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Abstract. Distributed Description Logics (DDL) enable reasoning with
multiple ontologies interconnected by directional semantic mapping, called
bridge rules. Bridge rules map concepts of a source ontology into concepts
of a target ontology. Concept subsumptions of the source ontology can
be propagated according to a propagation pattern expressed by bridge
rules into concept subsumptions of the target ontology. In the basic for-
mulation of DDL such a propagation is mostly limited to cases when
pairs of ontologies are directly linked by means of bridge rules. However,
when more than two ontologies are involved, one would expect that sub-
sumption propagates along chains of ontologies linked by bridge rules,
but the semantics of DDL is too weak to support this behaviour. In a
recent study, an adjusted semantics for DDL that supports subsump-
tion propagation through chains of ontologies has been introduced. This
study makes use of so called compositional consistency requirement that
has been employed before in Package-based description logics. While the
results concerning subsumption propagation under the adjusted seman-
tics are encouraging, there are important drawbacks. In this paper we
take a wider perspective, and propose a study of several different alter-
native extensions of the DDL semantics. For each of them we study the
formal properties, and we select the one that, according to our analysis,
constitutes a good compromise, and for this case we provide a sound and
complete tableaux decision procedure.

1 Introduction

Distributed Description Logics (DDL) have been introduced by Borgida & Ser-
afini (2003) and consecutively developed by further research (Serafini et al. 2005,
Serafini & Tamilin 2006, Ghidini et al. 2007). DDL are intended especially to
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enable reasoning over systems of multiple ontologies connected by directional se-
mantic mapping, built upon the formal, logical and well established framework
of Description Logics (DL) (Baader et al. 2003) and local models semantics
(Ghidini & Giunchiglia 2001). DDL capture the idea of importing and reusing
concepts between several heterogeneous ontologies. This idea combines well with
the basic assumption of the Semantic Web that no central ontology but rather
many ontologies with redundant knowledge will exist (Berners-Lee et al. 2001).

In DL, a knowledge base, also called an ontology, contains a set of terminolog-
ical axioms that assert relation upon concepts. For instance, with subsumption
axioms we assert that some particular concept is a subconcept of another con-
cept. While the ontology contains a set of axioms that record selected relations
between concepts directly, using the logical semantics of DL some more relations
are possibly implied. These relations may then be queried by the user. Say, if we
assert directly that C is a subconcept of D and D in turn is a subconcept of E,
this implies that also C is a subconcept of E. This relation is called subsumption:
if C is a subconcept of D, we say that C is subsumed by D.

DDL enriches DL with new kind of axioms, called bridge rules. Bridge rules
represent a semantic mapping between ontologies in a formal fashion. With
bridge rules one is able to assert that some concept C, local to ontology T1,
is related to some other concept D, local to T2.3 While technically this relation
is not exactly equivalent to the subsumption present inside the local ontologies,
with bridge rules we either indicate a subconcept or a superconcept relation.
Moreover, bridge rules are directed, and hence if there is a bridge rule with di-
rection from T1 to T2, then T2 reuses knowledge from T1 but not necessarily the
other way around. Semantic mapping encoded in bridge rules enables for knowl-
edge reuse between local ontologies in a DDL knowledge base via the effect called
subsumption propagation.

Consider the example depicted in Fig. 1. Let the ontology on the right be
our local backyard ontology. In this ontology we maintain knowledge about all
animals in our backyard. Instead of complex modeling of all relations between
our animals we reuse a far more complex ontology that contains classification
of all animal species. We map MyCat to genus Felis, and we also create the
concept DangerousAnimal and map it to Felidae, the family of all cats, since we
also keep a hamster and we know that all cats hunt hamsters for food. Thanks
to the semantics of DDL we are now able to derive that MyCat is a subconcept
of DangerousAnimal, even if this relation is not derived in the original backyard
ontology locally. We say that the subsumption between Felis and Felidae has
propagated to the backyard ontology thanks to the mapping. Please note also
that the direction of the mapping is from the species ontology to the backyard
ontology, as we only intend to reuse the knowledge of the species ontology within

3 Even if the DDL framework has been extended for representing mappings between
roles and also so called heterogeneous mappings (i.e., mappings between concepts
and roles) (Ghidini et al. 2007), in this paper we restrict to the case of mapping
between concepts.



Fig. 1. A simple DDL knowledge base with bridge rules. In this knowledge base it
always holds that MyCat is a subconcept of DangerousAnimal, even if this fact is not
explicitly recorded.

the backyard ontology and not the other way around. The mapping depicted on
Fig. 1 does not affect the knowledge within the species ontology in any way.

Subsumption propagation, as seen above, has been described as desired and
one of the main features of DDL and it has been studied (Borgida & Serafini 2003,
Serafini & Tamilin 2004, Homola 2007). Homola (2008) argues that the original
semantics of DDL behaves counterintuitively in certain cases and proposes an
adjustment to the semantics in order to cope with this issue.

Fig. 2. An example of complex concept mapping between three ontologies. In this case
the query whether MyCat is a subconcept of DangerousAnimal is not true under the
original DDL semantics.

For illustration consider Fig. 2 which extends the previously discussed exam-
ple depicted in Fig. 1. In this case, the situation is more complex. We no longer



map between concepts Felidae and DangerousAnimal, but instead these two con-
cepts are connected indirectly via the concept Carnivore from yet another ontol-
ogy. This third ontology deals with animal behaviour in contrast with the species
ontology that merely provides classification. In case that there are such ontolo-
gies available, we suggest that this way of modelling is even more natural. As in
the above example, again we would expect to derive that MyCat is a subconcept
of DangerousAnimal within the backyard ontology. This relation is not derived
under the original DDL semantics however. In the example from Fig. 2 there is a
so called chain of bridge rules. The onto-bridge rule between concepts Carnivore
and Felidae and the other one between Felis and MyCat form a chain, as Felis
is a subconcept of Felidae in the classification ontology. Similar chains are also
possible with into-bridge rules. The adjusted semantics of Homola (2008) allows
subsumption propagation along such chains of bridge rules and hence the sub-
sumption between MyCat and DangerousAnimal is entailed under this semantics.

In this paper we take steps forward in order to develop a distributed tableaux
reasoning algorithm that would decide satisfiability of concepts and subsumption
with respect to the adjusted semantics. The algorithm that is introduced in this
paper handles chaining onto-bridge rules correctly, but it is unable to cope with
chaining into-bridge rules. We provide precise characterization of the semantics
that the algorithm actually implements. The algorithm works with acyclic DDL
knowledge bases build on top of ALC as the local language. As in the case
of the tableaux algorithm that is known for the original semantics (Serafini
et al. 2005), the algorithm is truly distributed and it permits the scenario where
every local ontology is governed by an autonomous reasoning service and these
services communicate by passing queries. The local reasoner that has started
the computation collects all the answers and makes the decision at the end.
Besides the fact that each algorithm works under a different semantics, the main
distinguishing feature of the newly introduced algorithm is that communication
between local reasoners is divided into multiple messages. We believe that such
behaviour may serve as a base for more fine-grained optimization in the future.

2 Distributed Description Logics

DDL rely on Description Logics (Baader et al. 2003) as for the representation
language of the local knowledge bases. DL provide a well established ontolog-
ical representation language with formal semantics and with reasoning tasks
and associated computational issues well understood. In the following we briefly
introduce the ALC DL in order to build on top of it later in the paper.

A DL knowledge base typically consists of a TBox and an ABox. The TBox
contains terminological knowledge, that is, definitions of concepts and their rela-
tions (i.e., subsumption axioms). The ABox contains knowledge about individu-
als, their relations and their membership in concepts. In this work we concentrate
above all on the terminological part of the knowledge and hence we will only
work with TBoxes below. We will denote TBoxes with Ti because we deal with
several ontologies. Assume that i is an index from some finite index set I. Each



TBox is a set of subsumption axioms called general concept inclusions (GCI),
each of the form i : C v D, where C and D are concepts. Concepts are ei-
ther atomic or complex. Atomic concepts have no further structure. Complex
concepts are composed from atomic concepts and roles using some of the DL
concept constructors. For list of constructors and their meaning see Fig. 3.

The semantics of DL is model-theoretic. Each ontology Ti is assigned an
interpretation Ii consisting of a domain ∆Ii and an interpretation function ·Ii
which interprets each concept C by CIi ⊆ ∆Ii . Each role R is interpreted by
RIi ⊆ ∆Ii ×∆Ii . Complex concepts must satisfy further semantic constraints,
see Fig. 3. There are also two special concepts ⊥ and >. The bottom concept
(⊥) is always interpreted by ⊥Ii = ∅, the top concept (>) is always interpreted
by >Ii = ∆Ii , but they are formally defined as syntactic sugar: ⊥ ≡ E u ¬E
and > ≡ E t ¬E, for some new concept name E.

