ z2 ∨ ∃z4∃z2w = z4 ⊕ y ⊕ z2 ⇔
⇔ ∃z2 ⟨v,w⟩ = y ⊕ z2 ∨ y ⊂ w (∗)⇔
⇔ y = 0 ∨ ∃z5∃z(y = ⟨z5, z⟩ ∧ ∃z2 ⟨v,w⟩ = ⟨z5, z⟩⊕ z2) ∨ y ⊂ w (†

1
)

⇔

⇔ ∃z(y = ⟨v, z⟩ ∧ ∃z2w = z ⊕ z2) ∨ y ⊂ w⇔

⇔ ∃z(z ⊏ w ∧ y = ⟨v, z⟩) ∨ y ⊂ w.
The steps (∗) are by case analysis on whether or not the list z1 or y is empty.

(1): By structural induction on the list x. The base case follows from (2).
In the induction step we have

y ε Segments ⟨v,w⟩⇔ y ε Mape(v,Prefixes(w))⊕ Segments(w)⇔
⇔ y εMape(v,Prefixes(w)) ∨ y ε Segments(w) 6.3.3(1),IH

⇔

⇔ ∃z(z ε Prefixes(w) ∧ y = ⟨v, z⟩) ∨ y ⊂ w 6.3.4(1)
⇔

⇔ ∃z(z ⊏ w ∧ y = ⟨v, z⟩) ∨ y ⊂ w (3)
⇔ y ⊂ ⟨v,w⟩. ⊓⊔

6.3.6 Interleave. In this paragraph we consider the problem of finding of
all possible ways of inserting an element into a list. For example:

⟨1,2,3,4,0⟩ ⟨2,1,3,4,0⟩ ⟨2,3,1,4,0⟩ ⟨2,3,4,1,0⟩

6.3 Combinatorial Functions over Lists 187

are all possible ways of inserting the number 1 into the list ⟨2,3,4,0⟩. The
specification predicate y ≈ x[↓ a], which holds if the list y is obtained from the
list x by inserting the element a into it, has the following explicit definition:

y ≈ x[↓ a]↔ ∃z1∃z2(x = z1 ⊕ z2 ∧ y = z1 ⊕ ⟨a, z2⟩).
Both existential quantifiers can be bounded by ≤ x and thus the predicate
is primitive recursive. The goal is to construct a program for the function
Interleave(a,x) satisfying

⊢PA y ε Interleave(a,x)↔ y ≈ x[↓ a]. (1)

Note that the order of the elements of the list Interleave(a,x) is irrelevant.
The implementation is based on the following two properties of the speci-

fication predicate:

⊢PA y ≈ 0[↓a]↔ y = ⟨a,0⟩ (2)

⊢PA y ≈ ⟨v,w⟩[↓a]↔ y = ⟨a, v,w⟩ ∨ ∃z(z ≈ w[↓ a] ∧ y = ⟨v, z⟩). (3)

By synthesizing both equivalences together we obtain the following definition:

Interleave(a,0) = ⟨⟨a,0⟩,0⟩
Interleave(a, ⟨v,w⟩) = ⟨⟨a, v,w⟩,Mape(v, Interleave(a,w))⟩.

This is a definition of by structural list recursion and hence the function
Interleave(a,x) is primitive recursive.

Verification. (2): Directly from 6.1.11(1). (3): We have

y ≈ ⟨v,w⟩[↓a]⇔ ∃z1∃z2(⟨v,w⟩ = z1 ⊕ z2 ∧ y = z1 ⊕ ⟨a, z2⟩) (∗)⇔
∃z2(⟨v,w⟩ = 0⊕ z2 ∧ y = 0⊕ ⟨a, z2⟩) ∨
∨ ∃z3∃z4∃z2(⟨v,w⟩ = ⟨z3, z4⟩⊕ z2 ∧ y = ⟨z3, z4⟩⊕ ⟨a, z2⟩)⇔

y = ⟨a, v,w⟩ ∨ ∃z4∃z2(w = z4 ⊕ z2 ∧ y = ⟨v, z4⟩⊕ ⟨a, z2⟩)⇔
y = ⟨a, v,w⟩ ∨ ∃z(∃z4∃z2(w = z4 ⊕ z2 ∧ z = z4 ⊕ ⟨a, z2⟩) ∧ y = ⟨v, z⟩)⇔
y = ⟨a, v,w⟩ ∨ ∃z(z ≈ w[↓a] ∧ y = ⟨v, z⟩).

The step (∗) is by case analysis on whether or not the list z1 is empty.
(1): By structural induction on the list x as ∀y(1) The base case follows

from (2). In the induction step when x = ⟨v,w⟩ take any y and we have

y ε Interleave(a, ⟨v,w⟩)⇔ y ε ⟨⟨a, v,w⟩,Mape(v, Interleave(a,w))⟩⇔
⇔ y = ⟨a, v,w⟩ ∨ y εMape(v, Interleave(a,w)) 6.3.3(1)

⇔

188 6 Programs Operating on Lists

⇔ y = ⟨a, v,w⟩ ∨ ∃z(z ε Interleave(a,w) ∧ y = ⟨v, z⟩) IH
⇔

⇔ y = ⟨a, v,w⟩ ∨ ∃z(z ≈ w[↓ a] ∧ y = ⟨v, z⟩) (3)
⇔ y ≈ ⟨v,w⟩[↓a].

Note that the induction hypothesis is applied with z in place of y. ⊓⊔

6.3.7 Auxiliary function. Consider the binary function Mapi(a,x) de-
fined by structural recursion on the list x as a p.r. function:

Mapi(a,0) = 0
Mapi(a, ⟨v,w⟩) = Interleave(a, v)⊕Mapi(a,w).

The function satisfies:

⊢PA y εMapi(a,x)↔ ∃z(z ε x ∧ y ≈ z[↓a]). (1)

Verification. Property (1) is proved by structural induction on the list x. The
base case is obvious. The induction step follows from

y εMapi(a, ⟨v,w⟩)⇔ y ε Interleave(a, v)⊕Mapi(a,w)⇔
⇔ y ε Interleave(a, v) ∨ y ε Mapi(a,w) 6.3.6(1),IH

⇔
⇔ y ≈ v[↓ a] ∨ ∃z(z ε w ∧ y ≈ z[↓a])⇔
⇔ ∃z((z = v ∨ z ε w) ∧ y ≈ z[↓a])⇔ ∃z(z ε ⟨v,w⟩ ∧ y ≈ z[↓a]). ⊓⊔

6.3.8 Permutations. In our last example of this section we will consider
the problem of generating of all permutations of a list. Our aim is find a
program for the function Perms(x) such that

⊢PA y ε Perms(x)↔ y ∼ x. (1)

Here, the y ∼ x is the permutation relation defined in Par. 6.2.9. Note that
the order of elements in the list Perms(x) is irrelevant.

The implementation of Perms(x) is based on the following recurrent prop-
erties of the permutation relation:

⊢PA y ∼ 0 ↔ y = 0 (2)

⊢PA y ∼ ⟨v,w⟩↔ ∃z(z ∼ w ∧ y ≈ z[↓v]). (3)

The operation Perms(x) is then defined by structural list recursion as a p.r.
function by

Perms(0) = ⟨0,0⟩
Perms ⟨v,w⟩ =Mapi(v,Perms(w)).

Verification. (2): This is 6.2.10(9). (3): We have

6.4 Sorting of Lists 189

y ∼ ⟨v,w⟩ 6.2.10(10)
⇔ ∃z1∃z2(z1 ⊕ z2 ∼ w ∧ y = z1 ⊕ ⟨v, z2⟩)⇔

⇔ ∃z3∃z4(z3 ⊕ z4 ∼ w ∧ ∃z1∃z2(z3 ⊕ z4 = z1 ⊕ z2 ∧ y = z1 ⊕ ⟨v, z2⟩))⇔
⇔ ∃z3∃z4(z3 ⊕ z4 ∼ w ∧ y ≈ (z3 ⊕ z4)[↓ v])⇔ ∃z(z ∼ w ∧ y ≈ z[↓v]).

(1): By structural induction on the list x as ∀y(1). The base case follows
from (2). In the induction step when x = ⟨v,w⟩ take any y and we have

y ε Perms ⟨v,w⟩⇔ y ε Mapi(v,Perms(w)) 6.3.7(1)
⇔

∃z(z ε Perms(w) ∧ y ≈ z[↓v]) IH
⇔ ∃z(z ∼ w ∧ y ≈ z[↓v]) (3)

⇔ y ∼ ⟨v,w⟩.
Note that the induction hypothesis is applied with z in place of y. ⊓⊔

6.4 Sorting of Lists

6.4.1 Introduction. In this section we will consider the problem of sort-
ing of lists. We will demonstrate the verification of two sorting algorithms:
insertion sort and merge sort. We start by introducing into PA some of the
specification predicates which are needed to specify and verify sorting algo-
rithms. Recall that the properties of one of these predicates, the permutation
predicate x ∼ y, has already been investigated (see Par. 6.2.9 for details).

6.4.2 Lower bounds of lists. The predicate a ⪯ x holds if the number a
is a lower bound of the list x, i.e. we have a ≤ b for every element b of x. The
predicate is defined explicitly as primitive recursive by

a ⪯ x↔ ∀b(b ε x→ a ≤ b).
The predicate satisfies

⊢PA a ⪯ 0 (1)

⊢PA a ⪯ ⟨v,w⟩↔ a ≤ v ∧ a ⪯ w (2)

⊢PA a ≤ b ∧ b ⪯ x→ a ⪯ x (3)

⊢PA a ⪯ x⊕ y↔ a ⪯ x ∧ a ⪯ y (4)

⊢PA x ∼ y → a ⪯ x↔ a ⪯ y. (5)

Proof. (1): Obvious. (2): This follows from

a ⪯ ⟨v,w⟩⇔ ∀b(b ε ⟨v,w⟩→ a ≤ b) 6.1.13(2)
⇔ ∀b(b = v ∨ b ε w → a ≤ b)⇔

⇔ a ≤ v ∧ ∀b(b ε w → a ≤ b)⇔ a ≤ v ∧ a ⪯ w.

190 6 Programs Operating on Lists

(3): Obvious. (4): This follows from

a ⪯ x⊕ y⇔ ∀b(b ε x⊕ y → a ≤ b) 6.1.13(3)
⇔ ∀b(b ε x ∨ b ε y → a ≤ b)⇔

⇔ ∀b(b ε x→ a ≤ b) ∧ ∀b(b ε y → a ≤ b)⇔ a ⪯ x ∧ a ⪯ y.

(5) Suppose that x ∼ y. We have

a ⪯ x⇔ ∀b(b ε x→ a ≤ b) 6.2.10(7)
⇔ ∀b(b ε y → a ≤ b)⇔ a ⪯ y. ⊓⊔

6.4.3 Ordered lists. The predicate Ord(x) holds if x is an ordered list, i.e.
the elements of the list x are stored in x in increasing order. The predicate
is explicitly defined as primitive recursive by

Ord(x)↔ ∀i∀j(i < j < L(x) → x[i] ≤ x[j]).
We list here some properties of ordered lists which we will use in sequel:

⊢PA Ord(0) (1)

⊢PA Ord ⟨v,w⟩↔ v ⪯ w ∧Ord(w). (2)

⊢PA Ord ⟨v,w⟩→ a ⪯ ⟨v,w⟩↔ a ≤ v. (3)

Proof. (1): Obvious. (2): This follows from

Ord ⟨v,w⟩⇔ ∀i∀j(i < j < L ⟨v,w⟩→ ⟨v,w⟩[i] ≤ ⟨v,w⟩[j]) (∗)⇔
∀j(0 < j < L(w) + 1 → ⟨v,w⟩[0] ≤ ⟨v,w⟩[j]) ∧
∧ ∀i1∀j(i1 + 1 < j < L(w) + 1 → ⟨v,w⟩[i1 + 1] ≤ ⟨v,w⟩[j])⇔

∀j1(j1 + 1 < L(w) + 1 → v ≤ ⟨v,w⟩[j1 + 1]) ∧
∧ ∀i1∀j1(i1 + 1 < j1 + 1 < L(w) + 1 → w[i1] ≤ ⟨v,w⟩[j1 + 1])⇔

∀j1(j1 < L(w)→ v ≤ w[j1]) ∧
∧ ∀i1∀j1(i1 < j1 < L(w)→ w[i1] ≤ w[j1])⇔ v ⪯ w ∧Ord(w).

The step marked by (∗) is by case analysis on whether or not i = 0.
(3): If Ord ⟨v,w⟩ then v ⪯ w by (2) and thus, by 6.4.2(3), we have

a ≤ v → a ⪯ w. (†1)

We then obtain

a ⪯ ⟨v,w⟩ 6.4.2(2)
⇔ a ≤ v ∧ a ⪯ w

(†
1
)

⇔ a ≤ v. ⊓⊔

6.4 Sorting of Lists 191

Insertion Sort

6.4.4 Introduction. The simplest sorting algorithm is insertion sort which
takes order O(L(x)2) time to sort a list x. Insertion sort works on a non-
empty list by recursively sorting its tail and then inserts its first element into
the sorted list.

6.4.5 Insertion. At the heart of insertion sort algorithm is the insertion
function Insert(a,x) which takes an ordered list x and yields a new one by
inserting the element a into it. The function satisfies

⊢PA Insert(a,x) ∼ ⟨a,x⟩ (1)

⊢PA Ord(x) → Ord Insert(a,x) (2)

and it is defined by structural recursion on the list x as a p.r. function:

Insert(a,0) = ⟨a,0⟩
Insert(a, ⟨v,w⟩) = ⟨a, v,w⟩← a ≤ v

Insert(a, ⟨v,w⟩) = ⟨v, Insert(a,w)⟩← a > v.

Verification. (1): By structural induction on the list x. The base case is ob-
vious. In the induction step when x = ⟨v,w⟩ we consider two cases. If a ≤ v
then the claim follows directly from the definition. Otherwise a > v and then

Insert(a, ⟨v,w⟩) ∼ ⟨v, Insert(a,w)⟩ IH
∼ ⟨v, a,w⟩ ∼ ⟨a, v,w⟩.

As a simple consequence of (1) and 6.4.2(5) we get the following

⊢PA b ⪯ Insert(a,x)↔ b ≤ a ∧ b ⪯ x. (†1)

(2): By structural induction on the list x. The base case is straightforward.
In the induction step, when x = ⟨v,w⟩ for some v,w, assume Ord ⟨v,w⟩ and
consider two cases. If a ≤ v then we have

Ord Insert(a, ⟨v,w⟩)⇔ Ord ⟨a, v,w⟩ 6.4.3(2)
⇔ Ord ⟨v,w⟩ ∧ a ⪯ ⟨v,w⟩.

The last follows from assumptions by 6.4.3(3). If a > v then we have

Ord Insert(a, ⟨v,w⟩)⇔ Ord ⟨v, Insert(a,w)⟩ 6.4.3(2)
⇔

Ord Insert(a,w) ∧ v ⪯ Insert(a,w) (†1)
⇔ Ord Insert(a,w) ∧ v ≤ a ∧ v ⪯ w.

The last follows from assumptions and IH. ⊓⊔

6.4.6 Insertion sort. The function Isort(x) recursively sorts the tail of an
non-empty list and then inserts its first element into the sorted one. The
function satisfies

192 6 Programs Operating on Lists

⊢PA Isort(x) ∼ x (1)

⊢PA Ord Isort(x) (2)

and it is defined by structural list recursion as a p.r. function:

Isort(0) = 0
Isort ⟨v,w⟩ = Insert(v, Isort(w)).

Verification. (1): By structural list induction. The base case is straightfor-
ward and the induction step follows from

Isort ⟨v,w⟩ ∼ Insert(v, Isort(w)) 6.4.5(1)
∼ ⟨v, Isort(w)⟩ IH

∼ ⟨v,w⟩.
(2): By structural list induction. The base case follows from 6.4.3(1). In

the induction step, when x = ⟨v,w⟩ for some v,w, assume Ord ⟨v,w⟩. Then
Ord(w) by 6.4.3(2) and we get from IH:

Ord Isort(w) 6.4.5(2)
⇒ Ord Insert(v, Isort(w))⇒ Ord Isort ⟨v,w⟩. ⊓⊔

Merge Sort

6.4.7 Introduction. More efficient sorting algorithm than insertion sort
is merge sort which takes order O(L(x) lgL(x)) time to sort a list x The
algorithm sorts a list by dividing it into two roughly equal parts. Each part
is then recursively sorted and the resulting lists are merged into one list.

Our implementation uses the discrimination on whether or not L(x) ≤ 1.
As we have

⊢PA L(x) ≤ 1 ↔ (π2(x) =∗ 0) = 1,

the evaluation of the variant L(x) ≤ 1 takes constant time provided the
expression π2(x) =∗ 0 is taken as its characteristic term.

6.4.8 Splitting the list into two halves. The function Split(x) divides
a list into two lists: the length of the first one is at most one more than the
length of the second. The function satisfies

⊢PA ∃y∃z Split(x) = ⟨y, z⟩ (1)

⊢PA Split(x) = ⟨y, z⟩→ x ∼ y ⊕ z (2)

⊢PA Split(x) = ⟨y, z⟩→ (L(y) = L(z)∨L(y) = L(z)+ 1) (3)

and it is defined by course of values recursion with measure L(x) as a p.r.
function by

Split(x) = ⟨x,0⟩← L(x) ≤ 1

6.4 Sorting of Lists 193

Split(x) = ⟨⟨u, y⟩, ⟨v, z⟩⟩← L(x) > 1 ∧ x = ⟨u, v,w⟩ ∧ Split(w) = ⟨y, z⟩.
Verification. (2): By induction with measure L(x) as ∀y∀z(2). Take any y, z
such that Split(x) = ⟨y, z⟩ and consider two cases. The case when L(x) ≤ 1
is obvious. So suppose that L(x) > 1. Then x = ⟨u, v,w⟩ for some u, v,w. By
(1) there are y1, z1 such that Split(w) = ⟨y1, z1⟩. By definition ⟨u, y1⟩ = y and⟨v, z1⟩ = z. We then obtain

⟨u, v,w⟩ IH
∼ ⟨u, v, y1 ⊕ z1⟩ ∼ ⟨u, y1⟩⊕ ⟨v, z1⟩ ∼ y ⊕ z.

(1),(3): This is proved similarly. ⊓⊔

6.4.9 Merging two ordered lists into one. The function Merge(x, y)
merges two ordered lists into one ordered list. The function satisfies

⊢PA Merge(x, y) ∼ x⊕ y (1)

⊢PA Ord(x) ∧Ord(y)→ Ord Merge(x, y) (2)

and it is defined by course of values recursion with measure L(x)+L(y) as a
p.r. function by

Merge(0, y) = y
Merge(⟨v1,w1⟩,0) = ⟨v1,w1⟩
Merge(⟨v1,w1⟩, ⟨v2,w2⟩) = ⟨v1,Merge(w1, ⟨v2,w2⟩)⟩← v1 ≤ v2
Merge(⟨v1,w1⟩, ⟨v2,w2⟩) = ⟨v2,Merge(⟨v1,w1⟩,w2)⟩← v1 > v2.

Verification. (1): By course of values induction with measure L(x) + L(y).
We consider two cases. The case when either x = 0 or y = 0 is straightforward.
So suppose x = ⟨v1,w1⟩ and y = ⟨v2,w2⟩ for some v1,w1, v2,w2. If v1 ≤ v2 then
we have

Merge(⟨v1,w1⟩, ⟨v2,w2⟩) ∼ ⟨v1,Merge(w1, ⟨v2,w2⟩)⟩ IH
∼

∼ ⟨v1,w1 ⊕ ⟨v2,w2⟩⟩ ∼ ⟨v1,w1⟩⊕ ⟨v2,w2⟩.
The subcase when v1 < v2 has a similar proof.

As a simple consequence of (1) and 6.4.2(5) we get

⊢PA a ⪯Merge(x, y)↔ a ⪯ x ∧ a ⪯ y. (†1)

(2): By course of values induction with measure L(x) + L(y). Assume
Ord(x) and Ord(y), and consider two cases. If x = 0 or y = 0 then the
property holds trivially. So suppose x = ⟨v1,w1⟩ and y = ⟨v2,w2⟩ for some
v1,w1, v2,w2. If v1 ≤ v2 then we have

194 6 Programs Operating on Lists

Ord Merge(⟨v1,w1⟩, ⟨v2,w2⟩)⇔ Ord ⟨v1,Merge(w1, ⟨v2,w2⟩)⟩ 6.4.3(2)
⇔

Ord Merge(w1, ⟨v2,w2⟩) ∧ v1 ⪯Merge(w1, ⟨v2,w2⟩) (†
1
)

⇔
Ord Merge(w1, ⟨v2,w2⟩) ∧ v1 ⪯ w1 ∧ v1 ⪯ ⟨v2,w2⟩.

The last follows from IH and from assumptions by 6.4.3(2) and 6.4.3(3). The
subcase when v1 < v2 is similar. ⊓⊔

6.4.10 Merge sort. The function Msort(x) sorts a list by dividing it into
two equal parts. Each part is then recursively sorted and the resulting lists
are merged together. The function Msort(x) satisfies

⊢PA Msort(x) ∼ x (1)

⊢PA Ord Msort(x) (2)

and it is defined by course of values recursion with measure L(x) as a p.r.
function by

Msort(x) = x← L(x) ≤ 1
Msort(x) =Merge(Msort(y),Msort(z))← L(x) > 1 ∧ Split(x) = ⟨y, z⟩.

Its conditions of regularity

⊢PA L(x) > 1 ∧ Split(x) = ⟨y, z⟩→ L(y) < L(x) (3)

⊢PA L(x) > 1 ∧ Split(x) = ⟨y, z⟩→ L(z) < L(x) (4)

follows from 6.2.10(5) and 6.4.8(2)(3).

