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Abstract. Multidimensional dynamic logic programs (MDLPs) are suit-
able to represent knowledge dynamic in time, or more generally, informa-
tion coming from various sources, partially ordered by arbitrary relevancy
relation, e.g., level of authority. They have been shown useful for mod-
eling and reasoning about multi-agent systems. Various approaches to
define semantics of MDLPs have been presented. Most of the approaches
can be characterized as based on rejection of rules.

It is understood that on some restricted classes of MDLPs several of
these semantics coincide. We focus on acyclic programs. We show that
for a MDLP P and a candidate model M , if P is acyclic to some extent
then several of the known semantics coincide on M . It follows as a direct
consequence that on the class of acyclic programs all of these semantics
coincide.

1 Introduction

Background. In Multidimensional Dynamic Logic Programs (MDLPs), intro-
duced in [1], knowledge is encoded into several logic programs, partially ordered
by a relevance relation. MDLPs have been shown as well suited for represent-
ing knowledge change in time, and as well, to provide favourable representation
for reasoning over information structured by some relevancy relation, such as
authority hierarchies.

Various approaches have been presented in order to provide semantics of
MDLPs. Most of the approaches utilize rejection of rules. Such semantics in-
clude P-Justified Update semantics introduced in [2, 3], Dynamic Stable Model
semantics from [4, 1], Update Answer Set semantics from [5, 3] and Refined Dy-
namic Stable Model semantics of [6, 7]. (The latest one is only known for linearly
ordered MDLPs.) Typically, semantics assigns a set of models to a program.
Models are picked among the interpretations of the program. Usually, a new
semantics has been introduced to cope with drawbacks of the older ones.

Most important contributions are those of Leite [3, 8], Eiter et al. [5, 9] and
Alferes et al. [4, 6]. Authors point out that for some particular pairs of semantics,
for a given MDLP, the model-set of one semantics is always a subset of the model-
set of the other one. Thus, a sort of hierarchy of the model-sets assigned to a
MDLP by different semantics is organized (cf. [3, 5, 6, 10]).



Also, it is a shared opinion, that on “plain” MDLPs, which are not obfus-
cated with cyclic dependencies (cyclic chains of rules), conflicting rules within
a same logic program and other unconvenient constructs, all of these semantics
coincide. Different behavior on some “abnormal” MDLPs is usually assigned to
the inability of some of the semantics to deal with these abnormalities. Several
restrictive conditions on MDLPs have been introduced in order to identify classes
of programs on which two or more semantics coincide (cf. [3, 5, 6]).

Relationship with multi-agent systems. Already in [1], authors have shown
that MDLPs are useful to model and reason about multi-agent systems. Particu-
larly in logic based multi-agent systems where knowledge of an agent is naturally
represented by rules. Thus, knowledge associated with an agent at a given state
is encoded into a logic program. Assume that the agent’s knowledge evolves with
time. With each new time-state new knowledge appears to the agent, in form
of rules, perceived trough sensors or communicated with other agents. This new
knowledge may be in general contrary to the knowledge inherited from the previ-
ous time-states. We want the agent to be able to resolve such conflicts, assigning
more relevance to the more recent knowledge.

MDLPs allow us to do this in a natural way. Agent’s initial state and sub-
sequent perceptions are modeled as a sequence of logic programs. More recent
information is treated as more relevant. MDLPs assign semantics to the sequence,
resolving conflicts between rules according to their relevancy. Moreover, they en-
able for determining semantics of the agent’s knowledge at arbitrary state, thus
allowing us to query the agent’s knowledge history.

Besides time, MDLPs are capable of handling other relevancy relations, like
specificity of the information or authority. This is particularly handy in multi-
agent communities where an authoritative hierarchy among the agents is present.
Assume that the knowledge of each agent is represented by a logic program. If an
agent is authoritatively superior to the another one, we treat also the program
of the former one as more relevant than the program of the latter one. Assuming
that the agents obey the authority, we are able to query the global knowledge
of the system but as well the knowledge of a subsystem rendered by an agent
together with all the agents that are inferior to it.

Moreover, the framework allows us to combine several “relevancy dimensions”
into a single MDLP. Thus, we are able to model, e.g., the knowledge distributed
over an authority-enabled community of agents and as well the change of the
whole system in time. Hence, we favor MDLPs as a powerful framework for
modeling and reasoning about knowledge distributed over multi-agent systems,
logic-based in particular. However, a multi-agent system does not have to be
associated with a single MDLP, nor the view provided by the MDLP has to
be global. For instance, each agent may use a MDLP to maintain its own view
of the system, reflecting its own preference amongst the chunks of information
obtained by communication with other agents. Thus, MDLPs may also provide
a local knowledge repository for each agent of the system. For a more detailed
analysis, we refer the reader to [3, 1, 11, 12]. We also refer the reader to [13], in



order to see how extensions of MDLPs can benefit to multi-agent systems, and
to [14] to see how the knowledge of multiple agents can be combined when there
is no authoritative order among the agents.

Motivation. At presence, whole family of semantics is available for MDLPs.
Most of these semantics, being based on same notions (e.g., generalization of sta-
ble model semantics, employing rejection of rules) are very close, one to another.
Studying the differences and similarities between them, helps us to evaluate them
w.r.t. the intuitions and principles we want them to obey. Also, maybe we do not
really need such a rich family of semantics, indeed if the difference between them
shows to be very small. Particularly, within the field of multi-agent systems, it
helps us to determine whether or not MDLPs are appropriate for a particular
application, and if yes, which semantics to choose.

