
Congruence-Anticongruence Closure

Ján K©uka
kluka@fmph.uniba.sk

Department of Applied Informatics
Faculty of Mathematics, Physics And Informatics

Comenius University Bratislava
Slovakia

1st Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science,

Znojmo, Czech Republic, 2005

J. K©uka (Comenius University) CA Closure MEMICS 2005 1 / 18

Outline

1 Motivation
An Overview of Our Aims
Existing Solutions

2 A Small Step Towards a Suitable Proof Assistant
The Context and the Goal
De�nitions
Clauses, Congruence, Anticongruence
CA-Closure
An Example
Proof System and Algorithm

3 Conclusion and Further Work

J. K©uka (Comenius University) CA Closure MEMICS 2005 2 / 18

Outline

1 Motivation
An Overview of Our Aims
Existing Solutions

2 A Small Step Towards a Suitable Proof Assistant
The Context and the Goal
De�nitions
Clauses, Congruence, Anticongruence
CA-Closure
An Example
Proof System and Algorithm

3 Conclusion and Further Work

J. K©uka (Comenius University) CA Closure MEMICS 2005 2 / 18

Outline

1 Motivation
An Overview of Our Aims
Existing Solutions

2 A Small Step Towards a Suitable Proof Assistant
The Context and the Goal
De�nitions
Clauses, Congruence, Anticongruence
CA-Closure
An Example
Proof System and Algorithm

3 Conclusion and Further Work

J. K©uka (Comenius University) CA Closure MEMICS 2005 2 / 18

Motivation An Overview of Our Aims

An Overview of Our Aims

Formal veri�cation of declarative programs
É programs in a comfortable conservative extension of Peano arithmetic
É i.e., untyped �rst-order functional programs
É assisted, but not automated veri�cation (theorem proving)

Teaching tool (CL)

Plan on being more practical
É modularization
É compilation with in-place updates

Our old but still used proof assistant
É based on Shostak combination of decision procedures
É no longer suits our needs

dif�cult to extend (especially to automatically use lemmas)
dif�cult to generate a proof from automated steps
too eager to rewrite =⇒ confusing (sometimes even for an experienced user)

J. K©uka (Comenius University) CA Closure MEMICS 2005 3 / 18

Motivation An Overview of Our Aims

An Overview of Our Aims

Formal veri�cation of declarative programs
É programs in a comfortable conservative extension of Peano arithmetic
É i.e., untyped �rst-order functional programs
É assisted, but not automated veri�cation (theorem proving)

Teaching tool (CL)

Plan on being more practical
É modularization
É compilation with in-place updates

Our old but still used proof assistant
É based on Shostak combination of decision procedures
É no longer suits our needs

dif�cult to extend (especially to automatically use lemmas)
dif�cult to generate a proof from automated steps
too eager to rewrite =⇒ confusing (sometimes even for an experienced user)

J. K©uka (Comenius University) CA Closure MEMICS 2005 3 / 18

Motivation An Overview of Our Aims

An Overview of Our Aims

Formal veri�cation of declarative programs
É programs in a comfortable conservative extension of Peano arithmetic
É i.e., untyped �rst-order functional programs
É assisted, but not automated veri�cation (theorem proving)

Teaching tool (CL)

Plan on being more practical
É modularization
É compilation with in-place updates

Our old but still used proof assistant
É based on Shostak combination of decision procedures
É no longer suits our needs

dif�cult to extend (especially to automatically use lemmas)
dif�cult to generate a proof from automated steps
too eager to rewrite =⇒ confusing (sometimes even for an experienced user)

J. K©uka (Comenius University) CA Closure MEMICS 2005 3 / 18

Motivation An Overview of Our Aims

An Overview of Our Aims

Formal veri�cation of declarative programs
É programs in a comfortable conservative extension of Peano arithmetic
É i.e., untyped �rst-order functional programs
É assisted, but not automated veri�cation (theorem proving)

Teaching tool (CL)

Plan on being more practical
É modularization
É compilation with in-place updates

Our old but still used proof assistant
É based on Shostak combination of decision procedures
É no longer suits our needs

dif�cult to extend (especially to automatically use lemmas)
dif�cult to generate a proof from automated steps
too eager to rewrite =⇒ confusing (sometimes even for an experienced user)

J. K©uka (Comenius University) CA Closure MEMICS 2005 3 / 18

Motivation An Overview of Our Aims

An Overview of Our Aims

Formal veri�cation of declarative programs
É programs in a comfortable conservative extension of Peano arithmetic
É i.e., untyped �rst-order functional programs
É assisted, but not automated veri�cation (theorem proving)

Teaching tool (CL)

Plan on being more practical
É modularization
É compilation with in-place updates

Our old but still used proof assistant
É based on Shostak combination of decision procedures
É no longer suits our needs

dif�cult to extend (especially to automatically use lemmas)
dif�cult to generate a proof from automated steps
too eager to rewrite =⇒ confusing (sometimes even for an experienced user)

