
Congruence-Anticongruence Closure∗

Ján Kl’uka

kluka@fmph.uniba.sk

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University Bratislava
Mlynská dolina

842 48 Bratislava, Slovakia

Abstract

We present in this paper a method for deciding sets of closed, quantifier-free formulas with identities. The
method is based on reduction of such a set into a set of identities by introduction of new special function
symbols. For the special function symbols, identity in this set is assumed to have a property which is
dual to congruence. We prove that under this property, which we call anticongruence, the set of identities
is a conservative extension of the original set of formulas. We introduce a simple two-rule proof system
(the CA-proof system) for the sets of identities with anticongruence symbols, and show the system to
be sound and complete. We then formulate the congruence closure algorithm in an abstract way that
we believe facilitates its understanding, and extended it to the CA-closure algorithm to implement the
CA-proof system.

Keywords: Automated and assisted theorem proving, congruence closure, clauses with identities.

1 Introduction

Intelligent proof assistants, automated theorem provers, satisfiability (SAT) solvers, and model checking
algorithms often decide quantifier-free formulas containing identities. Many such decision algorithms
primarily concentrate on the propositional content and decide identity only as, so to speak, added-on
feature. The examples of resolution with paramodulation or the DPLL-style SAT solving modulo the
theory of identity (EUF) immediately come to mind. However, the direct derivation of formulas with
identities is so important that we propose to absorb the propositional content of formulas into identities.

The state of a proof in many intelligent proof assistants can be presented with a sequent Γ ⇒ ∆ whose
validity we wish to establish. Without loss of generality we may include among the formulas of Γ also
the previously proved theorems. These have often an open form ∀~xA[~x] with A[~x] quantifier-free. Some
formulas of ∆ have usually an existential form ∃~xB[~y] with B[~x] quantifier-free. Suppose that we have
succeeded, whether automatically or not, to instantiate some of such formulas to get an equivalent sequent
Γ,A1[~s1], . . . , An[~sn] ⇒ B1[~t1], . . . , Bm[~tm],∆ with all Ai and Bj quantifier-free. It is well-known that
we have a computable test for the validity of the sequent A1[~s1], . . . , An[~sn]⇒ B1[~t1], . . . , Bm[~tm]. If the
last sequent is valid, so is the original sequent Γ ⇒ ∆. Otherwise, a counter-example should help us with
choosing a more suitable set of terms for the instantiations of quantifiers and retrying the procedure.

We present a procedure for the decision of quantifier-free sequents, which is a generalization of the
well-known algorithms for congruence closure. We convert the negation of the sequent into, basically,
a conjunctive normal form with all clauses having at least one positive literal. We then eliminate the
clauses by replacing them with suitably chosen identities. We will then try to derive 0 = 1 using
the generalization of a congruence closure algorithm with anticongruences. Congruences are axioms of
identity of the form s1 = t1 ∧ · · · ∧ sn = tn → f(s1, . . . , sn) = f(t1, . . . , tn). Anticongruences have a dual
form: f(s1, . . . , sn) = f(t1, . . . , tn)→ s1 = t1 ∨ · · · ∨ sn = tn.

In Sect. 2 we discuss the semantics of identity. In Sect. 3 we replace the propositional connectives in sets
of clauses by identities. In Sect. 4 we present a generalization of a congruence closure algorithm to deal
with anticongruences.

∗This work has been partially supported by VEGA under the project No. 1/0175/03. The author would like to thank
his supervisor, prof. Paul J. Voda.

Mathematical and Engineering Methods in Computer Science 2005 1

2 Quasi-Tautologies in Functional Languages

Identity is so central to the verification of computer programs and, for that matter, to the proofs of
theorems in mathematics, that we must be able to deal efficiently with the axioms of equality. Our
problem is to determine whether a given sequent Γ ⇒ ∆ with quantifier-free formulas is valid, and if not,
then to obtain a (finite) model of Γ which falsifies all formulas of ∆.

It is well-known that the problem is decidable, but we put an additional constraint on the solution that
the negative identities should play no role in the procedure. This is because the disequalities s 6= t are
known to cause complications in the decision procedures used in SAT-solving (cf. [2]).

In the rest of the paper we will deal exclusively with closed quantifier-free formulas (sentences) of first-
order languages. In order to simplify the decision algorithm we eliminate all relation symbols except
identity from our languages.

2.1 First-order and Functional Languages

2.1.1 First-order Languages

A first-order language L is given by a (denumerable) set of function and relation symbols. We assume
that every L contains at least one constant (a nullary function symbol). The assumption is needed so
we can form closed (ground) terms. Without loss of generality we will designate the constant by 0. The
set TL of closed terms of L is the smallest set consisting of expressions f(s1, . . . , sn) where f is a function
symbol of L of arity n ≥ 0 and s1, . . . , sn are closed terms.

Closed quantifier-free formulas of L are formed from the atomic formulas—which are either identities
s = t with s, t ∈ TL or applications of relation symbols R(~s) of arity n ≥ 0 with ~s ∈ TL—by the
connectives ¬, ∨, ∧, and →. In order to simplify the discussion below we include among formulas also
expressions Γ ⇒ ∆, called sequents, with ∆, Γ finite sets of formulas. Our sequents are also called
clauses.

We will deal below exclusively with closed formulas (sentences) and we will henceforth call them just
formulas. Formulas will be designated by meta-variables A, B, C and terms by s, t, u, v, both kinds of
variables possibly subscripted. In contexts where the language L is known, we will tacitly understand
that the meta-variables range over the corresponding objects from L. For sets of formulas T1, T2 we will
write T1, T2 instead of T1 ∪ T2 and T1, A instead of T1 ∪ {A}.