A GCI axiom i : C v D , is satisfied by Ii whenever CIi ⊆ DIi . An interpre-
tation Ii is a model of Ti if it satisfies all GCI in Ti. A concept C is satisfiable,
if there exists an interpretation Ii such that CIi is nonempty. In addition, C
is satisfiable with respect to a TBox Ti if there exists an interpretation Ii with
CIi 6= ∅ that is a model of Ti. And, subsumption i : C v D is entailed by Ti if
CIi ⊆ DIi holds in all models of Ti. Satisfiability of concepts and subsumption
entailment are standard decision problems that are investigated in each DL.

Two concepts C and D are equivalent if in each interpretation Ii we have
CIi = DIi . A concept C is in negation normal form (NNF) if negation (¬) only
appears in C directly in front of atomic concepts. For each concept, an equivalent
concept in NNF exists (Baader et al. 2003), we denote the NNF of C by nnf(C).
For more detailed introduction to DL please refer to the work of Baader et al.
(2003) and Horrocks et al. (1999).

E EIi

¬C ∆Ii \ CIi
C uD CIi ∩DIi
C tD CIi ∪DIi
∀R.C {i ∈ ∆Ii | (∀j ∈ ∆Ii ) (i, j) ∈ RIi =⇒ j ∈ CIi}
∃R.C {i ∈ ∆Ii | (∃j ∈ ∆Ii ) (i, j) ∈ RIi ∧ j ∈ CIi}

Fig. 3. Complex concepts in ALC and their semantics.

A DDL knowledge base, commonly dubbed distributed TBox T, includes a
set of local TBoxes each over its own DL language and a set of bridge rules
B that provides mappings between these local TBoxes. The local languages are
commonly required to be under SHIQ (Horrocks et al. 1999) as it is not trivial to
extend DDL with nominals (Serafini et al. 2005). In this work we will stay under
ALC, which is a sub-language of SHIQ. The formal definition is as follows.

Definition 1. Assume a non-empty index set I, a set of concept names NC =⋃
i∈I NCi and a set of role names NR =

⋃
i∈I NRi. A Distributed TBox is a pair

T = 〈{Ti}i∈I ,B〉 such that:



1. Each local TBox Ti is a collection of ALC GCI axioms over NCi and NRi.
Each GCI is of the form:

i : C v D .

2. The set of bridge rules B divides into sets of bridge rules B =
⋃
i,j∈I,i6=jBij.

Each Bij is a collection of bridge rules in direction from Ti to Tj which are of
two forms, into-bridge rules and onto-bridge rules (in the respective order):

i : A
v→ j : G , i : B

w→ j : H .

While, as we will see bellow, bridge rules are not semantically equivalent to
subsumption axioms (GCI), they also work with the notions of subconcept and
superconcept. Intuitively speaking, into-bridge rules cause the mapped image of
the source concept to always stay inside of the target concept, so hence their
name. Conversely, onto-bridge rules cause that the target concept is always inside
of the mapped image of the source concept. As already mentioned, the direction
of bridge rules matters and hence Bij and Bji are possibly and expectedly
distinct. The bridge graph GT = 〈V,E〉 of a distributed TBox T is defined as
follows: V = I and 〈i, j〉 ∈ E if Bij 6= ∅. We say that T is acyclic if GT is acyclic.

Given a TBox T , a hole is an interpretation Iε = 〈∅, ·ε〉 with empty domain.
Holes are used for fighting propagation of inconsistency. We use the most re-
cent definition, introduced by Serafini et al. (2005). A distributed interpretation
I = 〈{Ii}i∈I , {rij}i∈I,i6=j〉 of a distributed TBox T consists of a set of local in-
terpretations {Ii}i∈I and a set of domain relations {rij}i∈I,i6=j . For each i ∈ I,
either Ii = (∆Ii , ·Ii) is an interpretation of the local TBox Ti or Ii = Iε is a
hole. Each domain relation rij is a subset of ∆Ii ×∆Ij . We denote by rij(d) the
set {d′ | 〈d, d′〉 ∈ rij} and by rij(D) the set

⋃
d∈D rij(d).

Definition 2. For every i and j, a distributed interpretation I satisfies the el-
ements of a distributed TBox T (denoted by I |=ε ·) according to the following
clauses:

1. I |=ε i : C v D if Ii |= C v D;
2. I |=ε Ti if I |=ε i : C v D for each C v D ∈ Ti;
3. I |=ε i : C v→ j : G if rij

(
CIi

)
⊆ GIj ;

4. I |=ε i : C w→ j : G if rij
(
CIi

)
⊇ GIj ;

5. I |=ε B if I satisfies all bridge rules in B;
6. I |=ε T if I |=ε B and I |=ε Ti for each i.

If I |=ε T then we also say that I is a (distributed) model of T.

The two standard decision problems in DL, satisfiability of concepts and
entailment of subsumption, play prominent rôle also in the context of DDL.
Formally, the decision problems are defined as follows.

Definition 3. Given a distributed TBox T, an i-local concept C is satisfiable
with respect to T if there exists a distributed model I of T such that CIi 6= ∅.



Definition 4. Given a distributed TBox T and two i-local concepts C and D,
it is said that C is subsumed by D with respect to T if CIi ⊆ DIi in every
distributed model I of T. We also sometimes say that the subsumption formula
i : C v D is entailed by T and denote this by T |=ε i : C v D.

It is a well known result that in most DL subsumption and (un)satisfiability
are inter-reducible (Baader et al. 2003). It follows rather straight forward, that
this reduction is also valid for DDL, as follows in Theorem 1.

Theorem 1. Assume a distributed TBox T and two i-local concepts C and D.
T |=ε i : C v D if and only if the concept ¬C uD is unsatisfiable with respect to
T. Also, C is satisfiable with respect to T if and only if the subsumption formula
i : C v ⊥ is not entailed by T.

In the literature several properties have been identified as desired for a logic
of modular and distributed ontologies (Loebe 2006). In context of DDL, par-
ticularly three properties are considered as desiderata. These are (intuitively
explained):

monotonicity: addition of new knowledge does not affect the previously en-
tailed knowledge;

directionality: some local ontology Ti possibly affects another local ontology
Tj , only if they are connected by a directed path of bridge rules starting
from Ti and eventually reaching Tj ;

local inconsistency: if one local ontology is inconsistent this does not neces-
sarily cause the inconsistence of the whole distributed ontology, instead the
local inconsistency should be dealt with allowing only minimal necessary
damage.

These properties have been formalized in the context of DDL in the literature
and it was proved that they hold for the original DDL semantics (Borgida &
Serafini 2003, Serafini & Tamilin 2004, Serafini et al. 2005). In any extension of
the DDL semantic it is desirable to maintain these three properties, if possible.
The properties are formalized as follows.

Definition 5 (Monotonicity). The monotonicity property is satisfied when-
ever in every distributed TBox T it holds that

Ti |= C v D =⇒ T |=ε i : C v D .

Directionality states that there should also be no back-flow of information against
the direction of bridge rules. That is, if Ti and Tj are not connected by any
directed path of bridge rules (in direction from i to j) then Ti does not affect
Tj ; which means that removal of Ti should have no effect in Tj .

Definition 6 (Directionality). The directionality property is satisfied when-
ever in every distributed TBox T with index set I and bridge graph GT for every
i, j ∈ I, i 6= j it holds that if there is no directed path between i to j in GT, then

T |=ε j : C v D ⇐⇒ T−i |=ε j : C v D

where T−i is obtained by removing Ti, Bik and Bli from T for each k, l ∈ I.



The local inconsistency property states that even if some of the local TBoxes
happens to be inconsistent, the inconsistency does not necessarily spread and
pollute the whole distributed ontology. There are more options how to formalize
such a property and several formalizations occur in the literature (Borgida &
Serafini 2003, Serafini & Tamilin 2004, Serafini et al. 2005). We use the most
recent definition (Serafini et al. 2005), which is rather technical but in fact de-
scribes very well the exact extent of inconsistency propagation that occurs under
the original DDL semantics.

The limited amount of inconsistency propagation that occurs in DDL is jus-
tified by the following observation. If some local TBox Ti is inconsistent, then
the only admissible local interpretation is a hole. This affects onto-bridge rules
outgoing from Ti – the only admissible local interpretation for every j-concept
D that is a target of an onto-bridge rule outgoing from Ti is the empty set (i.e.,
DIj = ∅ in each distributed model I of T).