J. K©uka (Comenius University) CA Closure MEMICS 2005 3 / 18

Motivation An Overview of Our Aims

An Overview of Our Aims

Formal veri�cation of declarative programs
É programs in a comfortable conservative extension of Peano arithmetic
É i.e., untyped �rst-order functional programs
É assisted, but not automated veri�cation (theorem proving)

Teaching tool (CL)

Plan on being more practical
É modularization
É compilation with in-place updates

Our old but still used proof assistant
É based on Shostak combination of decision procedures
É no longer suits our needs

dif�cult to extend (especially to automatically use lemmas)
dif�cult to generate a proof from automated steps
too eager to rewrite =⇒ confusing (sometimes even for an experienced user)

J. K©uka (Comenius University) CA Closure MEMICS 2005 3 / 18

Motivation An Overview of Our Aims

Properties of a Suitable Proof Assistant

We would like the proof assistant to be

simple

able to automatically use already proved theorems

able to generate an independently checkable step-by-step proof from
automated inference

non-confusing
É �nish the proof if possible
É do not interfere otherwise (no automated rewriting, source of confusion)

J. K©uka (Comenius University) CA Closure MEMICS 2005 4 / 18

Motivation An Overview of Our Aims

Properties of a Suitable Proof Assistant

We would like the proof assistant to be

simple

able to automatically use already proved theorems

able to generate an independently checkable step-by-step proof from
automated inference

non-confusing
É �nish the proof if possible
É do not interfere otherwise (no automated rewriting, source of confusion)

J. K©uka (Comenius University) CA Closure MEMICS 2005 4 / 18

Motivation An Overview of Our Aims

Properties of a Suitable Proof Assistant

We would like the proof assistant to be

simple

able to automatically use already proved theorems

able to generate an independently checkable step-by-step proof from
automated inference

non-confusing
É �nish the proof if possible
É do not interfere otherwise (no automated rewriting, source of confusion)

J. K©uka (Comenius University) CA Closure MEMICS 2005 4 / 18

Motivation An Overview of Our Aims

Properties of a Suitable Proof Assistant

We would like the proof assistant to be

simple

able to automatically use already proved theorems

able to generate an independently checkable step-by-step proof from
automated inference

non-confusing
É �nish the proof if possible
É do not interfere otherwise (no automated rewriting, source of confusion)

J. K©uka (Comenius University) CA Closure MEMICS 2005 4 / 18

Motivation An Overview of Our Aims

Properties of a Suitable Proof Assistant

We would like the proof assistant to be

simple

able to automatically use already proved theorems

able to generate an independently checkable step-by-step proof from
automated inference

non-confusing
É �nish the proof if possible
É do not interfere otherwise (no automated rewriting, source of confusion)

J. K©uka (Comenius University) CA Closure MEMICS 2005 4 / 18

Motivation An Overview of Our Aims

Properties of a Suitable Proof Assistant

We would like the proof assistant to be

simple

able to automatically use already proved theorems

able to generate an independently checkable step-by-step proof from
automated inference

non-confusing
É �nish the proof if possible
É do not interfere otherwise (no automated rewriting, source of confusion)

J. K©uka (Comenius University) CA Closure MEMICS 2005 4 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

Motivation Existing Solutions

Existing Solutions

Two main schools of assisted theorem proving

�West-Coast�

Nelson�Oppen
Shostak (PVS)
combination of decision procedures for built-in �small theories�
powerful, but no automated use of already proved lemmas
rarely generate checkable proofs
Shostak: long history of problems with correctness
Shostak: canonization (i.e., rewriting) is central

�East-Coast (and European?)�

written in ML (HOL, nuPRL, Isabelle)
proof procedures (strategies) always generate step-by-step proof
correctness ensured by ML-typing
tied to higher-order logic (HO uni�cation)
rewriting

J. K©uka (Comenius University) CA Closure MEMICS 2005 5 / 18

A Small Step Towards a Suitable Proof Assistant

Outline

1 Motivation
An Overview of Our Aims
Existing Solutions

2 A Small Step Towards a Suitable Proof Assistant
The Context and the Goal
De�nitions
Clauses, Congruence, Anticongruence
CA-Closure
An Example
Proof System and Algorithm

3 Conclusion and Further Work

J. K©uka (Comenius University) CA Closure MEMICS 2005 6 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant The Context and the Goal

The Context and the Goal

Formal system: Gentzen sequent calculus or tableaux
for �rst-order formulas with equalities

State of the proof is given by a sequent �⇒ �
É �, � are sets of �rst-order formulas
É all assumptions � hold; among others axioms and lemmas
É at least one goal of � to prove

Suf�cient to prove �′⇒ �′ for some �′ ⊆ �, �′ ⊆ �

Minimal useful choice of �′, �′ for automation:
É equalities (identities) s= t of closed (ground) terms
É decidable by the congruence closure algorithm in O(n logn)