Verification. (1): By course of values induction with measure L(x). We con-
sider two cases. The case when L(x) ≤ 1 is obvious. So suppose L(x) > 1. By
6.4.8(1) there are y, z such that Split(x) = ⟨y, z⟩. Note that L(y) < L(x) and
L(z) < L(x) by (3),(4). We have

Msort(x) ∼Merge(Msort(y),Msort(z)) 6.4.9(1)
∼

∼Msort(y)⊕Msort(z) IH
∼ y ⊕ z

6.4.8(2)
∼ x.

(2): By course of values induction with measure L(x). We consider two
cases. The case when L(x) ≤ 1 is obvious. So suppose L(x) > 1. By 6.4.8(1)
there are y, z such that Split(x) = ⟨y, z⟩. Note that L(y) < L(x) and L(z) <
L(x) by (3),(4). We have by IH

Ord Msort(y)∧Ord Msort(z) 6.4.9(2)
⇒ Ord Merge(Msort(y),Msort(z))⇒
⇒ Ord Msort(x). ⊓⊔

Chapter 7

Programs Operating on Trees

In this chapter we will study several kinds of branching data structures,
called trees in computer science. We will consider two of them: binary trees
and symbolic expressions.

Our discussion starts in Sect. 7.1 with binary trees. We use the so-called
constructors to code binary trees into natural numbers. Both the principle
of structural induction and structural recursion over binary trees are easily
formalized within PA. The rest of this section is devoted the specification,
implementation and verification of basic operations on binary trees.

We give two applications of binary trees. The first one is discussed in
Sect. 7.2 where we study binary search trees which are very useful for repre-
senting finite sets. The cost of most operations involving a single element is
linear to the depth of a binary search tree. If it is reasonably balanced the
cost of each such operation is logarithmic to its size.

In Sect. 7.3 we will study another kind of binary trees, called Braun trees,
which are suitable for efficient implementation of flexible arrays. As they are
size-balanced, the cost of most operations (subscription, updating, adding
and removing of the first or last element) is logarithmic to the size.

Another example of non-linear branching structures are symbolic expres-
sions. Section 7.4 shows the arithmetization of numeric terms of first-order
arithmetic. We design a compiler transforming the terms to programs for a
simple stack machine operating in polish postfix form. We also give an exam-
ple of a program which goes beyond structural recursion – it is the problem
of rearranging terms into expressions with left associated addition.

In Sect. 7.5 we consider the problem of the implementation of universal
function for the class of primitive recursive functions. That will be done by
arithmetization of primitive recursive derivations. The proposed encoding is
an example of a coding scheme for general trees. This is because primitive
recursive derivations can be visualized as multiway branching structures. We
finish the section by providing effective operations operating on the codes of
primitive recursive derivations. Our last example will be the construction of
a self-reproducing program.

195

196 7 Programs Operating on Trees

7.1 Binary Trees

7.1.1 Introduction. In this section we will show how to arithmetize binary
trees labelled by natural numbers (see Fig. 7.1). In most functional program-
ming languages the type Bt of binary trees can be defined by a union type:

Bt = E ∣ Nd(N,Bt ,Bt).
A value of type Bt is therefore either the empty tree E or a non-empty tree
of the form Nd(x, l, r), where x is the label of its root node and l, r are values
of type Bt called the left and right subtrees of that non-empty tree. The
constant E and the function Nd are called constructors.

2

1 3

1

2

3

4

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

Fig. 7.1 Examples of binary trees

7.1.2 Constructors of binary trees. Arithmetization of binary trees is
done with the help of the following two pair constructors with pairwise dif-
ferent tags (see Par. 5.2.10 for details):

⟨⟩ = ⟨0,0⟩ (empty tree)

⟨l ∣ x ∣ r⟩ = ⟨1, x, l, r⟩. (node)

From the properties of the pairing function we obtain

⊢PA ⟨⟩ ≠ ⟨l ∣ x ∣ r⟩
⊢PA ⟨l1 ∣ x1 ∣ r1⟩ = ⟨l2 ∣ x2 ∣ r2⟩→ x1 = x2 ∧ l1 = l2 ∧ r1 = r2

The first property says that the constructors are pairwise disjoint and the
second that the functional constructor ⟨l ∣ x ∣ r⟩ is an injective mapping.

We obtain the pattern matching style of definitions of functions operating
over the codes of binary trees with the conditionals of the form

7.1 Binary Trees 197

case

t = ⟨⟩⇒ β1

t = ⟨l ∣ x ∣ r⟩⇒x,l,r β2[x, l, r]
otherwise⇒ β3.

end

This is called discrimination on the constructors of binary trees. Recall that
such conditionals are instances of pair constructors discrimination terms dis-
cussed in Par. 5.2.10.

The above conditional is evaluated as follows. Note that the expression

Tuple∗(2, t) ∧∗ [t]21 =∗ 0

is the characteristic term of its first variant since

⊢PA t = ⟨⟩↔ Tuple(2, t) ∧ [t]21 = 0.

Similarly, the expression

Tuple∗(4, t) ∧∗ [t]41 =∗ 1

is the characteristic term of its second variant as we have

⊢PA ∃x∃l∃rt = ⟨l ∣ x ∣ r⟩↔ Tuple(4, t) ∧ [t]41 = 1.

Finally note that we have

⊢PA t = ⟨l ∣ x ∣ r⟩→ x = [t]42 ∧ l = [t]43 ∧ r = [t]44
and therefore, the terms [t]42, [t]43 and [t]44 are the witnessing terms for the
output variables x, l, r of the second variant of the conditional.

7.1.3 Arithmetization of binary trees. We wish to assign to every bi-
nary tree T a unique number ⌜T ⌝, called the code of T . The mapping is defined
inductively on the structure of binary trees:

• If T is the empty tree then ⌜T ⌝ is the number ⟨⟩.
• If T is a non-empty tree with the root label x, the left son T1, and the

right son T2, then ⌜T ⌝ is the number ⟨⌜T1⌝ ∣ x ∣ ⌜T2⌝⟩.
For instance, the code of the first binary tree from Fig. 7.1 is the number

⟨⟨⟨⟩ ∣ 1 ∣ ⟨⟩⟩ ∣ 2 ∣ ⟨⟨⟩ ∣ 3 ∣ ⟨⟩⟩⟩ = 26 646 277 093 331 868 372 637.

Clearly, the mapping ⌜T ⌝ is injective.
We will use the discrimination on the constructors of binary trees in the

definition of the predicate Bt(t) holding of the codes of binary trees. The
predicate is defined by course of values recursion as primitive recursive by

198 7 Programs Operating on Trees

Bt ⟨⟩
Bt ⟨l ∣ x ∣ r⟩← Bt(l) ∧Bt(r).

Note that the following are the omitted default clauses of the definition:

¬Bt ⟨l ∣ x ∣ r⟩← ¬Bt(l)∨ ¬Bt(r)
¬Bt(t) ← t ≠ ⟨⟩ ∧ ¬∃x∃l∃r t = ⟨l ∣ x ∣ r⟩.

Consequently, the clausal definition is equivalent to

⊢PA Bt(t)↔ t = ⟨⟩ ∨ ∃x∃l∃r(t = ⟨l ∣ x ∣ r⟩ ∧Bt(l)∧Bt(r)).
The embedding of binary trees into natural numbers is so straightforward
that we will henceforth identify binary trees with their codes, i.e. with the
subset Bt of natural numbers. In our case we will say the binary tree t instead
of the code t of a binary tree.

7.1.4 Case analysis on binary trees. Directly from the definition of the
predicate Bt we obtain the following property

⊢PA Bt(t)→ t = ⟨⟩ ∨ ∃x∃l∃r t = ⟨l ∣ x ∣ r⟩.
This is called the principle of structural case analysis on the constructors of
the binary tree t.

We can use the above principle of structural case analysis in order to
establish the admissibility of a certain kind of conditional discriminations on
the constructors of binary trees. These are of the form

Bt(t) → case

t = ⟨⟩⇒ β1

t = ⟨l ∣ x ∣ r⟩⇒x,l,r β2[x, l, r]
end

Because of the precondition Bt(t) we have to evaluate only two alternatives
instead of three. Moreover, as we have

⊢PA Bt(t)→ t = ⟨⟩↔ [t]21 = 0

⊢PA Bt(t)→ ∃x∃l∃rt = ⟨l ∣ x ∣ r⟩↔ [t]41 = 1,

we can use [t]21 =∗ 0 and [t]41 =∗ 1 as the characteristic terms of its two variants
which are much simpler expressions than those from Par. 7.1.2.

7.1.5 Structural induction for binary trees. The principle of structural
induction for binary trees can be informally stated as follows. To prove by
tree induction that a property holds for every binary tree it suffices to prove:

Base case: the property holds for the empty tree ⟨⟩.
Induction step: if the property holds for the subtrees l, r then it holds also

for the whole tree ⟨l ∣ x ∣ r⟩.

7.1 Binary Trees 199

This is expressed formally in PA by

⊢PA ϕ[⟨⟩] ∧ ∀x∀l∀r(ϕ[l] ∧ϕ[r] → ϕ[⟨l ∣ x ∣ r⟩]) → Bt(t)→ ϕ[t],
where ϕ[t] is a formula of PA. The property is called the principle of structural
induction on the binary tree t for ϕ[t].
Proof. The principle of structural induction for binary trees is derived in PA
as follows. Assume ϕ[⟨⟩] and ∀x∀l∀r(ϕ[l] ∧ ϕ[r] → ϕ[⟨l ∣ x ∣ r⟩]) take any
binary tree t and prove that ϕ[t] holds by complete induction on t. We
consider two cases. If t is the empty tree then the claim follows directly from
the first assumption. Otherwise, t is a non-empty tree of a form ⟨l ∣ x ∣ r⟩ for
some x, l, r. By 2.1.6(2) we have l < ⟨l ∣ x ∣ r⟩ and r < ⟨l ∣ x ∣ r⟩. By applying two
IH’s we get ϕ[l] and ϕ[r], and thus ϕ[⟨l ∣ x ∣ r⟩] by the second assumption.

7.1.6 Structural recursion on binary trees. Structural induction over
binary trees is used to prove properties of functions defined by the scheme
of structural recursion on binary trees. In its simplest form, the operator
of structural recursion introduces a function f from two functions g and h

satisfying

f(t, y) = case

t = ⟨⟩⇒ g(y)
t = ⟨l ∣ x ∣ r⟩⇒ h(x, l, r, f(l, y), f(r, y), y)
otherwise⇒ 0

end.

Note that this is a recursive definition regular in the first argument with
discrimination on the constructors of binary tree (output variables of the
second variant are omitted).

The following identities form the clausal form of the above definition

f(⟨⟩, y) = g(y)
f(⟨l ∣ x ∣ r⟩, y) = h(x, l, r, f(l, y), f(r, y), y).

Note here that this is a typical example where we wish to use the default
clauses – in this case

f(t, y) = 0 ← t ≠ ⟨⟩ ∧ ¬∃x∃l∃r t = ⟨l ∣ x ∣ r⟩,
in order not to clutter the definition. We do not care what value is yielded
by the application f(t, y) if t is not the code of a binary tree.

The above definition for the function f can be easily rewritten to a condi-
tional program for the same function as we have

⊢PA Bt(t) → f(t, y) = case

t = ⟨⟩⇒ g(y)
t = ⟨l ∣ x ∣ r⟩⇒ h(x, l, r, f(l, y), f(r, y), y)

end

200 7 Programs Operating on Trees

Its conditions of regularity

⊢PA Bt(t) ∧ t = ⟨l ∣ x ∣ r⟩ → l < t ∧Bt(l)
⊢PA Bt(t) ∧ t = ⟨l ∣ x ∣ r⟩ → r < t ∧Bt(r)

are trivially satisfied.
Similar schemes, when we allow terms with arbitrary number of parameters

on the right-hand side of the above identities, substitution in parameters, or
even nested recursive applications, will be also called definitions/programs
by structural recursion on binary trees.

7.1.7 Depth and size of binary trees. The depth function d(t) yields
the length of the longest path from the root to a leaf in the binary tree t.
The function is defined by parameterless structural recursion on the binary
tree t as a primitive recursive function:

d ⟨⟩ = 0

d ⟨l ∣ x ∣ r⟩ =max(d(l), d(r)) + 1.

The size function ∣t∣ counts the number of labels in the binary tree t. The
function is defined by parameterless structural recursion on the binary tree t
as a primitive recursive function:

∣⟨⟩∣ = 0∣⟨l ∣ x ∣ r⟩∣ = ∣l∣ + ∣r∣ + 1.

The next property relates the number of labels in a binary tree to its depth:

⊢PA Bt(t)→ d(t) ≤ ∣t∣ < 2d(t). (1)

There are trees for which the second inequality is tight, i.e. ∣t∣ + 1 = 2d(t). Such
trees are called full binary trees.

Proof. The property is proved by structural induction on the binary tree t.
The base case is obvious. The induction step when t = ⟨l ∣ x ∣ r⟩ follows from

d ⟨l ∣ x ∣ r⟩ =max(d(l), d(r)) + 1
IH
≤ max(∣l∣ , ∣r∣) + 1 ≤

≤ ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ x ∣ r⟩∣
and

∣⟨l ∣ x ∣ r⟩∣ = ∣l∣ + ∣r∣ + 1
IH
< 2d(l) + 2d(r) ≤ 2 × 2max(d(l),d(r)) =

= 2max(d(l),d(r))+1 = 2d ⟨l∣x∣r⟩. ⊓⊔

7.1.8 Membership in binary trees. The predicate x ∈ t holds if x is a
label of the binary tree t. The predicate is defined by structural recursion on
the binary tree t as a primitive recursive predicate:

7.1 Binary Trees 201

x ∈ ⟨l ∣ y ∣ r⟩ ← x = y

x ∈ ⟨l ∣ y ∣ r⟩ ← x ≠ y ∧ x ∈ l
x ∈ ⟨l ∣ y ∣ r⟩ ← x ≠ y ∧ x ∉ l ∧ x ∈ r.

The following are the basic properties of the tree membership predicate:

⊢PA x ∉ ⟨⟩
⊢PA x ∈ ⟨l ∣ y ∣ r⟩↔ x = y ∨ x ∈ l ∨ x ∈ r.

From the property 2.1.6(2) of the pairing function we get ⊢PA x ∈ t→ x < t.
Consequently, the universal quantifier ∀x in a context like ∀x(x ∈ . . . → ⋯)
can be bounded. Similarly for existential quantifiers.

7.1.9 Subtree relation. Given the binary trees t1 and t2, the predicate
t1 ⊴ t2 holds if the tree t1 is a subtree of the tree t2. The predicate is defined
by structural recursion on the binary tree t2 as primitive recursive by

t1 ⊴ t2 ← t1 = t2
t1 ⊴ t2 ← t1 ≠ t2 ∧ t2 = ⟨l2 ∣ x2 ∣ r2⟩ ∧ t1 ⊴ l2
t1 ⊴ t2 ← t1 ≠ t2 ∧ t2 = ⟨l2 ∣ x2 ∣ r2⟩ ∧ t1 ⋬ l2 ∧ t1 ⊴ r2.

The following is the basic property of the subtree predicate:

⊢PA t1 ⊴ t2 ↔ t1 = t2 ∨ ∃x2∃l2∃r2(t2 = ⟨l2 ∣ x2 ∣ r2⟩ ∧ (t1 ⊴ l2 ∨ t1 ⊴ r2)). (1)

As a straightforward consequence we obtain that

⊢PA ⟨l1 ∣ x1 ∣ r1⟩ ⊴ ⟨l2 ∣ x2 ∣ r2⟩↔ x1 = x2 ∧ l1 = l2 ∧ r2 = r2 ∨
∨ ⟨l1 ∣ x1 ∣ r1⟩ ⊴ l2 ∨ ⟨l1 ∣ x1 ∣ r1⟩ ⊴ r2. (2)

Finally note that ⊢PA t1 ⊴ t2 → t1 ≤ t2 by the property 2.1.6(2) of the pairing
function. Therefore universal quantifiers in contexts like ∀t1(t1 ⊴ . . . → ⋯)
can be bounded. Similarly for existential quantifiers.

7.1.10 Subsorts of binary trees. In the following sections we will study
various kinds of binary trees where the sorted predicate R(t) for each partic-
ular variety of binary trees has the following explicit definition

P (t)↔ Bt(t) ∧ ∀x∀l∀r(⟨l ∣ x ∣ r⟩ ⊴ t → ϕ[x, l, r]) (1)

for a suitable ϕ[x, l, r]. For instance:

• perfectly size-balanced trees are defined by (1) with ϕ ≡ ∣l∣ = ∣r∣;
• perfectly depth-balanced trees are defined by (1) with ϕ ≡ d(l) = d(r).
The predicate P defined by (1) has the following basic properties:

⊢PA P ⟨⟩ (2)

⊢PA P ⟨l ∣ x ∣ r⟩↔ ϕ[x, l, r] ∧ P (l)∧P (r). (3)

202 7 Programs Operating on Trees

Proof. (2): This is obvious. (3): It follows from

P ⟨l ∣ x ∣ r⟩⇔
Bt ⟨l ∣ x ∣ r⟩ ∧ ∀x1∀l1∀r1(⟨l1 ∣ x1 ∣ r1⟩ ⊴ ⟨l ∣ x ∣ r⟩ → ϕ[x1, l1, r1]) 7.1.9(2)

⇔

Bt(l) ∧Bt(r) ∧ϕ[x, l, r] ∧ ∀x1∀l1∀r1(⟨l1 ∣ x1 ∣ r1⟩ ⊴ l → ϕ[x1, l1, r1]) ∧
∧ ∀x1∀l1∀r1(⟨l1 ∣ x1 ∣ r1⟩ ⊴ r → ϕ[x1, l1, r1])⇔

ϕ[x, l, r] ∧P (l)∧ P (r). ⊓⊔

1

2

3 4

5

6 7

4

2

1 3

6

5 7

7

3

1 2

6

4 5

Fig. 7.2 Three basic traversals of binary trees – preorder, inorder and postorder

7.1.11 Depth-first traversal of binary trees. Consider the function
Preorder(t) collecting the labels of a binary tree into a list in the order
which corresponds to depth-first traversal of binary trees (see Fig. 7.2). The
function is defined by structural recursion as primitive recursive by

Preorder ⟨⟩ = 0

Preorder ⟨l ∣ x ∣ r⟩ = ⟨x,0⟩⊕Preorder(l)⊕Preorder(r).
Note that the program runs in time O(∣t∣2) due to repeated concatenation.

We obtain more efficient algorithm by keeping the labels of the visiting tree
in an accumulator. For that we need a binary accumulator function f(t, a)
defined by nested structural recursion on the binary tree t:

f(⟨⟩, a) = a
f(⟨l ∣ x ∣ r⟩, a) = ⟨x, f(l, f(r, a))⟩

Then we can take the following property

⊢PA Bt(t)→ Preorder(t) = f(t,0).
as an alternative (conditional) program of the preorder traversal function
with time complexity O(∣t∣).

The property is a straightforward consequence of a more general property
of the accumulator function:

⊢PA Bt(t)→ ∀af(t, a) = Preorder(t)⊕ a,

7.2 Binary Search Trees 203

which is proved structural induction on the binary tree t. The base case is
trivial. In the induction step when t = ⟨l ∣ x ∣ r⟩ take any a and we get

f(⟨l ∣ x ∣ r⟩, a) = ⟨x, f(l, f(r, a))⟩ IH
= ⟨x, f(l,Preorder(r)⊕ a)⟩ IH

=

= ⟨x,Preorder(l)⊕Preorder(r)⊕ a⟩ = Preorder ⟨l ∣ x ∣ r⟩⊕ a.
Note that the second application of IH is with Preorder(r)⊕ a in place of a.

7.2 Binary Search Trees

7.2.1 Introduction. In this section we will study binary search trees which
are useful for representing finite sets of natural numbers. The time required
to search for an element of a binary search tree t takes the number of steps
proportional to the depth of the tree t. If the tree is reasonably balanced then
the time is order lg ∣t∣. The same holds for the basic operations over binary
search trees such as insertion and deletion.

4

2

1 3

6

5 7

2

1 6

4

2 5

7

1

3

2 7

6

4

5

Fig. 7.3 Examples of three different binary search trees representing the same finite set
of natural numbers {1, 2, 3, 4, 5, 6, 7}

A binary search tree t is a binary tree satisfying the following search
condition:

for every non-empty subtree of t, its root label is strictly greater than the labels of
its left son and strictly less than the labels of its right son.

Figure 7.3 shows three binary search trees representing the following three
finite sets of natural numbers: {1,2,3}, {1,2,3,4} and {1,2, . . . ,15}.

204 7 Programs Operating on Trees

7.2.2 Auxiliary specification predicates. The predicate x ≺ t holds if x
is a strict lower bound of the labels of the binary tree t, i.e.

x ≺ t↔ ∀y(y ∈ t → x < y).
The predicate x ≻ t holds if x is a strict upper bound of the labels of the
binary tree t, i.e.

x ≻ t↔ ∀y(y ∈ t → x > y).
Later, in Par. 7.2.8, we will find useful the binary predicate t1 ≺b t2 holding

if the labels of the binary tree t1 are strictly less than the labels of the binary
tree t2. The predicate has the following explicit definition:

t1 ≺b t2 ↔ ∀x1∀x2(x1 ∈ t1 ∧ x2 ∈ t2 → x1 < x2).
7.2.3 Binary search trees. The predicate Bst(t) holding of binary search
trees is defined explicitly as a primitive recursive predicate by

Bst(t)↔ Bt(t) ∧ ∀x∀l∀r(⟨l ∣ x ∣ r⟩ ⊴ t→ x ≻ l ∧ x ≺ r).
From the results of Par. 7.1.10 we obtain that the predicate satisfies

⊢PA Bst ⟨⟩
⊢PA Bst ⟨l ∣ x ∣ r⟩↔ x ≻ l ∧ x ≺ r ∧Bst(l)∧Bst(r).