We will use some auxiliary notation. Let |=d be a kind of entailment just as |=ε

only that it does not allow holes as local interpretations and let also each I |=d T
be called a d-model of T. Given J ⊆ I, T(εJ) is obtained from T by removing
each Tj such that j ∈ J , and adding {D v ⊥ | j : C w→ i : D ∈ B ∧ j ∈ J} to
each Ti, i ∈ I \ J .

Definition 7 (Local inconsistency). The local inconsistency property is sat-
isfied whenever in each distributed TBox T the following holds: T |=ε i : C v D
if and only if for any J ⊆ I, not containing i, T(εJ) |=d i : C v D.

The mechanism of knowledge reuse within DDL ontologies is formally char-
acterized by the notion called subsumption propagation. Intuitively, subsumption
propagates from one local ontology where it follows from the local knowledge
to some another ontology that is connected by bridge rules. For an example,
recall the distributed ontology depicted in Fig. 1. Here, the biological classifica-
tion ontology on the left locally entails Felis v Felidae. Thanks a pair of bridge
rules this subsumption is propagated into the backyard ontology on the right
and MyCat v DangerousAnimal is distributively entailed.

This subsumption propagation scenario is only a very basic one. The sub-
sumption propagation property has been formulated in a more general setting.
One such a formulation appears in the work of Serafini & Tamilin (2004). Here
subsumption is propagated between G and the union H1 t · · · t Hn, given a
locally entailed subsumption A v B1 t · · · tBn in a neighboring local ontology
and a sufficient number of bridge rules. This exact form of the property, formu-
lated in form of an inference rule in Theorem 2, is somewhat important for the
original DDL framework: it provides the grounds for the distributed reasoning
algorithm introduced by Serafini & Tamilin (2004).

Theorem 2 (Subsumption propagation). Given a distributed TBox T with
an index set I, two local TBoxes Ti and Tj, i, j ∈ I, i-local concepts A,B1, . . . , Bn
and j-local concepts G,H1, . . . ,Hn, for some n > 0, the following inference rule



is valid:
T |=ε i : A v B1 t · · · tBn
i : A w→ j : G ∈ Bij

i : Bk
v→ j : Hk ∈ Bij, for 1 ≤ k ≤ n

T |=ε j : G v H1 t · · · tHn

Study of subsumption propagation in more complex cases also appears in the
literature (Serafini et al. 2005, Homola 2007). These cases are not as interesting
for this study, since they do not extend the case in that particular aspect that
only two local ontologies which are directly connected with bridge rules are
studied. In this work we concentrate on indirectly connected ontologies, a case
with which, as we will see below, the original semantics is not completely able
to cope with.

3 Improving Subsumption Propagation

As outlined in the introduction with the example of Figure 2, the subsumption
propagation pattern in the original DDL is, in some cases, not as strong as one
would desire. In a recent paper, Homola (2008) proposes a way to adjust the
semantics of DDL in order to improve subsumption propagation in the cases
when local ontologies are only connected indirectly. Here we provide a more
systematic analysis of the possible improvements, and for one of them we extend
the distributed tableaux algorithm for DDL described by Serafini et al. (2005).

This work is concerned with remote ontologies. The basic intuition behind
this notion is of two local ontologies within a distributed system, that are not
connected directly by a single bridge rule. Since we are interested in subsumption
propagation between remote ontologies we further refine this notion considering
the following two aspects. First, we are only interested in cases when these
ontologies are in fact connected by some directed path of bridge rules; this is
due to the directionality desideratum which allows no knowledge reuse if this
is not the case. Second, even if two ontologies are connected directly, we must
still consider also the remote connections between them, that is, paths of bridge
rules spanning across multiple ontologies.

The characteristic pattern of interest, when dealing with remote ontologies
is characterized by the notion of chain of bridge rules. Chain of bridge rules is a
directed path of bridge rules which combine together with respect to subconcept-
superconcept relations.

Definition 8. Let T be distributed TBox with an index set I. A chain of bridge
rules is either a directed path of into-bridge rules

〈1 : C1
v→ 2 : D2, 2 : C2

v→ 3 : D3, . . . , n− 1 : Cn−1
v→ n : Dn〉

of length n > 0 such that for each 1 < i < n we have T |=ε i : Di v Ci
(into-chain); or a directed path of onto-bridge rules

〈1 : C1
w→ 2 : D2, 2 : C2

w→ 3 : D3, . . . , n− 1 : Cn−1
w→ n : Dn〉



of length n > 0 such that for each 1 < i < n we have T |=ε i : Ci v Di

(onto-chain).

While there is no notion of bridge rules composition or bridge rules inference
in the literature, and also in this work we do not intend to introduce this kind of
reasoning with bridge rules formally, we will use the notion of bridge rules com-
position as a metaphor in what follows. The point is that the desired extent of
subsumption propagation according to our intuitions is characterized by a hypo-
thetical semantics in which each chain of bridge rules between C of Ti and D of
Tj has the power equal to a single bridge rule between these two concepts. In the
basic case this propagation pattern is characterized by the following composition
of bridge rules:

i : A
v→ j : B and j : B

v→ k : C implies i : A
v→ k : C (1)

i : A
w→ j : B and j : B

w→ k : C implies i : A
w→ k : C (2)

(3)

Semantically these two composition rules correspond to the following two con-
ditions (in the respective order):

rij(A
Ii) ⊆ BIj ∧ rjk(BIj ) ⊆ CIk =⇒ rik(AIi) ⊆ CIk (4)

rij(A
Ii) ⊇ BIj ∧ rjk(BIj ) ⊇ CIk =⇒ rik(AIi) ⊇ CIk (5)

(6)

Since the above two conditions must hold for any interpretation of A, B and C,
then they correspond to the following inclusions between domain relations:

rij ◦ rjk ⊇ rik (7)

rij ◦ rjk ⊆ rik (8)

Notice that when any two of i, j and k are equal, the above properties include
rii for some i ∈ I which is not defined in a DDL. So we suppose that the above
properties hold only in the case when i, j and k are three mutually distinct
indices. Our investigation proceeds with studying the properties of an amended
semantics of DDL which obeys restrictions (7) and (8).

Definition 9. Given a distributed interpretation I with domain relation r, we
say that r (and also I) satisfies compositional consistency if for any three mu-
tually distinct indices i, j, k ∈ I we have rij ◦ rjk = rik.

Now the adjusted semantics is simply obtained from the original DDL se-
mantics by allowing only distributed interpretations that satisfy compositional
consistency. In accordance we often use the wording “DDL under compositional
consistency” when referring to this semantics.

The adjusted semantics actually extends the original one, in the sense that if
some subsumption formula Φ is entailed by a distributed TBox T in the original



semantics, then it is also entailed by T under compositional consistency. The
only difference is that in the adjusted semantics possibly some more subsumption
formulae are entailed in addition. This is formally stated in the following theorem
(for a proof please refer to Homola (2008)).

Theorem 3. Given a distributed TBox T and a subsumption formula Φ, if T |=ε

Φ according to the original semantics, then T |=ε Φ also holds in DDL under
compositional consistency.

To demonstrate the mechanism of improved subsumption propagation within
the adjusted semantics, let us revisit the example from Fig. 2 formally.

Fig. 4. Renaming of concepts from Fig. 2 employed in Example 1. The three local
ontologies are referred to as Tb – behaviour ontology, Tc – classification ontology, and
Ty – backyard ontology.

Example 1. Recall the example depicted in Fig. 2. Let us simplify the notation
by renaming the concepts as follows: C := MyCat, D := DangerousAnimal, E :=
Felis, F := Felidae, G := Carnivore. Remaining concepts are of no interest (see
Fig. 4). Assume the index set I = {b, c, y}, where b represents the behaviour
ontology (on the left), c represents the classification ontology (in the middle)
and y represents the backyard ontology (on the right). There are various axioms
in T = 〈{Tb, Tc, Ty, },B〉 but of the GCI only c : E v F , actually matters to us,
and there are three bridge rules in B:

b : G
w→ c : F , c : E

w→ y : C ,

b : G
v→ y : D .