Our choice: closed, quanti�er-free formulas

NP -complete, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 7 / 18

A Small Step Towards a Suitable Proof Assistant De�nitions

Closed, Quanti�er-Free Formulas with Equalities
De�nition

Language L :

countable set of function and relation symbols, arity of each symbol
no variables; at least one constant�function symbol 0 of arity 0

Terms (s, t, . . .) de�ned inductively: the set of all f(t1; . . . ;tn)
f is a function symbol of arity n≥ 0,
if n> 0, t1, . . . , tn are terms

Atomic formulas
s= t for terms s, t
R(t1; . . . ;tn) for terms ti, i= 1; . . . ;n

Formulas (A, B, . . .) de�ned inductively

atomic formulas
>, ⊥, ¬A, A∧B, A∨B, A→ B, if A, B are formulas
�⇒ � (sequent) if �, � are �nite sets of formulas
no variables =⇒ no quanti�ers

J. K©uka (Comenius University) CA Closure MEMICS 2005 8 / 18

A Small Step Towards a Suitable Proof Assistant De�nitions

Closed, Quanti�er-Free Formulas with Equalities
De�nition

Language L :

countable set of function and relation symbols, arity of each symbol
no variables; at least one constant�function symbol 0 of arity 0

Terms (s, t, . . .) de�ned inductively: the set of all f(t1; . . . ;tn)
f is a function symbol of arity n≥ 0,
if n> 0, t1, . . . , tn are terms

Atomic formulas
s= t for terms s, t
R(t1; . . . ;tn) for terms ti, i= 1; . . . ;n

Formulas (A, B, . . .) de�ned inductively

atomic formulas
>, ⊥, ¬A, A∧B, A∨B, A→ B, if A, B are formulas
�⇒ � (sequent) if �, � are �nite sets of formulas
no variables =⇒ no quanti�ers

J. K©uka (Comenius University) CA Closure MEMICS 2005 8 / 18

A Small Step Towards a Suitable Proof Assistant De�nitions

Closed, Quanti�er-Free Formulas with Equalities
De�nition

Language L :

countable set of function and relation symbols, arity of each symbol
no variables; at least one constant�function symbol 0 of arity 0

Terms (s, t, . . .) de�ned inductively: the set of all f(t1; . . . ;tn)
f is a function symbol of arity n≥ 0,
if n> 0, t1, . . . , tn are terms

Atomic formulas
s= t for terms s, t
R(t1; . . . ;tn) for terms ti, i= 1; . . . ;n

Formulas (A, B, . . .) de�ned inductively

atomic formulas
>, ⊥, ¬A, A∧B, A∨B, A→ B, if A, B are formulas
�⇒ � (sequent) if �, � are �nite sets of formulas
no variables =⇒ no quanti�ers

J. K©uka (Comenius University) CA Closure MEMICS 2005 8 / 18

A Small Step Towards a Suitable Proof Assistant De�nitions

Closed, Quanti�er-Free Formulas with Equalities
De�nition

Language L :

countable set of function and relation symbols, arity of each symbol
no variables; at least one constant�function symbol 0 of arity 0

Terms (s, t, . . .) de�ned inductively: the set of all f(t1; . . . ;tn)
f is a function symbol of arity n≥ 0,
if n> 0, t1, . . . , tn are terms

Atomic formulas
s= t for terms s, t
R(t1; . . . ;tn) for terms ti, i= 1; . . . ;n

Formulas (A, B, . . .) de�ned inductively

atomic formulas
>, ⊥, ¬A, A∧B, A∨B, A→ B, if A, B are formulas
�⇒ � (sequent) if �, � are �nite sets of formulas
no variables =⇒ no quanti�ers

J. K©uka (Comenius University) CA Closure MEMICS 2005 8 / 18

A Small Step Towards a Suitable Proof Assistant De�nitions

Quanti�er-Free Formulas with Equality
Semantics

Standard notion of structureM :
É domain D
É fM : Dn→ D
É RM ⊆ Dn

Recursively de�ned valuation of terms tM

Satisfaction relationM � A
É M � s= t iff sM = tM

É M � R(s1; . . . ;sn) iff (sM1 ; . . . ;sMn)∈ RM
É M � A∧B iffM � A andM � B
. . .
É M � �⇒ � iff wheneverM � A for all A∈ �,

then there is a B∈ � such thatM � B
Consequence T � A
É for allM such thatM � T,M � A

J. K©uka (Comenius University) CA Closure MEMICS 2005 9 / 18

A Small Step Towards a Suitable Proof Assistant De�nitions

Quanti�er-Free Formulas with Equality
Semantics

Standard notion of structureM :
É domain D
É fM : Dn→ D
É RM ⊆ Dn

Recursively de�ned valuation of terms tM

Satisfaction relationM � A
É M � s= t iff sM = tM

É M � R(s1; . . . ;sn) iff (sM1 ; . . . ;sMn)∈ RM
É M � A∧B iffM � A andM � B
. . .
É M � �⇒ � iff wheneverM � A for all A∈ �,

then there is a B∈ � such thatM � B
Consequence T � A
É for allM such thatM � T,M � A