2.1.2 Functional Languages

A first-order language L is functional if it does not contain any relation symbols except identity. Some
of the function symbols of positive arities in L can be designated as anticongruence symbols. We call a
term in TL pure if no anticongruence symbols occur in it. A pure language is without any anticongruence
symbols. The restriction to functional languages is justified by the following definitions and by Thm. 1.

For a first-order language L we designate by L∗ the functional language containing all function symbols
of L, and for every n-ary relation symbol R of L other than identity, an n-ary function symbol R∗.
The translation A∗ of a quantifier-free formula A of L is obtained by replacing every occurrence of an
atomic formula R(~s) in A by the identity R∗(~s) = 0. The function symbols R∗ play thus the role of the
characteristic functions of relations R.

We use below the notions of structure and of logical consequence (T � A) in the standard way (see
e.g. [4]).

Theorem 1. (Elimination of relation symbols) For a first-order language L, its functional lan-
guage L∗, and a quantifier-free formula A of L we have � A iff � A∗.

Proof. In the direction (←) we assume � A∗ and take any structure M for L. If the domain of M has
at least two elements, we designate by c an element different from 0M. We define the structure M∗ for
L∗ with the same domain and the same interpretations of function symbols. For a relation symbol R we

interpret RM∗
∗ (~x) =

{
0M if RM(~x),
c otherwise.

By a straightforward induction on the structure of formulas B

in L we prove M∗ � B∗ iff M � B. From M∗ � A∗ we then get M � A.

2 Mathematical and Engineering Methods in Computer Science 2005

If the domain ofM consists of a single element 0M, we constructM∗ for L∗ with a two element domain
{c, 0M}. We interpret the function symbols f (including the symbols R∗) to yield c on arguments with
at least one c, and 0M otherwise, unless f is some R∗, and then we interpret RM∗

∗ (0M, . . . , 0M) as above
with x1 = 0M, . . . , xn = 0M. The rest of the proof is similar as above.

For the proof in the direction (→) we assume � A and take any structure M∗ for L∗. We define the
structure M for L with the same domain and with the same interpretations of function symbols of L.
For a relation symbol R of L we define RM(~x) to hold iff M∗ � R∗(~x) = 0. We then continue similarly
as above. �

2.2 Satisfaction Relation for Binary Relations and Functional Languages

2.2.1 Binary Relations over Terms

We will be investigating propositional consequence for functional languages L under various properties of
the identity symbol. Since the structures used in the first-order logic presuppose the standard properties
of identity, we will need to define the semantics of identity by weaker means.

The role of structures will be played by binary relations ' over TL. The relation ' is an equivalence if it
is reflexive, symmetric, and transitive. The relation is a congruence if it is an equivalence respecting the
function symbols of L, i.e., if for every f ∈ L of arity n > 0 and all terms such that s1 ' t1, . . . , sn ' tn,
we have f(s1, . . . , sn) ' f(t1, . . . , tn).

A congruence relation ' is an anticongruence if for all anticongruence symbols h ∈ L of arity m ≥ 1 and
terms ~s, ~t such that h(s1, . . . , sm) ' h(t1, . . . , tm) we have si ' ti for some i = 1, . . . ,m. Note that for
pure languages every congruence relation is trivially an anticongruence.

2.2.2 Satisfaction Relation for Functional Languages

For a given functional language L we define the relation ' satisfies A, in writing ' � A, where ' is a
relation over TL and A a formula, to satisfy the following recurrences:

• ' � s = t iff s ' t,
• ' � ¬A iff ' 2 A,
• ' � A ∨B iff ' � A or ' � B,
• ' � A ∧B iff ' � A and ' � B,
• ' � A→ B iff ' � B whenever ' � A,
• ' � Γ ⇒ ∆ iff whenever ' � A for all A ∈ Γ , then there is a B ∈ ∆ such that ' � B.

We extend the satisfaction relation to (possibly infinite) sets T , called theories, and say that ' satisfies T ,
in writing ' � T , if every A ∈ T is satisfied in '. For q = p, e, c, a and ' satisfying T we say that ' is a
q-model of T if ' is in the order p, e, c, a any relation, equivalence, congruence, or anticongruence. We
say that A is a q-consequence of T , in writing T �q A, iff every q-model ' of T satisfies A. For a set S
of formulas we write T �q S when T �q A for all A ∈ S.

2.2.3 Conservative Extensions

For q = p, e, c, a we call a theory T1 in L1 a q-extension of the theory T2 in L2 if L1 is an extension of L2

(includes all symbols of L2) and T1 �q T2 holds. T1 is q-conservative over T2 for S if T1 is a q-extension
of T2, and whenever T1 �q A for A ∈ S, then already T2 �q A.

2.2.4 Restrictions and Extensions of Relations over Terms

For a functional language L let D be a possibly infinite subset of TL. D is downward closed if whenever
f(s1, . . . , sn) ∈ D, then also s1, . . . , sn ∈ D. We call such a D a domain. We call a relation ' over D
e-closed if it is an equivalence. An equivalence over D is c-closed if for every f(~s), f(~t) ∈ D such that
~s ' ~t we have f(~s) ' f(~t). A c-closed equivalence is a-closed if for every h(~u), h(~v) ∈ D with h an
anticongruence symbol such that h(u1, . . . , um) ' h(v1, . . . , vm), we have ui ' vi for some i = 1, . . . ,m.