From this point of view, We find several results of [5, 3, 7], about restricted
classes of MDLPs on which some of the semantics coincide, not tight, as many
MDLPs on which the semantics also match are beyond the proposed classes.

Presence of cyclic dependencies in MDLPs and its responsibility for distinct
behavior of these semantics has been investigated in [5, 3, 7]. It has been remarked
that perhaps on MDLPs that do not contain cycles several of the semantics may
coincide. We see this hypothesis as valuable, since acyclic programs form a broad
subclass and it is known that for some, simpler, applications they are sufficient.
So, we suggest further evaluation of these semantics w.r.t. the class of acyclic
programs and programs with limited occurrence of cyclic dependencies.

Contribution. As in [3, 15], we build MDLPs over a more general language of
generalized extended logic programs that unifies the previous approaches under
a common framework, allowing for more elegant comparisons, while keeping the
previous approaches as special cases, so the results are propagated.

We introduce a new concept of sufficient acyclicity. Logic program is suffi-
ciently acyclic if each of its literals is supported by at least one acyclic derivation.
As the main result we establish a restrictive condition, using the notion of suf-
ficient acyclicity, under which four (five) of the semantics coincide on the given
interpretation of the given (linear) MDLP. It trivially follows that on acyclic
programs these semantics coincide entirely. This article presents the results of
the author’s Master’s thesis [10] that can be viewed as its extended version.

2 Preliminaries

We first introduce basic concepts from logic programming. Logic programs are
build from propositional atoms. The set of all atoms is denoted by A. We employ
two kinds of negation, explicit negation ¬ and default negation not . Let p be
a proposition. By ¬ p we intuitively mean that (we know that) A is not true.
Default negation is sometimes called negation as failure. We use it to express
lack of objective evidence: by not p we intuitively mean that we have no evidence
confirming that p is true.



Objective literal is an atom or an atom preceded by explicit negation (e.g.,
A ∈ A and ¬ A are objective literals.) Default literal is an objective literal
preceded by default negation (e.g., not A, not ¬A are default literals, A ∈ A.)
Both objective literal and default literal are literals. We denote the set of all
objective literals by O, the set of all default literals by D and the set of all
literals by L.

Rule is a formula L ← L1, . . . , Ln, where n ≥ 0 and L,L1, . . . , Ln ∈ L.
Rule of a form L ← (i.e., n = 0) is called a fact. For each rule r of a form
L← L1, . . . , Ln we call the literal L the head of r and denote it by h(r) and we
call the set {L1, . . . , Ln} the body of r and denote it by b(r).

A set of rules P is called a generalized extended logic program (hereafter often
just logic program or GELP). GELPs are the most general logic programs that
we use. We favor the approach outlined in [3, 15], where MDLPs are built over
GELPs, unifying the previous approaches under a common framework, allowing
for more elegant comparisons, while keeping the previously used languages as
special cases, so the results are propagated. We also remark, that GELPs enable
to properly manipulate three truth values, “something is true”, “something is
false”, and “we do not know”, allowing to adequately switch from one to another,
what we mark as a desirable feature, once dealing with knowledge updates.

Several other flavours of logic programs do exist. We mention extended logic
programs, a subclass of GELPs formed by programs that do not contain default
literals in heads of rules. Generalized logic programs do not allow explicit nega-
tion at all, i.e., for each objective literal L, contained in the program, it holds
that L ∈ A, and for each default literal not L, contained in the program, it
holds that L ∈ A. Logic program is definite if it only contains atoms of A in the
heads, as well as in the bodies of its rules, i.e., definite logic programs do not
allow negation at all.

Let P be a GELP. The expanded version of P is the program Ṗ = P ∪
{not ¬ h(r) ← b(r) | r ∈ P ∧ h(r) ∈ O}. Two literals L ∈ O and not L are said
to be conflicting. Two rules are conflicting if their heads are conflicting literals.
We denote this by L on L′ and by r on r′ respectively. For any set of literals S,
S+ = S ∩ O and S− = S ∩ D.

A set of literals that does not contain a pair of conflicting literals is called an
interpretation. Interpretation is total if for each L ∈ O it contains L or not L.
Literal L is satisfied in the interpretation I if L ∈ I and we denote it by I � L.
Also I � S, a set of literals S, if I � L for each L ∈ S. A rule r is satisfied in the
interpretation I (denoted by I � r) if I � h(r) whenever I � b(r). Let P be a
definite logic program. We denote by least(P ) the unique least model of P that
exists, as showed by van Emden and Kowalski in [16].

Most of the semantic approaches in dynamic logic programming build on
ideas of the stable model semantics of logic programs that has been introduced by
Gelfond and Lifschitz in [17]. According to this semantics a total interpretation
M is a stable model of a GELP P if it holds that M = least(P ∪M−)1.

1 With an abuse of notation, we commonly treat (sets of) facts as (sets of) rules, and
also GELPs as definite programs, considering each negated literal as a new atom.



3 MDLPs and Various Semantics Based on Rejection of
Rules

Logic programs have been proven as useful media in the area of knowledge
representation. As long as the information we deal with is rather static we face
no problem to encode it in form of a logic program. But we reach the barrier
very soon, when dealing with information change in time, or when integrating
information from several sources with various levels of relevancy.

