
Towards Distributed Tableaux Reasoning Procedure for DDL with
Increased Subsumption Propagation between Remote Ontologies

Martin Homola1 Luciano Serafini2

1Faculty of Mathematics, Physics and Informatics,
Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia,

Email: homola@fmph.uniba.sk
2 FBK-IRST, Via Sommarive 18, 38050 Povo, Trento, Italy

Email: serafini@fbk.eu

Abstract

Distributed Description Logics (DDL) enable reason-
ing with multiple ontologies interconnected by direc-
tional semantic mapping. In DDL semantic mapping
is indicated by so called bridge rules. There are two
kinds: into- and onto-bridge rules. Mappings between
concepts allow subsumption to propagate from one
ontology to another. However, in some cases, espe-
cially when more than two local ontologies are in-
volved, subsumption does not always propagate as
we would expect. In a recent study, an adjusted se-
mantics has been introduced that is able to cope with
more complex scenarios. In particular, subsumption
propagates along chains of several bridge rules under
this new semantics. This study makes use of so called
compositional consistency requirement that has been
employed before in Package-based description logics.
While the results concerning subsumption propaga-
tion under the adjusted semantics are encouraging,
we show in this paper that this semantics also has
drawbacks. In certain situations it violates the di-
rectionality principle. We propose a weaker version
of the semantics in this paper that is able to cope
with chains of onto-bridge rules but it is not able to
deal with chains of into-bridge rules. Furthermore
we provide a sound and complete tableaux reasoning
algorithm for this semantics.

1 Introduction and Motivation

Distributed Description Logics (DDL) have been in-
troduced by Borgida and Serafini in (Borgida & Ser-
afini 2003) and later developed in (Serafini & Tamilin
2004, Serafini et al. 2005). DDL are intended espe-
cially to enable reasoning over systems of multiple on-
tologies connected by directional semantic mapping,
built upon the formal, logical and well established
framework of Description Logics (DL) (Baader et al.
2003). DDL capture the idea of importing and reusing
concepts between several ontologies. This idea com-
bines well with the basic assumption of the Semantic
Web that no central ontology but rather many ontolo-
gies with redundant knowledge will exist (Berners-Lee
et al. 2001).

In DDL special syntactic constructs, dubbed
bridge rules, are introduced for encoding seman-
tic mapping between ontologies in a formal fashion.
With bridge rules one is able to assert that some con-
cept, say C, local to ontology T1, is mapped to an in-

Copyright c©2008, Australian Computer Society, Inc. This
paper appeared at the Knowledge Representation Ontology
Workshop (KROW 2008), Sydney, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 90, Thomas Meyer and Mehmet A. Orgun, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

dependent ontology T2 as a subconcept/superconcept
of some T2-local concept, say D. Moreover, bridge
rules are directed, and hence if there is a bridge rule
with direction from T1 to T2, then T2 reuses knowledge
from T1 but not necessarily the other way around.
Semantic mapping encoded with bridge rules enables
for knowledge reuse. In particular, we talk about sub-
sumption propagation from one ontology to another.
Consider the example depicted in Fig. 1. Let the on-
tology on the right be our local back-yard ontology.
In this ontology we maintain knowledge about all an-
imals in our backyard. Instead of complex modeling
of all relations between our animals we reuse a far
more complex ontology that contains classification of
all animal species. We map MyCat to genus Felis,
and we also create the concept DangerousAnimal and
map it to Felidae, the family of all cats, since we also
keep a hamster and we know that all cats hunt ham-
sters for food. Thanks to the semantics of DDL we
are now able to derive that MyCat is a subconcept
of DangerousAnimal, even if this relation is not de-
rived in the original backyard ontology locally. We
say that the subsumption between Felis and Felidae
has propagated to the backyard ontology thanks to
the mapping.

Figure 1: A DDL knowledge base with bridge rules.
In the ontology on the right a query is marked up
with “?”; we query whether MyCat is a subconcept of
DangerousAnimal. This query is answered “yes” under
the original DDL semantics.

Please note also that the direction of the mapping
is from the species ontology to the backyard ontol-
ogy, as we only intend to reuse the knowledge of the
species ontology within the backyard ontology and
not the other way around. The mapping depicted on
Fig. 1 does not affect the knowledge within the species
ontology in any way.

Subsumption propagation, as seen above, has been
described as desired and one of the main features of
DDL and it has been studied (cf. (Borgida & Serafini
2003, Serafini & Tamilin 2004, Serafini et al. 2005,

Homola 2007, 2008)). In (Homola 2008) we have
argued that the original semantics of DDL behaves
counter-intuitively in certain cases and we have pro-
vided an adjustment to the semantics in order to cope
with this issue. For illustration consider Fig. 2 which
extends the previously discussed example depicted
in Fig. 1. In this case, the situation is more com-
plex. We no longer map between concepts Felidae and
DangerousAnimal, but instead these two concepts are
connected indirectly via the concept Carnivore from
yet another ontology. This third ontology deals with
animal behaviour in contrast with the species ontol-
ogy that merely provides classification. In case that
there are such ontologies available, we suggest that
this way of modelling is even more natural. As in the
above example, again we would expect to derive that
MyCat is a subconcept of DangerousAnimal within the
backyard ontology. This relation is not derived under
the original DDL semantics however.

Figure 2: An example of complex concept map-
ping between three ontologies. In this case the query
whether MyCat is a subconcept of DangerousAnimal is
not true under the original DDL semantics.

In the example from Fig. 2 there is a so called chain
of bridge rules. The onto-bridge rule between con-
cepts Carnivore and Felidae and the other one between
Felis and MyCat form a chain, as Felis is a subcon-
cept of Felidae in the classification ontology. Sim-
ilar chains are also possible with into-bridge rules.
The adjusted semantics of (Homola 2008) allows sub-
sumption propagation along such chains of bridge
rules and hence the subsumption between MyCat and
DangerousAnimal is entailed under this semantics.

In this paper we take steps forward in order to
develop a distributed tableaux reasoning algorithm
that would decide satisfiability of concepts and sub-
sumption with respect to the adjusted semantics. The
algorithm that is introduced in this paper handles
chaining onto-bridge rules correctly, but it is unable
to cope with chaining into-bridge rules. We provide
precise characterization of the semantics that the al-
gorithm actually implements. The algorithm works
with acyclic DDL knowledge bases build on top of
ALC as the local language. As in the case of the
tableaux algorithm that is known for the original se-
mantics (Serafini et al. 2005), the algorithm is truly
distributed and it permits the scenario where every
local ontology is governed by an autonomous reason-
ing service and these services communicate by passing
queries. The local reasoner that has started the com-
putation collects all the answers and makes the deci-
sion at the end. Besides the fact that each algorithm
works under a different semantics, the main distin-
guishing feature of the newly introduced algorithm
is that communication between local reasoners is di-
vided into multiple messages. We believe that such

behaviour may serve as a base for more fine-grained
optimization in the future.

2 Distributed Description Logics

Distributed Description Logics have been introduced
in (Borgida & Serafini 2003), as a formal framework
for reasoning with multiple local ontologies inter-
connected with semantic mapping. Faithful to their
namesake, DDL rely on Description Logics (Baader
et al. 2003) as for the representation language of the
local knowledge bases. DL provide a well established
ontological representation language with formal se-
mantics and with reasoning tasks and associated com-
putational issues well understood. In the following we
briefly introduce the ALC DL in oder to be able to
build on it later in the paper. DDL, however, are also
built over more expressive DL up to SHIQ (Horrocks
et al. 1999).

