Congruence-Anticongruence Closure

Ján Kľuka

kluka@fmph.uniba.sk

Department of Applied Informatics Faculty of Mathematics, Physics And Informatics Comenius University Bratislava Slovakia

1st Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, Znojmo, Czech Republic, 2005

J. Kľuka (Comenius University)

Motivation

- An Overview of Our Aims
- Existing Solutions

2 A Small Step Towards a Suitable Proof Assistant

- The Context and the Goal
- Definitions
- Clauses, Congruence, Anticongruence
- CA-Closure
- An Example
- Proof System and Algorithm

3 Conclusion and Further Work

Motivation

- An Overview of Our Aims
- Existing Solutions

A Small Step Towards a Suitable Proof Assistant

- The Context and the Goal
- Definitions
- Clauses, Congruence, Anticongruence
- CA-Closure
- An Example
- Proof System and Algorithm

- An Overview of Our Aims
- Existing Solutions

A Small Step Towards a Suitable Proof Assistant

- The Context and the Goal
- Definitions
- Clauses, Congruence, Anticongruence
- CA-Closure
- An Example
- Proof System and Algorithm

Formal verification of declarative programs

- programs in a comfortable conservative extension of Peano arithmetic
- i.e., untyped first-order functional programs
- assisted, but not automated verification (theorem proving)
- Teaching tool (CL)
- Plan on being more practical
 - modularization
 - compilation with in-place updates
- Our old but still used proof assistant

Formal verification of declarative programs

- programs in a comfortable conservative extension of Peano arithmetic
- i.e., untyped first-order functional programs
- assisted, but not automated verification (theorem proving)

Teaching tool (CL)

- Plan on being more practical
 - modularization
 - compilation with in-place updates
- Our old but still used proof assistant

- Formal verification of declarative programs
 - programs in a comfortable conservative extension of Peano arithmetic
 - i.e., untyped first-order functional programs
 - assisted, but not automated verification (theorem proving)
- Teaching tool (CL)
- Plan on being more practical
 - modularization
 - compilation with in-place updates
- Our old but still used proof assistant

- Formal verification of declarative programs
 - programs in a comfortable conservative extension of Peano arithmetic
 - i.e., untyped first-order functional programs
 - assisted, but not automated verification (theorem proving)
- Teaching tool (CL)
- Plan on being more practical
 - modularization
 - compilation with in-place updates
- Our old but still used proof assistant
 - based on Shostak combination of decision procedures
 - no longer suits our needs
 - difficult to extend (especially to automatically use lemmas)
 - difficult to generate a proof from automated steps
 - too eager to rewrite \implies confusing (sometimes even for an experienced user)

- Formal verification of declarative programs
 - programs in a comfortable conservative extension of Peano arithmetic
 - i.e., untyped first-order functional programs
 - assisted, but not automated verification (theorem proving)
- Teaching tool (CL)
- Plan on being more practical
 - modularization
 - compilation with in-place updates
- Our old but still used proof assistant
 - based on Shostak combination of decision procedures
 - no longer suits our needs
 - difficult to extend (especially to automatically use lemmas)
 - difficult to generate a proof from automated steps
 - too eager to rewrite \implies confusing (sometimes even for an experienced user)

- Formal verification of declarative programs
 - programs in a comfortable conservative extension of Peano arithmetic
 - i.e., untyped first-order functional programs
 - assisted, but not automated verification (theorem proving)
- Teaching tool (CL)
- Plan on being more practical
 - modularization
 - compilation with in-place updates
- Our old but still used proof assistant
 - based on Shostak combination of decision procedures
 - no longer suits our needs
 - difficult to extend (especially to automatically use lemmas)
 - difficult to generate a proof from automated steps
 - too eager to rewrite \implies confusing (sometimes even for an experienced user)

- simple
- able to automatically use already proved theorems
- able to generate an independently checkable step-by-step proof from automated inference
- non-confusing

- simple
- able to automatically use already proved theorems
- able to generate an independently checkable step-by-step proof from automated inference
- non-confusing

- simple
- able to automatically use already proved theorems
- able to generate an independently checkable step-by-step proof from automated inference
- non-confusing

- simple
- able to automatically use already proved theorems
- able to generate an independently checkable step-by-step proof from automated inference
- non-confusing
 - finish the proof if possible
 - do not interfere otherwise (no automated rewriting, source of confusion)

- simple
- able to automatically use already proved theorems
- able to generate an independently checkable step-by-step proof from automated inference
- non-confusing
 - finish the proof if possible
 - do not interfere otherwise (no automated rewriting, source of confusion)

- simple
- able to automatically use already proved theorems
- able to generate an independently checkable step-by-step proof from automated inference
- non-confusing
 - finish the proof if possible
 - do not interfere otherwise (no automated rewriting, source of confusion)

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for *built-in* "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

Two main schools of assisted theorem proving

"West-Coast"

Nelson-Oppen

- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for *built-in* "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central
- "East-Coast (and European?)"
 - written in ML (HOL, nuPRL, Isabelle)
 - proof procedures (strategies) always generate step-by-step proof
 - correctness ensured by ML-typing
 - tied to higher-order logic (HO unification)

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

- written in ML (HOL, nuPRL, Isabelle)
- proof procedures (strategies) always generate step-by-step proof
- correctness ensured by ML-typing
- tied to higher-order logic (HO unification)

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

- written in ML (HOL, nuPRL, Isabelle)
- proof procedures (strategies) always generate step-by-step proof
- correctness ensured by ML-typing
- tied to higher-order logic (HO unification)
- rewriting

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

- written in ML (HOL, nuPRL, Isabelle)
- proof procedures (strategies) always generate step-by-step proof
- correctness ensured by ML-typing
- tied to higher-order logic (HO unification)
- rewriting

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

"East-Coast (and European?)"