For any set T of formulas of L, the set of all subterms occurring in the formulas of T is clearly a domain
and we call it the domain of T . For q = e, c, a the restriction of a q-relation ' over TL to a domain D is
clearly a q-closed relation over D. Moreover, it can be easily seen that if two relations ' and '′ coincide

Mathematical and Engineering Methods in Computer Science 2005 3

on D, i.e., if their restrictions to D are identical, then for every s, t ∈ D we have ' � s = t iff '′ � s = t.
This extends to ' � A iff '′ � A for any formula A with all subterms occurring in T . The following
important lemma asserts a property in the opposite direction:

Lemma 2. (Expansion) Every a-closed relation ' over a domain D of a functional language L can
be expanded to an anticongruence '′ over TL such that ' and '′ coincide on D, and for all function
symbols g which do not occur in the terms of D, if s ∈ D and g occurs in a term t, then '′ 2 s = t.

Proof. Let ord : D/' → N be an injection into odd natural numbers. We construct the structureM for L
with the domain a subset of natural numbers consisting of all even numbers and of those odd numbers
which are in the range of ord . We interpret an n-ary (n ≥ 0) function symbol f of L as follows:

fM(~x) =

{
ord([f(~s)]) if f(~s) ∈ D and x1 = ord([s1]), . . . , xn = ord([sn]),
2·x1 otherwise, where if n = 0, then x1 = 0 .

This is a legal definition because ord is an injection and ' is c-closed. Thus if f(~s), f(~t) ∈ D with
ord([si]) = ord([ti]) for all i = 1, . . . , n, then also [si] = [ti], and hence [f(~s)] = [f(~t)].

By a simple induction on terms s we get if s ∈ D, then sM = ord([s]). Consequently for s, t ∈ D, s ' t
iff M � s = t. For any terms s and t, we define s '′ t to hold iff M � s = t. Clearly, '′ is a congruence
and its restriction to D is '. Moreover, for a function symbol g which does not occur in D, by induction
on terms t we have if g occurs in t, then tM is even, hence s 6'′ t for all s ∈ D. Indeed, assume t = f(~t)
for some function symbol f and some subterms ~t. If f = g, then since g does not occur in D, there can
be no term g(~s) ∈ D, so tM is even: tM = 2·tM1 or tM = 2·0 depending on the arity of g. If f 6= g,
the arity of f is positive and g occurs in ti for some i. By the inductive hypothesis tMi is even, but then
there is no f(~s) ∈ D such that tMi = ord([si]), hence tM = 2·t1 is even.

It remains to show that '′ is an anticongruence. So assume M � h(~u) = h(~v) for an anticongruence
symbol h of arity m of L and consider two cases. If (h(~u))M is odd, then there are ~s and ~t such that
h(~s), h(~t) ∈ D, uMi = ord([si]) and vMi = ord([ti]) for all i = 1, . . . ,m, and ord([h(~s)]) = (h(~u))M =
(h(~v))M = ord([h(~t)]). Since ord is an injection, we have [h(~s)] = [h(~t)], thus h(~s) ' h(~t) from which we
get si ' ti for some i = 1, . . . ,m as ' is a-closed. Hence uMi = sMi = tMi = vMi and ui '′ vi. If (h(~u))M

is even, then 2·uM1 = (h(~u))M = (h(~v))M = 2·vM1 and hence u1 '′ v1. �

2.2.5 Axioms of Equality

Fix a functional language L. For sequences of terms ~s = s1, . . . , sn and ~t = t1, . . . , tn we abbreviate by
~s = ~t the (possibly empty) set s1 = t1, · · · , sn = tn.

It should be clear that any equivalence over TL is an e-model of the set EL of all formulas:

s = s s = t→ t = s s = t ∧ t = u→ s = u (1)

and vice versa, any relation ' satisfying EL is an equivalence.

If ' is a congruence, then it is also a c-model of the set CL of all sequents:

~s = ~t⇒ f(~s) = f(~t) (2)

where f ∈ L is of arity n > 0. Vice versa, any equivalence satisfying CL is a congruence.

Finally, if ' is an anticongruence, then it is also an a-model of the set AL of all sequents:

h(~s) = h(~t)⇒ ~s = ~t (3)

where h is an anticongruence symbol of L. Vice versa, any congruence satisfying AL is an anticongruence.
Note that the set AL is empty for pure languages and any congruence for such a language is trivially a
model of AL.

Whenever the language L is known from the context we will drop the superscripts from the names of the
sets of identity axioms. When T �c A holds we say that A is a quasi-tautological consequence of T (A is a
quasi-tautology if T is empty). The above discussion of axioms of identity is formally expressed in Thm. 3.
Thm. 4.(1) connects the standard tautological consequence of logic with our relation �p. It follows that

4 Mathematical and Engineering Methods in Computer Science 2005

the standard logical definition of quasi-tautological consequence as a tautological consequence from the
axioms of identity (cf. [4]) agrees with our definition above. For the sake of completeness we prove in
Thm. 4.(2) the standard connection between quasi-tautological and logical consequence for quantifier-free
formulas.