A basic form of DL knowledge base is a TBox. We
will denote TBoxes with Ti because we deal with sev-
eral ontologies. Assume that i is an index from some
index set. Each TBox is a set of subsumption axioms
called general concept inclusions (GCIs), each of the
form i : C v D, where C and D are concepts. Con-
cepts are either atomic or complex. Atomic concepts
have no further structure. Complex concepts are com-
posed from atomic concepts and roles using some of
the DL concept constructors. For list of constructors
and their meaning see Fig. 3. The semantics of DL
is model-theoretic. Each ontology Ti is assigned an
interpretation Ii consisting of a domain ∆Ii and an
interpretation function ·Ii which interprets each con-
cept C by CIi ⊆ ∆Ii . Each role R is interpreted by
RIi ⊆ ∆Ii ×∆Ii . Complex concepts must satisfy fur-
ther semantic constraints, see Fig. 3. There are also
two special concepts ⊥ and >. The bottom concept
(⊥) is always interpreted by ⊥Ii = ∅, the top concept
is always interpreted by >Ii = ∆Ii , but they are for-
mally defined as syntactic sugar: ⊥ ≡ E u ¬E and
> ≡ E t ¬E, for some new concept name E. A con-
cept C is in negation normal form (NNF) if negation
(¬) only appears in C directly in front of atomic con-
cepts. For each concept, an equivalent concept that
is in NNF exists (Baader et al. 2003), we denote NNF
of C by nnf(C). Finally, a GCI axiom i : C v D ,
is satisfied by Ii whenever CIi ⊆ DIi . An interpre-
tation Ii is a model of Ti if it satisfies all GCIs in
Ti. And, subsumption i : C v D is entailed by Ti
if CIi ⊆ DIi holds in all models of Ti. Satisfiability
of concepts and subsumption entailment are standard
decision problems that are investigated in each DL.
For more detailed introduction to DL please refer to
(Baader et al. 2003, Horrocks et al. 1999).

E EIi

¬C ∆Ii \ CIi

C uD CIi ∩DIi

C tD CIi ∪DIi

∀R.C {i ∈ ∆Ii | (∀j ∈ ∆Ii) (i, j) ∈ RIi =⇒ j ∈ CIi}
∃R.C {i ∈ ∆Ii | (∃j ∈ ∆Ii) (i, j) ∈ RIi ∧ j ∈ CIi}

Figure 3: Complex concepts in ALC and their seman-
tics.

A DDL knowledge base, commonly dubbed dis-
tributed TBox T, includes a set of local TBoxes each
over its own DL language and a set of bridge rules B
that provides mappings between local TBoxes. The
local languages are commonly required to be under
SHIQ (Horrocks et al. 1999) as it is not trivial to
extend DDL with nominals (Serafini et al. 2005). In
this work, we use the formal definition as follows.

Definition 1. Assume a DL language L – a sub-
language of SHIQ, a non-empty index set I, a set
of concept names NC =

⋃
i∈I NCi and a set of role

names NR =
⋃
i∈I NRi. A Distributed TBox over L

is a pair T = 〈{Ti}i∈I ,B〉 such that:

1. Each local TBox Ti is a collection of general con-
cept inclusions (GCIs) over NCi and NRi in the
local language of Ti, a sub-language of L. Each
GCI is an axiom of the form

i : C v D .

2. The set of bridge rules B divides into sets of
bridge rules B =

⋃
i,j∈I,i6=j Bij. Each Bij is a

collection of bridge rules in direction from Ti to
Tj which are of two forms, into-bridge rules and
onto-bridge rules (in the respective order):

i : A v→ j : G , i : B w→ j : H .

As we have already mentioned in the introduction,
the direction of bridge rules matters and hence Bij
and Bji are possibly and expectedly distinct. The
bridge graph GT = 〈V,E〉 of a distributed TBox T is
defined as follows: V = I and 〈i, j〉 ∈ E if Bij 6= ∅.
We say that T is acyclic if GT is acyclic.

Given a TBox T , a hole is an interpretation
Iε = 〈∅, ·ε〉 with empty domain. Holes are used
for fighting propagation of inconsistency. We use
the most recent definition for holes, introduced in
(Serafini et al. 2005). A distributed interpretation
I = 〈{Ii}i∈I , {rij}i∈I,i6=j〉 of a distributed TBox T
consists of a set of local interpretations {Ii}i∈I and a
set of domain relations {rij}i∈I,i6=j . .or each i ∈ I, ei-
ther Ii = (∆Ii , ·Ii) is an interpretation of local TBox
Ti or Ii = Iε is a hole. Each domain relation rij is
a subset of ∆Ii × ∆Ij . We denote by rij(d) the set
{d′ | 〈d, d′〉 ∈ rij} and by rij(D) the set

⋃
d∈D rij(d).

Definition 2. For every i and j, a distributed in-
terpretation I satisfies the elements of a distributed
TBox T (denoted by I |=ε ·) according to the follow-
ing clauses:

1. I |=ε i : C v D if Ii |= C v D.

2. I |=ε Ti if I |=ε i : C v D for each C v D ∈ Ti.

3. I |=ε i : C v→ j : G if rij
(
CIi

)
⊆ GIj .

4. I |=ε i : C w→ j : G if rij
(
CIi

)
⊇ GIj .

5. I |=ε B if I satisfies all bridge rules in B.

6. I |=ε T if I |=ε B and I |=ε Ti for each i.

If I |=ε T then we also say that I is a (distributed)
model of T.

The two standard decision problems in DL, satis-
fiability of concepts and entailment of subsumption,
play prominent rôle also in context of DDL. Formally,
the decision problems are defined as follows.

Definition 3. Given a distributed TBox T, an i-local
concept C is satisfiable with respect to T if there exists
a distributed model I of T such that CIi 6= ∅.
Definition 4. Given a distributed TBox T and two
i-local concepts C and D, it is said that C is sub-
sumed by D with respect to T if CIi ⊆ DIi in every
distributed model I of T. We also sometimes say that
the subsumption formula i : C v D is entailed by T
and denote this by T |=ε i : C v D.

It is a well known result that in most DL sub-
sumption and unsatisfiability are inter-reducible. It
follows rather straight forward, that this reduction is
also valid for DDL, as follows in Theorem 1.

Theorem 1. Assume a distributed TBox T and two
i-local concepts C and D. T |=ε i : C v D if and only
if the concept ¬C uD is unsatisfiable with respect to
T. Also, C is satisfiable with respect to T if and only
if the subsumption formula i : C v ⊥ is not entailed
by T.

Below in this paper we present a distributed
tableaux reasoning algorithm that decides satisfiabil-
ity of concepts with respect to a distributed TBox for
the adjusted semantics for DDL of (Homola 2008).
Thanks to this reduction the algorithm provides a de-
cision procedure for both satisfiability and subsump-
tion entailment.

Among the properties of DDL we find the char-
acterization of subsumption propagation, which for-
mally describes the mechanism of knowledge reuse of
DDL. Theorem 2 (Serafini & Tamilin 2004) consti-
tutes the most basic version of this property: thanks
to a pair of one into-bridge rule and one onto-bridge
rule local subsumption relationship is propagated
from the source ontology of these bridge rules to the
target ontology.

Theorem 2 (Simple subsumption propagation). In
each distributed TBox T with two bridge rules i : C w→
j : G ∈ B and i : D v→ j : H ∈ B the following holds:

T |=ε i : C v D =⇒ T |=ε j : G v H .

Study of subsumption propagation in more com-
plex cases appears in the literature (Serafini et al.
2005, Homola 2007). These cases are not as much
interesting for this study, since they do not extend
the case captured by Theorem 2 in that aspect that
only two local ontologies that are directly connected
with bridge rules are studied. In this work we con-
centrate on indirectly connected ontologies. Various
other properties of DDL have showed that DDL con-
stitute a monotonic logic, effect of bridge rules is di-
rectional, and that if some of the local ontologies is
inconsistent, it does not necessarily pollute the whole
distributed system. The reader is kindly redirected
to (Borgida & Serafini 2003, Serafini & Tamilin 2004,
Serafini et al. 2005, Homola 2007) for all details and
discussion.