We query whether it holds that T |=ε y : C v D. Assume a distributed interpre-
tation I. Let us first assume that I contains no hole. From Definition 2 we get



rcy
(
EIc

)
⊇ CIy . We also have rbc

(
GIb

)
⊇ F Ic , but since rcy(·) is a mapping

we get that rcy
(
rbc
(
GIb

))
⊇ rcy

(
F Ic

)
. And from compositional consistency we

get that rcy
(
rbc
(
GIb

))
= rby

(
GIb

)
implies rby

(
GIb

)
⊇ rcy

(
F Ic

)
. From the GCI

c : E v F we get F Ic ⊇ EIc and from properties of mapping we again get
rcy
(
F Ic

)
⊇ rcy

(
EIc

)
. Putting this all together we derive:

rby
(
GIb

)
⊇ rcy

(
F Ic

)
⊇ rcy

(
EIc

)
⊇ CIy ,

and that amounts to rby
(
GIb

)
⊇ CIy . On the other hand, from the into-bridge

rule between Tb and Ty we derive rby
(
GIb

)
⊆ DIy . And so we finally get CIy ⊆

DIy .
For the case with holes assume for instance that Ib = Iε. In that case GIb =

∅. Thanks to the constraint generated by bridge rules and the GCI we easily
derive that also F Ic = ∅, EIc = ∅, and also CIy = ∅. In such a case, however,
CIy ⊆ DIy holds trivially. If we substitute other local interpretations for holes,
we get the very same result analogously.

Summing up, in every model of T we have CIy ⊆ DIy and hence T |=ε

y : C v D. Recall that we have actually used the compositional consistency
requirement in our argumentation. Without it we would not be able to establish
the result: we would not be able to prove that rby

(
GIb

)
⊇ rcy

(
F Ic

)
. In fact,

the original DDL semantics allows models that violate this inclusion and hence
T |=ε y : C v D does not hold under the original semantics.

Theorem 4 below provides a more general characterization of cases when
subsumption propagates to remote ontologies. This characterization generalizes
the setting from Figs. 2–4. For a proof, refer again to the work of Homola (2008).

Fig. 5. Depiction of the distributed TBox from Theorem 4.



Theorem 4. Given a distributed TBox, as illustrated in Fig. 5, with an index
set I and a set of bridge rules B, that features n+ 1 local TBoxes T0, T1, . . . , Tn
with concepts E,F ∈ T0, and Ci, Di ∈ Ti, for 1 ≤ i ≤ n, and k with 1 ≤ k ≤ n
such that:

1. T |=ε i : Ci v Di, for 1 ≤ i ≤ n ,
2. i+ 1 : Ci+1

w→ i : Di ∈ B, for 1 ≤ i < k ,
3. i : Di

v→ i+ 1 : Ci+1 ∈ B, for k ≤ i < n ,
4. 1 : C1

w→ 0 : E ∈ B and n : Dn
v→ 0 : F ∈ B .

In DDL under compositional consistency it follows that T |=ε 0 : E v F .

In a nutshell, Theorem 4 basically says that the effect of bridge rules is now
transitive, and hence subsumption propagates even between remote ontologies
within the system. Since we deliberately did not formally introduce the notion
bridge rules inference as it is not the primary subject of this paper, relying
only on the current DDL notation this must be formulated in a rather complex
fashion. If such a notion is introduced by future research, the theorem may be
reformulated in a more elegant way.

As a counterpart of the positive effects of the newly introduced semantics, we
also observe some undesired side effects. In particular, the full compositionality
of domain relation spoils the directionality and the local inconsistency properties.

Fig. 6. Depiction of the distributed TBox from Example 2.

Example 2. Consider the following distributed TBox T with the index set I =
{1, 2, 3}, such that T1 = ∅, T2 = ∅, T3 = ∅ and two bridge rules B = {2 : C v→
1 : ⊥, 2 : C w→ 3 : D}.

Under the semantics with compositional consistency, it follows that T |=ε 3 :
D v ⊥. There is no directed path from T1 to T3. If T satisfies the directionality
property, it should be possible to remove T1 form T without loosing any of the
entailed subsumptions. But this is not the case since T−1 6|=ε 3 : D v ⊥. The
proof that T |=ε 3 : D v ⊥ is as follows:



1. T |=ε 3 : D v ⊥ because by the second bridge rule, r23
(
CI2

)
⊇ DI3 and

CI2 = ∅, as we will prove.
2. Assume r23

(
CI2

)
6= ∅.

3. Hence there are x ∈ CI2 and y ∈ ∆I3 such that y ∈ r23(x).
4. Now from compositional consistency there must be z ∈ ∆I1 such that z ∈
r21(x) and y ∈ r13(z).

5. but from the first bridge rule we now get z ∈ ⊥I1 which is a contradiction,
as x ∈ CI2 , z ∈ r21(x) and r21

(
CI2

)
⊆ ⊥I1 .

Example 3. Consider distributed TBox T with index set I = {1, 2, 3} and a set
of bridge rules B, such that T1 = {> v ⊥}, T2 = ∅, T3 = ∅ which only contains
one bridge rule

2 : C
w→ 3 : D .

Since T1 is inconsistent, the only admissible local interpretation is a hole. Sim-
ilarly as in the example above, r23 = ∅, because otherwise ∆I1 would be non-
empty. Hence T |=ε 3 : D v ⊥. If local inconsistency would hold, then for each
J ⊆ I, 3 /∈ J we must have T(εJ) |=d 3 : D v ⊥. For J = {1} this does not
hold, however, as we will show. In this case T(εJ) = 〈{T2, T3},B〉. Consider the
d-interpretation I with ∆I2 = CI2 = {x}, ∆I3 = DI3 = {y}, r23 = {〈x, y〉} and
r32 = ∅. Clearly, I is a d-model of T(εJ), computational consistency is satisfied
by r, and indeed I 6|=d 3 : D v ⊥ since DI3 6= ∅.

As showed by Examples 2–3, important properties of the original DDL se-
mantics are violated under the compositional consistency requirement. Willing
to preserve these properties, most notably directionality, we have two possible
directions: first options is to drop condition (7) completely; the other option is
to restrict the applicability of property (7) to the case in which (i, j) and (j, k)
are links of the bridge graph. In the following two sections we analyze both these
options.

3.1 DDL under the Transitivity Condition

From Examples 2–3 we conclude that the compositional consistency require-
ment is perhaps too strong. It implies all the constraints that are necessary in
order to increase subsumption propagation in the amount we have described as
desired but it also implies further consequences that are possibly destructive
as we have seen in the examples. In the following we study a relaxed version
of the compositional consistency condition, which basically is just transitivity
of the domain relation in distributed models. We will show that subsumption
propagation is more limited under this weaker condition, but on the other hand
this semantics satisfies the desiderata postulated for DDL including direction-
ality and the guarded inconsistency propagation. In addition we will be able to
introduce a distributed tableaux reasoning algorithm that decides satisfiability
for this semantics later in Sect. 4. Formally, the weaker condition is defined as
follows.



Definition 10. Given a distributed interpretation I with domain relation r, we
say that r (and also I) satisfies the transitivity condition if for any three mutually
distinct indices i, j, k ∈ I we have rij ◦ rjk ⊆ rik.

Apparently, a distributed interpretation satisfies the transitivity condition if
and only if its domain relation is transitive. The semantics obtained by allowing
only distributed interpretations that satisfy the transitivity condition is hence
called DDL under transitivity or DDL with transitive domain relation. The first
observation for the new semantics is that the proposition of Theorem 4 does
not hold any more if we relax from compositional consistency to transitivity. We
demonstrate this problem by an example.

Example 4. Consider a distributed TBox T with three local TBoxes T1, T2 and
T3, with local concepts C1, D1 in T1, E2 in T2 and F3 in T3, and with bridge
rules:

2 : E2
v→ 3 : F3 , 3 : F3

v→ 1 : D1 ,

2 : E2
w→ 1 : C1 .

This distributed TBox is clearly a very simple instance of the setting assumed by
Theorem 4. According to this theorem, we should be able to derive T |=d 1 : C1 v
D1. This is not true, however, as a distributed model of T exists in which C1

I1 *
D1
I1 . This distributed model I has three local domains ∆I1 = {c1, d1}, ∆I2 =

{e2}, and ∆I3 = {f3}. Local concepts are interpreted as follows: C1
I1 = {c1, d1},

D1
I1 = {d1}, E2

I2 = {e2}, and F3
I3 = {f3}. Finally, the domain relation

is the following: r21 = {〈e2, c1〉, 〈e2, d1〉}, r23 = {〈e2, f3〉}, r31 = {〈f3, d1〉},
r12 = r32 = r13 = ∅. It is easily verified that r is transitive, hence the transitivity
condition is satisfied, and hence Theorem 4 does not stand if compositional
consistency is relaxed to transitivity. At the same time, this example does not
invalidate Theorem 4 under compositional consistency, as the stronger condition
is not satisfied by I because r21(e2) = {c1, d1} * {d1} = r31(r23(e2)).