- written in ML (HOL, nuPRL, Isabelle)
- proof procedures (strategies) always generate step-by-step proof
- correctness ensured by ML-typing
- tied to higher-order logic (HO unification)

rewriting

Two main schools of assisted theorem proving

"West-Coast"

- Nelson-Oppen
- Shostak (PVS)
- combination of decision procedures for built-in "small theories"
- powerful, but no automated use of already proved lemmas
- rarely generate checkable proofs
- Shostak: long history of problems with correctness
- Shostak: canonization (i.e., rewriting) is central

- written in ML (HOL, nuPRL, Isabelle)
- proof procedures (strategies) always generate step-by-step proof
- correctness ensured by ML-typing
- tied to higher-order logic (HO unification)
- rewriting

Motivation

- An Overview of Our Aims
- Existing Solutions

A Small Step Towards a Suitable Proof Assistant

- The Context and the Goal
- Definitions
- Clauses, Congruence, Anticongruence
- CA-Closure
- An Example
- Proof System and Algorithm

• Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities

• State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$

at least one in the fit of the prove

- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ', Δ' for automation:

Our choice: closed, quantifier-free formulas
NP-complete, but...

- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - \triangleright Γ , Δ are sets of first-order formulas
 - all assumptions Γ hold; among others axioms and lemmas
 - at least one *goal* of Δ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma, \ \Delta' \subseteq \Delta$
- Minimal useful choice of Γ', Δ' for automation:

Our choice: closed, quantifier-free formulas

● *NP*-complete, but. .

- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - Γ , Δ are sets of first-order formulas
 - all assumptions Γ hold; among others axioms and lemmas
 - at least one *goal* of Δ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ' , Δ' for automation:

Our choice: closed, quantifier-free formulas

• *NP*-complete, but. .

- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - Γ , Δ are sets of first-order formulas
 - all assumptions Γ hold; among others axioms and lemmas
 - at least one *goal* of Δ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ' , Δ' for automation:

Our choice: closed, quantifier-free formulas

• *NP*-complete, but. .

- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - Γ , Δ are sets of first-order formulas
 - ► all assumptions Γ hold; among others axioms and lemmas
 - ► at least one goal of ∆ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ' , Δ' for automation:

Our choice: closed, quantifier-free formulas

• *NP*-complete, but. .
- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - Γ , Δ are sets of first-order formulas
 - ► all assumptions Γ hold; among others axioms and lemmas
 - ► at least one goal of ∆ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ' , Δ' for automation:

Our choice: closed, quantifier-free formulas

• NP-complete, but. .

- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - Γ , Δ are sets of first-order formulas
 - ► all assumptions Γ hold; among others axioms and lemmas
 - ► at least one goal of ∆ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ' , Δ' for automation:
 - equalities (identities) s = t of closed (ground) terms
 - decidable by the congruence closure algorithm in O(nlogn)
- Our choice: closed, quantifier-free formulas

• *NP*-complete, but. .

- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - Γ , Δ are sets of first-order formulas
 - ► all assumptions Γ hold; among others axioms and lemmas
 - ► at least one goal of ∆ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ' , Δ' for automation:
 - equalities (identities) s = t of closed (ground) terms
 - decidable by the congruence closure algorithm in O(nlogn)
- Our choice: closed, quantifier-free formulas
- NP-complete, but...

- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - Γ , Δ are sets of first-order formulas
 - ► all assumptions Γ hold; among others axioms and lemmas
 - ► at least one goal of Δ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ' , Δ' for automation:
 - equalities (identities) s = t of closed (ground) terms
 - decidable by the congruence closure algorithm in O(nlog n)
- Our choice: closed, quantifier-free formulas

• NP-complete, but...

- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - Γ , Δ are sets of first-order formulas
 - ► all assumptions Γ hold; among others axioms and lemmas
 - ► at least one goal of ∆ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ' , Δ' for automation:
 - equalities (identities) s = t of closed (ground) terms
 - decidable by the congruence closure algorithm in O(nlogn)
- Our choice: closed, quantifier-free formulas

NP-complete, but...

- Formal system: Gentzen sequent calculus or tableaux for first-order formulas with equalities
- State of the proof is given by a sequent $\Gamma \Rightarrow \Delta$
 - Γ , Δ are sets of first-order formulas
 - ► all assumptions Γ hold; among others axioms and lemmas
 - ► at least one goal of Δ to prove
- Sufficient to prove $\Gamma' \Rightarrow \Delta'$ for some $\Gamma' \subseteq \Gamma$, $\Delta' \subseteq \Delta$
- Minimal useful choice of Γ' , Δ' for automation:
 - equalities (identities) s = t of closed (ground) terms
 - decidable by the congruence closure algorithm in O(nlogn)
- Our choice: closed, quantifier-free formulas
- NP-complete, but. . .