3 Towards Improved Subsumption Propaga-
tion in DDL

In our recent paper (Homola 2008) we have adjusted
the original semantics of DDL in order to improve
subsumption propagation between remote ontologies,
in cases when local ontologies are only connected indi-
rectly, as in the example from Fig. 2. The adjustment
exploits the compositional consistency requirement,
that is known from Package-based Description Logics
(P-DL) (Bao et al. 2006). In a nutshell, this require-
ment only allows transitive domain relations in dis-
tributed interpretations. Formal definition follows in
Definition 5.

Definition 5. Given a distributed interpretation I
with domain relation r, we say that r (and also I)
satisfies compositional consistency if for each i, j, k ∈
I and for each x ∈ ∆Ii with rij(x) = D we have
rjk(D) = rik(x).

Now the adjusted semantics is simply obtained
from the original DDL semantics by allowing only
distributed interpretations that satisfy compositional

consistency. In accordance we often use the wording
“DDL under compositional consistency” when refer-
ring to this semantics. The adjusted semantics ac-
tually extends the original one, in the sense that if
some subsumption formula Φ is entailed by a dis-
tributed TBox T in the original semantics, then it
is also entailed by T under compositional consistency.
The only difference is that in the adjusted seman-
tics possibly some more subsumption formulae are
entailed in addition. This is formally stated in the
following theorem (see (Homola 2008) for a proof).

Theorem 3. Given a distributed TBox T and a sub-
sumption formula Φ, if T |=ε Φ according to the orig-
inal semantics, then T |=ε Φ also holds in DDL under
compositional consistency.

To demonstrate the mechanism of improved sub-
sumption propagation within the adjusted semantics,
let us revisit the example from Fig. 2 formally.

Figure 4: Renaming of concepts from Fig. 2 employed
in Example 1. The three local ontologies are referred
to as Tb – behaviour ontology, Tc – classification on-
tology, and Ty – backyard ontology.

Example 1. Recall the example depicted in Fig. 2.
Let’s simplify the notation by renaming the concepts
as follows: C := MyCat, D := DangerousAnimal,
E := Felis, F := Felidae, G := Carnivore. Remain-
ing concepts are of no interest (see Fig. 4). Assume
the index set I = {b, c, y}, where b represents the be-
haviour ontology (on the left), c represents the classi-
fication ontology (in the middle) and y represents the
backyard ontology (on the right). There are various
axioms in T = 〈{Tb, Tc, Ty, },B〉 but of the GCIs only
c : E v F , actually matters to us, and there are three
bridge rules in B:

b : G w→ c : F , c : E w→ y : C ,

b : G v→ y : D .

We query whether it holds that T |=ε y : C v
D. Assume a distributed interpretation I. Let us
first assume that I contains no hole. From Defi-
nition 2 we get rcy

(
EIc

)
⊇ CIy . We also have

rbc
(
GIb

)
⊇ F Ic , but since rcy(·) is a mapping we get

that rcy
(
rbc
(
GIb

))
⊇ rcy

(
F Ic

)
. And from composi-

tional consistency we get rcy
(
rbc
(
GIb

))
= rby

(
GIb

)
and so rby

(
GIb

)
⊇ rcy

(
F Ic

)
. From the GCI c : E v

F we get F Ic ⊇ EIc and from properties of mapping
we again get rcy

(
F Ic

)
⊇ rcy

(
EIc

)
. Putting this all

together we derive:

rby
(
GIb

)
⊇ rcy

(
F Ic

)
⊇ rcy

(
EIc

)
⊇ CIy ,

and that amounts to rby
(
GIb

)
⊇ CIy . On the other

hand, from the into-bridge rule between Tb and Ty we
derive rby

(
GIb

)
⊆ DIy . And so we finally get CIy ⊆

DIy .
For the case with holes assume for instance that

Ib = Iε. In that case GIb = ∅. Thanks to the
constraint generated by bridge rules and the GCI we
easily derive that also F Ic = ∅, EIc = ∅, and also
CIy = ∅. In such a case, however, CIy ⊆ DIy holds
trivially. If we substitute other local interpretations
for holes, we get the very same result similarly.

Summing up, in every model of T we have CIy ⊆
DIy and hence T |=ε y : C v D. Recall that we have
actually used the compositional consistency require-
ment in our argumentation. Without it we would not
be able to establish the result: we would not be able to
prove that rby

(
GIb

)
⊇ rcy

(
F Ic

)
. In fact, the original

DDL semantics allows models that violate this inclu-
sion and hence T |=ε y : C v D does not hold under
the original semantics.

Theorem 4 below provides a more general charac-
terization of cases when subsumption propagates to
remote ontologies. This characterization generalizes
the setting from Figs. 2-4. For a proof, please refer to
(Homola 2008).

Figure 5: Depiction of the distributed TBox from
Theorem 4. Local subsumption is indicated by solid
arrows and bridge rules by dashed arrows.

Theorem 4. Given a distributed TBox, as illustrated
in Fig. 5, with index set I and set of bridge rules B,
that features n + 1 local TBoxes T0, T1, . . . , Tn with
concepts E,F ∈ T0, and Ci, Di ∈ Ti, for 1 ≤ i ≤ n,
and k with 1 ≤ k ≤ n such that:

1. T |=ε i : Ci v Di, for 1 ≤ i ≤ n ,

2. i+ 1 : Ci+1
w→ i : Di ∈ B, for 1 ≤ i < k ,

3. i : Di
v→ i+ 1 : Ci+1 ∈ B, for k ≤ i < n ,

4. 1 : C1
w→ 0 : E ∈ B and n : Dn

v→ 0 : F ∈ B .

In DDL under compositional consistency it follows
that T |=ε 0 : E v F .

In a nutshell, Theorem 4 basically says that the
effect of bridge rules is now transitive, and hence sub-
sumption propagates even between remote ontologies
within the system. Unfortunately, current notation
used with DDL does not allow us to formally state
this in a more elegant and easier to read fashion.

4 DDL under the Transitivity Condition

Contrary to the claims of (Homola 2008), the adjusted
semantics suffers from some drawbacks. The example
below demonstrates that the directionality property
is violated in this new setting.

Example 2. Consider a distributed TBox T with
three local TBoxes T1, T2 and T3 and two bridge rules:

1 : A w→ 2 : > , 1 : A v→ 3 : ⊥ .

Assuming that T2 is consistent we have >I2 6= ∅ and
hence there must be some y ∈ >I2 . In such a case
the first bridge rule requires that there also is x ∈ AI1
with y ∈ r12(x). However, the compositional con-
sistency condition requires that r32(r13(x)) = r12(x)
and hence, there must also be some z ∈ ∆I3 such that
z ∈ r13(x). But for each such z the second bridge
rule requires that z ∈ ⊥I3 , which violates the condi-
tion that ⊥I3 = ∅. Hence inconsistency is induced
within T2.

This violates directionality because, as there is no
directed path from 2 to 3 in GT, there should be no
change in the semantics of T3 if we remove T2 from
T. But indeed, if we remove T2, then T3 is no longer
inconsistent.

From the example we conclude that the composi-
tional consistency requirement is perhaps too strong.
It implies all the constraints that are necessary in
order to increase subsumption propagation in the
amount we have described as desired but it also has
some more consequences that are possibly destruc-
tive as we have seen in Example 2. In the following
we study a relaxed version of the compositional con-
sistency condition, which basically is just transitivity
of the domain relation in distributed models. We will
show that subsumption propagation is more limited
under this weaker condition, but on the other hand
we will be able to introduce a distributed tableaux
reasoning algorithm that decides satisfiability for this
semantics. Formally, the weaker condition is defined
as follows.

Definition 6. Given a distributed interpretation I
with domain relation r, we say that r (and also I)
satisfies the transitivity condition if for each i, j, k ∈
I and for each x ∈ ∆Ii with rij(x) = D we have
rjk(D) ⊆ rik(x).