To deal with this problem, the framework of dynamic logic programming has
been introducedi in [4]. In this framework information is encoded into several
programs that are linearly ordered into a sequence by their level of relevancy.
Such sequences are called dynamic logic programs.

This framework has been further generalized in [1] by allowing logic pro-
grams ordered by arbitrary (i.e., also non-linear) partial ordering. Multidimen-
sional dynamic logic programs were born. We formalize the latter approach in
Definition 1.

Definition 1. Let G = (V,E) be a directed acyclic graph with finite set of ver-
tices V . Let P = {Pi | i ∈ V } be a set of logic programs. The pair (P, G) is a
multidimensional dynamic logic program or often just program or MDLP.

We often use just P instead of (P, G) and assume the existence of the cor-
responding G. The multiset of all rules of the expanded versions Ṗi of the logic
programs Pi, i ∈ V of P is denoted by dP . Let i, j ∈ V , we denote by i ≺ j (and
also by Pi ≺ Pj) if there is a directed path from i to j in G. We denote by i � j
(and by Pi � Pj) if i ≺ j or if i = j.

A dynamic logic program (DLP, linear MDLP) is such a MDLP P whose
G is collapsed into a single directed path. So DLPs form a subclass of MDLPs,
they are precisely all linearly ordered MDLPs.

Most of the semantic approaches in dynamic logic programming are based
on the ideas of stable model semantics of simple logic programs. A set of models
is assigned to a program by each of these semantics. Models are picked among
the interpretations of the program.

As a MDLP in general may contain conflicting rules, semantics try to resolve
these conflicts, when it is possible, according to the relevancy level of the con-
flicting rules. A common approach is to assign a set of rejected rules to a given
program P and a “candidate model” interpretation M . Rejected rules are then
subtracted from the union of all rules of P, gaining the residue of P w.r.t. M .
Also the set of default assumptions (sometimes just defaults) is assigned to P
and M . Defaults are picked among the default literals. A fix-point condition is
verified, whether M coincides with the least model of the union of the residue
and the default assumptions. If so, then M is a model of P w.r.t. the semantics.
A semantics that can be characterized in this manner is said to be based on
rejection of rules or rule-rejecting.

Once we deal with several rule-rejecting semantics, then any difference be-
tween them originates in the way how particularly rejection of rules and default



assumptions are implemented in these semantics. Two different kinds of rejection
have been used with MDLPs. The original rejection used in [4, 1] keeps each rule
intact as long as there is no reason for rejecting it in form of a more relevant rule
that is satisfied in the considered interpretation. Formally, the set of rejected
rules of P w.r.t. M is

Rej (P,M) = {r ∈ Ṗi | (∃r′ ∈ Ṗj) i ≺ j, M � b(r′), r on r′} .

In [5], an alternative notion of rejection has been introduced, allowing each
rule to reject other rules only if it is not rejected already. Such a set of rejected
rules of P w.r.t. M is formalized as

Rej ?(P,M) = {r ∈ Ṗi | (∃r′ ∈ Ṗj) i ≺ j, M � b(r′), r on r′, r′ /∈ Rej ?(P,M)} .

Originally, in [2], default assumptions have been computed just exactly as in
the stable model semantics of logic programs. Formally,

Def ?(P,M) = M− .

Later on, in [4, 1], another approach has been introduced, as the original
set of defaults showed to be too broad. We formalize defaults according to this
approach as

Def (P,M) = {not L | L ∈ O, (@r ∈ dP) h(r) = L,M � b(r)} .

Combining two implementations of rejection and two of default assumptions
immediately leads to four semantics of MDLPs. We define each of them formally
in the following.

Definition 2. A rule-rejecting semantics that uses Rej (P,M) for rejection and
Def ?(P,M) for defaults is called dynamic justified update or just DJU seman-
tics. That is, a total interpretation M is a model of a MDLP P w.r.t. the DJU
semantics whenever M = least(Res(P,M) ∪ Def ?(P,M)), where Res(P,M) =
dP \ Rej (P,M) is the residue.

The DJU semantics is the very first rule-rejecting semantics that has been
used in dynamic logic programming. If we restrict to DLPs build from generalized
logic programs, it is identical with the P-justified updates semantics of [2]. Soon
the original default assumptions showed to be too broad. In [4, 1], they have
been replaced by Def (P,M). The semantics is formally defined as follows.

Definition 3. A rule-rejecting semantics that uses Rej (P,M) for rejection and
Def (P,M) for defaults is called dynamic stable model or just DSM semantics.
Or equivalently, a total interpretation M is a model of a MDLP P w.r.t. the DSM
semantics whenever M = least(Res(P,M) ∪ Def (P,M)), where the residue is
as in Definition 2.

In [5], the alternative notion of rejection, Rej ?(P,M), has been combined with
Def ?(P,M) to produce semantics for DLPs build from extended logic programs.
The semantics has been originally called update answer set semantics. In our
setting we formalize it in Definition 4.



Definition 4. A rule-rejecting semantics that uses Rej ?(P,M) for rejection and
Def ?(P,M) for defaults is called backward dynamic justified update or just
BDJU semantics. In other words, a total interpretation M is a model of a MDLP
P w.r.t. the BDJU semantics whenever M = least(Res?(P,M) ∪ Def ?(P,M)),
where Res?(P,M) = dP \ Rej ?(P,M) is the residue.