So we see that DDL with transitive domain relation has problems with
“chaining” into-bridge rules. Luckily enough the problem does not affect chain-
ing onto-bridge rules – if we analyze Example 1 we will see that transitivity is
enough to guarantee the two chaining onto-bridge rules in this example to propa-
gate the subsumption relationship as expected. This observation holds in general
and is formally established by Theorem 5 below. This theorem is a weaker ver-
sion of Theorem 4 and it provides a characterization of the semantics of DDL
under the transitivity condition.

Theorem 5. Given a distributed TBox, as illustrated in Fig. 7, with an index
set I and a set of bridge rules B, that features k + 1 local TBoxes T0, T1, . . . , Tk
with concepts E,F ∈ T0, and Ci, Di ∈ Ti, for 1 ≤ i ≤ k, such that:

1. T |=ε i : Ci v Di, for 1 ≤ i ≤ k ,
2. i+ 1 : Ci+1

w→ i : Di ∈ B, for 1 ≤ i < k ,



Fig. 7. Depiction of the distributed TBox from Theorem 5.

3. 1 : C1
w→ 0 : E ∈ B and k : Dk

v→ 0 : F ∈ B .

In DDL under the transitivity condition it follows that T |=ε 0 : E v F .

Proof. The theorem is proved by the following chain of inclusions:

EI0
1
⊆ rk0

(
Ck
Ik
) 2
⊆ rk0

(
Dk
Ik
) 3
⊆ F I0 .

Inclusion 3 is a direct consequence of the into-bridge rule k : Dk
v→ 0 : F ∈ B.

As for Inclusion 2, T |=d k : Ck v Dk implies Ck
Ik ⊆ Dk

Ik and since rk0(·) we
also have rk0

(
Ck
Ik
)
⊆ rk0

(
Dk
Ik
)
. Inclusion 1 divides into:

EI0 ⊆ r10
(
r21
(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆ rk0

(
Ck
Ik
)
.

Both these inclusions ought to be proved by mathematical induction. The first in-
clusion is proved by induction on k, base case is EI0 ⊆ r10

(
C1
I1). This is a direct

consequence of the onto-bridge rule 1 : C1
w→ 0 : E ∈ B. In the induction step,

by the induction hypothesis we have EI0 ⊆ r10
(
r21
(
· · · rk−1k−2

(
Ck−1

Ik−1
)
· · ·
))

.
From the assumptions of the theorem we derive:

Ck−1
Ik−1 ⊆ Dk−1

Ik−1 ⊆ rkk−1
(
Ck
Ik
)
.

The composition of mappings r10(r21(· · · rk−1k−2(·) · · · )) is a mapping, and so
r10
(
r21
(
· · · rk−1k−2

(
Ck−1

Ik−1
)
· · ·
))
⊆ r10

(
r21
(
· · · rk−1k−2

(
rkk−1

(
Ck
Ik
))
· · ·
))

.
Together with the induction hypothesis this amounts to the inclusion we wanted
to prove.

As for the second inclusion, we shall prove a slightly more general proposition:

rn+1n

(
rn+2n+1

(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆ rkn

(
Ck
Ik
)
,

where 0 ≤ n ≤ k− 2. The inclusion we ought to prove is then derived by setting
n = 0. The proposition is proved by mathematical induction on k − n. As for



the base case consider k−n = 2, and so n = k−2. That means we have to show
rk−1k−2

(
rkk−1

(
Ck
Ik
))
⊆ rkk−2

(
Ck
Ik
)
, which holds because I satisfies transitiv-

ity. The induction step is for k−n = j > 2, and so n = k−j. From the induction
hypothesis we get rn+2n+1

(
rn+3n+2

(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆ rkn+1

(
Ck
Ik
)
. And

since rn+1n(·) is a mapping, we also get rn+1n

(
rn+2n+1

(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆

rn+1n

(
rkn+1

(
Ck
Ik
))

. Once again, since I satisfies the transitivity condition we

have rn+1n

(
rkn+1

(
Ck
Ik
))
⊆ rkn

(
Ck
Ik
)
. By combining the last two inclusions

we directly get:

rn+1n

(
rn+2n+1

(
· · · rkk−1

(
Ck
Ik
)
· · ·
))
⊆ rkn

(
Ck
Ik
)
.

By setting n = 0 we derive the inclusion we wanted to prove, and hence the
theorem. ut

And so we see that this weaker semantics only partially solves the prob-
lem of lacking subsumption propagation between remote ontologies, as we have
identified it in the beginning of Sect. 3. Subsumption propagates along chains of
onto-bridge rules, but it fails to propagate along chains of into-bridge rules. On
the other hand, compared to the stronger semantics, it satisfies the requirements
that have been placed on DDL (Borgida & Serafini 2003, Serafini et al. 2005),
as we formally demonstrate below.

Theorem 6. The monotonicity property is satisfied in DDL under transitivity.

Proof. Given Ti ∈ T and C,D ∈ Ti such that Ti |=ε C v D, only models of Ti
and Iε are allowed in the Ii slot of any distributed model I of T. Since in each
of these C v D holds, we get T |=ε i : C v D directly from the definition. ut

While monotonicity is a rather trivial property that expectedly holds also
for this semantics, recall that the stronger semantics we have presented in the
previous section does not satisfy directionality, as we have showed. Fortunately
the semantics of DDL under transitivity behaves more reasonably – directionality
is satisfied – as we formally prove below.

Theorem 7. The directionality property is satisfied in DDL under transitivity.

Proof. Given a distributed TBox T we shall prove that if there is no directed
path from i to j in GT, then

T |=ε j : C v D ⇐⇒ T−i |=ε j : C v D

where T−1 is obtained by removing Ti, Bik and Bli from T for each k, l ∈ I,
k, l 6= i.

If part. By contradiction. Assume that T−i |=ε j : C v D and T 6|=ε j :
C v D. If T 6|=ε j : C v D then there is a distributed model I of T in which
CIj * DIj . Let I−i be obtained from I by removing Ii and rik and rki for all
k 6= i. Since I is a model of T, I−i is a model of T−i (this follows directly from the



construction). However CI
−i
j = CIj and DI

−i
j = DIj and hence CI

−i
j * DI

−i
j .

This implies that T−i 6|=ε j : C v D but we have assumed the contrary.
Only-if part. By contradiction. Assume that T |=ε j : C v D and T−i 6|=ε j :

C v D. If T−i 6|=ε j : C v D, there is a distributed model I−i of T−i in which

CI
−i
j * DI

−i
j . Let J ⊂ I be the set of nodes reachable from i by some directed

path in GT. Let I be the following distributed interpretation of T:

1. Im = I−im for each m ∈ I \ J ;
2. Im = Iε for each m ∈ J ;
3. rmn = r−imn if m,n ∈ I \ J ;
4. rmn = ∅ if either m ∈ J or n ∈ J .

We now show that I is a distributed model of T. In order to demonstrate this,
we need to show that local axioms and bridge rules of T are satisfied by I, and
that the domain relation of I is transitive.

Local axioms. For any m ∈ I, each local GCI axiom φ = m : G v H must be
satisfied by Im. If m ∈ J then Im is a hole, which satisfies any local CGI
axiom, and hence it also satisfies φ. If m ∈ I \ J then Im = I−im , which
satisfies φ because I−i is a distributed model of T−i and φ occurs in T −im

since Tm = T −im .
Bridge rules. Given m,n ∈ I and a bridge rule b that maps from m : G

to n : H, we must show that b is satisfied by I. We distinguish between
several cases. First, if m,n /∈ J , then b is satisfied by I because rmn

(
GIm

)
=

r−imn(GI
−i
m ), HIn = HI

−i
n , and b is satisfied by I−i. The case when m ∈ J

and n ∈ I \ J is impossible, because there is a bridge rule from m to n and
hence if m belongs to J , n must also belong to J . In all remaining cases
n ∈ J . In this case it follows that rmn

(
GIm

)
= ∅ and HIn = ∅, because

rmn = ∅ and In is a hole. In such a case however I satisfies φ.
Transitivity. We have to show for any three mutually distinct indices k,m, n ∈

I that rkm ◦ rmn ⊆ rkn. If none of k,m, n belongs to J , then the fact that
rkm = r−ikm, rmn = r−imn, and rkn = r−ikn implies rkm ◦ rmn ⊆ rkn. If at least
one of k,m and n belongs to J , then either rkm or rmn is equal to ∅, which
implies that rkm ◦ rmn = ∅ ⊆ rkn.

And so we have showed that I is a distributed model of T. However, since
there is no directed path from i to j in GT, it follows that j /∈ J and hence
Ij = I−ij and hence CIj * DIj . This in turn implies that T 6|=ε j : C v D, but
we have assumed the contrary. ut

Another property which is broken by the stronger semantics is the so called
local inconsistency property. It turns out that this problem is indeed caused by
the intricate implications of computational consistency and when we only require
transitivity, the property holds.