Apparently, a distributed interpretation satisfies
the transitivity condition if and only if its domain re-
lation is transitive. The semantics obtained by allow-
ing only distributed interpretations that satisfy the
transitivity condition is hence called DDL under tran-
sitivity or DDL with transitive domain relation. The
first observation for the new semantics is that the
proposition of Theorem 4 does not hold any more if
we relax from compositional consistency to transitiv-
ity. We demonstrate this problem by an example.

Example 3. Consider a distributed TBox T with
three local TBoxes T1, T2 and T3, with local concepts
C1, D1 in T1, E2 in T2 and F3 in T3, and with bridge
rules:

2 : E2
v→ 3 : F3 , 3 : F3

v→ 1 : D1 ,

2 : E2
w→ 1 : C1 .

This distributed TBox is clearly a very simple in-
stance of the setting assumed by Theorem 4. Ac-
cording to this theorem, we should be able to de-
rive T |=d 1 : C1 v D1. This is not true, how-
ever, as a distributed model of T exists in which
C1
I1 * D1

I1 . This distributed model I has three
local domains ∆I1 = {c1, d1}, ∆I2 = {e2}, and
∆I3 = {f3}. Local concepts are interpreted as fol-
lows: C1

I1 = {c1, d1}, D1
I1 = {d1}, E2

I2 = {e2},

and F3
I3 = {f3}. Finally, the domain relation is the

following: r21 = {〈e2, c1〉, 〈e2, d1〉}, r23 = {〈e2, f3〉},
r31 = {〈f3, d1〉}, r12 = r32 = r13 = ∅. It is eas-
ily verified that r is transitive, hence the transitivity
condition is satisfied, and hence Theorem 4 does not
stand if compositional consistency is relaxed to tran-
sitivity. At the same time, this example does not in-
validate Theorem 4 under compositional consistency,
as the stronger condition is not satisfied by I because
r21(e2) = {c1, d1} * {d1} = r31(r23(e2)).

So we see that DDL with transitive domain rela-
tion has problems with “chaining” into-bridge rules.
Luckily enough the problem does not repeat with
chaining onto-bridge rules – if we reinspect Example 1
we will see that transitivity is enough to guarantee
the two chaining onto-bridge rules in this example to
propagate the subsumption relationship as expected.
This observation holds in general an is formally es-
tablished by Theorem 5 below. This theorem is a
weaker version of Theorem 4 and provides characteri-
zation of the semantics of DDL under the transitivity
condition.

Figure 6: Depiction of the distributed TBox from
Theorem 5. Local subsumption is indicated by solid
arrows and bridge rules by dashed arrows.

Theorem 5. Given a distributed TBox, as illustrated
in Fig. 6, with index set I and set of bridge rules B,
that features k + 1 local TBoxes T0, T1, . . . , Tk with
concepts E,F ∈ T0, and Ci, Di ∈ Ti, for 1 ≤ i ≤ k,
such that:

1. T |=ε i : Ci v Di, for 1 ≤ i ≤ k ,

2. i+ 1 : Ci+1
w→ i : Di ∈ B, for 1 ≤ i < k ,

3. 1 : C1
w→ 0 : E ∈ B and k : Dk

v→ 0 : F ∈ B .

In DDL under the transitivity condition it follows that
T |=ε 0 : E v F .

Proof. The theorem is proved by the following chain
of inclusions:

EI0
1
⊆ rk0

(
Ck
Ik
) 2
⊆ rk0

(
Dk
Ik
) 3
⊆ F I0 .

Inclusion 3 is a direct consequence of the into-bridge
rule k : Dk

v→ 0 : F ∈ B. As for Inclusion 2, T |=d

k : Ck v Dk implies CkIk ⊆ Dk
Ik and since rk0(·) we

also have rk0

(
Ck
Ik
)
⊆ rk0

(
Dk
Ik
)
. Inclusion 1 divides

into:

EI0 ⊆ r10

(
r21

(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆ rk0

(
Ck
Ik
)
.

Both these inclusions ought to be proved by math-
ematical induction. The first inclusion is proved
by induction on k, base case is EI0 ⊆ r10

(
C1
I1).

This is a direct consequence of the onto-bridge rule
1 : C1

w→ 0 : E ∈ B. In the induction step,

by the induction hypothesis we have that EI0 ⊆
r10

(
r21

(
· · · rk−1k−2

(
Ck−1

Ik−1
)
· · ·
))

. From the as-
sumptions of the theorem we derive:

Ck−1
Ik−1 ⊆ Dk−1

Ik−1 ⊆ rkk−1

(
Ck
Ik
)
.

The composition r10(r21(· · · rk−1k−2(·) · · ·)) is still a
mapping, and so r10

(
r21

(
· · · rk−1k−2

(
Ck−1

Ik−1
)
· · ·
))

is a subset of r10

(
r21

(
· · · rk−1k−2

(
rkk−1

(
Ck
Ik
))
· · ·
))

.
Together with the induction hypothesis this amounts
to the inclusion we wanted to prove.

As for the second inclusion, we shall prove a
slightly more general proposition:

rn+1n

(
rn+2n+1

(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆ rkn

(
Ck
Ik
)
,

where 0 ≤ n ≤ k − 2. The inclusion we ought
to prove is then derived by setting n = 0. The
proposition is proved by mathematical induction on
k − n. As for the base case consider k − n =
2, and so n = k − 2. That means we have to
show rk−1k−2

(
rkk−1

(
Ck
Ik
))
⊆ rkk−2

(
Ck
Ik
)
, which

indeed holds because I satisfies the transitivity con-
dition. The induction step is for k − n = j > 2,
and so n = k − j. From the induction hypothe-
sis we get rn+2n+1

(
rn+3n+2

(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆

rkn+1

(
Ck
Ik
)
. And since rn+1n(·) is a mapping,

we also get rn+1n

(
rn+2n+1

(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆

rn+1n

(
rkn+1

(
Ck
Ik
))

. Since I satisfies the transitivity
condition, we get rn+1n

(
rkn+1

(
Ck
Ik
))
⊆ rkn

(
Ck
Ik
)
.

By combining the last two inclusions we directly get:

rn+1n

(
rn+2n+1

(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆ rkn

(
Ck
Ik
)
.

By setting n = 0 we derive the inclusion we wanted
to prove, and hence the Theorem.

And thus we are able to conclude this section by
comparing the three semantics of DDL with respect
to the amount of subsumption propagation they allow
along chaining bridge rules. The original semantics
of DDL in general does not guarantee subsumption
propagation between remote ontologies along chain-
ing bridge rules. A limited case when subsumption
propagates between remote ontologies under the orig-
inal semantics is described in (Homola 2008). Seman-
tics of DDL with transitive domain relation ensures
subsumption propagation along chaining onto-bridge
rules in scenarios that instantiate Theorem 5. Finally,
in DDL under computational consistency subsump-
tion propagates along chaining onto-bridge rules and
along chaining into-bridge rules in addition, as estab-
lished by Theorem 4.

5 Distributed Tableaux Algorithm for DDL
with Transitive Domain Relation

In this section, we introduce a distributed tableaux
algorithm for deciding satisfiability of concepts with
respect to an acyclic distributed TBox for DDL over
ALC under the transitivity requirement. As in the
algorithm of (Serafini et al. 2005), also in our ap-
proach, local reasoners are run independently. We
keep precise track of the domain relation r however,
and the communication between local reasoners is di-
vided into multiple queries. Hence while the original
algorithm can be seen as working with autonomous
local tableaux by passing queries, our algorithm can
be seen as working with a truly distributed tableau.

Definition 7. Assume a distributed TBox T =
〈{Ti}i∈I ,B〉 over ALC with index set I, concept
names NC =

⋃
i∈I NCi and role names NR =⋃

i∈I NRi. Let CCi be the set of all (atomic and com-
plex) concepts over NCi and NRi in negation normal
form. A distributed completion tree T = {Ti}i∈I is a
set of labeled trees Ti = 〈Vi, Ei,Li, ri〉, such that for
each i ∈ I:

1. the members of {Vi}i∈I are mutually disjoint;

2. the members of {Ei}i∈I are mutually disjoint;

3. the labeling function Li labels each node x ∈ Vi
with L(x) ⊆ 2CCi and each edge 〈x, y〉 ∈ Ei with
L(〈x, y〉) ∈ NRi;

4. the labeling function ri labels each node x ∈ Vi
with a set of references to its r-images ri(x) ⊆
{j : y | j ∈ I ∧ y ∈ Vj}.