By the label “backward” we indicate use of Rej ?(P,M) rejection, as the algo-
rithm for its computation from [5] traverses P in backward direction compared
to the one for Rej (P,M) found in [4, 1]. In [3], the three above mentioned se-
mantics have been brought to a more general platform offered by GELPs. Also a
backward variant of the DSM semantics has been introduced, that we formalize
in Definition 5. In [3], this semantics is called U-model semantics.

Definition 5. A rule-rejecting semantics that uses Rej ?(P,M) for rejection and
Def (P,M) for defaults is called backward dynamic stable model or just BDSM
semantics. That is, a total interpretation M is a model of a MDLP P w.r.t.
the BDSM semantics whenever M = least(Res?(P,M)∪Def (P,M)), where the
residue is as in Definition 4.

The set of all models of a program P w.r.t. the DJU semantics is denoted
by DJU (P). Similarly, DSM (P), BDJU (P) and BDSM (P) are the sets of all
models according to the remaining three semantics.

We have presented four rule-rejecting semantics of MDLPs. The following
two examples taken from [3] show that each of this semantics is different.

Example 1. Let P = {P1 ≺ P2} where P1 = {a ← }, P2 = {not a ← not a}.
It holds that DSM (P) = BDSM (P) = {{a,not ¬ a}}. But, for the other two,
DJU (P) = BDJU (P) = {{a,not ¬ a}, {not a,not ¬ a}}.

Example 2. Let P = {P1 ≺ P2 ≺ P3} where P1 = {a← }, P2 = {not a← } and
P3 = {a ← a}. It holds that DJU (P) = DSM (P) = {{not a,not ¬ a}}. On the
other hand, BDJU (P) = BDSM (P) = {{a,not ¬ a}, {not a,not ¬ a}}.

Moreover, as it has been shown in [3], the sets of models assigned to arbitrary
program P, one set by each of these semantics, form a kind of hierarchy w.r.t.
the set inclusion relation. The DSM semantics is the most restrictive one, the set
of models w.r.t. DSM is always a subset of the other model-sets. On the other
hand, the set of models w.r.t. any semantics is always a subset of the one w.r.t.
BDJU, which always provides the broadest set of models. We summarize these
observations in Theorem 1 taken from [3].

Theorem 1. For each MDLP P it holds that

DSM (P) ⊆ DJU (P) ⊆ BDJU (P) ,

DSM (P) ⊆ BDSM (P) ⊆ BDJU (P) .



4 Equality on the Class of Acyclic Programs

We have shown in Examples 1 and 2 that the four rule-rejecting semantics are in
general distinct. However, many MDLPs exist, such as the one from Example 3,
on which these four semantics coincide.

Example 3. Let P = {P1, P2, P3 | P1 ≺ P3, P2 ≺ P3}. Let P1 = {a ← },
P2 = {not a ← } and P3 = {a ← }. This simple MDLP can be viewed as
a model of a community of three agents, who take part in the hierarchy of
authorities. The first two of them are of incomparable authority and moreover,
they have conflicting knowledge. This conflict is resolved by the third of them,
who is represented by logic program P3 and its authority level is superior to
the former two. All four of the semantics agree with this intuition and assign
M = {a,not ¬ a} to P as its single model.

Examples like this one lead us to a hypothesis that there probably are vast
classes of programs on which several semantics coincide. It shows that several
rule-rejecting semantics possibly behave equally on “plain” programs, that are
not obfuscated with cyclic dependencies among literals or other obstacles. Dif-
ferent behavior on such programs is supposed to be caused by different ability
of the semantics to deal with such obstacles.

To evaluate cyclic dependencies among literals in programs we adopt the
graph-theoretic framework introduced in [5].

AND/OR-graph (N,C) is a hypergraph, whose set of nodes N = NA ] NO

decomposes into the set of AND-nodes NA and the set of OR-nodes NO, and
its set of connectors C = N ×

⋃|N |
i=0 N i is a function, i.e., for each I ∈ N there

is exactly one tuple 〈O1, . . . , Ok〉 s.t. 〈I,O1, . . . , Ok〉 ∈ C. For any connector
〈I,O1, . . . , Ok〉, I is its input node and O1, . . . , Ok are its output nodes.

Let (N,C) be an AND/OR-graph, I ∈ N and 〈I,O1, . . . , Ok〉 ∈ C. A tree p
is a path in (N,C) rooted in I if one of the following conditions holds:

(i) k = 0 ∧ p = 〈I〉,
(ii) k > 0 ∧ I ∈ NA ∧ p = 〈I, p1, . . . , pk〉,
(iii) k > 0 ∧ I ∈ NO ∧ (∃i) 1 ≤ i ≤ k ∧ p = 〈I, pi〉,

where pi is a path in (N,C) rooted in Oi, 1 ≤ i ≤ k.
Let p = 〈I, p1, . . . , pk〉 be a path in an AND/OR-graph. Path p′ is a subpath

of p if p′ = p or p′ is a subpath of pi for some i, 1 ≤ i ≤ k.
A path p in an AND/OR-graph is said to be acyclic if for every subpath p′

(including p) rooted in the node R, no subpath p′′ of p′ is rooted in R.