8

4

2

1 3

6

5 7

12

10

9 ?

14

13 15

Fig. 7.4 Testing for membership of numbers 3 (dotted arrows) and 11 (dashed arrows) in
the binary search tree representing the finite set {1, . . . ,10} ∪ {12, . . . ,15}

7.2.4 Membership in binary search trees. Testing for membership in
binary search trees is simple (see Fig. 7.4). To determine whether a binary
search tree t contains a node labelled with x it suffices to compare x with the
root label of t. If x is smaller than the root label then it can only appear in
the left subtree; if x is greater then it appears in the right subtree. Otherwise

7.2 Binary Search Trees 205

they are equal and we are done. Note that the time to evaluate x ∈ t in binary
search trees is order d(t).

The above reasoning can be expressed by the following property of its
characteristic function:

Bst(t) → x ∈∗ t↔ case

t = ⟨⟩⇒ 0
t = ⟨l ∣ y ∣ r⟩⇒

case

x < y⇒ x ∈∗ l
x = y⇒ 1
x > y⇒ x ∈∗ r.

end

end

We can take the property as an alternative (conditional) program for com-
puting the tree membership predicate. Its conditions of regularity

⊢PA Bst(t) ∧ t = ⟨l ∣ x ∣ r⟩ ∧ x < y → l < t ∧Bst(l)
⊢PA Bst(t) ∧ t = ⟨l ∣ x ∣ r⟩ ∧ x > y → r < t ∧Bst(r)

are trivially satisfied.

7.2.5 Extreme values of binary search tree. Now we consider the prob-
lem of computing extreme values of binary search trees. Because the labels
of a binary search tree t are sorted in increasing order the leftmost node
contains the smallest label of the tree and the rightmost node contains the
largest (see Fig. 7.5).

Minimum Maximum

Fig. 7.5 Extreme values of binary search trees

The problem is illustrated for the function Max(t) computing the largest
elements in binary search trees. The function satisfies

206 7 Programs Operating on Trees

⊢PA Bst(t) ∧ t ≠ ⟨⟩→Max (t) ∈ t (1)

⊢PA Bst(t) ∧ t ≠ ⟨⟩ ∧ x ∈ t → x ≤Max(t) (2)

and it is defined by structural recursion on binary trees as a p.r. function:

Max ⟨l ∣ x ∣ ⟨⟩⟩ = x
Max ⟨l ∣ x ∣ r⟩ =Max(r) ← r ≠ ⟨⟩.
We intend to apply the operation Max(t) only in cases when t is a non-

empty tree. For that we can take the following property as an alternative
(conditional) program for computing the function:

⊢PA Bt(t) ∧ t ≠ ⟨⟩→ Max(t) = let t = ⟨l ∣ x ∣ r⟩ in

case

r = ⟨⟩⇒ x

r ≠ ⟨⟩⇒Max(r)
end.

Its condition of regularity

⊢PA Bt(t) ∧ t ≠ ⟨⟩ ∧ t = ⟨l ∣ x ∣ r⟩ ∧ r ≠ ⟨⟩→ r < t ∧Bt(r) ∧ r ≠ ⟨⟩
is trivially satisfied.

Verification. (1): This follows from

⊢PA Bt(t) ∧ t ≠ ⟨⟩ →Max (t) ∈ t
which can be proved by a straightforward structural induction on the binary
tree t.

(2): By structural induction on the binary tree t. In the base case there is
nothing to prove. In the induction step, when t = ⟨l ∣ y ∣ r⟩, assume x ∈ ⟨l ∣ y ∣ r⟩
and consider two cases. If r = ⟨⟩ then either x = y or x ∈ l and then x < y by
definition. In either case we have x ≤ y and the claim follows from definition
since Max ⟨l ∣ y ∣ ⟨⟩⟩ = y. If r ≠ ⟨⟩ we continue by considering three subcases:

x = y
(1)
⇒ y <Max(r) =Max ⟨l ∣ y ∣ r⟩

x ∈ l⇒ x < y
(1)
⇒ x < y <Max (r) =Max ⟨l ∣ y ∣ r⟩

x ∈ r
IH
⇒ x ≤Max (r) =Max ⟨l ∣ y ∣ r⟩. ⊓⊔

7.2.6 Insertion in binary search trees. The function t ∪ {x} takes a
binary search tree t and inserts x into it (see Fig. 7.6). The function satisfies

⊢PA Bst(t)→ Bst(t ∪ {x}) (1)

⊢PA Bst(t)→ y ∈ t ∪ {x}↔ y ∈ t ∨ y = x (2)

and it is defined by structural recursion as a p.r. function:

7.2 Binary Search Trees 207

⟨⟩ ∪ {x} = ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩⟨l ∣ y ∣ r⟩ ∪ {x} = ⟨l ∣ y ∣ r ∪ {x}⟩← y < x⟨l ∣ y ∣ r⟩ ∪ {x} = ⟨l ∣ y ∣ r⟩← y = x⟨l ∣ y ∣ r⟩ ∪ {x} = ⟨l ∪ {x} ∣ y ∣ r⟩← y > x.

Note that the time to evaluate t ∪ {x} is order d(t).
8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

Fig. 7.6 Insertion of the number 11 into the binary search tree representing the finite set
of natural numbers {1, . . . ,10} ∪ {12, . . . ,15}

Verification. (2): This follows from

⊢PA Bt(t) → y ∈ t ∪ {x}↔ y ∈ t ∨ y = x, (†1)

which is proved by structural induction on the binary tree t. The base case
is straightforward. In the induction step when t = ⟨l ∣ z ∣ r⟩ we consider three
cases. If z < x then we have

y ∈ ⟨l ∣ z ∣ r⟩ ∪ {x}⇔ y ∈ ⟨l ∣ z ∣ r ∪ {x}⟩⇔ y = z ∨ y ∈ l ∨ y ∈ r ∪ {x} IH
⇔

⇔ y = z ∨ y ∈ l ∨ y ∈ r ∨ y = x⇔ y ∈ ⟨l ∣ z ∣ r⟩ ∨ y = x.
The case when z = x is obvious and the case when z > x is proved similarly.
As a simple consequence of (†1) we get

⊢PA Bt(t)→ y ≺ t ∪ {x}↔ y ≺ t ∧ y < x (†2)

⊢PA Bt(t)→ y ≻ t ∪ {x}↔ y ≻ t ∧ y > x. (†3)

(1): By structural induction on the binary tree t. The base case is straight-
forward. In the induction step when t = ⟨l ∣ y ∣ r⟩ we consider three cases. If
y < x then we have

Bst(⟨l ∣ y ∣ r⟩ ∪ {x})⇔ Bst ⟨l ∣ y ∣ r ∪ {x}⟩⇔
⇔ y ≻ l ∧ y ≺ r ∪ {x} ∧Bst(l) ∧Bst(r ∪ {x}).

The last follows from IH and (†2). The case when y = x is trivial and the case
when y > x is proved similarly. ⊓⊔

208 7 Programs Operating on Trees

r1

rn−1

rn

⇒

r1

rn−1rn

l1

ln−1

ln

⇒

l1

ln−1 ln

Fig. 7.7 Deletion of extreme values in binary search trees

7.2.7 Deletion of extreme values in binary search trees. In this para-
graph we will consider the problem of deletion of extremal values from binary
search trees (see Fig. 7.7). We show here only the implementation and ver-
ification of the function deleting the gretest label in a binary search tree.
We leave to the reader the implementation and verification of the function
deleting the smallest label.

The function Delmax(t) deleting the largest label in the binary search tree
t satisfies

⊢PA Bst(t) ∧ t ≠ ⟨⟩→ Bst Delmax(t) (1)

⊢PA Bst(t) ∧ t ≠ ⟨⟩→ x ∈ Delmax(t)↔ x ∈ t ∧ x ≠Max(t) (2)

and it is defined by structural recursion as a p.r. function (see Fig. 7.7):

Delmax ⟨l ∣ x ∣ ⟨⟩⟩ = l
Delmax ⟨l ∣ x ∣ r⟩ = ⟨l ∣ x ∣ Delmax(r)⟩← r ≠ ⟨⟩.
We intend to apply the operation Delmax(t) only in cases when t is a

non-empty tree. For that we can take the following property as an alternative
(conditional) program for computing the function:

7.2 Binary Search Trees 209

⊢PA Bt(t) ∧ t ≠ ⟨⟩→ Delmax(t) = let t = ⟨l ∣ x ∣ r⟩ in
case

r = ⟨⟩⇒ l

r ≠ ⟨⟩⇒ ⟨l ∣ x ∣ Delmax(r)⟩
end.

Its condition of regularity

⊢PA Bt(t) ∧ t ≠ ⟨⟩ ∧ t = ⟨l ∣ x ∣ r⟩ ∧ r ≠ ⟨⟩→ r < t ∧Bt(r) ∧ r ≠ ⟨⟩
is trivially satisfied.

Note also that as a simple consequence of 7.2.5(2) and (2) we have

⊢PA Bst(t) ∧ t ≠ ⟨⟩→ Max(t) ≻ Delmax(t). (3)

Verification. (2) By structural induction on the binary tree t. In the base
case there is nothing to prove. In the induction step when t = ⟨l ∣ y ∣ r⟩ we
consider two cases. If r = ⟨⟩ then we get the following by noting that y ∉ l:

x ∈ Delmax ⟨l ∣ y ∣ ⟨⟩⟩⇔ x ∈ l⇔ (x = y ∨ x ∈ l) ∧ x ≠ y⇔
⇔ x ∈ ⟨l ∣ y ∣ ⟨⟩⟩ ∧ x ≠Max ⟨l ∣ y ∣ ⟨⟩⟩.

If r ≠ ⟨⟩ then we have

x ∈ Delmax ⟨l ∣ y ∣ r⟩⇔ x ∈ ⟨l ∣ y ∣ Delmax(r)⟩⇔
x = y ∨ x ∈ l ∨ x ∈ Delmax(r) IH

⇔ x = y ∨ x ∈ l ∨ x ∈ r ∧ x ≠Max(r) (∗)⇔
(x = y ∨ x ∈ l ∨ x ∈ r) ∧ x ≠Max (r)⇔ x ∈ ⟨l ∣ y ∣ r⟩ ∧ x ≠Max ⟨l ∣ y ∣ r⟩.

The step marked by (∗) follows from Max(r) ≠ y and Max(r) ∉ l by 7.2.5(1).
As a simple consequence of (2) we get

⊢PA Bst(t) ∧ t ≠ ⟨⟩ ∧ x ≺ t→ x ≺ Delmax(t) . (†1)

(1): By structural induction on the binary tree t. In the base case there is
nothing to prove. In the induction step when t = ⟨l ∣ x ∣ r⟩ we consider two
cases. If r = ⟨⟩ then the claim follows directly from the definition. If r ≠ ⟨⟩
then we have

Bst Delmax ⟨l ∣ x ∣ r⟩⇔ Bst ⟨l ∣ x ∣ Delmax(r)⟩⇔
⇔ x ≻ l ∧ x ≺ Delmax(r) ∧Bst(l)∧Bst Delmax(r).

The last follows from IH and (†1). ⊓⊔

7.2.8 Deletion in binary search trees. Deletion of labels from binary
search trees is much harder than insertion. We wish to define the function
t ∖ {x} deleting a number x from a binary search tree t with the following

210 7 Programs Operating on Trees

specification:

⊢PA Bst(t) → Bst(t ∖ {x}) (1)

⊢PA Bst(t) → y ∈ t ∖ {x}↔ y ∈ t ∧ y ≠ x. (2)

The key problem in finding the implementation of the deletion function is:
how to define t ∖ {x} when x is the root label of t, i.e. when t = ⟨l ∣ x ∣ r⟩ for
some l and r. Figure 7.8 gives two answers to the problem.

In the first solution the right son r is appended as a new subtree at the
bottom right to the left son l. Note that it may happen that the depth of the
resulting tree is greater than the depth of t.

In the second solution we take the largest label of the left son l as a new
root label with the left son obtained from l by deleting its maximal element
and with r as its right son. The result is a tree which depth does not exceed
the depth of the original tree.

l1

ln

r

⇒

l1

ln r

l1

ln−1

ln

r

⇒

l1

ln−1 ln

r

Fig. 7.8 Deletion operation in binary search trees

We therefore take the second method as a basis of our implementation
of the deletion function. We define t ∖ {x} by structural recursion on t as a
primitive recursive function:

t1 ⊔ t2 = t2 ← t1 = ⟨⟩
t1 ⊔ t2 = ⟨Delmax(t1) ∣ Max(t1) ∣ t2⟩← t1 ≠ ⟨⟩.

7.2 Binary Search Trees 211

⟨⟩ ∖ {x} = ⟨⟩⟨l ∣ y ∣ r⟩ ∖ {x} = ⟨l ∣ y ∣ r ∖ {x}⟩← y < x⟨l ∣ y ∣ r⟩ ∖ {x} = l ⊔ r ← y = x⟨l ∣ y ∣ r⟩ ∖ {x} = ⟨l ∖ {x} ∣ y ∣ r⟩← y > x,

where the auxiliary primitive recursive function t1 ⊔ t2 joining two trees as
shown in Fig. 7.8 satisfies

⊢PA Bst(t1) ∧Bst(t2) ∧ t1 ≺b t2 → Bst(t1 ⊔ t2) (3)

⊢PA Bst(t1) ∧Bst(t2) → x ∈ t1 ⊔ t2 ↔ x ∈ t1 ∨ x ∈ t2. (4)

Verification. Property (4) is proved by considering two cases. The case when
t1 = ⟨⟩ is trivial and in the case when t1 ≠ ⟨⟩ we have

x ∈ t1 ⊔ t2 ⇔ x ∈ ⟨Delmax(t1) ∣ Max(t1) ∣ t2⟩⇔
x =Max(t1) ∨ x ∈ Delmax(t1) ∨ x ∈ t2 7.2.7(2)

⇔

x =Max(t1) ∨ x ∈ t1 ∧ x ≠Max(t1) ∨ x ∈ t2 (∗)⇔ x ∈ t1 ∨ x ∈ t2.

The step marked by (∗) follows from Max (t1) ∈ t1 which holds by 7.2.5(1).
In the proof of the property (3) we consider two cases. The case when t1 = ⟨⟩
is trivial and in the case when t1 ≠ ⟨⟩ we have

Bst(t1 ⊔ t2)⇔ Bst ⟨Delmax(t1) ∣ Max(t1) ∣ t2⟩⇔
Max(t1) ≻ Delmax(t1) ∧Max(t1) ≺ t2 ∧Bst Delmax(t1) ∧Bst(t2).

The last follows from 7.2.7(3), 7.2.5(1), and 7.2.7(1).
Property (2) is proved by structural induction on t. The base case is

straightforward. In the induction step when t = ⟨l ∣ z ∣ r⟩ we consider three
cases. If z < x then we have

y ∈ ⟨l ∣ z ∣ r⟩ ∖ {x}⇔ y ∈ ⟨l ∣ z ∣ r ∖ {x}⟩⇔ y = z ∨ y ∈ l ∨ y ∈ r ∖ {x} IH
⇔

y = z ∨ y ∈ l ∨ y ∈ r ∧ y ≠ x
(∗)
⇔ (y = z ∨ y ∈ l ∨ y ∈ r) ∧ y ≠ x⇔

y ∈ ⟨l ∣ z ∣ r⟩ ∧ y ≠ x.
The step marked by (∗) follows by a simple case analysis on y = x and y ≠ x
by noting that we have x ∉ l. The case when z = x follows from (4) by similar
arguments. The case when z > x is left to the reader.

As a simple consequence of (2) we get

⊢PA Bst(t) ∧ y < x→ y ≺ t ∖ {x}↔ y ≺ t (5)

⊢PA Bst(t) ∧ y > x→ y ≻ t ∖ {x}↔ y ≻ t. (6)

Property (1) is proved by structural induction on t. The base case is
straightforward. In the induction step when t = ⟨l ∣ y ∣ r⟩ we consider three

212 7 Programs Operating on Trees

cases. If y < x then we have

Bst(⟨l ∣ y ∣ r⟩ ∖ {x})⇔ Bst ⟨l ∣ y ∣ r ∖ {x}⟩⇔
y ≻ l ∧ y ≺ r ∖ {x} ∧Bst(l)∧Bst(r ∖ {x}).

The last follows from IH and (5). If y = x then the claim follows from (3).
The case when y > x is proved similarly. ⊓⊔

7.3 Braun Trees and Flexible Arrays

7.3.1 Introduction. As the second illustration of the use of binary trees,
we will consider the problem of efficient implementations of flexible arrays.
Arrays are implementations of sequences where the two operations, indexing
and updating, are efficient. Flexible arrays are arrays with efficient imple-
mentation of the operations accessing first and last elements. Flexible arrays
are very suitable for representing heaps and priority queues.

In this section we will consider one implementation of flexible arrays -
Braun trees [5, 34]. For a Braun tree the following holds for every its subtree:

the size of its left subtree is the same as the size of its right subtree or one node
larger.

Consequently Braun trees are optimal in size, that is the depth of a Braun
tree is logarithmic in its size. As we will see below the complexity of the
most operations operating on Braun trees are proportional to their depths,
the cost of each operation is logarithmic to the tree-size.

This section is organized as follows. We begin with an alternative definition
of Braun trees which is based on dyadic indexing scheme and show that
definitions coincide. Then we prove that the size of Braun is optimal and then
we give anO(lg2(n)) algorithm to compute the size of Braun trees. Finally we
describe basic operations on Braun trees such as indexing, updating, inserting
and deleting an element on one of the sides of a tree.

7.3.2 Dyadic indexing scheme. We start by describing the indexing
scheme for binary trees. In our scheme, the index of a node is a descrip-
tion of the path leading from the root to that particular node. On the other
hand each such path can be easily represented by a dyadic word which is over
two elements alphabet Σ = {1,2} as it is shown in Fig. 7.9. Here the symbol
1 stands for the way to the left and 2 for the way to the right in trees.

For instance, consider the path leading from the root to the node labelled
with the number 29. The path can be identified with the dyadic string 2221.
Similarly, the string 2122 represents the path to the node labelled with the
number 26. Note also that the empty string represents the trivial path, from
the root to the root itself.

7.3 Braun Trees and Flexible Arrays 213

0

1

1

3

1

7

1

15

1

23

2

11

2

19

1

27

2

5

2

9

1

17

1

25

2

13

2

21

1

29

2

2

2

4

1

8

1

16

1

24

2

12

2

20

1

28

2

6

2

10

1

18

1

26

2

14

2

22

1

30

2

Fig. 7.9 Dyadic indexing scheme for binary trees

Recall that there is a simple method of coding of the words over the
two-symbol alphabet Σ into natural numbers. Arithmetization is based on
dyadic representation of numbers as described in Par. 1.1.5; each number has
a unique representation as a dyadic numeral which are terms built up from
0 by applications of dyadic successors x1 = 2x + 1 and x2 = 2x + 2.

In our example, the code of the string 2221 is the number

02221 = 2 × (2 × (2 × (2 × 0 + 2) + 2) + 2) + 1 =

= 2 × 23 + 2 × 22 + 2 × 21 + 1 × 20 = 29.

Similarly, the code of the string 2122 is the number

02122 = 2 × (2 × (2 × (2 × 0 + 2) + 2) + 1) + 2 =

= 2 × 23 + 1 × 22 + 2 × 21 + 2 × 20 = 26.

A careful inspection reveals that the binary tree shown in Fig. 7.9 consists
of nodes labelled by their indices. Note also that the root node is indexed by
the number 0, the nodes in the left subtree are indexed by odd numbers, and
the nodes in the right subtree are indexed by positive even numbers.

As we have mentioned above our indexing scheme is based on dyadic rep-
resentation of numbers. Consequently, dyadic recursion and dyadic induction
will play prominent role in the implementation and verification of the basic
operations such as indexing and updating.

7.3.3 Valid indices. The predicate Index(i, t) holds if the i is a valid index
of the binary tree t. The predicate is defined by dyadic recursion on i with
substitution in parameter:

Index(0, ⟨l ∣ x ∣ r⟩)
Index(i1, ⟨l ∣ x ∣ r⟩)← Index(i, l)
Index(i2, ⟨l ∣ x ∣ r⟩)← Index(i, r).

214 7 Programs Operating on Trees

Note that the empty tree does not have valid indices.
Valid indices of a binary tree cannot be arbitrary large numbers since we

have the following simple bound for them:

⊢PA Bt(t) ∧ Index(i, t) → i + 2 ≤ 2d(t). (1)

Note also that since a binary tree t has exactly ∣t∣ nodes there are only ∣t∣ valid
indices for that tree. Consequently each selection of ∣t∣ + 1 numbers contains
at least one number which is not a valid index of t. This cannot be stated in
PA directly, not without the formalization of finite sets within PA, but we
can state

⊢PA Bt(t) → ∃i(i ≤ ∣t∣ ∧ ¬Index(i, t)). (2)

We will find this claim very useful latter when dealing with alternative defi-
nition of Braun trees.

Proof. (1): By structural induction on the binary tree t as ∀i(1). In the base
case there is nothing to prove. In the induction step when t = ⟨l ∣ x ∣ r⟩ take
any i such that Index(i, ⟨l ∣ x ∣ r⟩) and consider three cases. The case when
i = 0 is obvious. The case when i = j2 for some j follows from

j2 + 2 = 2j + 2 + 2 = 2(j + 2) IH
≤ 2 × 2d(l) ≤ 2 × 2max(d(l),d(r)) = 2d ⟨l∣x∣r⟩.