Theorem 3. (Reductions of q-consequence) For a quantifier-free theory T in a functional lan-
guage L and a quantifier-free formula A we have:

1. T �e A iff T,E �p A,
2. T �c A iff T,C �e A,
3. T �a A iff T,A �c A.

Theorem 4. (Tautological and quasi-tautological consequence) For a quantifier-free theory T in
a functional language L and a quantifier-free formula A we have:

1. A is a tautological consequence of T iff T �p A,
2. T � A iff T �c A.

Proof. (1): In the direction (→) assume that A tautologically follows from T and take any p-model '
of T . Construct an assignment I of truth values to identities s = t of L as I(s = t) = t if s ' t, and
I(s = t) = f otherwise. We then extend this to any B of L by showing that B is satisfied in I iff ' � B.
The assignment I satisfies T and so A is true in I and hence ' � A. In the direction (←) we assume
T �p A and take any assignment I satisfying T . For s = t in L we define s ' t to hold iff I(s = t) = t
and continue similarly as above.

(2): The proof is structurally similar to that of (1). In the direction (→) we take any c-model ' of T
and construct a structureM for L with the domain TL/ ' where for a function symbol f of L we define
fM([s1], . . . , [sn]) = [f(s1, . . . , sn)]. We can see, similarly as in the proof of Lemma 2., that this is a legal
definition. It is easy to see that sM = [s] and so M � s = t iff s ' t. In the direction (←) we take any
modelM of T and define s ' t to hold iff M � s = t. The relation ' is a c-model of T . �

3 Conversion of Arbitrary Sequents to Sets of Identities

We will transform in Subsect. 3.1 arbitrary sequents to sets of sequents without any additional connectives.
In Subsect. 3.2 we will show how to eliminate the sequents in favor of sets of identities with anticongruence
symbols. The Conservativity Theorem 6. asserts that the detour through anticongruences is strictly
speaking not necessary, but—as the simplicity of the CA-proof system presented in Subsect. 3.3 and
proved complete in Thm. 7. shows—it is very convenient. The soundness and completeness of our CA-
closure algorithm presented in Sect. 4 is a direct consequence of Thm. 7.

3.1 Transformation of Sequents into Normal Form

Fix a pure functional language L for which we can assume w.l.o.g. that it does not contain the constant 1.
We will designate by the meta-variable Π finite sets of sequents. We say that Π is normal if in every
sequent Γ ⇒ ∆ of Π, the set ∆ is non-empty and both sets consist at most of identities.

For a given sequent Γ ⇒ ∆ in L we form a set of sequents {⇒ A | A ∈ Γ}, {B ⇒ | B ∈ ∆} and repeatedly
apply the the following transformation rules to it:

(Γ ⇒ A→ B,∆),Π =⇒ (A,Γ ⇒ B,∆),Π
(A→ B,Γ ⇒ ∆),Π =⇒ (Γ ⇒ A,∆), (B,Γ ⇒ ∆),Π

(Γ ⇒ (Γ1 ⇒ ∆1),∆),Π =⇒ (Γ1, Γ ⇒ ∆1,∆),Π
((Γ1 ⇒ ∆1), Γ ⇒ ∆),Π =⇒ {Γ ⇒ A,∆ | A ∈ Γ1}, {B,Γ ⇒ ∆ | B ∈ ∆1},Π

(Γ ⇒ A ∨B,∆),Π =⇒ (Γ ⇒ A,B,∆),Π
(A ∨B,Γ ⇒ ∆),Π =⇒ (A,Γ ⇒ ∆), (B,Γ ⇒ ∆),Π
(A ∧B,Γ ⇒ ∆),Π =⇒ (A,B, Γ ⇒ ∆),Π
(Γ ⇒ A ∧B,∆),Π =⇒ (Γ ⇒ A,∆), (Γ ⇒ B,∆),Π

Mathematical and Engineering Methods in Computer Science 2005 5

(¬A,Γ ⇒ ∆),Π =⇒ (Γ ⇒ A,∆),Π
(Γ ⇒ ¬A,∆),Π =⇒ (A,Γ ⇒ ∆),Π .

It is easy to prove that this system of rules is terminating and confluent. Moreover, the final set of
sequents Π ′ consists of sequents Γ1 ⇒ ∆1 with Γ1, ∆1 containing at most identities.

We form the language L1 by extending L with the constant 1 and replace in Π ′ every sequent with the
empty consequent: Γ ⇒ by the sequent Γ ⇒ 0 = 1 whereby we obtain a normal set of sequents Π in L1,
which we call the normal form of the original sequent Γ ⇒ ∆.

Theorem 5. (Normal form of sequents) If the sequent Γ ⇒ ∆ of a pure functional language L with-
out the constant 1 has the normal form Π, then we have �c Γ ⇒ ∆ iff Π �c 0 = 1.

Proof. We observe that the rules of transformation from Subsect. 3.1 are based on the Gentzen’s sequent
calculus and can be easily seen to preserve validity, which is by Thm. 4.(2) equivalent to c-validity. Using
the notation of Subsect. 3.1, we thus have �c Γ ⇒ ∆ iff {⇒ A | A ∈ Γ}, {B ⇒ | B ∈ ∆} �c ⇒ iff
Π ′ �c ⇒ iff Π ′ has no c-model. It remains to show

Π ′ is c-unsatisfiable iff Π �c 0 = 1.

In the direction (→) we assume Π 2c 0 = 1, i.e., that there is a c-model ' of Π such that ' 2 0 = 1.
The congruence ' is over TL1 and its restriction '′ to the domain TL is a congruence over TL. We show
'′ � Π ′ by taking any sequent Γ ′ ⇒ ∆′ from Π ′ and by considering two cases. If ∆′ is empty, then
Γ ′ ⇒ 0 = 1 is in Π and thus ' � Γ ′ ⇒ 0 = 1. Since ' 2 0 = 1, we get ' 2 Γ ′, then '′ 2 Γ ′, and
hence '′ � Γ ′ ⇒. If ∆ is not empty, then the sequent is in Π and from ' � Γ ′ ⇒ ∆′ we directly get
'′ � Γ ′ ⇒ ∆′.