Definition 6. Let P be a logic program. An AND/OR-graph GP = (N,C) is
associated with P if both of the following conditions hold:

(i) NA = P ∧NO = L ,
(ii) C = {〈r, L1, . . . , Lk〉 | r = L← L1, . . . , Lk ∈ P}

∪ {〈L, r1, . . . , rn〉 | {r1, . . . , rn} = {r ∈ P | h(r) = L}} .



Armed with such a framework we instantly identify the class of acyclic pro-
grams in Definition 7. Clearly, this definition is equivalent to the original one,
as introduced in [18].

Definition 7. We say that logic program P is strictly acyclic (or just acyclic)
if GP does not contain a path that is cyclic. We say that a MDLP P is strictly
acyclic if dP is strictly acyclic.

In [5], further reduction of GP is utilized, once an interpretation M and a
given notion of rejection are available. The resulting reduced AND/OR-graph is
stripped from dependencies corresponding to rules that are rejected or that are
not applicable.

Definition 8. Let P be a MDLP, M a total interpretation and Rejected(P,M)
a set of rejected rules according to some rule-rejecting semantics. The reduced
AND/OR-graph of P with respect to M , GM

P is obtained from GP by

1. removing all r ∈ NA and their connectors (as well as removing r from all
connectors containing it as an output node) if either r ∈ Rejected(P,M) or
M 2 b(r), and

2. replacing, for every L ∈ O, the connector of not L by the 0-connector 〈not L〉,
if L is associated with 0-connector after step 1 and no r ∈ Rejected(P,M)
exists s.t. h(r) = L.

Possessing the outlined framework, authors of [5] have introduced the “root
condition” and the “chain condition”, that we adopt in Definition 9 and 10
respectively.

Definition 9. Let P be a MDLP, M a total interpretation and Rejected(P,M)
a set of rejected rules according to some rule-rejecting semantics. We say that
P, M and Rejected(P,M) obey the root condition if, for each not L ∈M−, one
of the following conditions holds:

(i) (∀r ∈ dP) h(r) = L =⇒ M 2 b(r),
(ii) there exists an acyclic path p in GM

P rooted in not L.

Definition 10. We say that a MDLP P and a total interpretation M obey the
chain condition if, for each pair of rules r ∈ Pi, r′ ∈ Pj s.t. i ≺ j, r on r′,
M � b(r), M � b(r′) and r′ ∈ Rej ?(P,M), there also exists r′′ ∈ Ps s.t. j ≺ s,
r′ on r′′ and b(r′′) ⊆ b(r).

A theorem follows in [5], stating that if both root and chain condition are
satisfied by a DLP P, total interpretation M and Rej (P,M) then M ∈ DSM (P)
if and only if M is a model of P (both transformed to extended logic programs)
w.r.t. the BDJU semantics.

In [3], relations between all four of these semantics are further investigated,
once all four risen to the platform of GELPs. It is shown there, that the root
condition renders a proper subclass of DLPs, in order to compare two semantics
that utilize Def (P,M) and Def ?(P,M) for defaults respectively, and share the



same implementation of rejection. We adopt this proposition from [3] and rise it
to the platform of MDLPs in Theorem 2. In [3], it is also shown that two pairs
of semantics that differ in rejection but use the same defaults, pairwise, coincide
on a DLP P and a total interpretation M if they obey the chain condition. We
adopt this proposition in Theorem 3.2

Theorem 2. Let P be a MDLP, M a total interpretation. Then it holds that:

(i) M ∈ DJU (P) ≡ M ∈ DSM (P) if and only if P, M and Rej (P,M) obey
the root condition,

(ii) M ∈ BDJU (P) ≡ M ∈ BDSM (P) if and only if P, M and Rej ?(P,M)
obey the root condition.

Theorem 3. Let P be a MDLP, M a total interpretation. If P and M obey the
chain condition then each of the following propositions holds:

(i) M ∈ DJU (P) ≡M ∈ BDJU (P) ,
(ii) M ∈ DSM (P) ≡M ∈ BDSM (P) .

It follows in [3], that if both of the conditions are obeyed by P and M , then all
four of the semantics coincide on P and M . However, as we show in Example 4,
many times the chain condition is not obeyed but the semantics do coincide. We
argue that this restriction is not accurate.

Example 4. Let P = {P1 ≺ P2 ≺ P3}, P1 = {a ← }, P2 = {not a ← }
and P3 = {a ← not b}. The chain condition is not obeyed by P and M =
{a,not b,not ¬ a,not ¬ b}. Yet, DSM (P) = BDSM (P) = {M} and DJU (P) =
BDJU (P) = {M}.

We now return to considerations about programs with restricted occurrence
of cycles. We focus on a hypothesis that different behavior of semantics is always
accompanied by presence of cyclic dependencies among literals. Our aim is to
restrict somehow the occurrence of cyclic dependencies in order to establish the
coincidence of the semantics.

Programs with cycles are often considered odd. Self-dependence, connected
with presence of cycles, is marked as unpleasant and undesirable feature, as
strict, deductive reasoning – closely interconnected with mathematical logic –
forbids it. Yet, in logic programming cycles are useful for example to express
equivalence. Moreover there are programs that contain cycles and still different
semantics match regarding them. Both of these features are apparent from Ex-
ample 5. Hence we introduce yet another, weaker, condition of acyclicity in the
consecutive Definition 11. With this condition, we are able to identify programs,
where cycles may be present, but each literal is supported by at least one acyclic
derivation.
2 We remark that this property does not depend on the particular choice of defaults.