During the run of the tableaux algorithm, tableaux
expansion rules are applied on the completion tree
and the tree is expanded by each rule application. If
no more rules are applicable any more, we say that the
completion tree is complete. There is a clash in the
completion tree T if for some x ∈ Vi and for some C ∈
NCi we have {C,¬C} ⊆ Li(x). If there is no clash in
T then we say that T is clash-free. In order to assure
termination we use standard subset blocking that is
common for ALC. Given a distributed completion
tree T = {Ti}i∈I , a node x ∈ Vi is blocked, if it has
an ancestor y ∈ Vi such that Li(x) ⊆ Li(y). In such
a case we also say that x is blocked by y. Node y ∈ Vi
is said to be an R-successor of x ∈ Vi, if 〈x, y〉 ∈ Ei
and Li(〈x, y〉) = R.

The distributed tableaux algorithm for deciding
satisfiability of concepts with respect to a distributed
TBox takes a distributed TBox T, a concept C in
NNF and i ∈ I as its inputs. The algorithm then
continues in three steps:

1. Initialization. Create new completion tree T =
{Tj}j∈I such that Tj = 〈{s0}, ∅, {s0 7→ {C}}, ∅〉
for j = i and Tj = 〈∅, ∅, ∅, ∅〉 for j 6= i.

2. Tableau expansion. Apply the tableaux expan-
sion rules of Fig. 7 exhaustingly.

3. Answer. If none of the tableaux expansion rules
in Fig. 7 is applicable any more (i.e., the com-
pletion tree is now complete), answer “C is sat-
isfiable” if a clash-free completion tree has been
constructed. Answer “C is unsatisfiable” other-
wise.

Below we present a formal correctness proof for the
newly introduced algorithm. The proof is based on
the classic proof for ALC as in fact the only new thing
to prove here is that the algorithm uses the w→-rule
and the v→-rule to combine several autonomous local
ALC reasoners correctly. The proof is done in three
parts. We first prove termination: on every input the
algorithm always terminates and never ends up in an
infinite loop; then soundness: if the algorithm answers
that C is satisfiable with respect to T for some i-
local concept C and a distributed TBox T then there
actually exists some model of T that supports this;
and finally we prove completeness: for every concept
C that is satisfiable with respect to T the algorithm
indeed gives a correct answer.
Theorem 6. Given a distributed TBox T over ALC
with acyclic bridge graph GT and an i-local concept
C on the input, the distributed tableaux algorithm for
deciding satisfiability of concepts with respect to a dis-
tributed TBox over ALC for DDL with transitive do-
main relation always terminates and it is sound and
complete.

u-rule:
If C1 u C2 ∈ Li(x) for some x ∈ Vi and {C1, C2} * Li(x), and
x is not blocked,
then set Li(x) = Li(x) ∪ {C1, C2}.

t-rule:
If C1 t C2 ∈ Li(x) for some x ∈ Vi and {C1, C2} ∩ Li(X) = ∅,
and x is not blocked,
then either set Li(x) = Li(x)∪{C1} or set Li(x) = Li(x)∪{C2}.

∀-rule:
If ∀R.C ∈ Li(x) for some x ∈ Vi, and there is R-successor y of x
s.t. C /∈ Li(y), and x is not blocked,
then set Li(y) = Li(y) ∪ {C}.

∃-rule:
If ∃R.C ∈ Li(x), for some x ∈ Vi with no R-successor y s.t.
C ∈ Li(y), and x is not blocked,
then add new node z to Vi, add the edge 〈x, z〉 to Ei, and set
Li(z) = {C} and Li(〈x, z〉) = {R}.

T -rule:
If C v D ∈ T and for some x ∈ Vi nnf(¬C tD) /∈ Li(x), and x
is not blocked,
then set Li(x) = Li(x) ∪ {nnf(¬C tD)}.
w→-rule:
If G ∈ Lj(x) for some x ∈ Vj , i : C w→ j : G ∈ B, and there is
no y ∈ Vi s.t. C ∈ Li(y) and j : x ∈ ri(y), and x is not blocked,
then add new node y to Vi and set Li(y) = {C}, and set ri(y) =
{j : x} ∪ rj(x).

v→-rule:
If D ∈ Li(x) for some x ∈ Vi, i : D v→ j : H ∈ B and there is
y ∈ Vj s.t. j : y ∈ ri(x) and H /∈ Lj(y)
then set Lj(y) = Lj(y) ∪ {H}.

Figure 7: Tableaux expansion rules for DDL over
ALC under the transitivity requirement. First five
rules are standard ALC tableaux rules. Note that the
t-rule is non-deterministic. The final two rules are
new and are triggered by bridge rules.

Proof. Termination. Given a distributed TBox T
with local TBox Ti and an i-local concept C, we
ought to prove that the algorithm, once started with
T, C and i on input, eventually terminates. The algo-
rithm initializes the completion tree to T = {Tj}j∈I
such that Tj = 〈{s0}, ∅, {s0 7→ {C}}, ∅〉 for j = i and
Tj = 〈∅, ∅, ∅, ∅〉 for j 6= i. The computation then con-
tinues by expanding Ti. If there are no onto-bridge
rules ingoing into Ti the algorithm eventually termi-
nates thanks to subset blocking, this result is known
for ALC. If there are some ingoing onto-bridge rules
then possibly in some x ∈ Vi such that C ∈ Li(x)
and C appears on a right hand side of an onto-bridge
rule, say k : D w→ i : C, then the w→-rule is applied
and computation is triggered in Tk. By structural
subsumption we assume that this computation even-
tually terminates (the length of the longest incoming
path of into-bridge rules decreased for Tk compared
to Ti, and all such paths are finite because of acyclic-
ity). During this process we possibly get some new
concepts in Li(x) that are introduced thanks to in-
coming into-bridge rules that trigger the v→-rule – but
only finitely many. The computation now continues
in x and its descendants and possibly the w→-rule is
triggered again in some y ∈ Vi, a descendant of x. But
thanks to subset blocking, this happens only finitely
many times. Hence the algorithm eventually termi-
nates.

Soundness. Now that we know that the algorithm
terminates, we shall prove that if it answers “C is sat-
isfiable” on input T, C and i, then it also holds that C
is satisfiable in Ti with respect to T, that is we must
show that in such a case there exists a distributed
model I of T such that CIi 6= ∅. Given T, C and i
and let T be the complete and clash-free completion
tree that the algorithm has constructed to support
the decision. Let us construct the distributed inter-
pretation I as follows:

1. Let ∆Ii = Vi, for each i ∈ I.

2. Let x ∈ AIi , for each atomic concept A ∈ Li(x),
for each x ∈ Vi and each i ∈ I.

3. Let 〈x, y〉 ∈ RIi for each 〈x, y〉 ∈ Ei such that
Li(〈x, y〉) = R, for each i ∈ I, if y is not blocked.

4. Let 〈x, z〉 ∈ RIi for each 〈x, y〉 ∈ Ei such that
Li(〈x, y〉) = R, for each i ∈ I, in case that y is
blocked by z.

5. Let rij(x) = y for each x ∈ Vi and for each j :
y ∈ ri(x).

Please observe that if computation was never trig-
gered within some Tj of T during the run of the al-
gorithm, then Ij = Iε. It remains to show that I is
in fact a model of T and CIi 6= ∅. We will first prove
the following proposition:

Given any i ∈ I, for each E ∈ Li(x) (i.e.,
also for complex concepts) we have x ∈ EIi .