In the direction (←) we assume that Π ′ has a c-model '′. The relation '′ is over TL which forms a
domain in L1. Since L is pure, '′ is trivially a-closed over the domain. By Lemma 2., '′ can be expanded
to a congruence ' over TL1 such that ' 2 0 = 1. For the proof of the theorem it thus suffices to show
' � Π and so we take any sequent Γ ′ ⇒ ∆′ in Π. If the sequent is also in Π ′, then '′ � Γ ′ ⇒ ∆′ and
hence ' � Γ ′ ⇒ ∆′ by coincidence. Otherwise ∆′ = {0 = 1} and Γ ′ ⇒ is in Π. Since '′ � Γ ′ ⇒, we
have '′ 2 Γ ′, by coincidence we get ' 2 Γ ′, and hence ' � Γ ′ ⇒ 0 = 1. �

3.2 Conversion of Normal Sets of Sequents to Systems of Identities

For a given normal set of sequents Π in a pure functional language L we will now construct an associated
set of identities Γ in a language La. We construct La as an extension of L by including into it all function
symbols of L and all new function symbols specified by the following procedure which also constructs the
initially empty set Γ . The procedure takes each sequent

s1 = t1, . . . , sn = tn ⇒ u1 = v1, . . . , um = vm (4)

in Π (note that m ≥ 1) and

1. adds to La a new n-ary function symbol g and a new m-ary anticongruence symbol h,
2. adds to Γ the identities g(~s) = h(~u), g(~t) = h(~v).

Theorem 6. (Conservativity of associated sets of identities) For every set of identities Γ in La

associated with a normal set of sequents Π in a pure L and every s = t in L we have Γ �a s = t iff
Π �c s = t. This is an immediate consequence of Γ,ALa

being c-conservative over Π for identities.

Proof. We first prove that Γ,ALa

is a c-extension of Π by showing Γ,ALa

�c Π, i.e., Γ �a Π. So take
any sequent (4) of Π and any a-model ' of Γ,~s = ~t. Thus ' � g(~s) = g(~t) and hence ' � h(~u) = h(~v).
But then ' � ui = vi for some i = 1, . . . ,m.

We now prove that Γ,ALa

is c-conservative over Π for identities. So assume Γ �a s = t for an s = t
in L and take any c-model ' of Π. We wish to prove Π �c s = t. Let 'D be the restriction of ' to
the domain D of Π, s = t. Clearly, 'D is c-closed. Note that the domain Da of Γ, s = t contains, in
addition to the terms of D, also the four terms g(~s), h(~u), g(~t), h(~v) for each sequent (4) of Π. Take the
set 'D ∪ {〈g(~s), h(~u)〉 | (g(~s) = h(~u)) ∈ Γ} and extend it to the least c-closed equivalence 'Da over Da.

6 Mathematical and Engineering Methods in Computer Science 2005

For all sequents (4) in Π this happens by having [g(~s)]'Da = {g(~s), h(~u), g(~t), h(~v)} when ' � ~s = ~t or
' � ~u = ~v holds. Otherwise we have [g(~s)]'Da = {g(~s), h(~u)} and [g(~t)]'Da = {g(~t), h(~v)}. Note that
'D = 'Da ∩ (D ×D).

We now show that 'Da is a-closed. If h(~u) 'Da h(~v) for the anticongruence symbol h belonging to the
sequent (4), then there are two cases. Either ' � ~s = ~t and then, since ' is a c-model of Π, ' � ui = vi

for some i = 1, . . . ,m. From this we get ui 'Da vi. Or else ' � ~u = ~v, i.e., u1 'D v1, and hence
u1 'Da v1.

By Lemma 2. there is an anticongruence '′ over TLa which is an expansion of 'Da . By the construction
of 'Da the relation '′ is an a-model of Γ . From the assumption Γ �a s = t we get '′ � s = t and hence
' � s = t because ' and '′ coincide on D. �

3.3 The CA-Proof System

We will now present a proof system for proving a-consequences of sets of identities Γ . The reader will
note that the system restricts the use of identity axioms from the sets C, A.

For any functional language L and any set of identities Γ the rules of derivation of the CA-proof system
are the following ones:

f(~s) = f(~t), Γ
Γ

C-rule

u1 = v1, Γ | · · · | um = vm, Γ

Γ
A-rule.

The C-rules are applicable under conditions that the terms f(~s), f(~t) are pure, occur in Γ , and that
Γ �e ~s = ~t holds. The A-rules are applicable under conditions that there is an anticongruence symbol h
such that the terms h(u1, . . . , um), h(v1, . . . , vm) occur in Γ , and Γ �e h(u1, . . . , um) = h(v1, . . . , vm)
holds.

We write Γ ` s = t if there is a tree built by the rules of derivation for the root Γ such that in every leaf
∆ we have ∆ �e s = t.

Theorem 7. (Soundness and Completeness of the CA-proof system for associated sets)
For every normal set of sequents Π in a pure functional language L, its associated set of identities Γ in
La, and any identity s = t in the domain of Π we have Γ ` s = t iff Γ �a s = t.