Theorem 8. The local inconsistency property is satisfied in DDL under transi-
tivity.



Proof. Given a distributed TBox T over an index set I, and given some i ∈ I, a
subsumption formula φ = i : C v D, we ought to prove the equivalence:

T |=ε φ ⇐⇒ ((∀J) J ⊆ I ∧ i /∈ J =⇒ T(εJ) |=d φ)

If part. Suppose by contradiction that for all subsets J of I such that i /∈ J ,
T(εJ) |=d φ and T 6|=ε φ. In that case there is an ε-model I1 of T in which

CI
1
i * DI

1
i . Since this is an ε-model, some of its local interpretations are possibly

holes. Let J be the set of all indices in I that hold a hole as local interpretation,
i.e., J = {j ∈ I | I1j = Iε}. As I1 6|=ε φ we have i 6∈ J , because otherwise

Ii = Iε and hole entails any formula including φ. Let I2 be the distributed
interpretation obtained by cutting the holes off from I1, i.e., I2 has I \ J as its
index set, I2j = I1j for each j ∈ I \ J and r2jk = r1jk for any j, k ∈ I \ J . We will

now show that I2 is a d-model of T(εJ).

1. Indeed I2 is a d-interpretation, because it does not contain holes any more.
2. Given any j ∈ I \ J and any j-local GCI ψ, either ψ also belongs to Tj of T

and hence it is satisfied by I2j = I1j since I1 satisfies Tj , or by construction
of T(εJ) ψ = j : D v ⊥ and there is some bridge rule b = k : C w→ j : D in T

with k ∈ J . Since b is satisfied by I1 and I1k = Iε we have DI
2
j = DI

1
j = ∅

and hence ψ is satisfied.
3. Also each bridge of T(εJ) rule, say b between Tj and Tk, j, k ∈ I \ J , is

satisfied by I2 since b also appears in T and I2j = I1j , I2k = I1k , r2jk = r1jk
and I1 satisfies b.

4. Moreover I2 satisfies transitivity because I1 does and r2jk = r1jk for any
j, k ∈ I \ J .

Hence we have found a contradiction because T(εJ) ought to entail φ but it

does not, since I2 is a model of T(εJ) in which CI
2
i * DI

2
i (because CI

1
i * DI

1
i ,

CI
2
i = CI

1
i and DI

2
i = DI

1
i ).

Only-if part. Suppose by contradiction that T |=ε φ and there is J ⊆ I,
not containing i, such that T(εJ) 6|=d φ. In this case there must be a d-model of

T(εJ), say I1 such that CI
1
i * DI

1
i . Let us construct a distributed interpretation

I2, starting from I1 and adding hole into each slot j ∈ J , i.e., I2j = I1j for each

j ∈ I \ J and I2j = Iε for each j ∈ J . Moreover, for any pair of indices j, k ∈ I
we set r2jk = r1jk if both i, j ∈ I \ J and r2jk = ∅ otherwise. We now prove that

I2 is an ε-model of T.

1. Obviously I2 is an ε-interpretation of T.
2. Each local GCI ψ in T is satisfied, as if ψ ∈ Tj , j ∈ I \J then ψ also appears

in T(εJ) and since I2j = I1j we have I2j entails ψ. If ψ ∈ Tk, k ∈ J then ψ is

satisfied since I2k is a hole.
3. Let b be a bridge rule directed from Tj and Tk, j, k ∈ I that maps between
j : C and k : D. If both j, k ∈ I \ J then b is satisfied because it is satisfied
by I1 and we have I2j = I1j , I2k = I1k , r2jk = r1jk. If both j, k ∈ J than b

is satisfied because I2j = Iε, I2k = Iε and r2jk = ∅. If j ∈ I \ J and k ∈ J



than b is satisfied because I2k = Iε and r2jk = ∅. If j ∈ J and k ∈ I \ J
and b = j : C v→ k : D then b is satisfied because r2jk(CI

2
j ) = ∅ which

surely is a subset of DI
2
k . The last case occurs when j ∈ J , k ∈ I \ J and

b = j : C w→ k : D. In this case b is also satisfied because by construction
the local GCI k : D v ⊥ belongs to T(εJ) and hence DI

2
k = DI

1
k = ∅ which

surely is a subset of r2jk(CI
2
j ).

4. Finally, we show that the domain relation r2 is transitive, that is, for any
three mutually distinct k,m, n ∈ I it holds that r2km ◦ r2mn ⊆ r2kn. If none
of k,m, n belongs to J that this holds because r2km = r1km, r2mn = r1mn,
r2kn = r1kn, and r1 is transitive. Thanks to the construction of I2 however,
in any other case either r2km = ∅ (if k ∈ J or m ∈ J) or r2mn = ∅ (if
m ∈ J or n ∈ J). Hence in all these cases transitivity trivially holds, since
r2km ◦ r2mn = ∅ ⊆ r2kn.

And so we have just showed that I2 is an ε-model of T. Now we again reach
contradiction, as we have assumed that T entails φ but CI

2
i * DI

2
i (because

CI
1
i * DI

1
i , CI

2
i = CI

1
i and DI

2
i = DI

1
i ). ut

And so we have showed that in the semantics of DDL under transitivity the
level of subsumption propagation between remote ontologies is limited to propa-
gation along chaining onto-bridge rules in scenarios that instantiate Theorem 5.
Propagation of subsumption along chaining into-bridge rules is not granted, but
all desiderata postulated for DDL, including transitivity and local inconsistency
are satisfied.

3.2 DDL with restricted compositionality

We will now take the other approach that we have outlined. In this approach we
keep both restrictions (7) and (8), but we try to apply them more cautiously.
This approach is motivated by the following example.

Example 5. Consider a distributed TBox T which contains local ontologies about
cats Tc, music Tm, botany Tb and another one about fruit Tf . Suppose that there
is some knowledge encoded within each of them and they are all consistent.
There are also some bridge rules between Tb and Tf for instance:

b : Fruit
v→ f : Fruit , b : Berry

w→ f : Berry .

In contrast the two local ontologies Tc and Tt are completely isolated. Let I be a
model of T in which BerryIf is nonempty and hence there are some x ∈ BerryIb ,
y ∈ BerryIf such that (x, y) ∈ rbf . So far this situation is perfectly natural.
However, compositional consistency requires existence of z1 ∈ ∆Ic and z2 ∈ ∆Im
such that (x, z1) ∈ rbc, (z1, y) ∈ rcf , (x, z2) ∈ rbm and (z2, y) ∈ rmf . In turn,
(x, z1) ∈ rbc implies existence of (x,w1) ∈ rbm, (w1, z1) ∈ rmc, (x,w2) ∈ rbf and
(w2, z1) ∈ rfc , etc. As we can see, even if local TBoxes Tc and Tm are totally
unrelated, compositional consistency implies existence of elements in Ic and Im



and generates many r-connections between these elements and elements of the
other local TBoxes. Such behaviour is indeed rather strange and as we have
seen it even causes trouble in the sense that some important DDL properties are
violated.

From the example above we conjecture that compositional consistency is per-
haps a stronger condition than we really need in order to support subsumption
propagation. It does the job, as established by Theorem 4 but in addition it has
undesirable side effects. We try to weaken the condition as follows. Given a dis-
tributed TBox and a distributed interpretation over some index set I, we do not
require compositional consistency to hold for every i, j, k ∈ I, but only when
local TBoxes Ti, Tj and Tk are actually connected with bridge rules. The relaxed
version of the restriction is as follows.

Definition 11. Given a distributed TBox T with an index set I and bridge graph
GT, let I be a distributed interpretation of T with domain relation r, we say
that r (and also I) satisfies restricted compositional consistency (also restricted
compositionality) if for any three mutually distinct indices i, j, k ∈ I such that
there is a directed path from i to j and another one from j to k in GT we have
rij ◦ rjk = rik.

The semantics of DDL under this condition is called DDL under restricted
compositionality. This restriction is reasonable in the sense that the proposition
of Theorem 4 holds even in this relaxed case. In other words, subsumption does
propagate along both: chains of into- and chains of onto-bridge rules. This is
verified by inspection of the proof given by Homola (2008): compositional con-
sistency is only applied in this proof in cases which are covered also by the weaker
version. Also directionality is satisfied under this semantics.

Theorem 9. The directionality property is satisfied in DDL under restricted
compositionality.