In fact, it holds for arbitrary set of default assumptions. See [10] for details.



Example 5. Let P = {P1 ≺ P2}, P1 = {a ← b; b ← a} and P2 = {a ← }.
All of the four semantics match on P. DJU (P) = DSM (P) = BDJU (P) =
BDSM (P) = {{a, b,not ¬ a,not ¬ b}}. Actually, the cyclic information of pro-
gram P1 is not redundant in any way. P1 states that the truth value of a is
equivalent with the truth value of b and vice versa. Later, when the more recent
knowledge of P2 appears telling that a is true we derive that also b is true.

Definition 11. We say that logic program P is sufficiently acyclic if for every
literal L ∈ L there exists an acyclic path in the hypergraph GP associated with P
that is rooted in L. A MDLP P is sufficiently acyclic whenever dP is sufficiently
acyclic.

Application of the condition of sufficient acyclicity on MDLPs in general is,
however, useless – as when the residue is computed, several rules are retracted
and the condition may not be satisfied any more. So we resort to the one-model
relations of two semantics quite like in the case of the root condition. The relation
is established for a program and a given model. Possessing a candidate-model,
the residue is determined, and the condition is applied on the residue instead of
the whole program.

To establish one-model equivalence of two semantics on a program, we re-
peatedly use a method, that is sketched in Remark 1.

Remark 1. Let P be a MDLP and let M be a total interpretation. Let S1 and
S2 be two rule-rejecting semantics with shared implementation of defaults and
different implementation of rejection. Let D be the set of defaults assigned to P
and M by these semantics and let R1 and R2 be the residues assigned to P and
M by S1 and S2 respectively. If

(i) M ∈ S2(P),
(ii) R1 ⊆ R2,

then M ∈ S1(P) if and only if there exists such R ⊆ R1 that M = least(R ∪D)
– i.e., we are able to find R, a subset of R1, s.t. R still contains enough of rules
that are necessary to compute M . Therefore we concentrate on searching for
such sets R ⊆ R1 in order to establish equivalence of S1 and S2 regarding P and
M .

The condition for one-model equality of that pairs of semantics that differ in
the implementation of rejection and use same defaults is expressed in Theorem 4.
The theorem uses the following lemma.

Lemma 1. Let S be the BDSM or the BDJU semantics. Let P be a MDLP,
M ∈ S(P) and let Defaults(P,M) be default assumptions assigned to P and M
by S. If the set R defined as

R = {r | r ∈ Res(P,M) ∧M � b(r)}

is sufficiently acyclic then M can be computed as a model in the given semantics
using only the rules of R. That is, M = least(R ∪Defaults(P,M)).



Proof. Since R is sufficiently acyclic, there exists a rule r ∈ R such that for each
L ∈ b(r) for no r′ ∈ R holds h(r′) = L. And r ∈ R so it holds that M � b(r).
From Definitions 2 and 4 and from how R is defined it follows that for each rule
q ∈ Res?(P,M), M � b(q) there is a q′ ∈ R s.t. h(q) = h(q′) and since M ∈ S(P)
then b(r) ⊆ Defaults(P,M). We now construct

M0 = Defaults(P,M) , M1 = M0 ∪ h(r) ,

R0 = R , R1 = R0 \ {r′′ | h(r′′) = h(r)} .

Assume that M j and Rj are constructed by adding one literal L ∈ L to
M j−1 and removing all r′′ from Rj−1 such that h(r′′) = L, 0 < j ≤ i. Again,
as R is sufficiently acyclic, there is r ∈ Ri s.t. for each L ∈ b(r) for no r′ ∈ Ri

holds h(r′) = L. From the construction of Di, Ri it follows that

(∀j ≤ i) M j ∪ {h(r) | r ∈ Rj} = M .

Therefore b(r) ⊆M i, and so we are able to construct

M i+1 = M i ∪ h(r) , Ri+1 = Ri \ {r′′ ∈ Ri | h(r′′) = h(r)} .

It is straightforward that
⋃∞

i=1 M i = M . This way we have computed M as
a model in S only from the rules of R. (Step by step, we have simulated the
iterations of the least(·) operator.) In other words,

M = least(R ∪Defaults(P,M)) .

ut

Theorem 4. Let P be a MDLP and M be its total interpretation. If the set

R = {r | r ∈ Res(P,M) ∧M � b(r)}

is sufficiently acyclic then it holds that

(i) M ∈ DSM (P) ≡M ∈ BDSM (P), and also
(ii) M ∈ DJU (P) ≡M ∈ BDJU (P).

Proof. The only-if part of both (i) and (ii) follows from Theorem 1. The if
part proves as follows. Let P be a MDLP. Let M ∈ BDSM (P) (BDJU (P)
respectively). Let R be sufficiently acyclic. From Lemma 1 we get that M can
be computed only using the rules of R. Since

R ⊆ Res(P,M) ⊆ Res?(P,M) ,

it follows from Remark 1 that M ∈ DSM (P) (M ∈ DJU (P)). ut

In Theorem 4 we have presented a restrictive condition for one-model equality
of those pairs of semantics that differ in rejection and use same defaults. We now
show (in Lemma 2) that under this condition also the root condition is satisfied.
It follows as a direct consequence of this lemma and Theorem 4 that under our
condition all four semantics coincide (Corollary 1).