Note that the induction hypothesis is applied with j in place of i. The last
case when i = j1 for some j has a similar proof.

(2): By structural induction on the binary tree t. In the base case it suf-
fices to take i ∶= 0. In the induction step when t = ⟨l ∣ x ∣ r⟩ we consider two
subcases. If ∣l∣ ≤ ∣r∣ then by IH there is a number j ≤ ∣l∣ such that ¬Index(j, l).
We have ¬Index(j1, ⟨l ∣ x ∣ r⟩) and

j1 = 2j + 1 ≤ 2 ∣l∣ + 1 ≤ ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ x ∣ r⟩∣ .
It suffices to take i ∶= j1. Suppose now ∣l∣ > ∣r∣, ie ∣r∣ + 1 ≤ ∣l∣. By IH there is a
number j ≤ ∣r∣ such that ¬Index(j, r). We have ¬Index(j2, ⟨l ∣ x ∣ r⟩) and

j2 = 2j + 2 ≤ 2 ∣r∣ + 2 = ∣r∣ + 1 + ∣r∣ + 1 ≤ ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ x ∣ r⟩∣ .
Now it suffices to take i ∶= j2. ⊓⊔

7.3.4 Braun trees. A binary tree is called a Braun tree if its valid indices
are exactly the numbers strictly lesser than the size of the tree. The predicate
Brt(t) holding of Braun trees is explicitly defined by

Brt(t)↔ Bt(t) ∧ ∀i(Index(i, t)↔ i < ∣t∣).

7.3 Braun Trees and Flexible Arrays 215

Note that by 7.1.7(1) and 7.3.3(1) the variable i in the universal quantifier
can be bounded by the number 2d(t). Thus the predicate Brt is primitive
recursive.

7.3.5 Basic properties of Braun trees. Braun trees satisfy the following
conditions:

⊢PA Brt ⟨⟩ (1)

⊢PA Brt ⟨l ∣ x ∣ r⟩↔ (∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1)∧Brt(l)∧Brt(r). (2)

In other words, for any non-empty Braun tree, its left subtree is either exactly
the same size as its right subtree, or one node larger.

Proof. Property (1) is straightforward. In the proof of the property (2) we
consider two cases. If either ∣l∣ = ∣r∣ or ∣l∣ = ∣r∣ + 1 then we have

Brt ⟨l ∣ x ∣ r⟩⇔ Bt ⟨l ∣ x ∣ r⟩ ∧ ∀i(Index(i, ⟨l ∣ x ∣ r⟩)↔ i < ∣⟨l ∣ x ∣ r⟩∣)⇔
Bt(l) ∧Bt(r) ∧ ∀i(Index(i, ⟨l ∣ x ∣ r⟩)↔ i < ∣l∣ + ∣r∣ + 1) (∗)⇔
Bt(l) ∧ ∀j(Index(j1, ⟨l ∣ x ∣ r⟩)↔ j1 < ∣l∣ + ∣r∣ + 1) ∧

∧Bt(r) ∧ ∀j(Index(j2, ⟨l ∣ x ∣ r⟩)↔ j2 < ∣l∣ + ∣r∣ + 1)⇔
Bt(l) ∧ ∀j(Index(j, l)↔ 2j < ∣l∣ + ∣r∣) ∧

∧Bt(r) ∧ ∀j(Index(j, r)↔ 2j + 1 < ∣l∣ + ∣r∣)⇔
Bt(l) ∧ ∀j(Index(j, l)↔ j < ∣l∣) ∧Bt(r) ∧ ∀j(Index(j, r)↔ j < ∣r∣)⇔
Brt(l) ∧Brt(r).

The step marked by (∗) is by dyadic case analysis on i. The case when neither∣l∣ = ∣r∣ nor ∣l∣ = ∣r∣ + 1 is a straightforward consequence of the assertion

⊢PA Brt ⟨l ∣ x ∣ r⟩→ (∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1),
which follows from 7.3.3(2). ⊓⊔

7.3.6 Alternative definition of Braun trees. The predicate Brt(t) holds
iff t is a binary tree satisfying the following (size) balanced condition:

for every non-empty subtree of t the size of its left subtree is at most one more than
the size of its right subtree.

Braun trees satisfy

⊢PA Brt(t)↔ Bt(t) ∧ ∀x∀l∀r(⟨l ∣ x ∣ r⟩ ⊴ t → ∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1).
The property follows from 7.3.5(1)(2) and from the results of Par. 7.1.10.

7.3.7 Braun trees are optimal. The depth of a Braun tree is always
minimum; that is, we have

216 7 Programs Operating on Trees

⊢PA Brt(t) → 2d(t) ÷ 2 ≤ ∣t∣ < 2d(t). (1)

Consequently the depth of Braun trees is logarithmic in their size.

Proof. The sharp inequality holds for arbitrary binary trees; this has been
already proved in 7.1.7(1). The non-sharp inequality, i.e.

⊢PA Brt(t) → 2d(t) ÷ 2 ≤ ∣t∣ ,
is proved by structural induction on the binary tree t as follows. The base
case is trivial. In the induction step take any non-empty Braun tree of the
form ⟨l ∣ x ∣ r⟩. By 7.3.5(2) we know that l and r are Braun trees satisfying

∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1.

We wish to prove

2d⟨l∣x∣r⟩ ÷ 2 ≤ ∣⟨l ∣ x ∣ r⟩∣ .
First note that we have

2d⟨l∣x∣r⟩ ÷ 2 = 2max(d(l),d(r))+1 ÷ 2 = 2max(d(l),d(r)) =max(2d(l),2d(r)).
Now we consider three cases.

Suppose that both subtrees l and r are non-empty. Then d(l) ≠ 0 ≠ d(r)
and thus by IH we have 2d(l) ≤ 2 ∣l∣ and 2d(r) ≤ 2 ∣r∣. We obtain

max(2d(l),2d(r)) ≤max(2 ∣l∣ ,2 ∣r∣) = 2max(∣l∣ , ∣r∣) = 2 ∣l∣ .
We consider two subcases. If ∣l∣ = ∣r∣ then the desired property follows from

2 ∣l∣ = ∣l∣ + ∣r∣ < ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ x ∣ r⟩∣ .
Otherwise ∣l∣ = ∣r∣ + 1 and we have

2 ∣l∣ = ∣l∣ + ∣l∣ = ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ x ∣ r⟩∣ .
This concludes the proof for the case l ≠ ⟨⟩ ≠ r.

If one of the intermediate subtrees of ⟨l ∣ x ∣ r⟩ is empty then by 7.3.5(2)
it must the case that the right subtree r is empty and that the left subtree l
is either empty or singleton. In either case it is easy to see that the desired
inequality holds. ⊓⊔

7.3.8 Quick computation of the size of Braun trees. The recurrent
property 7.3.5(2) of Braun trees allows us to quickly calculate their size.
Consider a non-empty Braun tree of the form ⟨l ∣ x ∣ r⟩. By 7.3.5(2) we have

7.3 Braun Trees and Flexible Arrays 217

∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1.

So if the size of the right tree is n then the size of its left tree is either n or
n + 1. From definition of Braun trees we know that

∣l∣ = ∣r∣→ ¬Index(∣r∣, l)
∣l∣ = ∣r∣ + 1 → Index(∣r∣, l)

and thus

∣l∣ = ∣r∣↔ ¬Index(∣r∣, l)
∣l∣ = ∣r∣ + 1 ↔ Index(∣r∣, l).

So either n is a proper index of the tree l and then ∣l∣ = n + 1 or not and then∣l∣ = n.
Consequently, the size of Braun trees can be implemented by the following

conditional algorithm:

⊢PA Brt(t)→ ∣t∣ = case

t = ⟨⟩⇒ 0
t = ⟨l ∣ x ∣ r⟩⇒ let ∣r∣ = n in

case

Index(n, l)⇒ 2n + 2
¬Index(n, l)⇒ 2n + 1

end

end.

Since the complexity of the call Index(n, t) is linear in the depth of t, the
above algorithm has time complexity O(d(t)2).
7.3.9 Remark. In the following paragraphs we will study operations over
Braun trees involving one element (first or last). The complexity of these
operations is proportional to the depth, i.e. logarithmic in the size. We will
tacitly use the following simple properties of Braun trees:

⊢PA Brt ⟨l ∣ x ∣ r⟩→ i1 < ∣⟨l ∣ x ∣ r⟩∣↔ i < ∣l∣
⊢PA Brt ⟨l ∣ x ∣ r⟩→ i2 < ∣⟨l ∣ x ∣ r⟩∣↔ i < ∣r∣

7.3.10 Indexing operation. We start with the definition of the indexing
operation since this function will play crucial role in specification of the re-
maining operations. The application t [i] yields the label indexed by i in the
Braun tree t. The function is defined by dyadic recursion on i with substitu-
tion in parameter as a primitive recursive function:

⟨l ∣ x ∣ r⟩ [0] = x⟨l ∣ x ∣ r⟩ [i1] = l [i]⟨l ∣ x ∣ r⟩ [i2] = r [i].

218 7 Programs Operating on Trees

Note the missing clause for the case when the first argument is the empty
tree; the result is 0 by default.

We usually intend to apply the operation t [i] only in cases when t is a
non-empty Braun tree and i is its valid index, i.e. i < ∣t∣. For that we can take
the following property as an alternative (conditional) program for computing
the indexing function:

⊢PA Brt(t) ∧ i < ∣t∣→ t [i] = case

i = 0⇒ let t = ⟨l ∣ x ∣ r⟩ in x

i = j1⇒ let t = ⟨l ∣ x ∣ r⟩ in l [j]
i = j2⇒ let t = ⟨l ∣ x ∣ r⟩ in r [j]

end.

Its conditions of regularity

⊢PA Brt(t) ∧ i < ∣t∣ ∧ i = j1 ∧ t = ⟨l ∣ x ∣ r⟩→ l < t ∧Brt(l) ∧ j < ∣l∣
⊢PA Brt(t) ∧ i < ∣t∣ ∧ i = j2 ∧ t = ⟨l ∣ x ∣ r⟩→ r < t ∧Brt(r) ∧ j < ∣r∣

are trivially satisfied.

7.3.11 Updating operation. The next is the ternary function t [i ∶= x]
which modifies the Braun tree t at the index i to obtain a new value x. The
function can be easily specified with the help of the indexing function by

⊢PA Brt(t) ∧ i < ∣t∣→ Brt(t [i ∶= x]) (1)

⊢PA Brt(t) ∧ i < ∣t∣→ ∣t [i ∶= x]∣ = ∣t∣ (2)

⊢PA Brt(t) ∧ i < ∣t∣→ t [i ∶= x] [i] = x (3)

⊢PA Brt(t) ∧ i < ∣t∣ ∧ j < ∣t∣ ∧ j ≠ i→ t [i ∶= x] [j] = t [j] . (4)

Note that the properties do not specify the result of the application of the
updating operation for the empty tree; from the inequality i < ∣t∣ we get
immediately that the tree t must be non-empty.

The updating operation t [i ∶= x] is defined by dyadic recursion on i with
substitution in parameter t as a p.r. function:

⟨l ∣ y ∣ r⟩ [0 ∶= x] = ⟨l ∣ x ∣ r⟩⟨l ∣ y ∣ r⟩ [i1 ∶= x] = ⟨l [i ∶= x] ∣ y ∣ r⟩⟨l ∣ y ∣ r⟩ [i2 ∶= x] = ⟨l ∣ y ∣ r [i ∶= x]⟩.
The second parameter x does not change in recursion.

We usually intend to apply the operation t [i ∶= x] only in cases when t is a
non-empty Braun tree and i is its valid index, i.e. i < ∣t∣. For that we can take
the following property as an alternative (conditional) program for computing
the updating function:

7.3 Braun Trees and Flexible Arrays 219

⊢PA Brt(t) ∧ i < ∣t∣→ t [i ∶= x] = case

i = 0⇒ let t = ⟨l ∣ y ∣ r⟩ in ⟨l ∣ x ∣ r⟩
i = j1⇒ let t = ⟨l ∣ y ∣ r⟩ in ⟨l [j ∶= x] ∣ y ∣ r⟩
i = j2⇒ let t = ⟨l ∣ y ∣ r⟩ in ⟨l ∣ y ∣ r [j ∶= x]⟩

end.

Its conditions of regularity

⊢PA Brt(t) ∧ i < ∣t∣ ∧ i = j1 ∧ t = ⟨l ∣ x ∣ r⟩→ l < t ∧Brt(l) ∧ j < ∣l∣
⊢PA Brt(t) ∧ i < ∣t∣ ∧ i = j2 ∧ t = ⟨l ∣ x ∣ r⟩→ r < t ∧Brt(r) ∧ j < ∣r∣

are trivially satisfied.

Verification. (2): This is proved by dyadic induction on i as ∀t(2). In the
base case take any Braun tree t such that 0 < ∣t∣. Then t = ⟨l ∣ y ∣ r⟩ for some
y, l, r and we have

∣⟨l ∣ y ∣ r⟩ [0 ∶= x]∣ = ∣⟨l ∣ x ∣ r⟩∣ = ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ y ∣ r⟩∣ .
In the induction step, when i = j1 for some j, take any Braun tree t such that
j1 < ∣t∣. Then t = ⟨l ∣ y ∣ r⟩ for some y, l, r and we obtain

∣⟨l ∣ y ∣ r⟩ [j1 ∶= x]∣ = ∣⟨l [j ∶= x] ∣ y ∣ r⟩∣ = ∣l [j ∶= x]∣ + ∣r∣ + 1
IH
=

= ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ y ∣ r⟩∣ .
Note that the induction hypothesis is applied with l in place of t. The second
induction step when i = j2 for some j has a similar proof.

(1): By dyadic induction on i as ∀t(1). We show here only the induction
step when i = j1 for some j and t is a Braun tree of the form t = ⟨l ∣ y ∣ r⟩
such that j1 < ⟨l ∣ y ∣ r⟩. We then have

Brt(⟨l ∣ y ∣ r⟩ [j1 ∶= x])⇔ Brt ⟨l [j ∶= x] ∣ y ∣ r⟩⇔
(∣l [j ∶= x]∣ = ∣r∣ ∨ ∣l [j ∶= x]∣ = ∣r∣ + 1)∧Brt(l [j ∶= x]) ∧Brt(r) (2)

⇔

(∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1) ∧Brt(l [j ∶= y]) ∧Brt(r) IH
⇔

(∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1) ∧Brt(l) ∧Brt(r).
And the last follows from the assumption that ⟨l ∣ y ∣ r⟩ is a Braun tree. Note
also that the induction hypothesis is applied with l in place of t.

(3): By dyadic induction on i as ∀t(3). As before we show here only
the induction step when i = j1 and t = ⟨l ∣ y ∣ r⟩ is a Braun tree such that
j1 < ⟨l ∣ y ∣ r⟩. We then have

⟨l ∣ y ∣ r⟩ [j1 ∶= x] [j1] = ⟨l [j ∶= x] ∣ y ∣ r⟩ [j1] = l [j ∶= x] [j] = x.
Note that the induction hypothesis is applied with l in place of t.

220 7 Programs Operating on Trees

Finally, the last property is proved by dyadic induction on i as ∀t∀j(4).
The proof is similar to those above and thus left to the reader. ⊓⊔

7.3.12 Creating a new Braun tree. So far we have been talking about
functions operating on existing Braun trees. Now we turn to the problem of
creating a Braun tree. The simplest operation is the function New(n) creating
a Braun tree of the size n:

⊢PA Brt New(n) (1)

⊢PA ∣New(n)∣ = n. (2)

Note that we do not care about the elements of the resulting Braun tree.
The operation is defined by course of values recursion as a p.r. function:

New(0) = ⟨⟩
New(n1) = ⟨New(n) ∣ 0 ∣ New(n)⟩
New(n2) = ⟨New(n + 1) ∣ 0 ∣ New(n)⟩.

Note that this is not the definition by dyadic recursion; the recursion in the
third clause goes from n2 to n + 1 but not to n as it is required in dyadic
recursion. Note also that in our implementation the result is a tree labelled
by 0.

Verification. Both properties are proved by complete induction on n. We will
show the proof only for the last subcase of the induction step of (2). We have

∣New(n2)∣ = ∣⟨New(n + 1) ∣ 0 ∣ New(n)⟩∣ = ∣New(n + 1)∣ + ∣New(n)∣ + 1
2×IH
=

= n + 1 + n + 1 = n2.

Note that IH has been used twice; first with the number n + 1 < n2 and sec-
ondly with n < n2. ⊓⊔

7.3.13 Insertion of a new first label. The function Insfirst(t, x) increases
by one the size of the Braun tree t by inserting a new element x into its first
position. The function satisfies

⊢PA Brt(t)→ Brt Insfirst(t, x) (1)

⊢PA Brt(t)→ ∣Insfirst(t, x)∣ = ∣t∣ + 1 (2)

⊢PA Brt(t)→ Insfirst(t, x) [0] = x (3)

⊢PA Brt(t) ∧ i < ∣t∣→ Insfirst(t, x) [i + 1] = t [i] (4)

and it is defined by structural recursion on the binary tree t with substitution
in parameter as a p.r. function (see Fig. 7.10):

Insfirst(⟨⟩, x) = ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩
Insfirst(⟨l ∣ y ∣ r⟩, x) = ⟨Insfirst(r, y) ∣ x ∣ l⟩.

7.3 Braun Trees and Flexible Arrays 221

(a) 0

1

3

7 11

5

9 13

2

4

8 12

6

10

(b) x

0

2

6 10

4

8 12

1

3

7 11

5

9 13

Fig. 7.10 Insertion of a new first label x into a 14-elements Braun tree: (a) before insertion
of x, (b) after insertion of x.

Verification. (2): It follows from

⊢PA Bt(t) → ∣Insfirst(t, x)∣ = ∣t∣ + 1 (†1)

which is proved by structural induction on the binary tree t as ∀x(†1). The
base case is obvious. In the induction step when t = ⟨l ∣ y ∣ r⟩ take any x and
we have

∣Insfirst(⟨l ∣ y ∣ r⟩, x)∣ = ∣⟨Insfirst(r, y) ∣ x ∣ l⟩∣ = ∣Insfirst(r, y)∣ + ∣l∣ + 1
IH
=

= ∣r∣ + 1 + ∣l∣ + 1 = ∣⟨l ∣ y ∣ r⟩∣ + 1.

Note that the induction hypothesis is applied with y in place of x.
(1): By structural induction on the binary tree t as ∀x(1). The base case

is straightforward. In the induction step when t = ⟨l ∣ y ∣ r⟩ take any x and
we have

Brt Insfirst(⟨l ∣ y ∣ r⟩, x)⇔ Brt ⟨Insfirst(r, y) ∣ x ∣ l⟩⇔
(∣Insfirst(r, y)∣ = ∣l∣ ∨ ∣Insfirst(r, y)∣ = ∣l∣ + 1) ∧
∧Brt Insfirst(r, y) ∧Brt(l) (†1)

⇔

(∣r∣ + 1 = ∣l∣ ∨ ∣r∣ + 1 = ∣l∣ + 1)∧Brt Insfirst(r, y) ∧Brt(l) IH
⇔

(∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1) ∧Brt(r) ∧Brt(l).

222 7 Programs Operating on Trees

The last follows from the assumption that ⟨l ∣ y ∣ r⟩ is a Braun tree. Note also
that the induction hypothesis is applied with y in place of x.

(3): Obvious.
(4): By structural induction on the binary tree t as ∀i∀x(4). In the base

case there is nothing to prove. In the induction step when t = ⟨l ∣ y ∣ r⟩ take
any i, x such that i < ∣⟨l ∣ y ∣ r⟩∣ and consider three cases. If i = 0 then

Insfirst(⟨l ∣ y ∣ r⟩, x) [0 + 1] = ⟨Insfirst(r, y) ∣ x ∣ l⟩ [1] = Insfirst(r, y) [0] (3)
=

= y = ⟨l ∣ y ∣ r⟩ [0] .
If i = j1 for some j then we have

Insfirst(⟨l ∣ y ∣ r⟩, x) [j1 + 1] = ⟨Insfirst(r, y) ∣ x ∣ l⟩ [j2] = l [j] = ⟨l ∣ y ∣ r⟩ [j1] .
Finally, if i = j2 for some j then we obtain

Insfirst(⟨l ∣ y ∣ r⟩, x) [j2 + 1] = ⟨Insfirst(r, y) ∣ x ∣ l⟩ [(j + 1)1] =
= Insfirst(r, y) [j + 1] IH

= r [j] = ⟨l ∣ y ∣ r⟩ [j2] .
Note that in this last case the induction hypothesis is applied with j and y

in place of i and x, respectively. ⊓⊔

7.3.14 Deletion of the first label. The function Delfirst(t) removes the
first label from a non-empty Braun tree:

⊢PA Brt(t) ∧ t ≠ ⟨⟩→ Brt Delfirst(t) (1)

⊢PA Brt(t) ∧ t ≠ ⟨⟩→ ∣Delfirst(t)∣ + 1 = ∣t∣ (2)

⊢PA Brt(t) ∧ t ≠ ⟨⟩ ∧ i + 1 < ∣t∣→ Delfirst(t) [i] = t [i + 1] (3)

The operation is defined by structural recursion on binary trees as a p.r.
function (see Fig. 7.11):

Delfirst ⟨⟨⟩ ∣ x ∣ r⟩ = ⟨⟩
Delfirst ⟨l ∣ x ∣ r⟩ = ⟨r ∣ l [0] ∣ Delfirst(l)⟩← l ≠ ⟨⟩.