Language \mathscr{L} :

- countable set of function and relation symbols, arity of each symbol
- no variables; at least one constant-function symbol 0 of arity 0
- Terms (s, t, \ldots) defined inductively: the set of all $f(t_1, \ldots, t_n)$
 - f is a function symbol of arity $n \ge 0$,
 - if $n > 0, t_1, ..., t_n$ are terms

Atomic formulas

- s = t for terms s, t
- $R(t_1,...,t_n)$ for terms $t_i, i = 1,...,n$

- atomic formulas
- \top , \bot , $\neg A$, $A \land B$, $A \lor B$, $A \rightarrow B$, if A, B are formulas
- $\Gamma \Rightarrow \Delta$ (sequent) if Γ , Δ are finite sets of formulas
- no variables \implies no quantifiers

Language \mathscr{L} :

- countable set of function and relation symbols, arity of each symbol
- no variables; at least one constant-function symbol 0 of arity 0
- **Terms** (*s*, *t*, ...) defined inductively: the set of all $f(t_1, \ldots, t_n)$
 - f is a function symbol of arity $n \ge 0$,
 - if $n > 0, t_1, \ldots, t_n$ are terms

Atomic formulas

- s = t for terms s, t
- $R(t_1,...,t_n)$ for terms $t_i, i = 1,...,n$

- atomic formulas
- \top , \bot , $\neg A$, $A \land B$, $A \lor B$, $A \rightarrow B$, if A, B are formulas
- $\Gamma \Rightarrow \Delta$ (sequent) if Γ , Δ are finite sets of formulas
- no variables \implies no quantifiers

Language \mathscr{L} :

- countable set of function and relation symbols, arity of each symbol
- no variables; at least one constant-function symbol 0 of arity 0
- **Terms** (*s*, *t*, ...) defined inductively: the set of all $f(t_1, \ldots, t_n)$
 - f is a function symbol of arity $n \ge 0$,
 - if $n > 0, t_1, \ldots, t_n$ are terms

Atomic formulas

- s = t for terms s, t
- $R(t_1,\ldots,t_n)$ for terms $t_i, i=1,\ldots,n$

- atomic formulas
- \top , \bot , $\neg A$, $A \land B$, $A \lor B$, $A \rightarrow B$, if A, B are formulas
- $\Gamma \Rightarrow \Delta$ (sequent) if Γ , Δ are finite sets of formulas
- no variables \implies no quantifiers

Language \mathscr{L} :

- countable set of function and relation symbols, *arity* of each symbol
- no variables; at least one constant-function symbol 0 of arity 0
- **Terms** (*s*, *t*, ...) defined inductively: the set of all $f(t_1, ..., t_n)$
 - f is a function symbol of arity $n \ge 0$,
 - if $n > 0, t_1, \ldots, t_n$ are terms

Atomic formulas

- s = t for terms s, t
- $R(t_1,\ldots,t_n)$ for terms $t_i, i=1,\ldots,n$

- atomic formulas
- \top , \bot , $\neg A$, $A \land B$, $A \lor B$, $A \rightarrow B$, if A, B are formulas
- $\Gamma \Rightarrow \Delta$ (sequent) if Γ , Δ are finite sets of formulas
- no variables \implies no quantifiers

Quantifier-Free Formulas with Equality Semantics

• Standard notion of *structure* \mathcal{M} :

- domain D
- ▶ $f^{\mathcal{M}}: D^n \to D$
- ► $R^{\mathcal{M}} \subseteq D^n$
- Recursively defined valuation of terms t^A
- Satisfaction relation $\mathcal{M} \models A$

$$\blacktriangleright \mathcal{M} \models \mathsf{s} = \mathsf{t} \text{ iff } \mathsf{s}^{\mathcal{M}} = \mathsf{t}^{\mathcal{M}}$$

- $\vdash \mathcal{M} \vDash R(s_1, \ldots, s_n) \text{ iff } (s_1^{\mathcal{M}}, \ldots, s_n^{\mathcal{M}}) \in R^{\mathcal{M}}$
- $\mathcal{M} \vDash A \land B$ iff $\mathcal{M} \vDash A$ and $\mathcal{M} \vDash B$

• Consequence $T \models A$

for all \mathcal{M} such that $\mathcal{M} \vDash T$, $\mathcal{M} \vDash A$

Quantifier-Free Formulas with Equality Semantics

• Standard notion of *structure* \mathcal{M} :

- domain D
- ▶ $f^{\mathcal{M}}: D^n \to D$
- ► $R^{\mathscr{M}} \subseteq D^n$

• Recursively defined valuation of terms t^M

• Satisfaction relation $\mathcal{M} \models A$

$$\blacktriangleright \mathcal{M} \models s = t \text{ iff } s^{\mathcal{M}} = t^{\mathcal{M}}$$

- $M \vDash R(s_1, \ldots, s_n) \text{ iff } (s_1^{\mathcal{M}}, \ldots, s_n^{\mathcal{M}}) \in R^{\mathcal{M}}$
- $\mathcal{M} \models A \land B$ iff $\mathcal{M} \models A$ and $\mathcal{M} \models B$