This is proved by induction on the structure of E. We
need to consider the following cases:

1. E is atomic. We know that x ∈ EIi from the
construction.

2. E = ¬E1, E1 atomic. Since T is clash-free, E1 /∈
Li(x) and by construction x /∈ E1

Ii . In that case
however x ∈ EIi = ∆Ii \ E1

Ii .

3. E = E1 u E2. Since T is complete, the u-rule
is not applicable and hence also E1 ∈ Li(x) and
E2 ∈ Li(x). By induction we now have that
x ∈ E1

Ii and x ∈ E2
Ii and hence also x ∈ EIi .

4. E = E1 t E2. Since T is complete, the t-rule
is not applicable and hence either E1 ∈ Li(x) or
E2 ∈ Li(x). By induction we now either have
x ∈ E1

Ii or we have x ∈ E2
Ii . In either case

however also x ∈ EIi .

5. E = ∃R.E1. Since T is complete, the ∃-rule is
not applicable and hence there must be y ∈ Vi,
an R-successor of x such that E1 ∈ Li(y). By
induction y ∈ E1

Ii and by construction of I
〈x, y〉 ∈ RIi . But that means that x ∈ EIi .

6. E = ∀R.E1. Since T is complete, the ∀-rule is
not applicable and hence for every y ∈ Vi, an R-
successor of x, we have E1 ∈ Li(y). By induction
y ∈ E1

Ii and by construction of I 〈x, y〉 ∈ RIi .
But that means that x ∈ EIi .

Thus we have verified that the local interpretation
Ii is indeed an ALC interpretation and that C has
an instance in this interpretation (since C ∈ Li(s0)).
In addition we have in fact also proved that each i-
local GCI axiom E1 v E2 is satisfied by Ii – from
the completeness of T , nnf(¬E1 t E2) ∈ x, for each
x ∈ Vi, and hence x ∈ (nnf(¬E1))Ii ∪E2

Ii . It follows
that x ∈ E1

Ii implies x ∈ E2
Ii .

It remains to show that I is indeed a distributed
model of T in the adjusted semantics. First, all the
bridge rules must be satisfied. Given an onto-bridge
rule k : E1

w→ l : E2 ∈ B, we ought to show that
rkl
(
E1
Ik
)
⊇ E2

Il . So let x ∈ E2
Il , that is x ∈ Vl

and E2 ∈ Ll(x). But T is complete, w→-rule is not
applicable, and hence there must be y ∈ Vk with E1 ∈
Lk(y) and l : x ∈ rk(y). That means however that
y ∈ E1

Ik and 〈x, y〉 ∈ rkl, and so x ∈ rkl
(
E1
Ik
)
.

Therefore the bridge rule is satisfied by I.

Given an into-bridge rule k : E1
v→ l : E2 ∈ B,

we ought to show that rkl
(
E1
Ik
)
⊆ E2

Il . Let x ∈
rkl
(
E1
Ik
)
. Then there is y ∈ Vk such that l : x ∈

rl(y). But since T is complete, it must be the case
that E2 ∈ Ll(x) and hence x ∈ E2

Il . Therefore the
bridge rule is satisfied by I.

The last thing in order to verify that I is indeed a
model of T is to show that I satisfies the transitivity
requirement. We ought to show that for each k, l,m ∈
I, if y ∈ rkl(x) and z ∈ rlm(y) then also z ∈ rkm(x).
Given the two assumptions we know by construction
that l : y ∈ rk(x) and m : z ∈ rl(y). That means
that x ∈ Vk was initialized after several “chained”
applications of the w→-rule starting from y ∈ Vl and
y in turn after several “chained” w→-rule applications
starting from z ∈ Vm. In that case however rl(y) ⊆
rk(x). Hence m : z ∈ rk(x) and so z ∈ rkm(x).

And thus I is a distributed model of T that sat-
isfies the transparency condition and CIi 6= ∅ – in
other words, C is satisfiable in Ti with respect to T.

Completeness. Given T with index set I, a con-
cept C and i ∈ I such that C is satisfiable in Ti with
respect to T, we shall prove that the algorithm an-
swers “C is satisfiable”, if run on input T, C and
i. Let I be a distributed model of T with CIi 6= ∅,
we know that one must exist. We will simulate the
run of the algorithm. During the initialization Ti is
set to 〈{s0}, ∅, {s0 7→ {C}}, ∅〉 and all the other Tj ,
i 6= j, are set to 〈∅, ∅, ∅, ∅〉. There is no clash in T .
We will show by induction (on the number of tableau
expansion steps) that after each tableau expansion
step the completion tree T is expanded in such a way
that no clash is introduced. In order to demonstrate
this, we inductively construct an auxiliary mapping
π :
⋃
i∈I Vi →

⋃
i∈I ∆Ii to track the relation between

I and T . This mapping will keep the property (∗):
For each node x ∈ Vi, for each i ∈ I: if
C ∈ Li(x) then π(x) ∈ CIi .

Let x be arbitrary member of CIi , place π(s0) = x.
So, if a tableaux expansion rule is triggered in some
x ∈ Vi of the clash-free completion tree T (from in-
duction hypothesis), we consider several cases, based
on the kind of rule that was triggered:

1. u-rule is triggered in x because E1 uE2 ∈ Li(x).
Then by induction hypothesis π(x) ∈ E1 u E2

Ii .
In that case also π(x) ∈ E1

Ii and π(x) ∈ E2
Ii ,

and hence the property (∗) is maintained after
the algorithm adds E1 and E2 to Li(x).

2. t-rule is triggered in x because E1 tE2 ∈ Li(x).
Then by induction hypothesis π(x) ∈ E1 t E2

Ii .
In that case however either π(x) ∈ E1

Ii or π(x) ∈
E2
Ii . Without loss of generality let it be the case

that π(x) ∈ E1
Ii . Without loss of generality

we assume that the algorithm adds E1 to Li(x),
as non-deterministic decision takes place. Hence
the property (∗) is maintained after this step.

3. ∃-rule is triggered in x because it has an R-
successor y, and ∃R.E1 ∈ Li(x). Then π(x) ∈
∃R.E1

Ii and so there is some y′ ∈ ∆Ii such that
y′ ∈ E1

Ii and 〈π(x), y′〉 ∈ RIi . When the algo-
rithm generates new node y in this step we set
π(y) = y′ and the property (∗) is maintained.

4. ∀-rule is triggered in x because it has an R-
successor y, and ∀R.E1 ∈ Li(x), as a conse-
quence E1 is added to Li(y). We know that
y was created by an application of the ∃-rule
and hence π(y) is an R-successor of x in Ii.

But Ii is a model of Ti and hence π(y) ∈ yIi

since from induction hypothesis we know that
π(x) ∈ ∀R.E1

Ii . Hence (∗) is maintained after
this step.

5. T -rule is triggered in x, resulting to adding
nnf(¬E1 t E2) into Li(x). Then (∗) is main-
tained as Ii is a model of Ti and so it holds that
π(x) ∈ (nnf(¬E1 t E2))Ii .

6. w→-rule is triggered in x because E2 ∈ Li(x) and
j : E1

w→ i : E2 ∈ B. From induction hypothesis,
π(x) ∈ E2

Ii , and hence π(x) ∈ rji(y′) for some
y′ ∈ E1

Ij . Set π(y) = y′ for the node y that is
newly created in Vi as the result of this expansion
step. The label Lj(y) has been set to E1 but since
y′ ∈ E1

Ij then (∗) is maintained.

7. v→-rule is triggered in x because of E1 ∈ Li(x),
j : y ∈ ri(x) and i : E1

v→ j : E2 ∈ B, re-
sulting to adding E2 into Lj(y). From induction
hypothesis have π(x) ∈ E1

Ii . Observe that the
definition of w→-rule and the inductive construc-
tion of π(·) in previous steps also assure that
j : y ∈ ri(x) implies π(y) ∈ rij(π(x)). This
is because initialization of new y ∈ Vj always
follows incoming r-edge and r is transitive be-
cause of computational consistency. It follows
that π(y) ∈ E2

Ij , since I is a distributed model
of T and the bridge rule assures this. Hence (∗)
is maintained even after this step.