We usually intend to apply the operation Delfirst(t) only in cases when t is
a non-empty binary tree. For that we can take the following property as an
alternative (conditional) program for computing the deletion function:

⊢PA Bt(t) ∧ t ≠ ⟨⟩→ Delfirst(t) = let t = ⟨l ∣ x ∣ r⟩ in
case

l = ⟨⟩⇒ ⟨⟩
l ≠ ⟨⟩⇒ ⟨r ∣ l [0] ∣ Delfirst(l)⟩

end.

Its condition of regularity

7.3 Braun Trees and Flexible Arrays 223

⊢PA Bt(t) ∧ t ≠ ⟨⟩ ∧ t = ⟨l ∣ x ∣ r⟩ ∧ l ≠ ⟨⟩→ l < t ∧Bt(l)∧ l ≠ ⟨⟩
is trivially satisfied.

(a) 0

1

3

7 11

5

9 13

2

4

8 12

6

10 14

(b) 1

2

4

8 12

6

10 14

3

5

9 13

7

11

Fig. 7.11 Deletion of the first label from a 15-elements Braun tree: (a) before deleting,
(b) after deleting.

Verification. (2): By structural induction on on the binary tree t. In the base
case there is nothing to prove. In the induction step when t = ⟨l ∣ x ∣ r⟩ we
consider two cases. If l = ⟨⟩ then it must be r = ⟨⟩ and we have

∣Delfirst ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩∣ + 1 = ∣⟨⟩∣ + 1 = 1 = ∣⟨⟩∣ + ∣⟨⟩∣ + 1 = ∣⟨⟨⟩ ∣ x ∣ ⟨⟩⟩∣ .
Otherwise l ≠ ⟨⟩ and we obtain

∣Delfirst ⟨l ∣ x ∣ r⟩∣ + 1 = ∣⟨r ∣ l [0] ∣ Delfirst(l)⟩∣ + 1 =

= ∣r∣ + ∣Delfirst(l)∣ + 1 + 1
IH
= ∣r∣ + ∣l∣ + 1 = ∣⟨l ∣ x ∣ r⟩∣ .

(1): By structural induction on the binary tree t. In the base case there is
nothing to prove. In the induction step when t = ⟨l ∣ x ∣ r⟩ we consider two
cases. If l = ⟨⟩ then r = ⟨⟩ and the claim holds trivially. Otherwise l ≠ ⟨⟩ and
we obtain

Brt Delfirst ⟨l ∣ x ∣ r⟩⇔ Brt ⟨r ∣ l [0] ∣ Delfirst(l)⟩⇔
(∣r∣ = ∣Delfirst(l)∣ ∨ ∣r∣ = ∣Delfirst(l)∣ + 1) ∧Brt(r) ∧Brt Delfirst(l) (2)

⇔

224 7 Programs Operating on Trees

(∣r∣ + 1 = ∣l∣ ∨ ∣r∣ = ∣l∣) ∧Brt(r) ∧Brt Delfirst(l) IH
⇔

(∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1) ∧Brt(r) ∧Brt(l).
And the last follows from the assumption that ⟨l ∣ x ∣ r⟩ is a Braun tree.

(3): By structural induction on the binary tree t as ∀i(3) In the base case
there is nothing to prove. In the induction step when t = ⟨l ∣ x ∣ r⟩ take any
i such that i + 1 < ∣⟨l ∣ x ∣ r⟩∣ and consider two cases. If l = ⟨⟩ then r = ⟨⟩ and
we have a contradiction. So suppose that l ≠ ⟨⟩. We consider three subcases.
If i = 0 then

(Delfirst ⟨l ∣ x ∣ r⟩) [0] = ⟨r ∣ l [0] ∣ Delfirst(l)⟩ [0] = l [0] = ⟨l ∣ x ∣ r⟩ [0 + 1] .
If i = j1 for some j then we have

(Delfirst ⟨l ∣ x ∣ r⟩) [j1] = ⟨r ∣ l [0] ∣ Delfirst(l)⟩ [j1] = r [j] =
= ⟨l ∣ x ∣ r⟩ [j2] = ⟨l ∣ x ∣ r⟩ [j1 + 1] .

If i = j2 for some j then j + 1 < ∣l∣ and we get

(Delfirst ⟨l ∣ x ∣ r⟩) [j2] = ⟨r ∣ l [0] ∣ Delfirst(l)⟩ [j2] = Delfirst(l) [j] IH
=

= l [j + 1] = ⟨l ∣ x ∣ r⟩ [(j + 1)1] = ⟨l ∣ x ∣ r⟩ [j2 + 1] .
Note that the induction hypothesis is applied with j in place of i. ⊓⊔

7.3.15 Insertion of a new last label. Unlike the previous two operations
which manipulate with first elements of Braun trees accessing the last element
requires to know the size of the tree. Consider for instance the problem of
inserting an element x at the end of a Braun tree t. For that we need to know
the exact size of the tree since the number ∣t∣ is the index of the position of
the new last element x.

The ternary function Inslast(n, t, x) which inserts x at the last position of
the tree t has the following specification:

⊢PA Brt(t)→ Brt Inslast(∣t∣ , t, x) (1)

⊢PA Brt(t)→ ∣Inslast(∣t∣ , t, x)∣ = ∣t∣ + 1 (2)

⊢PA Brt(t) ∧ i < ∣t∣→ Inslast(∣t∣ , t, x) [i] = t [i] (3)

⊢PA Brt(t)→ Inslast(∣t∣ , t, x) [∣t∣] = x (4)

and it is defined by dyadic recursion on n with substitution in the parameter
t as a p.r. function:

Inslast(0, t, x) = ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩
Inslast(n1, ⟨l ∣ y ∣ r⟩, x) = ⟨Inslast(n, l, x) ∣ y ∣ r⟩
Inslast(n2, ⟨l ∣ y ∣ r⟩, x) = ⟨l ∣ y ∣ Inslast(n, r, x)⟩.

7.3 Braun Trees and Flexible Arrays 225

Note that the parameter x does not change in recursion. Not also that the
insertion operation is specified only non-empty Braun trees.

We intend to apply the operation Inslast(n, t, x) only in cases when t is a
Braun tree and n is the index of the new last position, i.e. n = ∣t∣. For that
we can take the following property as an alternative (conditional) program
for computing the insertion function:

⊢PA Brt(t) ∧ n = ∣t∣→
Inslast(n, t, x) = case

n = 0⇒ ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩
n =m1⇒ let t = ⟨l ∣ y ∣ r⟩ in ⟨Inslast(m, l, x) ∣ y ∣ r⟩
n =m2⇒ let t = ⟨l ∣ y ∣ r⟩ in ⟨l ∣ y ∣ Inslast(m,r,x)⟩

end.

Its conditions of regularity

⊢PA Brt(t) ∧ n = ∣t∣ ∧ n =m1 ∧ t = ⟨l ∣ y ∣ r⟩ → l < t ∧Brt(l)∧m = ∣l∣
⊢PA Brt(t) ∧ n = ∣t∣ ∧ n =m2 ∧ t = ⟨l ∣ y ∣ r⟩ → r < t ∧Brt(r) ∧m = ∣r∣

are trivially satisfied.

Verification. (2): By structural induction on the binary tree t. The base is
obvious. In the induction step when t = ⟨l ∣ y ∣ r⟩ we consider two cases. If∣l∣ = ∣r∣ then ∣⟨l ∣ y ∣ r⟩∣ = 2 ∣l∣ + 1 and thus

∣Inslast(∣⟨l ∣ y ∣ r⟩∣ , ⟨l ∣ y ∣ r⟩, x)∣ = ∣Inslast(∣l∣1, ⟨l ∣ y ∣ r⟩, x)∣ =
= ∣⟨Inslast(∣l∣ , l, x) ∣ y ∣ r⟩∣ = ∣Inslast(∣l∣ , l, x)∣ + ∣r∣ + 1

IH
=

= ∣l∣ + 1 + ∣r∣ + 1 = ∣⟨l ∣ y ∣ r⟩∣ + 1.

Otherwise we have ∣l∣ = ∣r∣ + 1 and therefore ∣⟨l ∣ y ∣ r⟩∣ = 2 ∣r∣ + 2; the proof
proceeds similarly.

(1): By structural induction on the binary tree t. The base is obvious. In
the induction step when t = ⟨l ∣ y ∣ r⟩ we consider two cases. If ∣l∣ = ∣r∣ then by
the same arguments as above we obtain

Brt Inslast(∣⟨l ∣ y ∣ r⟩∣ , ⟨l ∣ y ∣ r⟩, x)⇔ Brt ⟨Inslast(∣l∣ , l, x) ∣ y ∣ r⟩⇔
(∣Inslast(∣l∣ , l, x)∣ = ∣r∣ ∨ ∣Inslast(∣l∣ , l, x)∣ = ∣r∣ + 1) ∧
∧Brt Inslast(∣l∣ , l, x) ∧Brt(r) (2)

⇔

(∣l∣ + 1 = ∣r∣ ∨ ∣l∣ + 1 = ∣r∣ + 1) ∧Brt Inslast(∣l∣ , l, x) ∧Brt(r) IH
⇔

(∣l∣ = ∣r∣ ∨ ∣l∣ = ∣r∣ + 1) ∧Brt(l) ∧Brt(r).
The last follows from the assumption that ⟨l ∣ y ∣ r⟩ is a Braun tree. The case∣l∣ = ∣r∣ + 1 is proved similarly.

(3): By structural induction on the binary tree t as ∀i(3). The base is
obvious. In the induction step when t = ⟨l ∣ y ∣ r⟩ take any i and consider two

226 7 Programs Operating on Trees

cases. If ∣l∣ = ∣r∣ (and similarly when ∣l∣ = ∣r∣+1) then we consider the following
three subcases. If i = j1 then we have

Inslast(∣⟨l ∣ y ∣ r⟩∣ , ⟨l ∣ y ∣ r⟩, x) [j1] = ⟨Inslast(∣l∣ , l, x) ∣ y ∣ r⟩ [j1] =
= Inslast(∣l∣ , l, x) [j] IH

= l [j] = ⟨l ∣ y ∣ r⟩ [j1] .
Other subcases when i = 0 are i = j2 are straightforward.

The last property (4) is proved similarly. ⊓⊔

7.3.16 Deletion of the last label. The final operation is removal of the
last element from Braun trees. This is realized with the binary function
Dellast(n, t) which deletes the last label of the non-empty Braun tree t.
Here the number n is the index of the last element in the tree t, i.e. we have
n = ∣t∣ ∸ 1. The function satisfies

⊢PA Brt(t) ∧ t ≠ ⟨⟩ → Brt Dellast(∣t∣ ∸ 1, t) (1)

⊢PA Brt(t) ∧ t ≠ ⟨⟩ → ∣Dellast(∣t∣ ∸ 1, t)∣ + 1 = ∣t∣ (2)

⊢PA Brt(t) ∧ t ≠ ⟨⟩ ∧ i + 1 < ∣t∣→ Dellast(∣t∣ ∸ 1, t) [i] = t [i] (3)

and it is defined by dyadic recursion on n with substitution in parameter as
a p.r. function:

Dellast(0, t) = ⟨⟩
Dellast(n1, ⟨l ∣ x ∣ r⟩) = ⟨Dellast(n, l) ∣ x ∣ r⟩
Dellast(n2, ⟨l ∣ x ∣ r⟩) = ⟨l ∣ x ∣ Dellast(n, r)⟩.
We intend to apply the operation Dellast(n, t) only in cases when t is a

non-empty Braun tree and n is the index of its last position, i.e. n = ∣t∣ ∸ 1.
For that we can take the following property as an alternative (conditional)
program for computing the deletion function:

⊢PA Brt(t) ∧ t ≠ ⟨⟩ ∧ n = ∣t∣ ∸ 1 →
Dellast(n, t) = case

n = 0⇒ ⟨⟩
n =m1⇒ let t = ⟨l ∣ x ∣ r⟩ in ⟨Dellast(n, l) ∣ x ∣ r⟩
n =m2⇒ let t = ⟨l ∣ x ∣ r⟩ in ⟨l ∣ x ∣ Dellast(n, r)⟩

end.

Its conditions of regularity

⊢PA Brt(t) ∧ t ≠ ⟨⟩ ∧ n = ∣t∣ ∸ 1 ∧ n =m1 ∧ t = ⟨l ∣ x ∣ r⟩ →
l < t ∧Brt(l)∧ l ≠ ⟨⟩ ∧m = ∣l∣ ∸ 1

⊢PA Brt(t) ∧ t ≠ ⟨⟩ ∧ n = ∣t∣ ∸ 1 ∧ n =m2 ∧ t = ⟨l ∣ x ∣ r⟩ →
r < t ∧Brt(r) ∧ r ≠ ⟨⟩ ∧m = ∣r∣ ∸ 1

are trivially satisfied.

7.3 Braun Trees and Flexible Arrays 227

Verification. (2): By structural induction on the binary tree t. In the base
case there is nothing to prove. In the induction step when t = ⟨l ∣ x ∣ r⟩ is a
non-empty Braun tree we consider two cases. If l = ⟨⟩ then r = ⟨⟩, i.e. t is a
singleton tree⟨⟨⟩ ∣ x ∣ ⟨⟩⟩. We then have

∣Dellast(∣⟨⟨⟩ ∣ x ∣ ⟨⟩⟩∣ ∸ 1, ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩)∣ + 1 = ∣Dellast(0, ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩)∣ + 1 =

= ∣⟨⟩∣ + 1 = 1 = ∣⟨⟨⟩ ∣ x ∣ ⟨⟩⟩∣ .
So suppose l ≠ ⟨⟩. Now we consider two subcases. If ∣l∣ = ∣r∣ + 1 then

∣⟨l ∣ x ∣ r⟩∣ ∸ 1 = ∣l∣ + ∣r∣ = 2 ∣l∣ ∸ 1 = 2(∣l∣ ∸ 1) + 1 = (∣l∣ ∸ 1)1 (†1)

by noting that ∣l∣ ≠ 0.

∣Dellast(∣⟨l ∣ x ∣ r⟩∣ ∸ 1, ⟨l ∣ x ∣ r⟩)∣ + 1
(†1)=

= ∣Dellast((∣l∣ ∸ 1)1, ⟨l ∣ x ∣ r⟩)∣ + 1 = ∣⟨Dellast(∣l∣ ∸ 1, l) ∣ x ∣ r⟩∣ + 1 =

= ∣Dellast(∣l∣ ∸ 1, l)∣ + 1 + ∣r∣ + 1
IH
= ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ x ∣ r⟩∣ .

If ∣l∣ = ∣r∣ then

∣⟨l ∣ x ∣ r⟩∣ ∸ 1 = ∣l∣ + ∣r∣ = 2 ∣r∣ = 2(∣r∣ ∸ 1) + 2 = (∣r∣ ∸ 1)2 (†2)

since ∣r∣ ≠ 0. We then have

∣Dellast(∣⟨l ∣ x ∣ r⟩∣ ∸ 1, ⟨l ∣ x ∣ r⟩)∣ + 1
(†2)=

= ∣Dellast((∣r∣ ∸ 1)2, ⟨l ∣ x ∣ r⟩)∣ + 1 = ∣⟨l ∣ x ∣ Dellast(∣r∣ ∸ 1, r)⟩∣ + 1 =

= ∣l∣ + ∣Dellast(∣r∣ ∸ 1, r)∣ + 1 + 1
IH
= ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ x ∣ r⟩∣ .

This concludes the proof of the induction step.
(1): By structural induction on the binary tree t. In the base case there

is nothing to prove. In the induction step when t = ⟨l ∣ x ∣ r⟩ is a non-empty
Braun tree we consider two cases. If l = ⟨⟩ then r = ⟨⟩, i.e. t is a singleton
tree⟨⟨⟩ ∣ x ∣ ⟨⟩⟩. Then

Dellast(∣⟨⟨⟩ ∣ x ∣ ⟨⟩⟩∣ ∸ 1, ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩) = Dellast(0, ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩) = ⟨⟩
is clearly a Braun tree. So suppose l ≠ ⟨⟩. Now we consider two subcases. If∣l∣ = ∣r∣ + 1 then

228 7 Programs Operating on Trees

Brt Dellast(∣⟨l ∣ x ∣ r⟩∣ ∸ 1, ⟨l ∣ x ∣ r⟩) (†
1
)

⇔ Brt Dellast((∣l∣ ∸ 1)1, ⟨l ∣ x ∣ r⟩)⇔
⇔ Brt ⟨Dellast(∣l∣ ∸ 1, l) ∣ x ∣ r⟩⇔
⇔ (∣Dellast(∣l∣ ∸ 1, l)∣ = ∣r∣ ∨ ∣Dellast(∣l∣ ∸ 1, l)∣ = ∣r∣ + 1)∧

Brt Dellast(∣l∣ ∸ 1, l) ∧Brt(r)⇔
⇔ (∣Dellast(∣l∣ ∸ 1, l)∣ + 1 = ∣r∣ + 1 ∨ ∣Dellast(∣l∣ ∸ 1, l)∣ + 1 = ∣r∣ + 2) ∧

Brt Dellast(∣l∣ ∸ 1, l)∧Brt(r) (2)
⇔

⇔ (∣l∣ = ∣r∣ + 1 ∨ ∣l∣ = ∣r∣ + 2) ∧Brt Dellast(∣l∣ ∸ 1, l) ∧Brt(r)⇔
⇔ ∣l∣ = ∣r∣ + 1 ∧Brt Dellast(∣l∣ ∸ 1, l)∧Brt(r).

The last follows from the assumption that ⟨l ∣ x ∣ r⟩ is a Braun tree and from
IH applied to the left subtree l. The subcase when ∣l∣ = ∣r∣ is proved similarly.

(3): By structural induction on the binary tree t as ∀i(3). The proof is
similar to that above and thus left to the reader. ⊓⊔

7.4 Symbolic Expressions

7.4.1 Introduction. The symbolic data structures are usually defined in
the functional programming languages with the help of union types which
can be readily arithmetized. We have seen an example of union type defining
binary trees in Sect. 7.1. We will use in the following paragraphs another
union type to arithmetize a certain class of expressions.

Suppose that we wish to operate symbolically on numeric terms which are
formed from variables xi, constants n by the numeric operators + (addition)
and × (multiplication). Functional programming languages use the following
union type to specify the domain of numeric terms:

Term = Var(N) ∣ Const(N) ∣ Add(Term,Term) ∣Mult(Term,Term).
A value of type Term is therefore either a variable Var(i), or a constant
Const(n), or an addition Add(t1, t2), or a multiplication Mult(t1, t2), where
i and n are of type N and t1 and t2 are values of type Term. The functions
Var(i), Const(n), Add(t1, t2) and Mult(t1, t2) are called constructors.

7.4.2 Constructors of numeric terms. Arithmetization of numeric ex-
pressions is done with the help of the following four pair constructors with
pairwise different tags (see Par. 5.2.10 for details):

7.4 Symbolic Expressions 229

x●i = ⟨0, i⟩ (variables)

n● = ⟨1, n⟩ (constants)

t1 +
● t2 = ⟨2, t1, t2⟩ (addition)

t1 ×
● t2 = ⟨3, t1, t2⟩. (multiplication)

From the properties of the pairing function we obtain the constructors are
pairwise disjoint and that the constructors are injective mappings, e.g.

⊢PA x●i ≠ t1 +
● t2

⊢PA t1 ×
● t2 = t

′
1 ×
● t′2 → t1 = t

′
1 ∧ t2 = t

′
2.

Similar properties hold also for the other constructors.
The pattern matching style of definitions of functions operating over the

codes of numeric terms is obtained with the conditionals of the form

case

t = x●i ⇒i β1[i]
t = n●⇒n β2[n]
t = t1 +● t2⇒t1,t2 β3[t1, t2]
t = t1 ×● t2⇒t1,t2 β4[t1, t2]
otherwise⇒ β5.

end

This is called discrimination on the constructors of numeric terms. Recall
that such conditionals are instances of pair constructors discrimination terms
discussed in Par. 5.2.10.

The above conditional is evaluated as follows. Consider, for instance, its
third variant t = t1 +● t2. The expression

Tuple∗(3, t) ∧∗ [t]31 =∗ 2

is its characteristic term as we have

⊢PA ∃t1∃t2 t = t1 +
● t2 ↔ Tuple(3, t) ∧ [t]31 = 2.

Note also that

⊢PA t = t1 +
● t2 → t1 = [t]32 ∧ t2 = [t]33

and therefore, the terms [t]32 and [t]33 are the witnessing terms for the output
variables t1, t2 of this variant. Similarly for the other variants.

7.4.3 Arithmetization of numeric terms. We wish to assign to every
numeric τ a unique number ⌜τ⌝, called the code of τ . The mapping is defined
inductively on the structure of numeric terms:

230 7 Programs Operating on Trees

⌜xi⌝ = x●i⌜n⌝ = n●
⌜τ1 + τ2⌝ = ⌜τ1⌝+●⌜τ1⌝⌜τ1 × τ2⌝ = ⌜τ1⌝×●⌜τ1⌝.

We can now encode, for instance, the term 4 × x5 + x7 by the number

4● ×● x●5 +
● x●7 = 103 635 707 473 048 605704.

Discrimination on the constructors of numeric terms is used in the defi-
nition of the p.r. predicate Term(t) holding of the codes of numeric terms.
The predicate is defined by course of values recursion as follows:

Term(x●i)
Term(n●)
Term(t1 +● t2)← Term(t1) ∧Term(t2)
Term(t1 ×● t2)← Term(t1) ∧Term(t2).

In the sequel we identify numeric terms with their codes and from now on
we will say the numeric term t instead of the code t of a numeric term.

7.4.4 Case analysis on numeric terms. From the definition of the pred-
icate Term we get directly the following property

⊢PA Term(t)→ ∃i t = x●i ∨ ∃n t = n
● ∨ ∃t1∃t2 t = t1 +

● t2 ∨ ∃t1∃t2 t = t1 ×
● t2.