$\mathcal{M} \models \Gamma \Rightarrow \Delta \text{ iff whenever } \mathcal{M} \models A \text{ for all } A \in I$

then there is a $B \in \Delta$ such that $\mathcal{M} \models B$

• Consequence $T \models A$

for all \mathscr{M} such that $\mathscr{M} \vDash T$, $\mathscr{M} \vDash A$

Quantifier-Free Formulas with Equality Semantics

- Standard notion of *structure* \mathcal{M} :
 - ▶ domain D
 - ▶ $f^{\mathcal{M}}: D^n \to D$
 - ► $R^{\mathscr{M}} \subseteq D^n$
- Recursively defined valuation of terms t^M
- Satisfaction relation $\mathcal{M} \models A$
 - $\mathcal{M} \models s = t$ iff $s^{\mathcal{M}} = t^{\mathcal{M}}$
 - $\mathcal{M} \vDash R(s_1, \ldots, s_n)$ iff $(s_1^{\mathcal{M}}, \ldots, s_n^{\mathcal{M}}) \in R^{\mathcal{M}}$
 - $\mathcal{M} \vDash A \land B$ iff $\mathcal{M} \vDash A$ and $\mathcal{M} \vDash B$
 - $\mathscr{M} \vDash \Gamma \Rightarrow \Delta \text{ iff whenever } \mathscr{M} \vDash A \text{ for all } A \in \Gamma$ then there is a $B \in \Delta$ such that $\mathscr{M} \vDash B$
- Consequence $T \vDash A$

. . .

► for all \mathscr{M} such that $\mathscr{M} \models T$, $\mathscr{M} \models A$

Quantifier-Free Formulas with Equality

- Standard notion of *structure* \mathcal{M} :
 - ▶ domain D
 - ▶ $f^{\mathcal{M}}: D^n \to D$
 - ► $R^{\mathscr{M}} \subseteq D^n$
- Recursively defined valuation of terms t^M
- Satisfaction relation $\mathcal{M} \models A$
 - $\mathcal{M} \models s = t$ iff $s^{\mathcal{M}} = t^{\mathcal{M}}$
 - $\mathcal{M} \vDash R(s_1, \ldots, s_n)$ iff $(s_1^{\mathcal{M}}, \ldots, s_n^{\mathcal{M}}) \in R^{\mathcal{M}}$
 - $\mathcal{M} \vDash A \land B$ iff $\mathcal{M} \vDash A$ and $\mathcal{M} \vDash B$
 - ► $\mathcal{M} \models \Gamma \Rightarrow \Delta$ iff whenever $\mathcal{M} \models A$ for all $A \in \Gamma$, then there is a $B \in \Delta$ such that $\mathcal{M} \models B$
- Consequence $T \models A$

. . .

► for all \mathscr{M} such that $\mathscr{M} \models T$, $\mathscr{M} \models A$

Quantifier-Free Formulas with Equality

Semantics

- Standard notion of *structure* \mathcal{M} :
 - ► domain D
 - ▶ $f^{\mathcal{M}}: D^n \to D$
 - ► $R^{\mathscr{M}} \subseteq D^n$
- Recursively defined valuation of terms t^M
- Satisfaction relation $\mathcal{M} \models A$

•
$$\mathcal{M} \models s = t$$
 iff $s^{\mathcal{M}} = t^{\mathcal{M}}$

- $\mathcal{M} \vDash R(s_1, \ldots, s_n)$ iff $(s_1^{\mathcal{M}}, \ldots, s_n^{\mathcal{M}}) \in R^{\mathcal{M}}$
- $\mathcal{M} \vDash A \land B$ iff $\mathcal{M} \vDash A$ and $\mathcal{M} \vDash B$
- • •
- ► $\mathcal{M} \models \Gamma \Rightarrow \Delta$ iff whenever $\mathcal{M} \models A$ for all $A \in \Gamma$, then there is a $B \in \Delta$ such that $\mathcal{M} \models B$
- Consequence $T \vDash A$
 - ▶ for all \mathscr{M} such that $\mathscr{M} \models T$, $\mathscr{M} \models A$

Congruence and Congruence Closure

The congruence closure algorithm:

• a data structure representing an equivalence over terms

reflexivity s=ssymmetry $s=t \rightarrow t=s$ transitivity $s=t \wedge t=u \rightarrow s=u$

 iterative closing under congruence (the substitution axiom for function symbols)

$$s_1 = t_1 \wedge \cdots \wedge s_n = t_n \rightarrow f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$$

• the sequent form of congruence:

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$$

Congruence and Congruence Closure

The congruence closure algorithm:

• a data structure representing an equivalence over terms

reflexivity s=ssymmetry $s=t \rightarrow t=s$ transitivity $s=t \wedge t=u \rightarrow s=u$

 iterative closing under congruence (the substitution axiom for function symbols)

$$s_1 = t_1 \wedge \cdots \wedge s_n = t_n \rightarrow f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$$

• the sequent form of congruence:

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$$

Congruence and Congruence Closure

The congruence closure algorithm:

• a data structure representing an equivalence over terms

reflexivity s=ssymmetry $s=t \rightarrow t=s$ transitivity $s=t \wedge t=u \rightarrow s=u$

 iterative closing under congruence (the substitution axiom for function symbols)

$$s_1 = t_1 \wedge \cdots \wedge s_n = t_n \rightarrow f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$$

• the sequent form of congruence:

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$$

A Horn clause with only equalities as atomic formulas

 $s_1 \neq t_1 \lor \cdots \lor s_n \neq t_n \lor u = v$

sequent form

 $s_1 = t_1, \ldots, s_n = t_n \Rightarrow u = v$

is equivalent to

 $g(s_1,\ldots,s_n) = u$ $g(t_1,\ldots,t_n) = v$

plus congruence

 $s_1 = t_1, \ldots, s_n = t_n \Rightarrow g(s_1, \ldots, s_n) = g(t_1, \ldots, t_n)$

for a *new* function symbol g

A Horn clause with only equalities as atomic formulas

$$s_1 \neq t_1 \lor \cdots \lor s_n \neq t_n \lor u = v$$

sequent form

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow u = v$$

is equivalent to

$$g(s_1,\ldots,s_n) = u$$
$$g(t_1,\ldots,t_n) = v$$

plus congruence

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow g(s_1, \ldots, s_n) = g(t_1, \ldots, t_n)$$

for a *new* function symbol g

A Horn clause with only equalities as atomic formulas

$$s_1 \neq t_1 \lor \cdots \lor s_n \neq t_n \lor u = v$$

sequent form

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow u = v$$

is equivalent to

$$g(s_1,\ldots,s_n) = u$$
$$g(t_1,\ldots,t_n) = v$$

plus congruence

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow g(s_1, \ldots, s_n) = g(t_1, \ldots, t_n)$$

for a *new* function symbol g

A Horn clause with only equalities as atomic formulas

$$s_1 \neq t_1 \lor \cdots \lor s_n \neq t_n \lor u = v$$

sequent form

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow u = v$$

is equivalent to

$$g(s_1,\ldots,s_n) = u$$
$$g(t_1,\ldots,t_n) = v$$

plus congruence

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow g(s_1, \ldots, s_n) = g(t_1, \ldots, t_n)$$

for a *new* function symbol g

A general clause with only equalities as atomic formulas (sequent form)

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow u_1 = v_1, \ldots, u_m = v_m$$

is equivalent to

$$g(s_1, \dots, s_n) = h(u_1, \dots, u_m)$$
$$g(t_1, \dots, t_n) = h(v_1, \dots, v_m)$$

plus congruence

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow g(s_1, \ldots, s_n) = g(t_1, \ldots, t_n)$$

for a new function symbol g plus anticongruence

 $h(u_1,\ldots,u_m) = h(v_1,\ldots,v_m) \Rightarrow u_1 = v_1,\ldots,u_m = v_m$

A general clause with only equalities as atomic formulas (sequent form)

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow u_1 = v_1, \ldots, u_m = v_m$$

is equivalent to

$$g(s_1, \dots, s_n) = h(u_1, \dots, u_m)$$

$$g(t_1, \dots, t_n) = h(v_1, \dots, v_m)$$

plus congruence

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow g(s_1, \ldots, s_n) = g(t_1, \ldots, t_n)$$

for a new function symbol g plus anticongruence

$$h(u_1,\ldots,u_m) = h(v_1,\ldots,v_m) \Rightarrow u_1 = v_1,\ldots,u_m = v_m$$

for a new anticongruence function symbol h

A general clause with only equalities as atomic formulas (sequent form)

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow u_1 = v_1, \ldots, u_m = v_m$$

is equivalent to

$$g(s_1,\ldots,s_n) = h(u_1,\ldots,u_m)$$
$$g(t_1,\ldots,t_n) = h(v_1,\ldots,v_m)$$

plus congruence

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow g(s_1, \ldots, s_n) = g(t_1, \ldots, t_n)$$

for a *new* function symbol g

plus anticongruence

$$h(u_1,\ldots,u_m) = h(v_1,\ldots,v_m) \Rightarrow u_1 = v_1,\ldots,u_m = v_m$$

for a new anticongruence function symbol h

A general clause with only equalities as atomic formulas (sequent form)

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow u_1 = v_1, \ldots, u_m = v_m$$

is equivalent to

$$g(s_1,\ldots,s_n) = h(u_1,\ldots,u_m)$$
$$g(t_1,\ldots,t_n) = h(v_1,\ldots,v_m)$$

plus congruence

$$s_1 = t_1, \ldots, s_n = t_n \Rightarrow g(s_1, \ldots, s_n) = g(t_1, \ldots, t_n)$$

for a new function symbol g plus anticongruence

$$h(u_1,\ldots,u_m) = h(v_1,\ldots,v_m) \Rightarrow u_1 = v_1,\ldots,u_m = v_m$$

for a new anticongruence	function symbol h
--------------------------	-------------------

- Equality is central, must always be handled automatically (by congruence closure)

- Equality is central, must always be handled automatically (by congruence closure)
- Propositional part can be reduced to equality and handled by anticongruence closure

- Equality is central, must always be handled automatically (by congruence closure)
- Propositional part can be reduced to equality and handled by anticongruence closure
- Several steps are needed:

- Equality is central, must always be handled automatically (by congruence closure)
- Propositional part can be reduced to equality and handled by anticongruence closure
- Several steps are needed:
 - Elimination of relation symbols (makes equality the only relation symbol)

- Equality is central, must always be handled automatically (by congruence closure)
- Propositional part can be reduced to equality and handled by anticongruence closure
- Several steps are needed:
 - Elimination of relation symbols (makes equality the only relation symbol)
 - Transformation to conjunctive normal form (set of sequents with only atomic members-clauses)

- Equality is central, must always be handled automatically (by congruence closure)
- Propositional part can be reduced to equality and handled by anticongruence closure
- Several steps are needed:
 - Elimination of relation symbols (makes equality the only relation symbol)
 - Transformation to conjunctive normal form (set of sequents with only atomic members-clauses)
 - Replacement of sequents by new special function symbols and equalities