Proof. Given a distributed TBox T we shall prove that if there is no directed
path from i to j in GT, then

T |=ε j : C v D ⇐⇒ T−i |=ε j : C v D

where T−1 is obtained by removing Ti, Bik and Bli from T for each k, l ∈ I,
k, l 6= i.

If part. By contradiction. Assume that T−i |=ε j : C v D and T 6|=ε j :
C v D. If T 6|=ε j : C v D then there is a distributed model I of T in which
CIj * DIj . Let I−i be obtained from I by removing Ii and rik and rki for all
k 6= i. Since I is a model of T, I−i is a model of T−i (this follows directly from the

construction). However CI
−i
j = CIj and DI

−i
j = DIj and hence CI

−i
j * DI

−i
j .

This implies that T−i 6|=ε j : C v D but we have assumed the contrary.
Only-if part. By contradiction. Assume that T |=ε j : C v D and T−i 6|=ε j :

C v D. If T−i 6|=ε j : C v D, there is a distributed model I−i of T−i in which

CI
−i
j * DI

−i
j . Let J ⊂ I be the set of nodes reachable from i by some directed

path in GT. Let I be the following distributed interpretation of T:



1. Im = I−im for each m ∈ I \ J ;
2. Im = Iε for each m ∈ J ;
3. rmn = r−imn if m,n ∈ I \ J ;
4. rmn = ∅ if either m ∈ J or n ∈ J .

We now show that I is a distributed model of T. In order to demonstrate this,
we need to show that local axioms and bridge rules of T are satisfied by I, and
that the domain relation of I satisfies the restricted compositionality condition.

Local axioms. For any m ∈ I, each local GCI axiom φ = m : G v H must be
satisfied by Im. If m ∈ J then Im is a hole, which satisfies any local CGI
axiom, and hence it also satisfies φ. If m ∈ I \ J then Im = I−im , which
satisfies φ because I−i is a distributed model of T−i and φ occurs in T −im

since Tm = T −im .
Bridge rules. Given m,n ∈ I and a bridge rule b that maps from m : G

to n : H, we must show that b is satisfied by I. We distinguish between
several cases. First, if m,n /∈ J , then b is satisfied by I because rmn

(
GIm

)
=

r−imn(GI
−i
m ), HIn = HI

−i
n , and b is satisfied by I−i. The case when m ∈ J

and n ∈ I \ J is impossible, because there is a bridge rule from m to n and
hence if m belongs to J , n must also belong to J . In all remaining cases
n ∈ J . In this case it follows that rmn

(
GIm

)
= ∅ and HIn = ∅, because

rmn = ∅ and In is a hole. In such a case however I satisfies φ.
Restricted compositionality. Let k,m, n ∈ I be three mutually distinct in-

dices such that there exists a directed path from k to m in GT and another
one from m and n. We must now show that rkm◦rmn = rkn. If none of k,m, n
belongs to J , then the fact that rkm = r−ikm, rmn = r−imn, and rkn = r−ikn im-
plies that rkm ◦ rmn = rkn. If k ∈ J , then the fact that rkm = ∅ and rkn = ∅
implies that rkm ◦ rmn = rkn. If m ∈ J then necessarily also n ∈ J since
there is a directed path between these two nodes in GT. But n ∈ J implies
that rmn = rkn = ∅, thus implying rkm ◦ rmn = rkn. Finally if n ∈ J then
again rmn = rkn = ∅, and so rkm ◦ rmn = rkn.

And so we have showed that I is a distributed model of T. However, since
there is no directed path from i to j in GT, it follows that j /∈ J and hence
Ij = I−ij and hence CIj * DIj . This in turn implies that T 6|=ε j : C v D, but
we have assumed the contrary. ut

And so we have showed that this restricted form of compositional consistency
does not break directionality. Unfortunately, still there are some undesired effects
that this restriction poses on the semantics as demonstrated by the example
below.

Example 6. Consider distributed a TBox T with index set I = {1, 2, 3} and a
set of bridge rules B, such that T1 = {> v ⊥}, T2 = ∅, T3 = ∅ which contains
bridge rules:

2 : E
w→ 1 : F , 1 : G

w→ 3 : H ,

2 : C
w→ 3 : D .



Since T1 is inconsistent, the only admissible interpretation is a hole, and so
due to compositional consistency, even in the restricted case, r23 = ∅. Hence
T |=ε 3 : D v ⊥. If local inconsistency would hold, then for each J ⊆ I, 3 /∈ J we
must have T(εJ) |=d 3 : D v ⊥. Similarly as in Example 3, for J = {1} this does
not hold, as T(εJ) admits a d-model I with ∆I2 = CI2 = {x}, ∆I3 = DI3 = {y},
r23 = {〈x, y〉} and r32 = ∅, for which I 6|=d 3 : D v ⊥ since DI3 6= ∅.

In this section we have examined and evaluated the approach of applying the
compositional consistency restriction in DDL in order to improve subsumption
propagation (Homola 2008). We have showed that while subsumption propa-
gation is indeed improved, there are also undesirable consequences of such an
approach, the directionality and the local inconsistency properties are violated.
In order to retain directionality we have verified two options. First, falling back
from computational consistency to transitivity which amounts to less subsump-
tion propagation but all desired properties of DDL are retained. And second,
applying compositional consistency more cautiously, only if the local ontologies
that are involved are connected by some directed path of bridge rules. The sec-
ond approach provides just the same level of subsumption propagation as the
semantics under unrestricted compositionality and also retains directionality but
as we have just seen it still violates the local inconsistency property.

Summing up, with respect to the current state of the art, the semantics
of DDL with transitive domain relation provides a reasonable compromise. It
ensures subsumption propagation along chaining onto-bridge rules in scenarios
that instantiate Theorem 5. Propagation of subsumption under chaining into-
bridge rules is not granted, but all desiderata postulated for DDL, including
transitivity and localized inconsistency are satisfied. In the next section we look
at reasoning with this semantics.

4 Distributed Tableaux Algorithm for transitive DDL

In this section, we introduce a distributed tableaux algorithm for deciding sat-
isfiability of concepts with respect to an acyclic distributed TBox for DDL over
ALC under the transitivity requirement. As much as in the original algorithm
(Serafini et al. 2005), also in our approach, local reasoners are run independently.
We keep precise track of the domain relation r however, and the communication
between local reasoners is divided into multiple queries. Hence while the original
algorithm can be seen as working with autonomous local tableaux by passing
queries, our algorithm can be seen as working with a truly distributed tableau.

Definition 12. Assume a distributed TBox T = 〈{Ti}i∈I ,B〉 over ALC with
index set I, concept names NC =

⋃
i∈I NCi and role names NR =

⋃
i∈I NRi.

Let CCi be the set of all (atomic and complex) concepts over NCi and NRi in



negation normal form. A distributed completion tree4 T = {Ti}i∈I is a set of
labeled trees Ti = 〈Vi, Ei,Li, ri〉, such that for each i ∈ I:

1. the trees {〈Vi, Ei〉}i∈I are mutually disjoint;
2. the labeling function Li labels each node x ∈ Vi with L(x) ⊆ 2CCi and each

edge 〈x, y〉 ∈ Ei with L(〈x, y〉) ∈ NRi;
3. the labeling function ri labels each node x ∈ Vi with a set of references to its

r-images ri(x) ⊆ {j : y | j ∈ I ∧ y ∈ Vj}.

During the run of the tableaux algorithm, tableaux expansion rules are ap-
plied on the completion tree and the tree is expanded by each rule application.
If no more rules are applicable any more, we say that the completion tree is
complete. There is a clash in the completion tree T if for some x ∈ Vi and for
some C ∈ NCi we have {C,¬C} ⊆ Li(x). If there is no clash in T then we say
that T is clash-free. In order to assure termination we use the standard subset
blocking technique that is common for ALC. Given a distributed completion tree
T = {Ti}i∈I , a node x ∈ Vi is blocked, if it has an ancestor y ∈ Vi such that
Li(x) ⊆ Li(y). In such a case we also say that x is blocked by y. A node y ∈ Vi
is said to be an R-successor of x ∈ Vi, if 〈x, y〉 ∈ Ei and Li(〈x, y〉) = R.

The distributed tableaux algorithm for deciding satisfiability of concepts with
respect to a distributed TBox takes a distributed TBox T, a concept C in NNF
and i ∈ I as its inputs. The algorithm then continues in three steps:

1. Initialization. Create a new completion tree T = {Tj}j∈I such that Tj =
〈{s0}, ∅, {s0 7→ {C}}, ∅〉 for j = i and Tj = 〈∅, ∅, ∅, ∅〉 for j 6= i.