Proof. Actually, we prove by induction on the proofs of Γ ` s = t that the CA-proof system is sound for
arbitrary set of identities Γ in some L. If the proof is a leaf, then we get Γ �a s = t because Γ �e s = t.
If the last rule used in the proof is a C-rule, then we have Γ �e ~s = ~t and we take any a-model ' of Γ .
Since ' � ~s = ~t, we get ' � f(~s) = f(~t), and then ' � s = t from the inductive hypothesis. If the last
rule used in the proof is an A-rule, then we have Γ �e h(~u) = h(~v) and we take any a-model ' of Γ .
Thus ' � h(~u) = h(~v) and hence ' � ui = vi for some i = 1, . . . ,m. But then ' � s = t by the i-th
inductive assumption.

For the proof of completeness restricted to the associated sets we define for an arbitrary set of identities Γ
the relation 'Γ such that u 'Γ v holds iff u, v are in the domain of Γ and Γ �e u = v. The relation
is clearly an equivalence over the domain of Γ . We call 'Γ almost closed if it satisfies the conditions of
a-closure except perhaps the conditions for c-closure for the anticongruence symbols h.

Take now the Γ associated to Π from the statement of the theorem and assume that Γ 0 s = t. We
construct a proof-like tree with the root Γ such that for every inner node with the label Γ1 the rule for
the node corresponds to an identity axiom for which 'Γ1 is not almost closed. As there are only finitely
many rules applicable to Γ , we can construct such a tree and its leaves must be almost closed. One of the
leaves Γ1 is thus such that Γ1 2e s = t. Let ' be the restriction of the equivalence 'Γ1 to the domain D
of Π. The relation is clearly c-closed and trivially a-closed because there are no anticongruence symbols
in D. We expand ' by Lemma 2. to a (trivial) anticongruence '′ over TL.

We prove '′ � Π by taking any sequent (4) in Π and assuming '′ � ~s = ~t. Then ~s ' ~t, and hence
~s 'Γ1

~t. Since Γ1 is almost closed, we obtain g(~s) 'Γ1 g(~t). Since (g(~s) = h(~u)), (g(~t) = h(~v)) ∈ Γ ⊆ Γ1,
we get h(~u) 'Γ1 h(~v). Thus ui 'Γ1 vi, and hence '′ � ui = vi, for some i = 1, . . . ,m.

From Γ1 2e s = t we get s 6'Γ1 t, then s 6' t, and hence '′ 2 s = t, all by coincidence. This shows
Π 2c s = t and hence Γ 2a s = t by the conservativity Thm. 6. �

Mathematical and Engineering Methods in Computer Science 2005 7

3.4 Discussion

Note that the size of the set Π ′ produced by the transformation given in Subsect. 3.1 can be exponential
in the size of the original sequent Γ ⇒ ∆. Using this transformation has greatly simplified the proof
of Thm. 5. But a practical application should use a different transformation which yields only polynomial
increase in size of the original sequent. This is possible, at the expense of introducing new constants,
using an adapted version of the transformation of SAT to 3-SAT. The following rules may be used in
place of their respective counterparts from Subsect. 3.1:

(A→ B,Γ ⇒ ∆),Π =⇒ (c = 0, Γ ⇒ ∆), (⇒ A, c = 0), (B ⇒ c = 0),Π
((Γ1 ⇒ ∆1), Γ ⇒ ∆),Π =⇒ (c = 0, Γ ⇒ ∆), {⇒ A, c = 0 | A ∈ Γ1}, {B ⇒ c = 0 | B ∈ ∆1},Π

(A ∨B,Γ ⇒ ∆),Π =⇒ (c = 0, Γ ⇒ ∆), (A⇒ c = 0), (B ⇒ c = 0),Π
(Γ ⇒ A ∧B,∆),Π =⇒ (Γ ⇒ c = 0,∆), (c = 0⇒ A), (c = 0⇒ B),Π .

Each application of any of the above rules requires introduction of a new constant c.

Furthermore, any practical application of the CA-closure algorithm will use the obvious simplifications
of the conversion process described in Subsect. 3.2. We did not use them in order to keep the exposition
simple. Whenever in (4) m = 1, i.e., the sequent is a Horn clause, there is no need to introduce a new
anticongruence symbol h into La. The addition of the identities g(~s) = u1 and g(~t) = v1 into Γ suffices.
If we have n = 0, there is no need to introduce the constant g into La. The addition of h(~u) = h(~v) into
Γ suffices for m > 1. If m = 1, we just add u1 = v1.

Thus if Π consists of Horn clauses, then the CA-proof system is without A-rules and a congruence
closure algorithm suffices to decide whether s = t is a c-consequence of Π.

4 An Algorithm for the CA-Closure

We will now present an algorithm which systematically applies the C and A rules of the CA-proof
system (see Subsect. 3.3) with the correctness expressed by Thm. 7. Our algorithm is a generalization
(to deal with anticongruences) of the well-known O(n log(n)) congruence closure algorithms [1, 3]. In
contrast to the two algorithms, no transformation of terms into directed graphs (as in [1]) or into a
curried form (as in [3]) is needed. We achieve the same efficiency (for the C-closure that is, the A-
closure is inherently exponential) with an organization of terms f(s1, . . . , sn) into a tree with branches
〈[f(s1, . . . , sn)], f, [s1], . . . , [sn], ∅〉. We present the algorithm on two levels: an abstract one expressed in
the language of set theory, and a more concrete one with the data structures specified in details sufficient
for a complexity estimate.

We fix for the rest of this section a normal set of sequents Π in some pure functional language L and its
associated set of identities Γ with the domain D in the language La.