- Equality is central, must always be handled automatically (by congruence closure)
- Propositional part can be reduced to equality and handled by anticongruence closure
- Several steps are needed:
 - Elimination of relation symbols (makes equality the only relation symbol)
 - Transformation to conjunctive normal form (set of sequents with only atomic members-clauses)
 - Replacement of sequents by new special function symbols and equalities
 - Proof system for equalities with special function symbols

- Equality is central, must always be handled automatically (by congruence closure)
- Propositional part can be reduced to equality and handled by anticongruence closure
- Several steps are needed:
 - Elimination of relation symbols (makes equality the only relation symbol)
 - Transformation to conjunctive normal form (set of sequents with only atomic members-clauses)
 - Replacement of sequents by new special function symbols and equalities
 - Proof system for equalities with special function symbols
 - Algorithm for the proof system

An Example Part 1 of 2

Initial closed, quantifier-free part of the sequent to be proved

$$\left.\begin{array}{l}a < b \land b < c \rightarrow a < c, \\a < b \lor b < a, \\b < c, b = d\end{array}\right\} \Rightarrow a < c, d < a$$

• Elimination of relation symbols

$$<_{*}(a, b) = 0 \land <_{*}(b, c) = 0 \rightarrow <_{*}(a, c) = 0,$$

$$<_{*}(a, b) = 0 \lor <_{*}(b, a) = 0,$$

$$<_{*}(d, c) = 0, b = d$$

$$\Rightarrow <_{*}(a, c) = 0, <_{*}(d, a) = 0$$

Transformation to CNF

 $\begin{aligned} <_*(a,b) &= 0, <_*(b,c) = 0 \Rightarrow <_*(a,c) = 0, & \Rightarrow <_*(a,b) = 0, <_*(b,a) = 0, \\ \Rightarrow <_*(b,c) &= 0, & \Rightarrow b = d, & <_*(a,c) = 0 \Rightarrow & , & <_*(d,a) = 0 \Rightarrow \end{aligned}$

Avoid exponential blow-up

An Example Part 1 of 2

Initial closed, quantifier-free part of the sequent to be proved

$$\left.\begin{array}{l}a < b \land b < c \rightarrow a < c, \\a < b \lor b < a, \\b < c, b = d\end{array}\right\} \Rightarrow a < c, d < a$$

Elimination of relation symbols

$$<_{*}(a,b) = 0 \land <_{*}(b,c) = 0 \rightarrow <_{*}(a,c) = 0,$$

$$<_{*}(a,b) = 0 \lor <_{*}(b,a) = 0,$$

$$<_{*}(d,c) = 0, b = d$$
$$\Rightarrow <_{*}(a,c) = 0, <_{*}(d,a) = 0$$

Transformation to CNF

 $\begin{aligned} <_{*}(a,b) &= 0, <_{*}(b,c) = 0 \Rightarrow <_{*}(a,c) = 0, \qquad \Rightarrow <_{*}(a,b) = 0, <_{*}(b,a) = 0, \\ \Rightarrow <_{*}(b,c) &= 0, \qquad \Rightarrow b = d, \qquad <_{*}(a,c) = 0 \Rightarrow \qquad , \qquad <_{*}(d,a) = 0 \Rightarrow \end{aligned}$

Avoid exponential blow-up
An Example Part 1 of 2

Initial closed, quantifier-free part of the sequent to be proved

$$\left.\begin{array}{l}a < b \land b < c \rightarrow a < c, \\a < b \lor b < a, \\b < c, b = d\end{array}\right\} \Rightarrow a < c, d < a$$

Elimination of relation symbols

$$<_{*}(a, b) = 0 \land <_{*}(b, c) = 0 \rightarrow <_{*}(a, c) = 0,$$

$$<_{*}(a, b) = 0 \lor <_{*}(b, a) = 0,$$

$$<_{*}(d, c) = 0, b = d$$
$$\Rightarrow <_{*}(a, c) = 0, <_{*}(d, a) = 0$$

Transformation to CNF

$$<_*(a,b) = 0, <_*(b,c) = 0 \Rightarrow <_*(a,c) = 0, \qquad \Rightarrow <_*(a,b) = 0, <_*(b,a) = 0, \Rightarrow <_*(b,c) = 0, \qquad \Rightarrow b = d, \qquad <_*(a,c) = 0 \Rightarrow \qquad , \qquad <_*(d,a) = 0 \Rightarrow$$

Avoid exponential blow-up

J. Kľuka (Comenius University)

An Example Part 1 of 2

Initial closed, quantifier-free part of the sequent to be proved

$$\left.\begin{array}{l}a < b \land b < c \rightarrow a < c, \\a < b \lor b < a, \\b < c, b = d\end{array}\right\} \Rightarrow a < c, d < a$$

Elimination of relation symbols

$$<_{*}(a, b) = 0 \land <_{*}(b, c) = 0 \rightarrow <_{*}(a, c) = 0,$$

$$<_{*}(a, b) = 0 \lor <_{*}(b, a) = 0,$$

$$<_{*}(d, c) = 0, b = d$$
$$\Rightarrow <_{*}(a, c) = 0, <_{*}(d, a) = 0$$

Transformation to CNF¹

$$<_{*}(a,b) = 0, <_{*}(b,c) = 0 \Rightarrow <_{*}(a,c) = 0, \qquad \Rightarrow <_{*}(a,b) = 0, <_{*}(b,a) = 0, \Rightarrow <_{*}(b,c) = 0, \qquad \Rightarrow b = d, \qquad <_{*}(a,c) = 0 \Rightarrow 0 = 1, \qquad <_{*}(d,a) = 0 \Rightarrow 0 = 1$$