We already know that the algorithm always ter-
minates. Once this happens, it follows that T is now
complete, because no rule is applicable, and clash-
free, because the property (∗) is maintained all the
way up to this point. Hence the algorithm answers
“C is satisfiable” and hence the theorem.

The algorithm for the original DDL semantics of
(Serafini et al. 2005) is obviously truly distributed
in that sense that it supports a scenario in which
several autonomous reasoning services run indepen-
dently, one for each local ontology, and communicate
by passing queries. While this is also the case for the
newly introduced algorithm, it is not necessarily that
obvious. In order ti clarify this, we provide a mes-
sage protocol that handles w→-rule and v→-rule execu-
tion in a truly distributed fashion, and it also collects
the information that the completion tree is complete
within the reasoner that has initialized the compu-
tation. The algorithm employs three kinds of mes-
sages querySat(x, r, C), answerSat(x,C, answer), and
pushConcept(x,C). In the message based version, the
algorithm starts by initializing the local completion
tree Tj when asked for satisfiability of some j-local
concept C with respect to T. More local comple-
tion trees are initialized during the runtime by pass-
ing a querySat(x, r, C) message every time the w→-
rule is fired. When v→-rule is fired, the consequences
of the into-bridge rule are propagated by passing a
pushConcept(x,C) message. Once a local comple-
tion tree Tk is complete this is announced by passing
a answerSat(x,C, answer) message to the local rea-
soner that has triggered the computation in Tk. De-
tailed specification of the protocol messages is given
in Fig. 8.

6 Related Work

A distributed tableaux reasoning algorithm for the
original semantics of DDL has been introduced in
(Serafini & Tamilin 2005, Serafini et al. 2005) and
implemented in system DRAGO. This algorithm is

querySat(x, r, C):
Send: if G ∈ Lj(x) for some x ∈ Vj , i : C w→ j : G ∈ B, and x is
not blocked, pass the message querySat(x, rj(x), C) to Ti.
Receive: upon receipt of a message querySat(x, r, C) from Ti, create
new completion tree 〈{s0}, ∅, {s0 7→ {C}}, {s0 7→ {i : x} ∪ r}〉
within Tj and start the computation. Record the sent message in
Sj .

answerSat(x,C, answer):
Send: if the local completion tree for concept C within Tj , that
has been initialized due the message querySat(x, r, C) previously re-
ceived from Ti, is now complete, and there are no outgoing messages
recorded in Sj , send the message answerSat(x,C, answer) to Ti

with answer set to true if Tj is clash-free and to false otherwise.
Receive: upon receipt of a message answerSat(x,C, answer) from
Ti, remove the message querySat(x, r, C) from Sj , that has been
previously send to Ti. If answer is false then add Et¬E to Lj(x)
for some new concept name E.

pushConcept(x,C):
Send: if D has been added to Lj(x) in the previous step, for some
x ∈ Vj , then for each j : D v→ i : H ∈ B s.t. i : y ∈ rj(x) send
the message pushConcept(y,H) to Ti.
Receive: upon receipt of a message pushConcept(x,C) from Ti, add
C to Lj(x).

Figure 8: The message protocol for the newly intro-
duced distributed tableaux algorithm. For each kind
of message we specify when the message is sent from
some local reasoning service Tj and also what happens
when the message is received in some local reasoning
service Tj (Tj is always the local reasoning service).
An auxiliary data structure Sj is introduced in each
Tj to track messages that have been sent in order to
assure termination.

based on a fix-point characterization of the original
DDL semantics. Given a set of bridge rules Bij

between Ti and Tj , define the operator Bij(·) as
follows: Bij(Ti) = {G v

⊔n
k=1Hk | Ti |= A v⊔n

k=1Bk, i : A w→ j : G ∈ Bij , i : Bk v→ j : Hk ∈
Bij , 1 ≤ k ≤ n}. Then the B operator is de-
fined: B({Ti}i∈I) = {Ti ∪

⋃
j 6=i Bji(Tj)}. As given

in (Serafini et al. 2005), the B operator always has
a fix-point B∗(T) when repeatedly applied on a dis-
tributed TBox T. Moreover, T |=ε i : φ if and only
if the i-th component TBox of B∗(T) locally entails
φ. Consequently, the standard SHIQ tableaux rea-
soning algorithm (Horrocks et al. 1999) is used with
one additional bridge rule (see Fig. 9). The unsatis-
fiability check called by Bij-rule is done by running
the same algorithm again for the i-concept that is
being checked. The algorithm assumes distributed
TBoxes with acyclic bridge graph to insure termina-
tion. Compared to the algorithm introduced in this
paper, this algorithm does not keep track of the do-
main relation r and does not in fact construct a true
distributed tableau that would correspond to a partic-
ular distributed model of the input concept. Instead
it cleverly uses the fix-point characterization and con-
structs multiple local tableaux in order to guarantee
the existence of such a model. Most prominently, all
consequences that are added to the triggering node if
the unsatisfiability check is successful are estimated
prior to the unsatisfiability check is executed. In con-
trast, in our approach computation in remote ontol-
ogy is triggered by one message and consequences are
announced back to the triggering node once they are
computed, possibly by several independent messages.
We believe that keeping precise track of all model
structures, including the domain relation and dividing
the communication into more fine-grained messages
may provide better grounds for future optimization.
Finally, it is worth noting that the newly introduced
algorithm is easily adjusted to correspond to the orig-
inal DDL semantics (by setting ri(y) to {j : x} and
not to {j : x} ∪ rj(x) in the w→-rule).

Bij -rule:
If G ∈ Lj(x), i : A w→ j : H ∈ Bij ,
BH ⊆ {〈Bk, Hk〉 | i : Bk

v→ j : Hk ∈ Bij},
B = {B | 〈B,X〉 ∈ BH}, H = {H | 〈Y,H〉 ∈ BH}, H *
Lj(x)
and A u ¬

F
B is unsatisfiable w.r.t T in Ti

then set Lj(x) = Lj(x) ∪ {
F
H}.

Figure 9: The tableaux expansion rule used in the
original DDL algorithm (Serafini & Tamilin 2005).

Another distributed ontology framework is E-
connections (Cuenca Grau et al. 2004). Here, inter-
ontology roles (called links) are employed instead of
concept mapping. A dedicated set εij of symbols is
used for (directed) links between Ti and Tj . Links are
then used in existential and value restrictions, and
complex concepts involving links are formed (by in-
stance the i-concept ∃E.C is composed using the link
E ∈ εij and the j-concept C). Semantically, a com-
bined interpretation consists of local interpretations
Ii with non-empty domains ∆Ii and each link E ∈ εij
is interpreted by EI ⊆ ∆Ii × ∆Ij . Reasoning sup-
port for E-connections is provided by extending the
tableaux reasoning algorithm for SHIF(D). The two
tableaux rules that are essential to handle links are
depicted in Fig. 10. There is a notable correspondence
between the ∃link -rule and our w→-rule and also be-
tween the ∀link -rule and our v→-rule. This is not that
surprising, given the known correspondence between
DDL and E-connections (Kutz et al. 2004). Given the
nature of E-connections the ∀link -rule works exactly
the other way around, compared to our v→-rule, and
in this respect the instantiation of a j-tree by one ap-
plication of the ∃link -rule and possibly multiple appli-
cations of the ∀link -rule resembles an unsatisfiability
check call from the Bij-rule of the original DDL al-
gorithm. Remarkably, the exact mechanism how this
happens within the E-connections algorithm seems
to be more transparent and prone to optimization.
The algorithm introduced in this paper in addition
keeps track on the domain relation, which is needed
to handle subsumption propagation along chains of
bridge rules. There is no domain relation within E-
connections, and hence no need for such a feature.