J. K©uka (Comenius University) CA Closure MEMICS 2005 9 / 18

A Small Step Towards a Suitable Proof Assistant De�nitions

Quanti�er-Free Formulas with Equality
Semantics

Standard notion of structureM :
É domain D
É fM : Dn→ D
É RM ⊆ Dn

Recursively de�ned valuation of terms tM

Satisfaction relationM � A
É M � s= t iff sM = tM

É M � R(s1; . . . ;sn) iff (sM1 ; . . . ;sMn)∈ RM
É M � A∧B iffM � A andM � B
. . .
É M � �⇒ � iff wheneverM � A for all A∈ �,

then there is a B∈ � such thatM � B
Consequence T � A
É for allM such thatM � T,M � A

J. K©uka (Comenius University) CA Closure MEMICS 2005 9 / 18

A Small Step Towards a Suitable Proof Assistant De�nitions

Quanti�er-Free Formulas with Equality
Semantics

Standard notion of structureM :
É domain D
É fM : Dn→ D
É RM ⊆ Dn

Recursively de�ned valuation of terms tM

Satisfaction relationM � A
É M � s= t iff sM = tM

É M � R(s1; . . . ;sn) iff (sM1 ; . . . ;sMn)∈ RM
É M � A∧B iffM � A andM � B
. . .
É M � �⇒ � iff wheneverM � A for all A∈ �,

then there is a B∈ � such thatM � B
Consequence T � A
É for allM such thatM � T,M � A

J. K©uka (Comenius University) CA Closure MEMICS 2005 9 / 18

A Small Step Towards a Suitable Proof Assistant De�nitions

Quanti�er-Free Formulas with Equality
Semantics

Standard notion of structureM :
É domain D
É fM : Dn→ D
É RM ⊆ Dn

Recursively de�ned valuation of terms tM

Satisfaction relationM � A
É M � s= t iff sM = tM

É M � R(s1; . . . ;sn) iff (sM1 ; . . . ;sMn)∈ RM
É M � A∧B iffM � A andM � B
. . .
É M � �⇒ � iff wheneverM � A for all A∈ �,

then there is a B∈ � such thatM � B
Consequence T � A
É for allM such thatM � T,M � A

J. K©uka (Comenius University) CA Closure MEMICS 2005 9 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Congruence and Congruence Closure

The congruence closure algorithm:

a data structure representing an equivalence over terms

re�exivity s= s
symmetry s= t→ t= s

transitivity s= t∧ t= u→ s= u

iterative closing under congruence
(the substitution axiom for function symbols)

s1 = t1 ∧ · · · ∧ sn = tn→ f(s1; . . . ;sn) = f(t1; . . . ;tn)

the sequent form of congruence:

s1 = t1; . . . ;sn = tn⇒ f(s1; . . . ;sn) = f(t1; . . . ;tn)

J. K©uka (Comenius University) CA Closure MEMICS 2005 10 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Congruence and Congruence Closure

The congruence closure algorithm:

a data structure representing an equivalence over terms

re�exivity s= s
symmetry s= t→ t= s

transitivity s= t∧ t= u→ s= u

iterative closing under congruence
(the substitution axiom for function symbols)

s1 = t1 ∧ · · · ∧ sn = tn→ f(s1; . . . ;sn) = f(t1; . . . ;tn)

the sequent form of congruence:

s1 = t1; . . . ;sn = tn⇒ f(s1; . . . ;sn) = f(t1; . . . ;tn)

J. K©uka (Comenius University) CA Closure MEMICS 2005 10 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Congruence and Congruence Closure

The congruence closure algorithm:

a data structure representing an equivalence over terms

re�exivity s= s
symmetry s= t→ t= s

transitivity s= t∧ t= u→ s= u

iterative closing under congruence
(the substitution axiom for function symbols)

s1 = t1 ∧ · · · ∧ sn = tn→ f(s1; . . . ;sn) = f(t1; . . . ;tn)

the sequent form of congruence:

s1 = t1; . . . ;sn = tn⇒ f(s1; . . . ;sn) = f(t1; . . . ;tn)

J. K©uka (Comenius University) CA Closure MEMICS 2005 10 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Horn Clauses and Congruence
The Key Observation

A Horn clause with only equalities as atomic formulas

s1 6= t1 ∨ · · · ∨ sn 6= tn ∨u= v

sequent form
s1 = t1; . . . ;sn = tn⇒ u= v

is equivalent to

g(s1; . . . ;sn) = u

g(t1; . . . ;tn) = v

plus congruence

s1 = t1; . . . ;sn = tn⇒ g(s1; . . . ;sn) = g(t1; . . . ;tn)

for a new function symbol g
J. K©uka (Comenius University) CA Closure MEMICS 2005 11 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Horn Clauses and Congruence
The Key Observation