Avoid exponential blow-up

An Example Part 2 of 2

After transformation to CNF¹

$$<_{*}(a, b) = 0, <_{*}(b, c) = 0 \Rightarrow <_{*}(a, c) = 0$$
$$\Rightarrow <_{*}(a, b) = 0, <_{*}(b, a) = 0,$$
$$\Rightarrow <_{*}(b, c) = 0, \quad \Rightarrow b = d,$$
$$<_{*}(a, c) = 0 \Rightarrow 0 = 1,$$
$$<_{*}(d, a) = 0 \Rightarrow 0 = 1$$

Reduction of sequents to equalities

 $g_1(<_*(a, b), <_*(b, c)) = <_*(a, c), \quad g_1(0, 0) = 0$ $h_2(<_*(a, b), <_*(b, a)) = h_2(0, 0),$ $<_*(b, c) = 0, \quad b = d,$ $g_5(<_*(a, c)) = 0, \quad g_5(0) = 1,$ $g_6(<_*(d, a)) = 0, \quad g_6(0) = 1$

An Example Part 2 of 2

After transformation to CNF¹

$$<_{*}(a, b) = 0, <_{*}(b, c) = 0 \Rightarrow <_{*}(a, c) = 0$$
$$\Rightarrow <_{*}(a, b) = 0, <_{*}(b, a) = 0,$$
$$\Rightarrow <_{*}(b, c) = 0, \quad \Rightarrow b = d,$$
$$<_{*}(a, c) = 0 \Rightarrow 0 = 1,$$
$$<_{*}(d, a) = 0 \Rightarrow 0 = 1$$

Reduction of sequents to equalities

$$g_1(<_*(a,b),<_*(b,c)) = <_*(a,c), \quad g_1(0,0) = 0$$

$$h_2(<_*(a,b),<_*(b,a)) = h_2(0,0),$$

$$<_*(b,c) = 0, \quad b = d,$$

$$g_5(<_*(a,c)) = 0, \quad g_5(0) = 1,$$

$$g_6(<_*(d,a)) = 0, \quad g_6(0) = 1$$

- The CA-proof system
 - ► C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1 = v_1, \Gamma \mid \cdots \mid u_m = v_m, \Gamma}{\Gamma}$$

if there is an anticongruence symbol h such that $\Gamma \vDash_e h(u_1, \ldots, u_m) = h(v_1, \ldots, v_m)$

• The CA-algorithm

- The CA-proof system
 - ► C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

► A-rule

$$\frac{u_1 = v_1, \Gamma \mid \cdots \mid u_m = v_m, \Gamma}{\Gamma}$$

if there is an anticongruence symbol h such that $\Gamma \vDash_{e} h(u_1, \dots, u_m) = h(v_1, \dots, v_m)$

• The CA-algorithm

- The CA-proof system
 - C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1 = v_1, \Gamma \mid \cdots \mid u_m = v_m, \Gamma}{\Gamma}$$

if there is an anticongruence symbol h such that $\Gamma \vDash_e h(u_1, \ldots, u_m) = h(v_1, \ldots, v_m)$

• The CA-algorithm

- The CA-proof system
 - C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1=v_1,\Gamma\mid\cdots\mid u_m=v_m,\Gamma}{\Gamma}$$

if there is an anticongruence symbol h such that $\Gamma \vDash_e h(u_1, \ldots, u_m) = h(v_1, \ldots, v_m)$

- The CA-algorithm
 - apply C-rule while possible (standard congruence closure)
 - **2** if $\Gamma \models_e 0 = 1$, return proved
 - apply A-rule if possible

otherwise return a counterexample

- The CA-proof system
 - C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1=v_1,\Gamma\mid\cdots\mid u_m=v_m,\Gamma}{\Gamma}$$

if there is an anticongruence symbol h such that $\Gamma \vDash_e h(u_1, \ldots, u_m) = h(v_1, \ldots, v_m)$

The CA-algorithm

) if $\Gamma \vDash_e 0 = 1$, return proved

apply A-rule if possible

otherwise return a counterexample

- The CA-proof system
 - ► C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1 = v_1, \Gamma \mid \cdots \mid u_m = v_m, \Gamma}{\Gamma}$$

if there is an anticongruence symbol h such that $\Gamma \vDash_e h(u_1, \ldots, u_m) = h(v_1, \ldots, v_m)$

The CA-algorithm

- apply C-rule while possible (standard congruence closure)
- (2) if $\Gamma \vDash_e 0 = 1$, return proved
 - apply A-rule if possible

- The CA-proof system
 - C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1 = v_1, \Gamma \mid \cdots \mid u_m = v_m, \Gamma}{\Gamma}$$

if there is an anticongruence symbol *h* such that $\Gamma \models_e h(u_1, \ldots, u_m) = h(v_1, \ldots, v_m)$

The CA-algorithm

- apply C-rule while possible (standard congruence closure)
- **2** if $\Gamma \vDash_e 0 = 1$, return proved
- apply A-rule if possible
 - call the CA-algorithm recursively for each branch
 - In the second second
 - otherwise return a counterexample