4.1 Set-Theoretical Implementation of the CA-Closure Algorithm

4.1.1 Equivalence Trees

Define 'Γ to be over D and such that s 'Γ t holds iff Γ �e s = t. We call an equivalence ' over D
a coarsening of 'Γ if 'Γ ⊆ ' and for every pair of identities g(~s) = h(~u), g(~t) = h(~v) in Γ we have
[h(~u)] = {g(~s), h(~u)} or [h(~u)] = {g(~s), h(~u), g(~t), h(~v)}. Note that 'Γ is its own coarsening.

Take any coarsening ' of 'Γ and construct the set

T (') = {〈[f(s1, . . . , sn)], f, [s1], . . . , [sn], ∅〉 | f(s1, . . . , sn) is pure in D} .

We designate by Tr(') the closure of T (') under the initial segments of its sequences, i.e., the least
set T such that T (') ⊆ T and with every 〈e, p〉 ∈ T also p ∈ T . The reader will observe that the set
Tr(') is a tree in the set-theoretical sense. The finite sequences p ∈ Tr(') are its nodes. Every node
〈e, p〉 ∈ Tr(') is a child of p, and p is the parent of 〈e, p〉. The node 〈∅〉 is the root and nodes without
children are leaves. We call e the label of the node 〈e, p〉. The tree Tr(') is finitely branching (each node
has finitely many children) with every path, i.e., a leaf in our particular case, finite.

This makes T (') the set of paths through the tree Tr('). We have D/' = {e | ∃p 〈e, p〉 ∈ T (')}.

8 Mathematical and Engineering Methods in Computer Science 2005

4.1.2 C-Closure of Equivalence Trees

We call an equivalence tree T (') with ' a coarsening of 'Γ C-closed if ' is almost c-closed (' does not
have to be a congruence for the anticongruence symbols). We will apply those C-rules to T (') which
correspond to pure congruence axioms for which T (') is not closed until we obtain a C-closed tree.
We can determine that a C-rule is applicable to T (') by finding a node 〈f, [s1], . . . , [sn], ∅〉 in the tree
with at least two children (which must be leaves). In other words, we have 〈[f(~s)], f, [s1], . . . , [sn], ∅〉 and
〈[f(~t)], f, [t1], . . . , [tn], ∅〉 in T (') such that [s1] = [t1], . . . , [sn] = [tn], and [f(~s)] 6= [f(~t)].

We coarsen ' to '′ by joining the classes [f(~s)] and [f(~t)] in such a way that '′ is the least extension of
' for which f(~s) '′ f(~t) holds. This happens by having

T ('′) = Join classes([f(~s)], [f(~t)], T (')) .

The function Join classes is defined as

Join classes(a, b, T) = {〈e ? c, f, e1 ? c, . . . , en ? c, ∅〉 | 〈e, f, e1, . . . , en, ∅〉 ∈ T}

where c = a ∪ b and

e ? c =

{
e if e ∩ c = ∅,
c otherwise.

4.1.3 A-Closure of Equivalence Trees

We call a C-closed equivalence tree T (') A-closed if ' is almost closed (see the proof of Thm. 7.). An
A-rule is applicable to T (') if there is in T (') a leaf 〈[g(~s)], g, [s1], . . . , [sn], ∅〉 such that [g(~s)] = [h(~u)] =
[h(~v)], and [u1] 6= [v1], . . . , [um] 6= [vm]. Note that this is possible only if [s1] = [t1], . . . , [sn] = [tn] holds.

In order to A-close T (') we recursively A-close the equivalence trees obtained by C-closing the trees
Join classes([ui], [vi], T (')) for all i = 1, . . . ,m.

4.2 Efficient Implementation of the C-Closure Algorithm

The full CA-algorithm discussed on an abstract level in the preceding subsection runs in exponential
time. The most efficient algorithms known for congruence closure, which corresponds to the C-closure of
an equivalence tree with n nodes, need time O(n log(n)) on average. Fig. 1 outlines in abstract terms an
O(n log(n)) implementation of the C-closure algorithm.

4.2.1 Data Structures

The imperative algorithm in Fig. 1 operates by side-effects on the global variable tree which is implemented
as an array of ten-tuples indexed by values of type nodes. The values of type nodes correspond to the
nodes in the tree Tr(') but they are implemented as numbers so they can be used as indices to the array.
The values of type labels are (logically speaking) representatives of equivalence classes for ' and thus
they are terms from D. This type is implemented as a subtype of nodes where the term f(s1, . . . , sn)
is identified with the node 〈f, [a1], . . . , [an], ∅〉 where a1, . . . , an are of type labels and represent in that
order the classes [s1], . . . , [sn].

The algorithm accesses the global variable tree through a set of accessing/modifying properties (similar
to object properties in Delphi or C]). The properties are presented on an abstract level, most of them
behaving like functions (e.g. children). For instance, the application children[p] yields the finite set
{〈e, p〉 | 〈e, p〉 ∈ Tr(')} of children of the node p. The set is implemented as a doubly-linked list starting
from the node tree[p].first child and strung together through the fields next sibling , prev sibling . We
need a doubly-linked list of siblings so that the removal of a child from children[p] can be implemented
in time O(1).

The property cwl (child w ith label) behaves like an (imperative) relation which can be viewed as a partial
map yielding for a label a and a node p the child q of p with the label a if it exists, i.e., if 〈a, p, q〉 ∈ cwl .
The last corresponds to q = 〈[a], p〉 ∈ Tr(').