A Horn clause with only equalities as atomic formulas

s1 6= t1 ∨ · · · ∨ sn 6= tn ∨u= v

sequent form
s1 = t1; . . . ;sn = tn⇒ u= v

is equivalent to

g(s1; . . . ;sn) = u

g(t1; . . . ;tn) = v

plus congruence

s1 = t1; . . . ;sn = tn⇒ g(s1; . . . ;sn) = g(t1; . . . ;tn)

for a new function symbol g
J. K©uka (Comenius University) CA Closure MEMICS 2005 11 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Horn Clauses and Congruence
The Key Observation

A Horn clause with only equalities as atomic formulas

s1 6= t1 ∨ · · · ∨ sn 6= tn ∨u= v

sequent form
s1 = t1; . . . ;sn = tn⇒ u= v

is equivalent to

g(s1; . . . ;sn) = u

g(t1; . . . ;tn) = v

plus congruence

s1 = t1; . . . ;sn = tn⇒ g(s1; . . . ;sn) = g(t1; . . . ;tn)

for a new function symbol g
J. K©uka (Comenius University) CA Closure MEMICS 2005 11 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Horn Clauses and Congruence
The Key Observation

A Horn clause with only equalities as atomic formulas

s1 6= t1 ∨ · · · ∨ sn 6= tn ∨u= v

sequent form
s1 = t1; . . . ;sn = tn⇒ u= v

is equivalent to

g(s1; . . . ;sn) = u

g(t1; . . . ;tn) = v

plus congruence

s1 = t1; . . . ;sn = tn⇒ g(s1; . . . ;sn) = g(t1; . . . ;tn)

for a new function symbol g
J. K©uka (Comenius University) CA Closure MEMICS 2005 11 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Clauses and Anticongruence

A general clause with only equalities as atomic formulas (sequent form)

s1 = t1; . . . ;sn = tn⇒ u1 = v1; . . . ;um = vm

is equivalent to

g(s1; . . . ;sn) = h(u1; . . . ;um)

g(t1; . . . ;tn) = h(v1; . . . ;vm)

plus congruence

s1 = t1; . . . ;sn = tn⇒ g(s1; . . . ;sn) = g(t1; . . . ;tn)

for a new function symbol g
plus anticongruence

h(u1; . . . ;um) = h(v1; . . . ;vm)⇒ u1 = v1; . . . ;um = vm

for a new anticongruence function symbol h
J. K©uka (Comenius University) CA Closure MEMICS 2005 12 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Clauses and Anticongruence

A general clause with only equalities as atomic formulas (sequent form)

s1 = t1; . . . ;sn = tn⇒ u1 = v1; . . . ;um = vm

is equivalent to

g(s1; . . . ;sn) = h(u1; . . . ;um)

g(t1; . . . ;tn) = h(v1; . . . ;vm)

plus congruence

s1 = t1; . . . ;sn = tn⇒ g(s1; . . . ;sn) = g(t1; . . . ;tn)

for a new function symbol g
plus anticongruence

h(u1; . . . ;um) = h(v1; . . . ;vm)⇒ u1 = v1; . . . ;um = vm

for a new anticongruence function symbol h
J. K©uka (Comenius University) CA Closure MEMICS 2005 12 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Clauses and Anticongruence

A general clause with only equalities as atomic formulas (sequent form)

s1 = t1; . . . ;sn = tn⇒ u1 = v1; . . . ;um = vm

is equivalent to

g(s1; . . . ;sn) = h(u1; . . . ;um)

g(t1; . . . ;tn) = h(v1; . . . ;vm)

plus congruence

s1 = t1; . . . ;sn = tn⇒ g(s1; . . . ;sn) = g(t1; . . . ;tn)

for a new function symbol g
plus anticongruence

h(u1; . . . ;um) = h(v1; . . . ;vm)⇒ u1 = v1; . . . ;um = vm

for a new anticongruence function symbol h
J. K©uka (Comenius University) CA Closure MEMICS 2005 12 / 18

A Small Step Towards a Suitable Proof Assistant Clauses, Congruence, Anticongruence

Clauses and Anticongruence

A general clause with only equalities as atomic formulas (sequent form)

s1 = t1; . . . ;sn = tn⇒ u1 = v1; . . . ;um = vm

is equivalent to

g(s1; . . . ;sn) = h(u1; . . . ;um)

g(t1; . . . ;tn) = h(v1; . . . ;vm)

plus congruence

s1 = t1; . . . ;sn = tn⇒ g(s1; . . . ;sn) = g(t1; . . . ;tn)

for a new function symbol g
plus anticongruence

h(u1; . . . ;um) = h(v1; . . . ;vm)⇒ u1 = v1; . . . ;um = vm

for a new anticongruence function symbol h
J. K©uka (Comenius University) CA Closure MEMICS 2005 12 / 18