This is called the principle of structural case analysis on the constructors of
the numeric term t.

We can use the above principle of structural case analysis in order to
establish the admissibility of a certain kind of conditional discriminations on
the constructors of numeric terms. These are of the form

Term(t)→ case

t = x●i ⇒i β1[i]
t = n●⇒n β2[n]
t = t1 +● t2 ⇒t1,t2 β3[t1, t2]
t = t1 ×● t2 ⇒t1,t2 β4[t1, t2].

end

Because of the precondition Term(t), we have to evaluate only four alterna-
tives instead of five. Moreover, characteristic terms of each alternative can
be selected much simpler than those in Par. 7.4.2. For instance, we have

Term(t) → ∃t1∃t2 t = t1 +
● t2 ↔ [t]31 = 2

and thus we can use the expression [t]31 =∗ 2 as the characteristic term of the
third variant of the above conditional. Compare with the characteristic term
Tuple∗(3, t) ∧∗ [t]31 =∗ 2 of the same variant from Par. 7.4.2.

7.4 Symbolic Expressions 231

7.4.5 Structural induction on numeric terms. The principle of struc-
tural induction over numeric terms can be informally stated as follows. To
prove by structural induction that a property ϕ[t] holds for every numeric
term t it suffices to prove:

Base cases: the property holds for every variable x●i and constant n●.
Induction steps: if the property holds for the terms t1, t2 then it holds also

for the terms t1 +● t2 and t1 ×● t2.

This is expressed formally in PA by

⊢PA ∀iϕ[x●i] ∧ ∀nϕ[n●] ∧ ∀t1∀t2(ϕ[t1] ∧ϕ[t2]→ ϕ[t1 +● t2]) ∧
∀t1∀t2(ϕ[t1] ∧ ϕ[t2]→ ϕ[t1 ×● t2]) → Term(t)→ ϕ[t]

The theorem is called the principle of structural induction on the numeric
term t for ϕ[t].
Proof. The principle of structural induction for numeric terms is derived in
PA as follows. Under the assumptions corresponding to the base cases and
induction steps of the structural induction take any numeric term t and prove
that ϕ[t] holds by complete induction on t. We consider the following four
cases according to Par. 7.4.4. The cases when t = x●i or t = n● are trivial. In
the case when t = t1 +● t2 for some t1, t2 we have ϕ[t1] and ϕ[t2] by IH since
t1 < t1 +● t2 and t2 < t1 +● t2. From the assumption we get ϕ[t1 +● t2]. The case
when t = t1 ×● t2 for some t1, t2 is similar. ⊓⊔

7.4.6 Structural recursion on numeric terms. Structural induction
over numeric terms is used to prove properties of functions defined by the
scheme of structural recursion on numeric terms. In its simplest form, the
operator of structural recursion over numeric terms introduces a function f

from functions g1, g2, g3 and g4 satisfying

f(t, y) = case

t = x●i ⇒ g1(i, y)
t = n●⇒ g2(n, y)
t = t1 +● t2 ⇒ g3(t1, t2, f(t1, y), f(t2, y), y)
t = t1 ×● t2 ⇒ g4(t1, t2, f(t1, y), f(t2, y), y)
otherwise⇒ 0

end.

Note that this is a recursive definition regular in the first argument with
discrimination on the constructors of numeric terms (output variables of each
variant are omitted).

The following identities form the clausal form of the above definition

f(x●i , y) = g1(i, y)
f(n●, y) = g2(n, y)
f(t1 +● t2, y) = g3(t1, t2, f(t1, y), f(t2, y), y)
f(t1 ×● t2, y) = g4(t1, t2, f(t1, y), f(t2, y), y)

232 7 Programs Operating on Trees

Note here that this is a typical example where we wish to use the default
clauses – in this case

f(t, y) = 0 ← ¬∃i t = x●i ∧ ¬∃n t = n
● ∧ ¬∃t1∃t2 t = t1 +● t2 ∧ ¬∃t1∃t2 t = t1 ×● t2

in order not to clutter the definition. We do not care what value is yielded
by the application f(t, y) if t is not the code of a numeric term.

The above definition for the function f can be easily rewritten to a condi-
tional program for the same function as we have

⊢PA Term(t) → f(t, y) = case

t = x●i ⇒ g1(i, y)
t = n●⇒ g2(n, y)
t = t1 +● t2 ⇒ g3(t1, t2, f(t1, y), f(t2, y), y)
t = t1 ×● t2 ⇒ g4(t1, t2, f(t1, y), f(t2, y), y)

end

Its conditions of regularity, e.g. for the variant t = t1 +● t2

⊢PA Term(t) ∧ t = t1 +● t2 → t1 < t ∧Term(t1)
⊢PA Term(t) ∧ t = t1 +● t2 → t2 < t ∧Term(t2),

are trivially satisfied.
Similar schemes, when we allow terms with arbitrary number of parameters

on the right-hand side of the above identities, substitution in parameters, or
even nested recursive applications, will be also called definitions by structural
recursion on numeric terms.

7.4.7 Size of numeric terms. The function ∣t∣ yields the size of the nu-
meric term t, i.e. the number of operations including variables needed to
construct the term t. The function is defined by parameterless structural
recursion on the numeric term t as a p.r. function:

∣x●i ∣ = 1∣n●∣ = 1∣t1 +● t2∣ = ∣t1∣ + ∣t2∣ + 1∣t1 ×● t2∣ = ∣t1∣ + ∣t2∣ + 1.

7.4.8 Denotation of numeric terms. We now define the binary denota-
tion (valuation) function ⟦t⟧v which takes the code t of a numeric term τ and
the assignment v which is a list assigning the value v[i] to the variable xi

and yields the value of the term τ . The function ⟦t⟧v is defined by structural
recursion on the numeric term t as a p.r. function:

⟦x●i⟧v = v[i]⟦n●⟧v = n⟦t1 +● t2⟧v = ⟦t1⟧v + ⟦t2⟧v⟦t1 ×● t2⟧v = ⟦t1⟧v × ⟦t2⟧v.

7.4 Symbolic Expressions 233

For instance, if v = ⟨10,11,12,13,0⟩ then

⟦(x●1 +● 2●)×● x●3⟧v = ⟦x●1 +● 2●⟧v × ⟦x●3⟧v = (⟦x●1⟧v + ⟦2●⟧v) × ⟦x●3⟧v =
= (v[1] + 2) × v[3] = (11 + 2) × 13 = 169.

7.4.9 The compiler and postfix machine. In this example we give the
proof of correctness of a simple compiler for numeric terms. A term is com-
piled into a program of a postfix machine and then the program is executed.

The instructions are defined with the help of four pair constructors:

LOAD(i) = ⟨0, i⟩
PUSH (n) = ⟨1, n⟩

ADD = ⟨2,0⟩
MULT = ⟨3,0⟩.

A program of the machine is just a list of instructions.
Numeric terms are compiled into programs with the help of Cmp(t). The

compilation function is defined by structural recursion on numeric terms as
a p.r. function:

Cmp(x●i) = ⟨LOAD(i),0⟩
Cmp(n●) = ⟨PUSH (n),0⟩
Cmp(t1 +● t2) = Cmp(t1)⊕Cmp(t2)⊕ ⟨ADD ,0⟩
Cmp(t1 ×● t2) = Cmp(t1)⊕Cmp(t2)⊕ ⟨MULT ,0⟩.

For instance, the following is the compiled program

⟨LOAD(1),PUSH (2),ADD,LOAD(3),MULT ,0⟩
for (the code of) the numeric term (x1 + 2) × x3.

The operation of the postfix machine itself is described by the ternary
function Run(p, v, s), where p is a program, v is an assignment (environment),
and s is a list of values (I/O stack). The function Run(p, v, s) is defined by
recursion on the list p with substitution in the parameter s as a p.r. function:

Run(0, v, ⟨t, s⟩) = t
Run(⟨LOAD(i), p⟩, v, s) = Run(p, v, ⟨v[i], s⟩)
Run(⟨PUSH (n), p⟩, v, s) = Run(p, v, ⟨n, s⟩)
Run(⟨ADD , p⟩, v, ⟨t2, t1, s⟩) = Run(p, v, ⟨t1 + t2, s⟩)
Run(⟨MULT , p⟩, v, ⟨t2, t1, s⟩) = Run(p, v, ⟨t1 × t2, s⟩).

Note that the other parameter v does not change in recursion.
Correctness of the compiler is expressed by the following formula:

⊢PA Term(t) → Run(Cmp(t), v,0) = ⟦t⟧v . (1)

In order to prove it we need the following auxiliary claim:

234 7 Programs Operating on Trees

⊢PA Term(t)→ ∀p∀s(Run(Cmp(t)⊕ p, v, s) = Run(p, v, ⟨⟦t⟧v , s⟩)). (2)

This is proved by structural induction on the numeric term t. So take any
numbers p, s and continue by case analysis on the numeric term t. If t = x●i
for some i then we have

Run(Cmp(x●i)⊕ p, v, s) = Run(⟨LOAD(i), p⟩, v, s) = Run(p, v, ⟨v[i], s⟩) =
= Run(p, v, ⟨⟦x●i⟧v , s⟩).

If t = t1 +● t2 for some t1, t2 then we obtain

Run(Cmp(t1 +● t2)⊕ p, v, s) =
= Run(⟨Cmp(t1)⊕Cmp(t2)⊕ ⟨ADD , p⟩⟩, v, s) IH

=

= Run(⟨Cmp(t2)⊕ ⟨ADD , p⟩⟩, v, ⟨⟦t1⟧v , s⟩) IH
=

= Run(⟨ADD , p⟩, v, ⟨⟦t2⟧v , ⟦t1⟧v , s⟩) =
= Run(p, v, ⟨⟦t1⟧v + ⟦t2⟧v , s⟩) = Run(p, v, ⟨⟦t1 +● t2⟧v , s⟩).

Note that the first induction hypothesis is applied with Cmp(t2)⊕ ⟨ADD , p⟩
in place of p while s is unchanged; and that the second induction hypothesis
is applied with ⟨ADD , p⟩ and ⟨⟦t1⟧v , s⟩ in place of p and s, respectively. The
remaining cases are proved similarly.

We are now in position to prove (1). Take any term t and we have

Run(Cmp(t), v,0) (2)
= Run(0, v, ⟨⟦t⟧v ,0⟩) = ⟦t⟧v .

7.4.10 Rearranging terms into expressions with left associated ad-

dition. In this paragraph we give an example of a program which goes be-
yond structural recursion. Consider the problem of rearranging numeric terms
so that the additions which they contain are associated to left (see [49]). For
instance, the term (x1 + x2) + (x3 + (x4 + x5)) is transformed to an equivalent
term (((x1 + x2) + x3) + x4) + x5 with left associated addition.

More formally, let Lassoc(t) be a predicate holding of terms with left
associated addition. The predicate is defined by course of values recursion as
primitive recursive by

Lassoc(t)← ¬∃t1, t2 t = t1 +● t2
Lassoc(t1 +● t2)← ¬∃t3, t4 t2 = t3 +● t4 ∧ Lassoc(t1).

We are looking for a p.r. function f(t) satisfying

⊢PA Term(t) → Term f(t) (1)

⊢PA Term(t) → Lassoc f(t) (2)

⊢PA Term(t) → ∣f(t)∣ = ∣t∣ (3)

⊢PA Term(t) → ⟦f(t)⟧v = ⟦t⟧v . (4)

7.5 Universal Function 235

The desired function is defined by

f(t) = t ← ¬∃t1, t2 t = t1 +● t2
f(t1 +● t2) = f(t1)+● t2 ← ¬∃t3, t4 t2 = t3 +● t4
f(t1 +●(t2 +● t3)) = f(t1 +● t2 +● t3).

Is this a correct definition? The first two clauses are structurally recursive, but
this does not hold for the third, in which the recursion goes from t1 +●(t2 +● t3)
to t1 +● t2 +● t3. We claim that the above definition is the definition with
measure m(t):
m(t) = 1 ← ¬∃t1, t2 t = t1 +● t2
m(t1 +● t2) =m(t1) + 2m(t2) + 1.

Indeed, the regularity condition for the third clause follows from:

m(t1 +● t2 +● t3) =m(t1) + 2m(t2) + 2m(t3) + 2 <

<m(t1) + 2m(t2) + 4m(t3) + 3 =m(t1 +●(t2 +● t3)).
Properties (1)-(4) can be proved straightforwardly by the corresponding in-
duction principle.

7.5 Universal Function

7.5.1 Introduction. In this last section we will consider the problem of
defining a universal function for primitive recursive functions. Recall that
the class of primitive recursive functions is the smallest class of functions
containing the initial functions Z(x) = 0, S(x) = x + 1, In

i (x⃗) = xi, and it is
closed under composition

f(x⃗) = h(g1(x⃗), . . . , gm(x⃗))
and primitive recursion

f(0, y⃗) = g(y⃗)
f(x + 1, y⃗) = h(x, f(x, y⃗), y⃗).

In order to find a universal function for p.r. functions we need to assign
indices to primitive recursive functions. This is done by arithmetization of
primitive recursive function symbols.

7.5.2 Primitive recursive function symbols. For every n ≥ 1, the class
PRn of n-ary primitive recursive function symbols (PR-function symbols for
short) is defined inductively as follows:

• Z ∈ PR1, S ∈ PR1 and In
i ∈ PRn for 1 ≤ i ≤ n,

236 7 Programs Operating on Trees

• if h ∈ PRm and g1, . . . , gm ∈ PRn then Compn
m(h, g1, . . . , gm) ∈ PRn,

• if g ∈ PRn and h ∈ PRn+2 then Recn+1(g, h) ∈ PRn+1.

We set PR = ⋃n≥1 PRn.
We interpret n-ary PR-function symbols by n-ary functions. The interpre-

tation fN of a PR-function symbol f is defined by induction on the structure
of PR-function symbols as follows:

• ZN is the zero function Z(x) = 0,
• SN is the successor function S(x) = x + 1,

• (In
i)N is the identity function In

i (x⃗) = xi,

• (Compn
m(h, g1, . . . , gm))N is the n-ary function defined by composition:

(Compn
m(h, g1, . . . , gm))N (x⃗) = hN (gN1 (x⃗), . . . , gNm (x⃗)),

• (Recn(g, h))N is the n-ary function defined by primitive recursion:

(Recn(g, h))N (0, y⃗) = gN (y⃗)
(Recn(g, h))N (x + 1, y⃗) = hN (x, (Recn(g, h))N (x, y⃗), y⃗).

In the sequel we will often drop the superscript in fN and write shortly f

instead of fN .
It is easy to see that primitive recursive functions are exactly those func-

tions which are denoted by PR-function symbols. In other words, the class
of primitive recursive functions is just the set ⋃n≥1{fN ∣ f ∈ PRn}.
7.5.3 Arithmetization of primitive recursive function symbols. Now
we consider the problem of coding of PR-function symbols into N. The sym-
bols are arithmetized with the help of the following pair constructors:

Z = ⟨0,0⟩ (zero)

S = ⟨1,0⟩ (successor)

I n
i = ⟨2, n, i⟩ (identities)

⟨⟨⟨g, gs⟩⟩⟩ = ⟨3, g, gs⟩ (contraction)

Compn
m(h, gs) = ⟨4, n,m,h, gs⟩ (composition)

Recn(g, h) = ⟨5, n, g, h⟩. (primitive recursion)

The arities of the constructors are as shown in their definitions. We postulate
that the binary constructor ⟨⟨⟨g, gs⟩⟩⟩ groups to the right and has the same
precedence as the pairing function ⟨x, y⟩.

The assignment of the code ⌜f⌝ to the PR-function symbol f is defined
inductively on the structure of PR-function symbols:

7.5 Universal Function 237

⌜Z⌝ = Z

⌜S⌝ = S

⌜In
i ⌝ = I n

i

⌜Compn
m(h, g1, . . . , gm)⌝ =Comp

n
m(⌜h⌝,⟨⟨⟨⌜g1⌝, . . . , ⌜gm⌝⟩⟩⟩)

⌜Recn(g, h)⌝ =Recn(⌜g⌝, ⌜h⌝).
Note that the binary operator ⟨⟨⟨g, gs⟩⟩⟩ plays a similar role as the pairing func-
tion ⟨x, y⟩ does for n-tuples of natural numbers. Its sole purpose is to rep-
resent the m-tuple ⌜g1⌝, . . . , ⌜gm⌝ of the codes of PR-function symbols by its
contraction which is the number of the form ⟨⟨⟨⌜g1⌝, . . . , ⌜gm⌝⟩⟩⟩.
7.5.4 Interpreter of primitive recursive functions. In this paragraph
we give a definition of a binary function e●x which effectively realizes the in-
terpretation of PR-function symbols. The application ⌜f⌝ ● ⟨x1, . . . , xn⟩ takes
the code of an n-ary PR-function symbol f and the contraction of an n-tuple
x1, . . . , xn of numbers, and yields the number f(x1, . . . , xn) as the result, i.e.

⌜f⌝ ● ⟨x1, . . . , xn⟩ = f(x1, . . . , xn).
To improve readability we will write e1 ● e2 ● x instead of e1 ● (e2 ● x), that
is we let the operator associates right.

The interpreter e ● x of primitive recursive functions is defined by

Z ● x = 0
S ● x = x + 1
I n

i ● x = [x]ni⟨⟨⟨g, gs⟩⟩⟩ ● x = ⟨g ● x, gs ● x⟩
Compn

m(h, gs) ● x = h ● gs ● x
Recn(g, h) ● ⟨0, y⟩ = g ● y
Recn(g, h) ● ⟨x + 1, y⟩ = h ● ⟨x,Recn(g, h) ● ⟨x, y⟩, y⟩.

This is an example of regular recursive definition which is into the lexico-
graphical order (x1, y1) <lex (x2, y2) of natural numbers. This is because the
first argument of each recursive application except the one in the last recur-
sive clause goes down. In the recursive application of the last recursive clause
the first argument Recn(g, h) stays the same and the second argument goes
down since ⟨x, y⟩ < ⟨x + 1, y⟩. We have therefore

(Recn(g, h), ⟨x, y⟩) <lex (Recn(g, h), ⟨x + 1, y⟩).
By the results of Sect. 5.3, we can see that the interpreter is effectively com-
putable; the closed form of the above definition constitutes a program for the
reduction model discussed in Sect. 5.3. As we will see later the function is
not primitive recursive.

238 7 Programs Operating on Trees

7.5.5 Enumeration functions. The (n+1)-ary function θ is said to be
an enumeration function for the class of n-ary functions F if we have the
following for every n-ary function f :

f ∈ F iff there is a number e such that

f(x1, . . . , xn) = θ(e, x1, . . . , xn)

holds for all numbers x1, . . . , xn.

The function θ is often called the universal function for the class F .
In the next theorem we will prove for every n ≥ 1 that the (n+1)-ary

function Un explicitly defined by

Un(e, x1, . . . , xn) = e ● ⟨x1, . . . , xn⟩
is the enumeration function for the class of n-ary primitive recursive func-
tions. Since the function e ● x is effectively computable, so is Un. Note also
that U2 and e●x are the same functions. In the sequel we will often abbreviate
U1(e, x) to U(e, x).
7.5.6 Enumeration theorem. For every n ≥ 1, the Un is an effectively
computable function enumerating the class of n-ary primitive recursive func-
tions.

Proof. We wish to prove that the following holds for every n-ary function f :

the function f is primitive recursive iff there is a number e such that

f(x1, . . . , xn) = Un(e, x1, . . . , xn)

for every x1, . . . , xn.

For the proof of the (⇒)-part of the claim it suffices to show that for every
n-ary PR-function symbol f and every x1, . . . , xn we have

f(x1, . . . , xn) = ⌜f⌝ ● ⟨x1, . . . , xn⟩.
This is proved by induction on the structure of PR-function symbols. So take
any n-ary PR-function symbol f , any n-tuple x⃗ of numbers, and continue by
the case analysis of f . The cases when f ≡ Z or f ≡ S are straightforward.
Now, if f ≡ Compn

m(h, g1, . . . , gm) then we have

⌜Compn
m(h, g1, . . . , gm)⌝ ● ⟨x⃗⟩ =Comp

n
m(⌜h⌝,⟨⟨⟨⌜g1⌝, . . . , ⌜gm⌝⟩⟩⟩) ● ⟨x⃗⟩ =

= ⌜h⌝ ● ⟨⟨⟨⌜g1⌝, . . . , ⌜gm⌝⟩⟩⟩ ● ⟨x⃗⟩ = ⌜h⌝ ● ⟨⌜g1⌝ ● ⟨x⃗⟩, . . . , ⌜gm⌝ ● ⟨x⃗⟩⟩ IH
=

= h(g1(x⃗), . . . , gm(x⃗)) = Compn
m(h, g1, . . . , gm)(x⃗).

Finally, if f ≡ Recn(g, h) then x⃗ ≡ z, y⃗ for some z and a non-empty y⃗. The
desired property

7.5 Universal Function 239

⌜Recn(g, h)⌝ ● ⟨z, y⃗⟩ = Recn(g, h)(z, y⃗)
is proved by (inner) induction on z. In the base case we have

⌜Recn(g, h)⌝ ● ⟨0, y⃗⟩ =Recn(⌜g⌝, ⌜h⌝) ● ⟨0, y⃗⟩ = ⌜g⌝ ● ⟨y⃗⟩ outer IH
=

= g(y⃗) = Recn(g, h)(0, y⃗).
In the induction step we have

⌜Recn(g, h)⌝ ● ⟨z + 1, y⃗⟩ =Recn(⌜g⌝, ⌜h⌝) ● ⟨z + 1, y⃗⟩ =
= ⌜h⌝ ● ⟨z,Recn(⌜g⌝, ⌜h⌝) ● ⟨z, y⃗⟩, y⃗⟩ outer IH

=

= h(z,Recn(⌜g⌝, ⌜h⌝) ● ⟨z, y⃗⟩, y⃗) = h(z, ⌜Recn(g, h)⌝ ● ⟨z, y⃗⟩, y⃗) inner IH
=

= h(z,Recn(g, h)(z, y⃗), y⃗) = Recn(g, h)(z + 1, y⃗).
This finishes the proof for the case when f ≡ Recn(g, h).