- The CA-proof system
 - ► C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1 = v_1, \Gamma \mid \cdots \mid u_m = v_m, \Gamma}{\Gamma}$$

if there is an anticongruence symbol *h* such that $\Gamma \vDash_{e} h(u_1, \ldots, u_m) = h(v_1, \ldots, v_m)$

The CA-algorithm

- apply C-rule while possible (standard congruence closure)
- (2) if $\Gamma \vDash_e 0 = 1$, return proved
- apply A-rule if possible
 - Call the CA-algorithm recursively for each branch

2 return proved if all recursive calls returned proved

otherwise return a counterexample

Branching causes exponential running time

- The CA-proof system
 - ► C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1 = v_1, \Gamma \mid \cdots \mid u_m = v_m, \Gamma}{\Gamma}$$

if there is an anticongruence symbol *h* such that $\Gamma \vDash_{e} h(u_1, \ldots, u_m) = h(v_1, \ldots, v_m)$

• The CA-algorithm

- apply C-rule while possible (standard congruence closure)
- (2) if $\Gamma \vDash_e 0 = 1$, return proved
- apply A-rule if possible
 - Call the CA-algorithm recursively for each branch
 - Preturn proved if all recursive calls returned proved

otherwise return a counterexample

Branching causes exponential running time

- The CA-proof system
 - ► C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1 = v_1, \Gamma \mid \cdots \mid u_m = v_m, \Gamma}{\Gamma}$$

if there is an anticongruence symbol h such that

$$\Gamma \vDash_e h(u_1,\ldots,u_m) = h(v_1,\ldots,v_m)$$

The CA-algorithm

- apply C-rule while possible (standard congruence closure)
- (2) if $\Gamma \vDash_e 0 = 1$, return proved
- apply A-rule if possible
 - Call the CA-algorithm recursively for each branch
 - return proved if all recursive calls returned proved
- otherwise return a counterexample

Branching causes exponential running time

- The CA-proof system
 - ► C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1=v_1,\Gamma\mid\cdots\mid u_m=v_m,\Gamma}{\Gamma}$$

if there is an anticongruence symbol h such that

$$\Gamma \vDash_e h(u_1,\ldots,u_m) = h(v_1,\ldots,v_m)$$

The CA-algorithm

- apply C-rule while possible (standard congruence closure)
- (2) if $\Gamma \vDash_e 0 = 1$, return proved
- apply A-rule if possible
 - Call the CA-algorithm recursively for each branch
 - return proved if all recursive calls returned proved
- otherwise return a counterexample
- Branching causes exponential running time

- The CA-proof system
 - ► C-rule

$$\frac{f(\vec{s}) = f(\vec{t}), \Gamma}{\Gamma} \quad \text{if } \Gamma \vDash_e \vec{s} = \vec{t}$$

A-rule

$$\frac{u_1=v_1,\Gamma\mid\cdots\mid u_m=v_m,\Gamma}{\Gamma}$$

if there is an anticongruence symbol h such that

$$\Gamma \vDash_e h(u_1,\ldots,u_m) = h(v_1,\ldots,v_m)$$

The CA-algorithm

- apply C-rule while possible (standard congruence closure)
- (2) if $\Gamma \vDash_e 0 = 1$, return proved
- apply A-rule if possible
 - call the CA-algorithm recursively for each branch
 - 2 return proved if all recursive calls returned proved
- otherwise return a counterexample
- Branching causes exponential running time, but...

• Congruence closure can be more useful than it seems

- Can derive from Horn clauses
- Can be extended to deal with any propositional content of formulas by "symmetric" anticongruences
- Pilot implementation only
- Work in progress on adding formulas

 $\forall \mathbf{x}(s_1 = t_1, \dots, s_n = t_n \Rightarrow u_1 = \mathbf{v}_1, \dots, u_m = \mathbf{v}_m)$

• Congruence closure can be more useful than it seems

Can derive from Horn clauses

- Can be extended to deal with any propositional content of formulas by "symmetric" anticongruences
- Pilot implementation only
- Work in progress on adding formulas

 $\forall \mathbf{x}(s_1 = t_1, \dots, s_n = t_n \Rightarrow u_1 = v_1, \dots, u_m = v_m)$

- Congruence closure can be more useful than it seems
- Can derive from Horn clauses
- Can be extended to deal with any propositional content of formulas by "symmetric" anticongruences
- Pilot implementation only
- Work in progress on adding formulas

 $\forall \mathbf{x}(s_1 = t_1, \dots, s_n = t_n \Rightarrow u_1 = v_1, \dots, u_m = v_m)$

- Congruence closure can be more useful than it seems
- Can derive from Horn clauses
- Can be extended to deal with any propositional content of formulas by "symmetric" anticongruences
- Pilot implementation only
- Work in progress on adding formulas

 $\forall \mathbf{x}(\mathbf{s}_1 = \mathbf{t}_1, \dots, \mathbf{s}_n = \mathbf{t}_n \Rightarrow \mathbf{u}_1 = \mathbf{v}_1, \dots, \mathbf{u}_m = \mathbf{v}_m)$

- Congruence closure can be more useful than it seems
- Can derive from Horn clauses
- Can be extended to deal with any propositional content of formulas by "symmetric" anticongruences
- Pilot implementation only
- Work in progress on adding formulas

$$\forall \mathbf{x}(s_1 = t_1, \dots, s_n = t_n \Rightarrow u_1 = v_1, \dots, u_m = v_m)$$

Thank you!