A Small Step Towards a Suitable Proof Assistant CA-Closure

CA-Closure for Assisted Theorem Proving

Equality is central, must always be handled automatically
(by congruence closure)

Propositional part can be reduced to equality
and handled by anticongruence closure

Several steps are needed:
É Elimination of relation symbols

(makes equality the only relation symbol)
É Transformation to conjunctive normal form

(set of sequents with only atomic members�clauses)
É Replacement of sequents by new special function symbols and equalities
É Proof system for equalities with special function symbols
É Algorithm for the proof system

J. K©uka (Comenius University) CA Closure MEMICS 2005 13 / 18

A Small Step Towards a Suitable Proof Assistant CA-Closure

CA-Closure for Assisted Theorem Proving

Equality is central, must always be handled automatically
(by congruence closure)

Propositional part can be reduced to equality
and handled by anticongruence closure

Several steps are needed:
É Elimination of relation symbols

(makes equality the only relation symbol)
É Transformation to conjunctive normal form

(set of sequents with only atomic members�clauses)
É Replacement of sequents by new special function symbols and equalities
É Proof system for equalities with special function symbols
É Algorithm for the proof system

J. K©uka (Comenius University) CA Closure MEMICS 2005 13 / 18

A Small Step Towards a Suitable Proof Assistant CA-Closure

CA-Closure for Assisted Theorem Proving

Equality is central, must always be handled automatically
(by congruence closure)

Propositional part can be reduced to equality
and handled by anticongruence closure

Several steps are needed:
É Elimination of relation symbols

(makes equality the only relation symbol)
É Transformation to conjunctive normal form

(set of sequents with only atomic members�clauses)
É Replacement of sequents by new special function symbols and equalities
É Proof system for equalities with special function symbols
É Algorithm for the proof system

J. K©uka (Comenius University) CA Closure MEMICS 2005 13 / 18

A Small Step Towards a Suitable Proof Assistant CA-Closure

CA-Closure for Assisted Theorem Proving

Equality is central, must always be handled automatically
(by congruence closure)

Propositional part can be reduced to equality
and handled by anticongruence closure

Several steps are needed:
É Elimination of relation symbols

(makes equality the only relation symbol)
É Transformation to conjunctive normal form

(set of sequents with only atomic members�clauses)
É Replacement of sequents by new special function symbols and equalities
É Proof system for equalities with special function symbols
É Algorithm for the proof system

J. K©uka (Comenius University) CA Closure MEMICS 2005 13 / 18

A Small Step Towards a Suitable Proof Assistant CA-Closure

CA-Closure for Assisted Theorem Proving

Equality is central, must always be handled automatically
(by congruence closure)

Propositional part can be reduced to equality
and handled by anticongruence closure

Several steps are needed:
É Elimination of relation symbols

(makes equality the only relation symbol)
É Transformation to conjunctive normal form

(set of sequents with only atomic members�clauses)
É Replacement of sequents by new special function symbols and equalities
É Proof system for equalities with special function symbols
É Algorithm for the proof system

J. K©uka (Comenius University) CA Closure MEMICS 2005 13 / 18

A Small Step Towards a Suitable Proof Assistant CA-Closure

CA-Closure for Assisted Theorem Proving

Equality is central, must always be handled automatically
(by congruence closure)

Propositional part can be reduced to equality
and handled by anticongruence closure

Several steps are needed:
É Elimination of relation symbols

(makes equality the only relation symbol)
É Transformation to conjunctive normal form

(set of sequents with only atomic members�clauses)
É Replacement of sequents by new special function symbols and equalities
É Proof system for equalities with special function symbols
É Algorithm for the proof system

J. K©uka (Comenius University) CA Closure MEMICS 2005 13 / 18

A Small Step Towards a Suitable Proof Assistant CA-Closure

CA-Closure for Assisted Theorem Proving

Equality is central, must always be handled automatically
(by congruence closure)

Propositional part can be reduced to equality
and handled by anticongruence closure

Several steps are needed:
É Elimination of relation symbols

(makes equality the only relation symbol)
É Transformation to conjunctive normal form

(set of sequents with only atomic members�clauses)
É Replacement of sequents by new special function symbols and equalities
É Proof system for equalities with special function symbols
É Algorithm for the proof system

J. K©uka (Comenius University) CA Closure MEMICS 2005 13 / 18

A Small Step Towards a Suitable Proof Assistant CA-Closure

CA-Closure for Assisted Theorem Proving

Equality is central, must always be handled automatically
(by congruence closure)

Propositional part can be reduced to equality
and handled by anticongruence closure

Several steps are needed:
É Elimination of relation symbols

(makes equality the only relation symbol)
É Transformation to conjunctive normal form

(set of sequents with only atomic members�clauses)
É Replacement of sequents by new special function symbols and equalities
É Proof system for equalities with special function symbols
É Algorithm for the proof system