In the proof of (⇐)-part of the claim it suffices to show that the unary
functions φe explicitly defined by

φe(x) = e ● x
are primitive recursive functions. This is proved by complete induction on e.
So take any e and continue by case analysis on e. If e = Z , e = S or e = I n

i

then the following explicit definitions listed in that order

φe(x) = 0

φe(x) = x + 1

φe(x) = [x]ni
are derivations of φe as a primitive recursive function. If e =Comp

n
m(e1, e2)

for some e1 and e2 then the functions φe1
and φe2

are primitive recursive by
IH and we derive φe as a primitive recursive function by composition:

φe(x) = φe1
φe2
(x).

If e =Recn(e1, e2) for some e1 and e2 then the functions φe1
and φe2

are
primitive recursive by IH and we derive φe as a primitive recursive function
by the following course of values recursive definition:

φe(0) = 0

φe⟨0, y⟩ = φe1
(y)

φe⟨x + 1, y⟩ = φe2
⟨x,φe⟨x, y⟩, y⟩.

If neither of the above cases applies then we derive φe as a primitive recursive
function by explicit definition:

240 7 Programs Operating on Trees

φe(x) = 0. ⊓⊔

7.5.7 Enumeration functions are not primitive recursive. We already
know that the enumeration functions Un are effectively computable. In this
paragraph none of the enumeration functions is primitive recursive. We prove
this fact for the case when n = 1 and left the proof the general result to the
reader.

The standard proof uses a diagonal argument. Suppose by contradiction
that the enumeration function U(e, x) is primitive recursive. Then also the
explicitly defined function f :

f(x) = U(x,x) + 1 (1)

is a primitive recursive function. By the Enumeration Theorem there is a
number e such that for every number x we have

f(x) = U(e, x). (2)

We obtain contradiction from

f(e) (1)
= U(e, e) + 1

(2)
= f(e) + 1.

7.5.8 Primitive recursive indices. We say that a number e is a primitive
recursive index of the n-ary function f if

f(x1, . . . , xn) = Un(e, x1, . . . , xn)
for all numbers x1, . . . , xn. This can be expressed equivalently by

f(x1, . . . , xn) = e ● ⟨x1, . . . , xn⟩.
Primitive index is said to be well-formed if it is a code of some PR-function
symbol. As a simple corollary of the Enumeration Theorem we can see that
a function is primitive recursive iff it has a primitive recursive index.

For every n ≥ 1 by φ
(n)
e we denote the n-ary primitive recursive function

with the primitive recursive index e. Note that we then have

φ(n)e (x1, . . . , xn) = Un(e, x1, . . . , xn).
and

φ(n)e (x1, . . . , xn) = e ● ⟨x1, . . . , xn⟩.
By the Enumeration Theorem, an n-ary function f is primitive recursive iff

f = φ
(n)
e for some e. In the sequel we will often abbreviate φ

(1)
e (x⃗) to φe(x⃗).

7.5 Universal Function 241

7.5.9 Indices of initial primitive recursive functions. We clearly have

⊢PA Z ● x = 0

⊢PA S ● x = x + 1

⊢PA I n
i ● ⟨x1, . . . , xn⟩ = xi

and therefore the numbers Z , S and I n
i are p.r. indices of the initial p.r.

functions Z(x) = 0, S(x) = x + 1 and In
i (x⃗) = xi, respectively.

7.5.10 Indices of constant functions. There is a unary p.r. function Cm

which yields p.r. indices of unary constant functions Cm(x) =m, i.e. we have

φCm
(x) =m

for every x. The property can be easily expressed in the language PA by

⊢PA Cm ● x =m (1)

Note that we have

⊢PA C0(x) = 0

⊢PA Cm+1(x) = S Cm(x)
and thus the function Cm has the following primitive recursive definition:

C0 = Z

Cm+1 =Comp1
1(S ,Cm).

There is a binary primitive recursive function C n
m which yields p.r. indices

of n-ary constant functions Cn
m(x⃗) =m, i.e. we have

φCn
m
(x1, . . . , xn) =m.

This is expressed in the language PA by

⊢PA C n
m ● ⟨x1, . . . , xn⟩ =m (2)

Note that we have

⊢PA Cn
m(x1, . . . , xn) = Cm In

1 (x1, . . . , xn)
and thus the function C n

m has the following primitive recursive definition:

C n
m =Compn

1 (Cm, I
n
1).

Verification. (1): By induction on m. The base case is trivial and the induc-
tion step follows from

242 7 Programs Operating on Trees

Cm+1 ● x =Comp1
1(S ,Cm) ● x = S ●Cm ● x

IH
= S ●m =m + 1.

(2): It follows from

C n
m ● ⟨x1, . . . , xn⟩ =Compn

1 (Cm, I
n
1) ● ⟨x1, . . . , xn⟩ =

=Cm ● I n
1 ● ⟨x1, . . . , xn⟩ =Cm ● x1

(1)
= m. ⊓⊔

7.5.11 Explicit definitions. Now we consider the problem of finding p.r.
indices of functions defined by explicit definitions:

f(x1, . . . , xn) = τ[x1, . . . , xn] (1)

We suppose here that the term τ is built up from from variables and constants
by applications of p.r. function symbols.

The primitive recursive index ⌜λx⃗.τ⌝ of the function f defined by (1) is
constructed inductively on the structure of the term τ as follows:

⌜λx⃗.xi⌝ = I n
i⌜λx⃗.m⌝ =C n
m

⌜λx⃗.g(τ1, . . . , τm)⌝ =Comp
n
m(⌜g⌝,⟨⟨⟨⌜λx⃗.τ1⌝, . . . , ⌜λx⃗.τm⌝⟩⟩⟩).

We have

⊢PA ⌜λx⃗.τ⌝ ● ⟨x1, . . . , xn⟩ = τ[x1, . . . , xn]. (2)

Proof. Property (2) is proved by (meta-)induction on the structure of the
term τ . If τ ≡ xi then we have

⌜λx⃗.xi⌝ ● ⟨x1, . . . , xn⟩ = I n
i ● ⟨x1, . . . , xn⟩ = xi.

Similarly, if τ ≡m then we have

⌜λx⃗.m⌝ ● ⟨x1, . . . , xn⟩ =C n
m ● ⟨x1, . . . , xn⟩ 7.5.10(2)

= m.

Finally, if τ ≡ g(τ1, . . . , τm) then we have

⌜λx⃗.g(τ1, . . . , τm)⌝ ● ⟨x1, . . . , xn⟩ =
=Comp

n
m(⌜g⌝,⟨⟨⟨⌜λx⃗.τ1⌝, . . . , ⌜λx⃗.τm⌝⟩⟩⟩) ● ⟨x1, . . . , xn⟩ =

= ⌜g⌝ ● ⟨⟨⟨⌜λx⃗.τ1⌝, . . . , ⌜λx⃗.τm⌝⟩⟩⟩ ● ⟨x1, . . . , xn⟩ =
= ⌜g⌝ ● ⟨⌜λx⃗.τ1⌝ ● ⟨x1, . . . , xn⟩, . . . , ⌜λx⃗.τm⌝ ● ⟨x1, . . . , xn⟩⟩ IH

=

= ⌜g⌝ ● ⟨τ1[x1, . . . , xn], . . . , τm[x1, . . . , xn]⟩ =
= g(τ1, . . . , τm)[x1, . . . , xn]. ⊓⊔

7.5 Universal Function 243

7.5.12 Example. Addition is defined by primitive recursion (cf. Par. 1.2.11)

0 + y = I(y)
(x + 1) + y = h(x,x + y, y)

from the identity function I(y) = y and the ternary function h(x, a, y) = S(a).
By Par. 7.5.11, ⌜λx1x2x3.S(x2)⌝ is a p.r. index of h and therefore the number

Rec2(I 1
1 , ⌜λx1x2x3.S(x2)⌝)

is a p.r. index of the addition. Primitive recursive indices of some other p.r.
functions (e.g. multiplication) are obtained similarly (cf. Sect. 1.2).

7.5.13 Parametric function. The binary parametric function e/x takes a
p.r. index e of a binary p.r. f and a number x and yields a p.r. index of the
unary p.r. function g such that g(y) = f(x, y), i.e. we have

φe/x(y) = φ(2)e (x, y).
This is expressed in PA by

⊢PA (e/x) ● y = e ● ⟨x, y⟩. (1)

The parametric function is defined explicitly as a p.r. function by

e/x =Comp
1
2(e,⟨⟨⟨Cx, I 1

1 ⟩⟩⟩).
Verification. Property (1) follows from

(e/x) ● y =Comp1
2(e,⟨⟨⟨Cx,I 1

1 ⟩⟩⟩) ● y = e ● ⟨⟨⟨Cx, I 1
1 ⟩⟩⟩ ● y =

= e ● ⟨Cx ● y, I
1
1 ● y⟩ 7.5.10(1)

= e ● ⟨x, y⟩. ⊓⊔

7.5.14 S-m-n theorem. For every m,n ≥ 1, there exists an (m+1)-ary
primitive recursive function sm

n (e, x⃗) such that

φ
(n)

sm
n (e,x⃗)

(y⃗) = φ(m+n)e (x⃗, y⃗).
This is expressed in PA by

⊢PA sm
n (e, x1, . . . , xm) ● ⟨y1, . . . , yn⟩ = e ● ⟨x1, . . . , xm, y1, . . . , yn⟩. (1)

The function sm
n (e, x⃗) is defined explicitly as p.r. function by

sm
n (e, x1, . . . , xm) =Compn

m+n(e,⟨⟨⟨C n
x1

, . . . ,C n
xm

, I n
1 , . . . , I n

n ⟩⟩⟩).
Verification. Property (1) is proved as follows (y⃗ ≡ y1, . . . , ym):

244 7 Programs Operating on Trees

sm
n (e, x1, . . . , xm) ● ⟨y1, . . . , yn⟩ =
=Comp

n
m+n(e,⟨⟨⟨C n

x1
, . . . ,C n

xm
, I n

1 , . . . , I n
n ⟩⟩⟩) ● ⟨y1, . . . , yn⟩ =

= e ● ⟨⟨⟨C n
x1

, . . . ,C n
xm

, I n
1 , . . . , I n

n ⟩⟩⟩ ● ⟨y1, . . . , yn⟩ =
= e ● ⟨C n

x1
● ⟨y⃗⟩, . . . ,C n

xm
● ⟨y⃗⟩, I n

1 ● ⟨y⃗⟩, . . . , I n
n ● ⟨y⃗⟩⟩ 7.5.10(2)

=

= e ● ⟨x1, . . . , xm, y1, . . . , yn⟩. ⊓⊔

7.5.15 Self-reproducing machine. We conclude this section by solving
the following question. Does exist a primitive recursive function which pro-
duces its own description? More precisely, we wish to find a unary recursive
function φe(x) which yields its own well-formed index e for every input x,
i.e. we would like to have

φe(x) = e,
or equivalently

⊢PA e ● x = e. (1)

For that consider the following unary p.r. function defined explicitly by

g(y) =Comp
1
1(y,Cy). (2)

Let ⌜g⌝ be one of its well-formed p.r. indices. Then the number

e = g(⌜g⌝) (3)

is a well-formed index satisfying (1):

e ● x
(3)
= g(⌜g⌝) ● x (2)

= Comp
1
1(⌜g⌝,C⌜g⌝) ● x = ⌜g⌝ ●C⌜g⌝ ● x

7.5.10(1)
=

= ⌜g⌝ ● ⌜g⌝ index
= g(⌜g⌝) (3)

= e.

Chapter 8

Conclusion

This thesis described logical principles behind the declarative programming
language CL which comes with its own proof system for proving properties of
defined functions and predicates. We have hopefully demonstrated that the
seemingly weak formal theory Peano Arithmetic is sufficient to introduce a
usable programming language and its verification system. We hope that we
have convinced the reader that we can code the basic data structures needed
in the computer programming into natural numbers with the level of comfort
comparable to that in other declarative programming languages.

This should be contrasted with other specification-verification systems
which formalization may be as strong as ZF (or even stronger), or based
in category theory. Many of them are based on highly non-trivial theory
of Scott’s domains. As a consequence, such systems are almost impossible
to teach at the introductory levels of undergraduate studies. The semantic
intuition of such systems, so obvious to the students of CL, is practically
non-existent.

We plan to apply the theoretical results of this work into the design of
a successor to the language CL. The current system has a fixed syntax of
programming constructs and permits only terminating programs as they are
definitions as well. We hope that the future version of CL will allow non-
termination for efficiency reason and programming with flexible user-defined
discrimination constructs but still within the framework of PA.

We plan to extend our research also to the area of modular program-
ming. Current version of CL implement modularity with the help of non-
conservative extensions of PA in the form of theories. Pavol Voda [56, 55]
have already been contemplating the ways of expressing modularity within
the framework of second order arithmetic. One of the most suitable systems is
ACA0, a subsystem of second order arithmetic with arithmetical comprehen-
sion axiom scheme. This is one of the weakest extensions of PA into second
order because it is conservative over PA. This and similar systems are in-
tensively studied in that part of mathematical logic which is called Reverse
mathematics [46, 45].

245

List of Figures

1.1 Dyadic representation of natural numbers 10

2.1 Pairing function . 34
2.2 Pair representation of natural numbers . 38
2.3 Arithmetization of finite sequences. 50

3.1 Computation trees for recursion with parameter substitution . 72
3.2 Computation trees for nested simple recursion 91

6.1 List representation of natural numbers . 169

7.1 Binary trees . 196
7.2 Traversals of binary trees . 202
7.3 Binary search trees . 203
7.4 Membership predicate in binary search trees 204
7.5 Extreme values of binary search trees . 205
7.6 Insertion operation in binary search trees 207
7.7 Deletion of extreme values in binary search trees 208
7.8 Deletion operation in binary search trees . 210
7.9 Dyadic indexing scheme for binary trees . 213
7.10 Insertion of new first labels in Braun trees 221
7.11 Deletion of first labels from Braun trees . 223

247

List of Symbols

Location of each entry refers to the paragraph containing the symbol. Nota-
tions introduced in Prerequisites and Notation are not indexed here.

x ∣ y . . . 1.1.2
gcd(x, y) . . . 1.1.2
max(x, y) . . . 1.1.2
if ϕ then τ2 else τ3 . . . 1.1.2
case . . . ϕ⇒ τ . . . end . . . 1.1.2
fib(n) . . . 1.1.4
x1 . . . 1.1.5
x2 . . . 1.1.5∣x∣d . . . 1.1.5
x ⋆ y . . . 1.1.5
Z(x) . . . 1.2.2
S(x) . . . 1.2.2
In
i (x⃗) . . . 1.2.2
I(x) . . . 1.2.2
Cm(x) . . . 1.2.6
Cn

m(x⃗) . . . 1.2.6
fn(x) . . . 1.2.9

∑n
i=0 i . . . 1.2.14

D(x, y, z) . . . 1.2.17
µz ≤ x[g(z, y⃗) = 1] . . . 1.2.19
¬∗x . . . 1.2.21
x ∧∗ y . . . 1.2.21
x ∨∗ y . . . 1.2.21
x→∗ y . . . 1.2.21
x↔∗ y . . . 1.2.21
∀x ≤ τ ϕ . . . 1.2.22
∃x ≤ τ ϕ . . . 1.2.22
∀x < τ ϕ . . . 1.2.22

∃x < τ ϕ . . . 1.2.22
µy ≤ τ[ϕ] . . . 1.2.27
µy < τ[ϕ] . . . 1.2.27
µy[g(y, x⃗) = 1] . . . 1.2.31
µy[ϕ] . . . 1.2.34
L . . . 1.3.2
M . . . 1.3.3
τM . . . 1.3.3
M⊧ ϕ . . . 1.3.3
T ⊧ ϕ . . . 1.3.3
⊧ ϕ . . . 1.3.3
H . . . 1.3.4
T ⊢ ϕ . . . 1.3.5
⊢ ϕ . . . 1.3.5
LT . . . 1.3.7
T ⊢ T ′ . . . 1.3.7
ψ⋆ . . . 1.3.8
Tf . . . 1.3.13
PA . . . 1.4.1
LPA . . . 1.4.2
N . . . 1.4.2
⊢PA ϕ . . . 1.4.2⟨x, y⟩ . . . 2.1.6∣x∣p . . . 2.1.9
π1(x) . . . 2.1.10
π2(x) . . . 2.1.10
πn

2 (x) . . . 2.2.1
Prime(p) . . . 2.2.4

249

250 List of Symbols

Powp(q) . . . 2.2.5
x ∈qp s . . . 2.2.7
x ∈p s . . . 2.2.7
s ∪p {x} . . . 2.2.7
Cvsp(s, x) . . . 2.2.10
G(n,x, y) . . . 2.2.14⌜(x⃗)⌝n . . . 2.3.2⟨x, y, z⟩ . . . 2.3.3⟨τ1, . . . , τn⟩ . . . 2.3.3⟨τ⃗ ⟩ . . . 2.3.3
Tuple(n,x) . . . 2.3.4[x]ni . . . 2.3.5⟨f⟩(x) . . . 2.3.6⟨x1, x2, . . . , xn,0⟩ . . . 2.4.2
L(x) . . . 2.4.3(x)i . . . 2.4.4
Cvs(s, x, y⃗) . . . 3.1.3
f(x, y⃗) . . . 3.2.4
τ[λ̇x⃗.ρ[x⃗]] . . . 3.5.2
∅(n) . . . 4.1.2
τ1 ≃ τ2 . . . 4.1.2
if τ1 ≠ 0 then τ2 else τ3 . . . 4.1.3
if ϕ then τ2 else τ3 . . . 4.1.3
case . . . ϕ⇒ τ . . . end . . . 4.1.3
min(x, y) . . . 4.1.4
Median(x, y, z) . . . 4.1.5
A(x, y) . . . 4.1.20(x1, y1) <lex (x2, y2) . . . 4.1.20
µ[x⃗] . . . 4.2.2[f]µx⃗(y⃗) . . . 4.2.4

τ[[f]µx⃗; x⃗] . . . 4.2.4

τ[[f]; x⃗] . . . 4.2.4
f +(z, x⃗) . . . 4.2.5
ρ+[f +; z, x⃗] . . . 4.2.5[f +]µz,x⃗(y⃗) . . . 4.2.5

τ+[[f +]µz,x⃗; z, x⃗] . . . 4.2.5

τ+[[f +]; z, x⃗] . . . 4.2.5(ρ1, . . . , ρm)+ . . . 4.2.5
x⃗ ≺ y⃗ . . . 4.3.2[f]≺x⃗(y⃗) . . . 4.3.5
τ[[f]≺x⃗; x⃗] . . . 4.3.5

τ[[f]; x⃗] . . . 4.3.5
f +(z, x⃗) . . . 4.3.6
D+(x, y, z) . . . 4.3.6

g+(x1, . . . , xk) . . . 4.3.6
x⃗ ≺+∗ y⃗ . . . 4.3.6
ρ+[f +; z, x⃗] . . . 4.3.6

τ+[[f +]≺+z,x⃗; z, x⃗] . . . 4.3.6

τ+[[f +]; z, x⃗] . . . 4.3.6
τ⃗ + 1 . . . 4.3.6
max(x1, . . . , xm) . . . 4.3.6
δ(x⃗) . . . 4.3.9∥τ∥ . . . 4.4.2
Γ τ

ρ . . . 4.4.2
Reg≺τ [f] . . . 4.4.2
Regµ

τ [f] . . . 4.4.2
x . . . 4.5.3
x⃗ . . . 4.5.3
ρ1 ⊳k ρ2 . . . 4.5.3
ρ1 ⊳ ρ2 . . . 4.5.3⌊√x⌋ . . . 5.1.2
ϕ[x⃗; y⃗] . . . 5.2.3
Γ [x⃗] . . . 5.2.3
χ[x⃗] . . . 5.2.4
ω⃗[x⃗] . . . 5.2.4
Kc . . . 5.2.10
Kc(y⃗) . . . 5.2.10
α,β . . . 5.2.11

D ⃗⃗ωχ⃗(ϕ1, β1, . . . , ϕm, βm) . . . 5.2.11
α⋆ . . . 5.2.12
D(ϕ1, β1, . . . , ϕm, βm) . . . 5.2.13
case . . . ϕ⇒y⃗ β . . . end . . . 5.2.13
otherwise . . . 5.2.13
let τ = y in β[y] . . . 5.2.18∥α∥ . . . 5.3.2
Γα

β . . . 5.3.2
Reg≺α[f] . . . 5.3.2
Regµ

α[f] . . . 5.3.2
f(ρ⃗) = α← ψ1 ∧⋯∧ ψk . . . 5.4.2
L(x) . . . 6.1.7
x[i] . . . 6.1.8
x⊕ y . . . 6.1.10
x ε y . . . 6.1.12
Rev(x) . . . 6.1.14
Mapf(x) . . . 6.2.2
Take(n,x) . . . 6.2.3
Drop(n,x) . . . 6.2.3[m..n) . . . 6.2.4
FilterA(x) . . . 6.2.5