Lemma 2. Let P be a MDLP and M its total interpretation. Let

R = {r | r ∈ Res(P,M) ∧M � b(r)} .

If R is sufficiently acyclic then both of the triples P, M , Rej (P,M) and P, M ,
Rej ?(P,M) obey the root condition.

Proof. R is sufficiently acyclic, hence for every L ∈ M− either L ∈ Def (P,M)
and then condition (i) of Definition 9 (root condition) is satisfied or there exists
a rule r ∈ Res(P,M) s.t. M � b(r) and h(r) = L and therefore also r′ ∈ R
s.t. h(r′) = L and so there is a path p in GR rooted in L that is acyclic. The
subpath p′ of p, terminated in every not L′ ∈ D whose connector was replaced
by 〈not L′〉 in step 2 of the construction of GM

P , is an acyclic path in GM
P rooted

in L. And so condition (ii) of Definition 9 is satisfied. Hence the root condition
is obeyed by P, M and Rej (P,M).

As for each r ∈ Res(P,M), M � b(r) there exists such r′ ∈ Res?(P,M)
that h(r′) = h(r) and M � b(r′) and vice versa, we get that also P, M and
Rej ?(P,M) obey the root condition. ut

Corollary 1. Let P be a MDLP and M its total interpretation. If the set

R = {r | r ∈ Res(P,M) ∧M � b(r)}

is sufficiently acyclic then

M ∈ DSM (P) ≡M ∈ BDSM (P) ≡M ∈ DJU (P) ≡M ∈ BDJU (P) .

Moreover, as for a strictly acyclic program each of its subsets is sufficiently
acyclic, it trivially follows that all four semantics coincide on strictly acyclic
programs as we state in the following corollary.

Corollary 2. Let P be a strictly acyclic MDLP. Then

DSM (P) = BDSM (P) = DJU (P) = BDJU (P) .

We have shown that the four rule-rejecting semantics coincide on strictly
acyclic programs. In Corollary 1 we have also established a more accurate re-
striction that renders the one-model equivalence of the semantics. However, com-
paring entire model-sets assigned to a program by two semantics one by one is
computationally as complex as computing and enumerating these two model-
sets. So, this result is rather of theoretical value.

5 RDSM Semantics and DLPs

In [7], Alferes et al. have introduced a new semantics for linear DLPs. Motivation
for this new semantics roots in the observation that even the most restrictive
semantics, DSM, provides counterintuitive models for some programs (cf. Ex-
ample 6).



Example 6. Let P = {P1 ≺ P2} where P1 = {a← ;not a← } and P2 = {a← a}.
It holds that DSM ({P1}) = ∅, it is not surprising as P1 is contradictory. If
we inspect the single rule of P2 we see that it actually brings no new factual
information. We suppose that addition of such rule should not add new models
to the program. However, DSM (P) = {{a,not ¬ a}}.

Such rules as the one of P2 from Example 6, having head a subset of the
body, are called tautological. Tautological rules are in fact just a special case of
cycles that only span throughout one rule. In [7], authors have identified even
broader class of extensions of DLPs that, according to their intuition, should not
yield new models of the programs. Such extensions are called refined extensions.
Then a principle has been formed, stating that, having a proper semantics, if a
program P ′ is just a refined extension of P then it should not have a model that
is not also a model of P. This principle is called refined extension principle. We
refer the reader who is interested in precise definitions to [7].

In [7], also a modified DSM semantics has been introduced. The modification
is slight, two conflicting rules of the same program are allowed to reject each
other. Formally, the set of rejected rules of this semantics is

RejR(P,M) = {r ∈ Ṗi | (∃r′ ∈ Ṗj) i � j, M � b(r′), r on r′} .

The semantics is formalized in Definition 12.

Definition 12. A rule-rejecting semantics of DLPs that uses RejR(P,M) for
rejection and Def (P,M) for defaults is called refined dynamic stable model
or just RDSM semantics. In other words, a total interpretation M is a model
of a DLP P w.r.t. the RDSM semantics whenever M = least(ResR(P,M) ∪
Def (P,M)), where ResR(P,M) is the residue.

We agree with [7] that the RDSM semantics is very favourable. It has been
shown in [7] that it satisfies the refined extension principle and, as we adopt
in Theorem 5, it always yields such model-set that is a subset of the model-
set w.r.t. the DSM semantics. Moreover, it has been precisely described and
motivated in [7], why some models provided by DSM should be excluded.

Theorem 5. For any DLP P it holds that RDSM (P) ⊆ DSM (P).

In [7], it further has been shown that for a program P that does not contain
a pair of conflicting rules in the very same Pi ∈ P, the RDSM and the DSM
semantics coincide. However, this result neither is tight as many programs exist
s.t. DSM and RDSM coincide on them and the condition is not satisfied.

The RDSM semantics has been introduced only for linear DLPs and accord-
ing to our deepest knowledge all attempts to generalize it for MDLPs have failed
so far (cf. [19]). Hence, in this section, we restrict our considerations to linear
DLPs. In the remaining we show that under a very similar restriction as the one
of Corollary 1, for a given model, all five of the semantics coincide.

First of all, the following example demonstrates why the condition has to be
altered.