J. K©uka (Comenius University) CA Closure MEMICS 2005 13 / 18

A Small Step Towards a Suitable Proof Assistant An Example

An Example
Part 1 of 2

Initial closed, quanti�er-free part of the sequent to be proved

a< b∧b< c→ a< c;

a< b∨b< a;

b< c;b= d







⇒ a< c;d< a

Elimination of relation symbols

<∗(a;b) = 0∧<∗(b;c) = 0→<∗(a;c) = 0;

<∗(a;b) = 0∨<∗(b;a) = 0;

<∗(d;c) = 0;b= d







⇒<∗(a;c) = 0;<∗(d;a) = 0

Transformation to CNF

1

<∗(a;b) = 0;<∗(b;c) = 0⇒<∗(a;c) = 0; ⇒<∗(a;b) = 0;<∗(b;a) = 0;

⇒<∗(b;c) = 0; ⇒ b= d; <∗(a;c) = 0⇒

0= 1

; <∗(d;a) = 0⇒

0= 1

Avoid exponential blow-up
J. K©uka (Comenius University) CA Closure MEMICS 2005 14 / 18

A Small Step Towards a Suitable Proof Assistant An Example

An Example
Part 1 of 2

Initial closed, quanti�er-free part of the sequent to be proved

a< b∧b< c→ a< c;

a< b∨b< a;

b< c;b= d







⇒ a< c;d< a

Elimination of relation symbols

<∗(a;b) = 0∧<∗(b;c) = 0→<∗(a;c) = 0;

<∗(a;b) = 0∨<∗(b;a) = 0;

<∗(d;c) = 0;b= d







⇒<∗(a;c) = 0;<∗(d;a) = 0

Transformation to CNF

1

<∗(a;b) = 0;<∗(b;c) = 0⇒<∗(a;c) = 0; ⇒<∗(a;b) = 0;<∗(b;a) = 0;

⇒<∗(b;c) = 0; ⇒ b= d; <∗(a;c) = 0⇒

0= 1

; <∗(d;a) = 0⇒

0= 1

Avoid exponential blow-up
J. K©uka (Comenius University) CA Closure MEMICS 2005 14 / 18

A Small Step Towards a Suitable Proof Assistant An Example

An Example
Part 1 of 2

Initial closed, quanti�er-free part of the sequent to be proved

a< b∧b< c→ a< c;

a< b∨b< a;

b< c;b= d







⇒ a< c;d< a

Elimination of relation symbols

<∗(a;b) = 0∧<∗(b;c) = 0→<∗(a;c) = 0;

<∗(a;b) = 0∨<∗(b;a) = 0;

<∗(d;c) = 0;b= d







⇒<∗(a;c) = 0;<∗(d;a) = 0

Transformation to CNF

1

<∗(a;b) = 0;<∗(b;c) = 0⇒<∗(a;c) = 0; ⇒<∗(a;b) = 0;<∗(b;a) = 0;

⇒<∗(b;c) = 0; ⇒ b= d; <∗(a;c) = 0⇒

0= 1

; <∗(d;a) = 0⇒

0= 1

Avoid exponential blow-up
J. K©uka (Comenius University) CA Closure MEMICS 2005 14 / 18

A Small Step Towards a Suitable Proof Assistant An Example

An Example
Part 1 of 2

Initial closed, quanti�er-free part of the sequent to be proved

a< b∧b< c→ a< c;

a< b∨b< a;

b< c;b= d







⇒ a< c;d< a

Elimination of relation symbols

<∗(a;b) = 0∧<∗(b;c) = 0→<∗(a;c) = 0;

<∗(a;b) = 0∨<∗(b;a) = 0;

<∗(d;c) = 0;b= d







⇒<∗(a;c) = 0;<∗(d;a) = 0

Transformation to CNF1

<∗(a;b) = 0;<∗(b;c) = 0⇒<∗(a;c) = 0; ⇒<∗(a;b) = 0;<∗(b;a) = 0;

⇒<∗(b;c) = 0; ⇒ b= d; <∗(a;c) = 0⇒ 0= 1; <∗(d;a) = 0⇒ 0= 1

Avoid exponential blow-up
J. K©uka (Comenius University) CA Closure MEMICS 2005 14 / 18

A Small Step Towards a Suitable Proof Assistant An Example

An Example
Part 2 of 2

After transformation to CNF1

<∗(a;b) = 0;<∗(b;c) = 0⇒<∗(a;c) = 0

⇒<∗(a;b) = 0;<∗(b;a) = 0;

⇒<∗(b;c) = 0; ⇒ b= d;

<∗(a;c) = 0⇒ 0= 1;

<∗(d;a) = 0⇒ 0= 1

Reduction of sequents to equalities

g1(<∗(a;b);<∗(b;c)) =<∗(a;c); g1(0;0) = 0

h2(<∗(a;b);<∗(b;a)) = h2(0;0);