List of Symbols 251

Nodoubles(x) . . . 6.2.6
Minl(x) . . . 6.2.7
#a (x) . . . 6.2.8
x ∼ y . . . 6.2.9
x ⊐ y . . . 6.3.2
Suffixes(x) . . . 6.3.2
Mape(a,x) . . . 6.3.3
y ⊏ x . . . 6.3.4
Prefixes(x) . . . 6.3.4
y ⊂ x . . . 6.3.5
Segments(x) . . . 6.3.5
y ≈ x[↓a] . . . 6.3.6
Interleave(a,x) . . . 6.3.6
Mapi(a,x) . . . 6.3.7
Perms(x) . . . 6.3.8
a ⪯ x . . . 6.4.2
Ord(x) . . . 6.4.3
Insert(a,x) . . . 6.4.5
Isort(x) . . . 6.4.6
Split(x) . . . 6.4.8
Merge(x, y) . . . 6.4.9
Msort(x) . . . 6.4.10⟨⟩ . . . 7.1.2⟨l ∣ x ∣ r⟩ . . . 7.1.2⌜T ⌝ . . . 7.1.3
Bt(t) . . . 7.1.3
d(t) . . . 7.1.7∣t∣ . . . 7.1.7
x ∈ t . . . 7.1.8
t1 ⊴ t2 . . . 7.1.9
Preorder(t) . . . 7.1.11
x ≺ t . . . 7.2.2
x ≻ t . . . 7.2.2
Bst(t) . . . 7.2.3
Max(t) . . . 7.2.5
t ∪ {x} . . . 7.2.6
Delmax(t) . . . 7.2.7
t1 ⊔ t2 . . . 7.2.8
t ∖ {x} . . . 7.2.8
Index(i, t) . . . 7.3.3
Brt(t) . . . 7.3.4
t [i] . . . 7.3.10
t [i ∶= x] . . . 7.3.11

New(n) . . . 7.3.12
Insfirst(t, x) . . . 7.3.13
Delfirst(t) . . . 7.3.14
Inslast(n, t, x) . . . 7.3.15
Dellast(n, t) . . . 7.3.16
x●i . . . 7.4.2
n● . . . 7.4.2
t1 +● t2 . . . 7.4.2
t1 ×● t2 . . . 7.4.2⌜τ⌝ . . . 7.4.3
Term(t) . . . 7.4.3∣t∣ . . . 7.4.7⟦t⟧v . . . 7.4.8
LOAD(i) . . . 7.4.9
PUSH (n) . . . 7.4.9
ADD . . . 7.4.9
MULT . . . 7.4.9
Cmp(t) . . . 7.4.9
Run(p, v, s) . . . 7.4.9
Lassoc(t) . . . 7.4.10
PRn . . . 7.5.2
Compn

m(h, g1, . . . , gm) . . . 7.5.2
Recn+1(g, h) . . . 7.5.2
PR . . . 7.5.2
fN . . . 7.5.2⌜f⌝ . . . 7.5.3
Z . . . 7.5.3
S . . . 7.5.3
I n

i . . . 7.5.3⟨⟨⟨g, gs⟩⟩⟩ . . . 7.5.3
Comp

n
m(h, gs) . . . 7.5.3

Recn(g, h) . . . 7.5.3
e ● x . . . 7.5.4
Un(e, x⃗) . . . 7.5.5
U(e, x⃗) . . . 7.5.5

φ
(n)
e (x1, . . . , xn) . . . 7.5.8
φe(x⃗) . . . 7.5.8
Cm . . . 7.5.10
C n

m . . . 7.5.10⌜λx⃗.τ⌝ . . . 7.5.11
e/x . . . 7.5.13
sm
n (e, x⃗) . . . 7.5.14

Bibliography

1. Stuart F. Allen, Robert L. Constable, Richard Eaton, Christoph Kreitz, and Lori
Lorigo. The nuprl open logical environment. In David A. McAllester, editor, CADE,
volume 1831 of Lecture Notes in Computer Science, pages 170–176. Springer, 2000.

2. J. Barwise. An introduction to first-order logic. In J. Barwise, editor, Handbook of
Mathematical Logic, pages 5–46. North-Holland, 1977.

3. Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program Devel-
opment. Texts in Theoretical Computer Science. An EATCS Series. Springer Verlag,
2004.

4. R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, 1979.
5. W. Braun and M. Rem. A logarithmic implementation of flexible arrays, 1983. Mem-

orandum MR83/4. Eindhoven University of Technology.
6. R. M. Burstall, D. B. MacQueen, and D. T. Sanella. Hope: an experimental applicative

language. In Proceedings of the ACM Lisp Conference, 1980.
7. R.J. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W.

Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki, and
S.F. Smith. Implementing Mathematics with the Nuprl Development System. Prentice-
Hall, 1986.

8. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction to
PVS. Presented at WIFT ’95: Workshop on Industrial-Strength Formal Specification
Techniques, Boca Raton, Florida, April 1995. Available, with specification files, at
http://www.csl.sri.com/wift-tutorial.html.

9. John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef.
Validated Designs for Object–oriented Systems. Springer, New York, 2005.

10. J. Goguen and J. Tardo. An introduction to OBJ: A language for writing and testing
software specifications. In M. K. Zelkowitz, editor, Specification of Reliable Software,
pages 170–189. IEEE Press, 1979. Reprinted in Software Specification Techniques, N.
Gehani and A. McGettrick, editors, Addison-Wesley, 1985, pages 391-420.

11. Joseph A. Goguen and Grant Malcolm. Algebraic Semantics of Imperative Programs.
Foundations of Computing Series. The MIT Press, Cambridge, MA, 1996.

12. M. J. C. Gordon and T. F. Melhalm, editors. Introduction to HOL: A Theorem Proving
Environment for Higher-Order Logic. Cambridge University Press, 1993.

13. David A. Greve, Matt Kaufmann, Panagiotis Manolios, J. Strother Moore, Sandip Ray,
José-Luis Ruiz-Reina, R. O. B. Sumners, Daron Vroon, and Matthew Wilding. Efficient
execution in an automated reasoning environment. J. Funct. Program., 18(1):15–46,
2008.

14. The RAISE Language Group. The RAISE Specification Language. Prentice-Hall,
1992.

253

254 Bibliography

15. J. V. Guttag and J.J. Horning, editors. Larch: Languages and Tools for Formal Speci-
fication. Springer-Verlag Texts and Monographs in Computer Science. Springer Verlag,
1993.

16. P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer Verlag,
1993.

17. G. Huet, G. Kahn, and Ch. Paulin-Mohring. The Coq proof assistant - a tutorial.
Technical Report 178, INRIA, July 1995.

18. C.B. Jones. Systematic Software Development using VDM. Prentice-Hall, 1990.
19. M. Kaufmann, P. Manolios, and J.S. Moore, editors. Computer-Aided Reasoning:

ACL2 Case Studies. Kluwer Academic Publishers, 2000.
20. Matt Kaufmann and J Strother Moore. A precise description of the acl2 logic. Tech-

nical report, Department of Computer Sciences, University of Texas at Austin, 1998.
21. S. C. Kleene. Introduction to Metamathematics. Wolters-Noordhoff and North-

Holland, 1952.
22. J. Komara and P. J. Voda. Syntactic reduction of predicate tableaux to propositional

tableaux. In P. Baumgartner, R. Haehnle, and J. Posegga, editors, Proceedings of
TABLEAUX ’95, number 918 in LNAI, pages 231–246. Springer Verlag, 1995.

23. J. Komara and P. J. Voda. On quasitautologies. In D. Galmiche, editor, Proceedings
of TABLEAUX ’97, number 1227 in LNAI, pages 231–245. Springer Verlag, 1997.

24. J. Komara and P. J. Voda. Computer programming as mathematics in a program-
ming language and proof system CL (tutorial). In H. de Swart, editor, Proceedings of
TABLEAUX ’98, number 1397 in LNAI, pages 42–43. Springer Verlag, 1998.

25. J. Komara and P. J. Voda. Theorems of Péter and Parsons in computer programming.
In G. Gottlob, E. Grandjean, and K. Seyr, editors, Proceedings of CSL’98, number
1584 in LNCS, pages 204–223. Springer Verlag, 1999.

26. J. Komara and P. J. Voda. Extraction of efficient programs in IΣ1-arithmetic. Tech-
nical report, Institute of Informatics, Faculty of Mathematics and Physics, Comenius
University, Bratislava, 2000.

27. J. Komara and P. J. Voda. Lecture Notes in Theory of Computability, December 2001.
Unpublished manuscript.

28. J. Komara and P. J. Voda. Metamathematics of Computer Programming, May 2001.
Unpublished manuscript.

29. Krstic and Matthews. Inductive invariants for nested recursion. In IWHOLTP: 16th
International Workshop on Higher Order Logic Theorem Proving and Its Applications.
LNCS, 2003.

30. Conor McBride and James McKinna. The view from the left. J. Funct. Program.,
14(1):69–111, 2004.

31. Thomas F. Melham. A package for inductive relation definitions in HOL. In Myla
Archer, Jeffrey J. Joyce, Karl N. Levitt, and Phillip J. Windley, editors, TPHOLs,
pages 350–357. IEEE Computer Society, 1991.

32. P.M. Melliar-Smith and J. Rushby. The Enhanced HDM system for specification and
verification. In Proc. VerkShop III, pages 41–43, February 1985. Published as ACM
Software Engineering Notes, Vol. 10, No. 4, Aug. 85.

33. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

34. Chris Okasaki. Three algorithms on braun trees. J. Funct. Program., 7(6):661–666,
1997.

35. Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report
SRI-CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA,
August 1997.

36. Sam Owre and Natarajan Shankar. A brief overview of PVS. In Otmane Aı̈t Mohamed,
César Muñoz, and Sofiène Tahar, editors, TPHOLs, volume 5170 of Lecture Notes in
Computer Science, pages 22–27. Springer, 2008.

Bibliography 255

37. Lawrence C. Paulson. The foundation of a generic theorem prover. J. Autom. Rea-
soning, 5(3):363–397, 1989.

38. R. Péter. Konstruktion nichtrekursiver Funktionen. Mathematische Annalen, 111:42–
60, 1935.

39. R. Péter. Über den Zusammenhang der verschiedenen Begriffe der rekursiven Funk-
tion. Mathematische Annalen, 110:612–632, 1935.

40. R. Péter. Über die mehrfache Rekursion. Mathematische Annalen, 113:489–527, 1937.
41. R. Péter. Recursive Functions. Academic Press, 1967.
42. Programming Language and Proof Assistant CL (Clausal Language). Available at

http://ii.fmph.uniba.sk/cl/.
43. H. E. Rose. Subrecursion: Functions and Hierarchies. Number 9 in Oxford Logic

Guides. Clarendon Press, Oxford, 1982.
44. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
45. S. G. Simpson, editor. Reverse Mathematics 2001, volume 21 of Lecture Notes in

Logic. Association for Symbolic Logic, 2005. X + 401 pages.
46. Stephen G. Simpson. Subsystems of second order arithmetic. Perspectives in Mathe-

matical Logic. Springer-Verlag, Berlin, 1999.
47. Konrad Slind. Another look at nested recursion. In Mark Aagaard and John Harrison,

editors, TPHOLs, volume 1869 of Lecture Notes in Computer Science, pages 498–518.
Springer, 2000.

48. J. M. Spivey. Understanding Z: A Specification Language and its Formal Semantics.
Cambridge University Press, 1988.

49. Simon Thompson. Proof for functional programming, 1998.
50. D. A. Turner. SASL language manual. Technical report, St. Andrews University,

December 1976.
51. D. A. Turner. Elementary strong functional programming. In Pieter H. Hartel and

Marinus J. Plasmeijer, editors, FPLE, volume 1022 of Lecture Notes in Computer
Science, pages 1–13. Springer, 1995.

52. D. A. Turner. Total functional programming. J. UCS, 10(7):751–768, 2004.
53. P. J. Voda. Subrecursion as a basis for a feasible programming language. In L. Pacholski

and J. Tiuryn, editors, Proceedings of CSL’94, number 933 in LNCS, pages 324–338.
Springer Verlag, 1995.

54. P. J. Voda. Theory of Recursive Functions & Computability: from Computer Pro-
grammer’s View, 2000.

55. P. J. Voda. Grundlagenstreit in the theory of programming, February 2003.
56. P. J. Voda. What can we gain by integrating a language processor with a theorem

prover?, February 2003.

Index

Location of each entry refers to the page containing the topic. Topics intro-
duced in Prerequisites and Notation are not indexed here.

A

absolute
generalized term 154
pattern 152

Ackermann-Péter function 114
addition 15
algorithm

Euclidean 5
approximation

function 86, 117, 121
term 117, 123

arithmetization 9
finite sequences 50
of binary trees 197
of lists 168
of numeric terms 229
of primitive recursive function symbols

236
of tuples 48

assignment 152, 156
axiom rules 22
axioms

of Peano arithmetic 27
of theory 22

B

backward
induction 64
recursion 64

binary search tree 203
deletion 209

of extremal values 208

extreme values 205

formalization 204

insertion 206

membership predicate 204

binary tree 196

arithmetization of 197

binary search tree see binary search
tree

Braun tree see Braun tree

constructors of 196

depth of 200

depth-first traversal 202

membership predicate 200

size of 200

strict lower bound 204

strict upper bound 204

structural case analysis 198

structural induction 198

structural recursion 199

subtree relation 201

body of clause 161

boolean functions 17

bounded

formula 17

quantifier 17

bounded minimalization 16, 18, 31

Braun tree 212

alternative definition 215

creating a new tree 220

deletion

of the first label 222

of the last label 226

formalization 214

257

258 Index

indexing operation 217

insertion
of a new first label 220
of a new last label 224

size of
optimality 215
quick computation 216

updating operation 218

C

case analysis
dyadic 72

monadic 28
structural see structural case analysis

case discrimination function 16

case discrimination term 154
assignment 156
dichotomy discrimination 155

discrimination on constants 155
discrimination on the constructors

of binary trees 197

of lists 168
of numeric terms 229

equality test 155
monadic discrimination 156
negation discrimination 155

pair constructor discrimination 156
pair discrimination 156
trichotomy discrimination 155

characteristic term
of pattern 152

clausal

definition 161, 164
closed form of 162

predicate form of 164
form 161

clause 160

body of 161
default 162
head of 161

initial 161
non-terminal 161
terminal 161

closed form of clausal definition 162
comparison predicates 18, 30

complete induction 28
composition of functions 12
computation tree 70

computational term 139
concatenation

dyadic 10, 73

of lists 171
condition

governing 132, 157

of regularity 132, 139, 157, 159
conditional 106, see case discrimination

term, see case discrimination term
conservative extension 22

consistent theory 22
constant functions 13

constant pair constructor 153
constant symbol 21
constructors

of binary trees 196
of lists 168
of numeric terms 228

contextual definition 24
contracted iteration 39

contraction of function 49
contraction of redex 140
course of values

function 59, 77
subtree function 76

course of values recursion 59

D

decimal constants 30
default clause 162

definition
of function see function definition
of predicate see predicate definition

deletion
in binary search trees 209

of extreme values 208
in Braun trees

of the first label 222

of the last label 226
denotation

of generalized term 154

of numeric term 232
of term 21

depth of binary trees 200
depth-first traversal 202
dichotomy discrimination 155

discrimination see case discrimination
term

discrimination function see case
discrimination function

divisibility predicate 5, 18, 30

dyadic
case analysis 72

concatenation 10, 73
numeral 9
representation 9

size 9, 73
successor 9

Index 259

E

efficiency 160

equality
axioms 22
predicate 16

test 155
equivalent theories 23
Euclidean algorithm 5

expansion of structure 21
explicit definition

of function 13, 26
of predicate 23

with bounded formula 17
exponentiation 15
extension

by definitions 25
conservative 22
of Peano arithmetic 29

of language 21
of theory 22
Skolem 24

F

Fibonacci sequence 7

finite sequence
arithmetization of 50
indexing operation 51

length of 51
first order

language 21

structure 21
theory 22

first projection 39

formal
proof 22
system 21

formula

bounded 17
logically valid 21
provable 22

single-valued 152
translation of 23, 24

function

approximation 117, 121
contraction of 49
partial 106

function definition
by backward recursion 64
by bounded minimalization 18, 31
by course of values recursion 59

by nested simple recursion 88
by primitive recursion 54

by recursion with measure 116
by recursion with parameter substitution

69
by regular minimalization 20, 30
by regular recursion 132, 157
by structural recursion see structural

recursion
by well-founded recursion 121

clausal definition 161
contextual definition 24
explicit definition 13, 26
implicit definition 26

primitive recursive definition 14
function operator

bounded minimalization 16
composition 12
contracted iteration 39

iteration 14
primitive recursion 12
regular minimalization 19

function symbol 21
functional pair constructor 153

functions
boolean 17
constant 13
identity 12

µ-recursive 20
primitive recursive 12
projection 39

G

generalization rules 22
generalized term 153

absolute 154
denotation of 154
size of 157
translation of 154

governing condition 132, 157

greatest common divisor 5
guard 153

of pattern 152

H

head of clause 161
Hilbert system 21

I

identity functions 12

implicit definition 26
indexing operation

in Braun trees 217

260 Index

in finite sequences 51

in lists 170
induction

backward 64

complete 28
least number principle 28
mathematical 27

structural see structural induction
well-founded 120

with measure 115
inference rules 22
initial clause 161

input variables 152
insertion

in binary search trees 206

in Braun trees
of a new first label 220
of a new last label 224

integer division 19, 30
integer square root 146

interpretation 21
of primitive recursive function symbols

236
iteration 14

L

language
extension of 21
first order 21

least number principle 28
length

of finite sequence 51

of list 170
lexicographic ordering 114
list 167

arithmetization of 168
concatenation 171

constructors of 168
indexing operation 170
length 170

lower bound of 189
membership predicate 173
merge sort 194

ordered 190
permutation of 181

representation 168
reversal 174
sorting of 189

structural case analysis 168
structural induction 169
structural recursion 169

logical
axioms 21

consequence 21
logically valid formula 21
lower bound

of lists 189

M

mathematical induction 27
maximal element

in binary search trees 205
maximum 6
measure induction 115
measure term 115
membership predicate

in binary search trees 204
in binary trees 200
in lists 173

merge sort 194
minimal element

in binary search trees 205

minimum 107
mixed numeral 160
model 21
modified Cantor pairing function 36
modified subtraction 15, 30
modus ponens 22
monadic

case analysis 28
discrimination 156
numeral 139
pattern 152

µ-recursive
functions 20
predicates 20

multiplication 15

N

negation discrimination 155
nested simple recursion 88
non-logical symbol 21
non-terminal clause 161
numeral

dyadic 9
mixed 160
monadic 139

numeric pattern 152
numeric term 228

arithmetization of 229
constructors of 228
denotation of 232
size of 232
structural case analysis 230
structural induction 231
structural recursion 231

Index 261

O

ordered list 190

output variables 152

P

pair
constructor discrimination 156

constructor pattern 153
discrimination 156
pattern 153

representation 37
pairing function

modified Cantor 36

pairing property 36
partial function 106
pattern 151

absolute 152

characteristic term of 152
guard of 152
input variables of 152

matching 151
output variables of 152
uniqueness condition 152

witnessing term of 152
pattern (example of)

assignment 152

monadic pattern 152
numeric pattern 152
pair constructor pattern 153

pair pattern 153
test 153

Peano arithmetic 27
permutation of lists 181

postfix machine 233
precondition

of program 139, 159

predecessor 15
predicate definition

by structural recursion see structural
recursion

clausal definition 164
explicit definition 23

with bounded formula 17

predicate form of clausal definition 164
predicate symbol 21
predicates

comparison 18, 30
µ-recursive 20
primitive recursive 12

primitive recursion 12, 54

primitive recursive
definition 14

derivation 12
function symbol 235

arithmetization of 236
interpretation of 236

functions 12
predicates 12

primitively recursively closed 13
program

precondition of 139, 159
regular 139, 159

projection

function 39
projection function 49
propositional variable 21
provability 22

in Peano arithmetic 27
provable formula 22

Q

quantifier axioms 22

R

recursion
simultaneous 113
tail 8
with measure 116

with parameter substitution 69
redex 139

contraction of 140
reduction 140
regular minimalization 19, 20, 30

regular recursion 132, 157
relation

well-founded 120
remainder function 19, 30
representation

dyadic 9
list 168
pair 37

reversal of list 174

S

second projection 39

selector
for parameters 75
for recursive arguments 74

simultaneous recursion 113
single-valued formula 152

size
dyadic 9, 73
of binary trees 200

262 Index

of generalized term 157
of numeric term 232
of term 132

Skolem
axioms 24
extension 24

sorting of lists 189
special lambda notation 88
square root see integer square root
standard model

of Peano arithmetic 27

strict lower bound
in binary trees 204

strict upper bound
in binary trees 204

structural case analysis
on the constructors

of binary trees 198
of lists 168
of numeric terms 230

structural induction
on binary trees 198
on lists 169
on numeric terms 231

structural recursion
on binary trees 199
on lists 169
on numeric terms 231

structure
expansion of 21
first order 21

subtree relation 201
successor

dyadic 9
monadic 12

summation 15, 34
symbol

constant 21
function 21
non-logical 21
predicate 21

T

tag 153
tail recursion 8
term

approximation 117, 123
case discrimination see case discrimi-

nation term
computational 139
conditional 106
denotation of 21
generalized 153
regular in well-founded relation 132,

157
size of 132
special lambda notation 88

terminal clause 161
test 153
theorem 22
theory

axioms of 22
consistent 22
first order 22
theorem of 22

translation
of formula 23, 24
of generalized term 154

trichotomy discrimination 155
tuple

arithmetization of 48
predicate 49
projection function 49

U

unfolding 161
invariant 161

updating operation
in Braun trees 218

W

well-founded
induction 120
recursion 121
relation 120

witnessing term
of pattern 152

Z

zero function 12