Example 7. Recall again the program P from Example 6. Let M = {a,not ¬a}.
Even if R = {a ←, a ← a} is sufficiently acyclic, M ∈ DSM(P ) and M /∈
RDSM(P ). Indeed, the fact that R * ResR(P,M) causes the trouble. The
sufficient acyclicity is broken in ResR(P,M) and therefore a can not be derived
in the refined semantics.

The further restrictive condition is introduced in Theorem 6, where we prove
the one-model coincidence of RDSM and DSM and we also confirm that the
propositions of Theorem 4 hold under this modified condition as well. The the-
orem uses the following lemma.

Lemma 3. Let semantics S be one of DSM, DJU, BDSM and BDJU. Let P be
a DLP. Let M ∈ S(P). Let Rejected(P,M) be rejected rules, Residue(P,M) be
the residue and Defaults(P,M) be defaults assigned to P and M by S. If

R′ = {r | r ∈ ResR(P,M) ∧M � b(r)}

is sufficiently acyclic then M can be computed as a model in the given semantics
using only the rules of R′. That is, M = least(R′ ∪Defaults(P,M)).

Proof. From Definitions 2, 4 and 12 and from how R′ is defined it follows that
if M ∈ S(P) then for each rule q ∈ Residue(P,M), M � b(q) there is a q′ ∈ R′

s.t. h(q) = h(q′). Once we are aware of this fact this lemma is proved exactly as
Lemma 1. ut

Theorem 6. Let P be a DLP and M be its total interpretation. If

R′ = {r | r ∈ ResR(P,M) ∧M � b(r)}

is sufficiently acyclic then the following propositions hold:

(i) M ∈ DSM (P) ≡M ∈ RDSM (P) ,
(ii) M ∈ DSM (P) ≡M ∈ BDSM (P) ,
(iii) M ∈ DJU (P) ≡M ∈ BDJU (P) .

Proof. Propositions (ii) and (iii) are proved like in the above Theorem 4. The if
part of (i) follows from Theorem 5. The only if part of (i) proves as follows.

Let M ∈ DSM (P). Let R′ be sufficiently acyclic. From Lemma 3 we know
that M can be computed using only the rules of R′. Also

R′ ⊆ ResR(P,M) ⊆ Res(P,M) ,

so it follows from Remark 1 that M ∈ RDSM (P). ut

In the following lemma we show that even if we have slightly modified the
condition, its satisfaction still implies that the root condition is also satisfied.
Hence if the condition is satisfied, all five of the semantics for DLPs coincide on
a given model as we state in Corollary 3.



Lemma 4. Let P be a MDLP and M its total interpretation. Let

R′ = {r | r ∈ ResR(P,M) ∧M � b(r)} .

If R′ is sufficiently acyclic and M ∈ DJU (P) (M ∈ BDJU (P)) then P, M ,
Rej (P,M) (P, M , Rej ?(P,M)) obey the root condition.

Proof. This lemma the same way as Lemma 2 if we realize that when M ∈
DJU (P) (M ∈ BDJU (P)) then for each rule r ∈ Res(P,M) (r ∈ Res?(P,M))
s.t. M � b(r) and h(r) = L there also exists r′ ∈ R′ s.t. h(r′) = L. ut

Corollary 3. Let P be a DLP and M its total interpretation. If the set

R′ = {r | r ∈ ResR(P,M) ∧M � b(r)}

is sufficiently acyclic then

M ∈ DSM (P) ≡M ∈ BDSM (P) ≡M ∈ RDSM (P) ≡
≡M ∈ DJU (P) ≡M ∈ BDJU (P) .

As for Corollary 1, also for Corollary 3 it holds that if, using it, we want
to compare entire model-sets assigned to a program by a pair of semantics,
computational complexity is the same as enumerating and comparing these two
model-sets. Anyway, it trivially follows from this corollary that all five of the
semantics coincide on strictly acyclic programs, as follows in Corollary 4.

Corollary 4. Let P be a strictly acyclic DLP. Then

DSM (P) = BDSM (P) = RDSM (P) = DJU (P) = BDJU (P) .

6 Conclusion

In accord with [3, 15], we have built MDLPs over a more general language of
GELPs, that allows for more elegant comparisons, since no transformations are
necessary as the previous approaches are obtained as its special cases. We have
then compared four different rule-rejecting semantics of MDLPs and in addition
one more when restricted to linear DLPs. We have introduced sufficient acyclic-
ity. Using this notion, we have provided a restrictive condition on a MDLP (DLP)
P and a given candidate model M s.t. if it is satisfied all four (five) semantics
coincide on P and M . As a trivial consequence we have stated the main result,
that on strictly acyclic programs all four (five) of the semantics coincide.

There are several open problems. As there are programs that contain cycles
and several of the five semantics coincide on them, the search for proper charac-
terization of the class of programs on which these semantics coincide is still open.
In this line, we suggest investigation of other well known classes, as stratified
and call-consistent programs. One of the most favourable semantics, RDSM, is
only known for DLPs, generalizing RDSM to MDLPs is a challenging problem.



Comparing semantics that are based on rejection of rules with other approaches
(such as the one of [15] based on Kripke structures) might be interesting. To
meet this goal, we propose that more abstract criteria for evaluating these se-
mantics should be introduced, seeing some of the present ones, e.g., the refined
extension principle of [6, 7], too attached to the rule-rejecting framework.
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