The partial map cwl is rather sparse. For a tree with n nodes the map is defined on O(n) pairs of
arguments out of possible O(n2). In order to obtain the average complexity O(n log(n)) of the C-closure
algorithm it is crucial that the child q be yielded on average in time O(1). Note that the naive traversal

Mathematical and Engineering Methods in Computer Science 2005 9

of the set children[p] gives the access-time O(n). Probably the best implementation of such a map is by a
hash table of the size O(n) (the variable cwl implem in Fig. 1) with hash conflicts doubly-linked through
the nodes in the array tree. However, at a negligible loss of efficiency we can also choose to implement
cwl by a balanced tree or by a trie.

type nodes — Tr(')

labels ⊆ nodes — the set of representatives of classes in D/'
prop children : nodes → P(nodes) — children[p] = {〈e, p〉 | 〈e, p〉 ∈ Tr(')}

uses : labels → P(nodes) — uses[a] = {〈[a], p〉 | 〈[a], p〉 ∈ Tr(')}
label : nodes → labels — label

ˆ
〈[a], p〉

˜
= a

parent : nodes → nodes — parent
ˆ
〈[a], p〉

˜
= p

cwl : P(labels × nodes × nodes) — cwl = {〈a, p, 〈[a], p〉〉 | 〈[a], p〉 ∈ Tr(')}
var tree : array [nodes] of record parent ,first child : nodes;num children : N; label : labels;

next sibling , prev sibling ,next use, prev use,next conflict , prev conflict : nodes end

cwl implem : hashed array [labels,nodes] of nodes

procedure C-closure

while there are sibling leaves with labels a, b

Join classes(a, b)

procedure Join classes(a, b)

assume w.l.o.g. that
˛̨
uses[a]

˛̨
≥

˛̨
uses[b]

˛̨
for each n in uses[b]

if label [n] = b

p← parent [n]

Remove(n)

if 〈a, p, m〉 ∈ cwl

Remove(m)

n←Merge nodes(m, n)

label [n]← a

Add(p, n)

procedure Remove(n)

remove 〈label[n], parent[n], n〉 from cwl

remove n from uses
ˆ
label [n]

˜
remove n from children

ˆ
parent [n]

˜

function Merge nodes(p, q)

assume w.l.o.g. that
˛̨
children[p]

˛̨
≥

˛̨
children[q]

˛̨
for each n in children[q]

c← label [n]

Remove(n)

if 〈c, p, m〉 ∈ cwl

Remove(m)

n←Merge nodes(m, n)

Add(p, n)

return p

procedure Add(p, n)

parent [n]← p

add n to children[p]

add n to uses
ˆ
label [n]

˜
add 〈label [n], p, n〉 to cwl

Figure 1: Efficient implementation of the C-closure algorithm.

4.2.2 The Working of the Algorithm

The main procedure C-closure of the algorithm in Fig. 1 looks for two siblings leaves with labels a
and b and joins them, in a similar way as the function Join classes from Subsect. 4.1.2, by calling the
procedure Join classes(a, b). The only difference is that the former works with equivalence classes,
while the latter with their representatives.
Join classes finds all occurrences of the label b in the tree by traversing the set uses[b] (implemented
by a doubly-linked list) of all nodes with the label b. For every node 〈b, p〉 in the set, its descendants
〈. . . , b, p〉 are merged by Merge nodes(〈a, p〉, 〈b, p〉) with the descendants 〈. . . , a, p〉 of the sibling node
〈a, p〉 of 〈b, p〉 if there is such. The label b of 〈b, p〉 is renamed to a because a will be the new representative
of the joined class [a] ∪ [b].
The procedure Merge nodes(p, q) traverses all children 〈c, q〉 of q making 〈c, q〉 a child of p unless there
is a child 〈c, p〉 of p. In that case, the procedure first recursively merges 〈c, q〉 with 〈c, p〉, and then makes
the result a child of p.
In both Join classes and Merge nodes it is crucial that the for each loop traverses the smaller set
and accesses the children from the larger set in the constant time. This assures that each out of the n

10 Mathematical and Engineering Methods in Computer Science 2005

nodes in the tree is removed from some smaller set and added to a larger set at most log(n) times (the
size of the set obtained by the joined and merged nodes is at least double the size of the smaller set).
Thus the time complexity of the algorithm is on O(n log(n)) (on average because of the hashing).

5 Conclusions

We have shown how to absorb the propositional content of formulas into sets of identities where the
congruence axioms take care of conjunctions, the anticongruence axioms of disjunctions. Negations ¬A
are translated to A ⇒ 0 = 1, and sequents are taken care of by identities connecting congruence with
anticongruence symbols. Of course, it is well-known in logic that formulas can be reduced to identities.
For instance, the Primitive recursive arithmetic (PRA) can be presented in this way. However, one
needs a certain amount of arithmetic for this. We have shown that the reduction is possible without any
arithmetic by employing in a pleasingly symmetric way congruences and anticongruences.

While we have implemented the CA-algorithm, the implementation is not yet ready to be benchmarked
and compared to state-of-the-art automated theorem provers. We are now working on a congruence
closure based proof system and procedure for generally quantified sequents (clauses).

References
[1] Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the Common Subexpression

Problem. Journal of the ACM, 27(4):758–771, 1980.

[2] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. DPLL(T):
Fast Decision Procedures. 16th International Conference on Computer Aided Verification (CAV),
Boston, July 2004. LNCS 3114, pp. 175–188, Springer, 2004.

[3] Robert Nieuwenhuis and Albert Oliveras. Congruence closure with integer offsets. 10th Int. Conf.
on Logics for Programming, AI and Reasoning (LPAR), Almaty, Kazakhstan, September 2003. LNAI
2850, pp. 78–90, Springer, 2003.

[4] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, Massachusetts, 1967.

Mathematical and Engineering Methods in Computer Science 2005 11