<∗(b;c) = 0; b= d;

g5(<∗(a;c)) = 0; g5(0) = 1;

g6(<∗(d;a)) = 0; g6(0) = 1

J. K©uka (Comenius University) CA Closure MEMICS 2005 15 / 18

A Small Step Towards a Suitable Proof Assistant An Example

An Example
Part 2 of 2

After transformation to CNF1

<∗(a;b) = 0;<∗(b;c) = 0⇒<∗(a;c) = 0

⇒<∗(a;b) = 0;<∗(b;a) = 0;

⇒<∗(b;c) = 0; ⇒ b= d;

<∗(a;c) = 0⇒ 0= 1;

<∗(d;a) = 0⇒ 0= 1

Reduction of sequents to equalities

g1(<∗(a;b);<∗(b;c)) =<∗(a;c); g1(0;0) = 0

h2(<∗(a;b);<∗(b;a)) = h2(0;0);

<∗(b;c) = 0; b= d;

g5(<∗(a;c)) = 0; g5(0) = 1;

g6(<∗(d;a)) = 0; g6(0) = 1

J. K©uka (Comenius University) CA Closure MEMICS 2005 15 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time

, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

A Small Step Towards a Suitable Proof Assistant Proof System and Algorithm

Proof System and Algorithm

The CA-proof system
É C-rule

f(~s) = f(~t);�

�
if � �e~s=~t

É A-rule
u1 = v1;� | · · · | um = vm;�

�
if there is an anticongruence symbol h such that
� �e h(u1; . . . ;um) = h(v1; . . . ;vm)

The CA-algorithm
1 apply C-rule while possible (standard congruence closure)
2 if � �e 0= 1, return proved
3 apply A-rule if possible

1 call the CA-algorithm recursively for each branch
2 return proved if all recursive calls returned proved

4 otherwise return a counterexample

Branching causes exponential running time, but. . .

J. K©uka (Comenius University) CA Closure MEMICS 2005 16 / 18

Conclusion and Further Work

Conclusion and Further Work

Congruence closure can be more useful than it seems

Can derive from Horn clauses

Can be extended to deal with any propositional content of formulas
by �symmetric� anticongruences

Pilot implementation only

Work in progress on adding formulas

∀x(s1 = t1; . . . ;sn = tn⇒ u1 = v1; . . . ;um = vm)

Will enable automated use of most common axioms and lemmas

J. K©uka (Comenius University) CA Closure MEMICS 2005 17 / 18

Conclusion and Further Work

Conclusion and Further Work

Congruence closure can be more useful than it seems

Can derive from Horn clauses

Can be extended to deal with any propositional content of formulas
by �symmetric� anticongruences

Pilot implementation only

Work in progress on adding formulas

∀x(s1 = t1; . . . ;sn = tn⇒ u1 = v1; . . . ;um = vm)

Will enable automated use of most common axioms and lemmas

J. K©uka (Comenius University) CA Closure MEMICS 2005 17 / 18

Conclusion and Further Work

Conclusion and Further Work

Congruence closure can be more useful than it seems

Can derive from Horn clauses

Can be extended to deal with any propositional content of formulas
by �symmetric� anticongruences

Pilot implementation only

Work in progress on adding formulas

∀x(s1 = t1; . . . ;sn = tn⇒ u1 = v1; . . . ;um = vm)

Will enable automated use of most common axioms and lemmas

J. K©uka (Comenius University) CA Closure MEMICS 2005 17 / 18

Conclusion and Further Work

Conclusion and Further Work

Congruence closure can be more useful than it seems

Can derive from Horn clauses

Can be extended to deal with any propositional content of formulas
by �symmetric� anticongruences

Pilot implementation only

Work in progress on adding formulas

∀x(s1 = t1; . . . ;sn = tn⇒ u1 = v1; . . . ;um = vm)

Will enable automated use of most common axioms and lemmas

J. K©uka (Comenius University) CA Closure MEMICS 2005 17 / 18

Conclusion and Further Work

Conclusion and Further Work

Congruence closure can be more useful than it seems

Can derive from Horn clauses

Can be extended to deal with any propositional content of formulas
by �symmetric� anticongruences

Pilot implementation only

Work in progress on adding formulas

∀x(s1 = t1; . . . ;sn = tn⇒ u1 = v1; . . . ;um = vm)

Will enable automated use of most common axioms and lemmas

J. K©uka (Comenius University) CA Closure MEMICS 2005 17 / 18

Conclusion and Further Work

Thank you!

J. K©uka (Comenius University) CA Closure MEMICS 2005 18 / 18

	Motivation
	An Overview of Our Aims
	Existing Solutions

	A Small Step Towards a Suitable Proof Assistant
	The Context and the Goal
	Definitions
	Clauses, Congruence, Anticongruence
	CA-Closure
	An Example
	Proof System and Algorithm

	Conclusion and Further Work