∃link -rule:
If ∃E.C ∈ Li(x), E ∈ εij , x is not blocked and x has no E-
successor y with L(〈x, y,)〉 = {E},
then create a new E-successor (a j-node) y of x with Lj(y) = {C}.
(The new j-tree rooted in y will not be expanded until no more rules
apply to the i-tree.)

∀link -rule:
If ∀E.C ∈ Li(x), E ∈ εij , x is not blocked and there is an E-
successor y of x such that C /∈ Lj(y)
then set Lj(y) to Lj(y) ∪ {C}.

Figure 10: The tableaux expansion rules of the algo-
rithm for E-connections (Cuenca Grau et al. 2004).

Yet another point of view on distributed ontolo-
gies is Package-based description logics, or P-DL (Bao
et al. 2006). In P-DL, the intuition of importing is
pursued: every concept name belongs to some local
ontology, but can be also imported to and used by
other ontologies in the system. The P-DL seman-
tics uses domain relations. In contrast to other ap-
proaches, only one-to-one domain relations are al-
lowed and also compositional consistency (that we
have borrowed and applied on DDL) is required. Lo-
cal domains in P-DL semantics are viewed as partially
overlapping, and not disjoint. As a result, some of the
problems known for DDL, such as restricted knowl-
edge propagation between remote ontologies, that we

also address in this paper, are not an issue for P-DL
according to (Bao et al. 2006). On the other hand, in
P-DL reasoning over a distributed ontology is always
equivalent to reasoning over the union of local on-
tologies, which is not a goal of DDL. The distributed
tableaux algorithm for P-DL is introduced in (Bao
et al. 2006). It uses ALC as local language and re-
quires acyclic importing relation. It uses message-
based protocol, similar to the ours, and keeps track
of the domain relation. Since imported concepts may
appear anywhere in the importing ontology, messages
are invoked directly from ALC-tableaux rules.

A completely different approach to distributed on-
tology reasoning is taken in (Schlicht & Stucken-
schmidt 2008), where distributed reasoning algorithm
based on resolution techniques is introduced. Yet
another distributed ontology framework called Inte-
grated Distributed Description Logics (IDDL) is in-
troduced in (Zimmermann 2007), where also an in-
complete decision procedure is outlined.

7 Conclusion and Future Work

In a recent paper (Homola 2008) we have proposed
an adjusted semantics for DDL, dubbed “DDL un-
der compositional consistency”, that features im-
proved subsumption propagation between remote on-
tologies. More specifically, subsumption propagates
along chains of bridge rules that span throughout
multiple ontologies. In this paper we take steps for-
ward in order to develop a distributed tableaux rea-
soning algorithm that would decide satisfiability of
concepts and subsumption with respect to the ad-
justed semantics. The algorithm that is introduced
in this paper handles chaining onto-bridge rules cor-
rectly, but it is unable to cope with chaining into-
bridge rules. We provide precise characterization
of the semantics that the algorithm actually imple-
ments.

As in the case of the tableaux algorithm that
is known for the original semantics (Serafini et al.
2005), the newly introduced algorithm is also truly
distributed and it permits the scenario where every
local ontology is governed by an autonomous reason-
ing service and these services communicate by passing
queries. The local reasoner that has started the com-
putation collects all the answers and makes the deci-
sion at the end. To demonstrate this fact more clearly,
we have provided a message-based protocol for the
algorithm. Besides the fact that each of these algo-
rithms works under a different semantics, the main
distinguishing feature of the newly introduced algo-
rithm is that communication between local reason-
ers is divided into multiple messages. Computation
is sparked in a remote reasoner at some point and
both reasoners continue to run independently. If sub-
sumption propagation is proved by the remote rea-
soner, the local reasoner is acknowledged by a mes-
sage. This possibly repeats several times, if subsump-
tion is proved between different pairs of concepts. We
believe that such behaviour may serve as a base for
more fine-grained optimization in future.

The two most prominent open issues put forward
by this paper are: extending the algorithm so that it
would handle the DDL under compositional consis-
tency semantics in full extent, that is, dealing with
chaining into-bridge rules; and, extending the algo-
rithm towards more expressive DL, since the current
version only supports ALC as the local representation
language and requires acyclic concept mapping. Com-
putational handling of distributed knowledge bases in
which the concept mapping is not necessarily acyclic
is an interesting problem, which is to our best knowl-
edge still unresolved also for the original DDL frame-

work. As is the problem of extending the DDL frame-
work with nominals. We would like to address these
issues in the near future. Remaining research prob-
lems that are closely related to this work include prac-
tical evaluation of the algorithm by implementation,
complexity analysis for the decision problems, and
combining, within a unified framework, the current
approach with that of (Homola 2007), which has ad-
dressed the problem of interaction between bridge-
rules in DDL.

Acknowledgement

Support from the VEGA project of Slovak Min-
istry of Education and Slovak Academy of Sci-
ences no. 1/0173/03 and from the grant GUK no.
UK/365/2008 awarded by Comenius University is
gratefully acknowledged. Special thanks to Ján Kl’uka
for advanced LATEX symbol hacking.

References

Baader, F., Calvanese, D., McGuinness, D., Nardi, D.
& Patel-Schneider, P., eds (2003), The Description
Logic Handbook, Cambridge University Press.

Bao, J., Caragea, D. & Honavar, V. G. (2006), A dis-
tributed tableau algorithm for package-based de-
scription logics, in ‘Procs. of CRR 2006’.

Berners-Lee, T., Hendler, J. & Lassila, O.
(2001), ‘The semantic web’, Scientific American
284(5), 34–43.

Borgida, A. & Serafini, L. (2003), ‘Distributed de-
scription logics: Assimilating information from
peer sources’, Journal of Data Semantics 1.

Cuenca Grau, B., Parsia, B. & Sirin, E. (2004),
Working with multiple ontologies on the semantic
web., in ‘Procs. of ISWC2004’, Vol. 3298 of LNCS,
Springer.

Homola, M. (2007), Distributed description logics re-
visited, in ‘Procs. of DL-2007’, Vol. 250 of CEUR-
WS.

Homola, M. (2008), Subsumption propagation be-
tween remote ontologies in distributed description
logic, in ‘Procs. of DL2008’, Vol. 353 of CEUR-WS.

Horrocks, I., Sattler, U. & Tobies, S. (1999), Prac-
tical reasoning for expressive description logics,
in ‘Procs. of LPAR’99’, number 1705 in ‘LNAI’,
Springer, pp. 161–180.

Kutz, O., Lutz, C., Wolter, F. & Zakharyaschev, M.
(2004), ‘E-connections of abstract description sys-
tems’, Artificial Intelligence 156(1), 1–73.

Schlicht, A. & Stuckenschmidt, H. (2008), Distributed
resolution for alc, in ‘Procs. of DL2008’, Vol. 353
of CEUR-WS.

Serafini, L., Borgida, A. & Tamilin, A. (2005), As-
pects of distributed and modular ontology reason-
ing, in ‘Procs. of IJCAI’05’, pp. 570–575.

Serafini, L. & Tamilin, A. (2004), Local tableaux
for reasoning in distributed description logics, in
‘Procs. of DL’04’, CEUR-WS.

Serafini, L. & Tamilin, A. (2005), DRAGO: Dis-
tributed reasoning architecture for the semantic
web, in ‘Procs. of ESWC’05’, Vol. 3532 of LNCS,
Springer-Verlag, pp. 361–376.

Zimmermann, A. (2007), Integrated distributed de-
scription logics, in ‘Procs. of DL-2007’, Vol. 250 of
CEUR-WS.

	Introduction and Motivation
	Distributed Description Logics
	Towards Improved Subsumption Propagation in DDL
	DDL under the Transitivity Condition
	Distributed Tableaux Algorithm for DDL with Transitive Domain Relation
	Related Work
	Conclusion and Future Work