2. Tableau expansion. Apply the tableaux expansion rules of Fig. 8 exhaustively.
3. Answer. If none of the tableaux expansion rules in Fig. 8 is applicable any

more (i.e., the completion tree is now complete), answer “C is satisfiable” if a
clash-free completion tree has been constructed. Answer “C is unsatisfiable”
otherwise.

Below we present a formal correctness proof for the newly introduced algo-
rithm. The proof is based on the classic proof for ALC as in fact the only new
thing to prove here is that the algorithm uses the w→-rule and the v→-rule to
combine several autonomous local ALC reasoners correctly. The proof is done in
three parts. We first prove termination: on every input the algorithm always ter-
minates and never ends up in an infinite loop; then soundness: if the algorithm
answers that C is satisfiable with respect to T for some i-local concept C and
a distributed TBox T then there actually exists some model of T that supports
this; and finally we prove completeness: for every concept C that is satisfiable
with respect to T the algorithm indeed gives a correct answer.

Theorem 10. Given a distributed TBox T over ALC with acyclic bridge graph
GT and an i-local concept C on the input, the distributed tableaux algorithm for

4 We prefer the usual naming, and we use the name distributed completion tree even
if technically it is no longer a tree but rather a forest, that is, a graph composed of
several isolated independently rooted trees.



u-rule:
If C1 u C2 ∈ Li(x) for some x ∈ Vi and {C1, C2} * Li(x), and
x is not blocked,
then set Li(x) = Li(x) ∪ {C1, C2}.

t-rule:
If C1 t C2 ∈ Li(x) for some x ∈ Vi and {C1, C2} ∩ Li(X) = ∅,
and x is not blocked,
then either set Li(x) = Li(x)∪{C1} or set Li(x) = Li(x)∪{C2}.

∀-rule:
If ∀R.C ∈ Li(x) for some x ∈ Vi, and there is R-successor y of x
s.t. C /∈ Li(y), and x is not blocked,
then set Li(y) = Li(y) ∪ {C}.

∃-rule:
If ∃R.C ∈ Li(x), for some x ∈ Vi with no R-successor y s.t.
C ∈ Li(y), and x is not blocked,
then add new node z to Vi, add the edge 〈x, z〉 to Ei, and set
Li(z) = {C} and Li(〈x, z〉) = {R}.

T -rule:
If C v D ∈ T and for some x ∈ Vi nnf(¬C tD) /∈ Li(x), and x
is not blocked,
then set Li(x) = Li(x) ∪ {nnf(¬C tD)}.
w→-rule:
If G ∈ Lj(x) for some x ∈ Vj , i : C w→ j : G ∈ B, and there is
no y ∈ Vi s.t. C ∈ Li(y) and j : x ∈ ri(y), and x is not blocked,
then add new node y to Vi and set Li(y) = {C}, and set ri(y) =
{j : x} ∪ rj(x).

v→-rule:
If D ∈ Li(x) for some x ∈ Vi, i : D v→ j : H ∈ B and there is
y ∈ Vj s.t. j : y ∈ ri(x) and H /∈ Lj(y)
then set Lj(y) = Lj(y) ∪ {H}.

Fig. 8. Tableaux expansion rules for DDL over ALC under the transitivity require-
ment. First five rules are standard ALC tableaux rules. Note that the t-rule is non-
deterministic. The final two rules are new and are triggered by bridge rules.



deciding satisfiability of concepts with respect to a distributed TBox over ALC
for DDL with transitive domain relation always terminates and it is sound and
complete.

Proof. Termination. Given a distributed TBox T with local TBox Ti and an
i-local concept C, we ought to prove that the algorithm, once started with T, C
and i on input, eventually terminates. The algorithm initializes the completion
tree to T = {Tj}j∈I such that Tj = 〈{s0}, ∅, {s0 7→ {C}}, ∅〉 for j = i and
Tj = 〈∅, ∅, ∅, ∅〉 for j 6= i. The computation then continues by expanding Ti. If
there are no onto-bridge rules ingoing into Ti the algorithm eventually terminates
thanks to subset blocking, this result is known for ALC. If there are some ingoing
onto-bridge rules then possibly in some x ∈ Vi such that C ∈ Li(x) and C
appears on a right hand side of an onto-bridge rule, say k : D w→ i : C, the w→-
rule is applied and computation is triggered in Tk. By structural subsumption we
assume that this computation eventually terminates (the length of the longest
incoming path of onto-bridge rules decreased for Tk compared to Ti, and all
such paths are finite because of acyclicity). During this process we possibly get
some new concepts in Li(x) that are introduced thanks to incoming into-bridge
rules that trigger the v→-rule – but only finitely many. The computation now
continues in x and its descendants and possibly the w→-rule is triggered again
in some y ∈ Vi, a descendant of x. But thanks to subset blocking, this happens
only finitely many times. Hence the algorithm eventually terminates.

Soundness. Now that we know that the algorithm terminates, we shall prove
that if it answers “C is satisfiable” on input T, C and i, then it also holds that C
is satisfiable in Ti with respect to T, that is we must show that in such a case there
exists a distributed model I of T such that CIi 6= ∅. Given T, C and i and let T be
the complete and clash-free completion tree that the algorithm has constructed
to support the decision. Let us construct the distributed interpretation I as
follows:

1. Let ∆Ii = Vi, for each i ∈ I.
2. Let x ∈ AIi , for each atomic concept A ∈ Li(x), for each x ∈ Vi and each
i ∈ I.

3. Let 〈x, y〉 ∈ RIi for each 〈x, y〉 ∈ Ei such that Li(〈x, y〉) = R, for each i ∈ I,
if y is not blocked.

4. Let 〈x, z〉 ∈ RIi for each 〈x, y〉 ∈ Ei such that Li(〈x, y〉) = R, for each i ∈ I,
in case that y is blocked by z.

5. Let rij(x) = y for each x ∈ Vi and for each j : y ∈ ri(x).

Please observe that if computation was never triggered within some Tj of T
during the run of the algorithm, then Ij = Iε. It remains to show that I is in
fact a model of T and CIi 6= ∅. We will first prove the following proposition:

Given any i ∈ I, for each E ∈ Li(x) (i.e., also for complex concepts) we
have x ∈ EIi .

This is proved by induction on the structure of E. We need to consider the
following cases:



1. E is atomic. We know that x ∈ EIi from the construction.
2. E = ¬E1, E1 atomic. Since T is clash-free, E1 /∈ Li(x) and by construction
x /∈ E1

Ii . In that case however x ∈ EIi = ∆Ii \ E1
Ii .

3. E = E1 u E2. Since T is complete, the u-rule is not applicable and hence
also E1 ∈ Li(x) and E2 ∈ Li(x). By induction we now have that x ∈ E1

Ii

and x ∈ E2
Ii and hence also x ∈ EIi .

4. E = E1 t E2. Since T is complete, the t-rule is not applicable and hence
either E1 ∈ Li(x) or E2 ∈ Li(x). By induction we now either have x ∈ E1

Ii

or we have x ∈ E2
Ii . In either case however also x ∈ EIi .

5. E = ∃R.E1. Since T is complete, the ∃-rule is not applicable and hence
there must be y ∈ Vi, an R-successor of x such that E1 ∈ Li(y). By induction
y ∈ E1

Ii and by construction of I 〈x, y〉 ∈ RIi . But that means that x ∈ EIi .
6. E = ∀R.E1. Since T is complete, the ∀-rule is not applicable and hence for

every y ∈ Vi, an R-successor of x, we have E1 ∈ Li(y). By induction y ∈ E1
Ii

and by construction of I 〈x, y〉 ∈ RIi . But that means that x ∈ EIi .

Thus we have verified that the local interpretation Ii is indeed an ALC
interpretation and that C has an instance in this interpretation (since C ∈
Li(s0)). In addition we have in fact also proved that each i-local GCI axiom
E1 v E2 is satisfied by Ii – from the completeness of T , nnf(¬E1 tE2) ∈ x, for

each x ∈ Vi, and hence x ∈ (nnf(¬E1))
Ii ∪E2

Ii . It follows that x ∈ E1
Ii implies

x ∈ E2
Ii .

It remains to show that I is indeed a distributed model of T in the adjusted
semantics. First, all the bridge rules must be satisfied. Given an onto-bridge rule
k : E1

w→ l : E2 ∈ B, we ought to show that rkl
(
E1
Ik
)
⊇ E2

Il . So let x ∈ E2
Il ,

that is x ∈ Vl and E2 ∈ Ll(x). But T is complete, w→-rule is not applicable, and
hence there must be y ∈ Vk with E1 ∈ Lk(y) and l : x ∈ rk(y). That means
however that y ∈ E1

Ik and 〈x, y〉 ∈ rkl, and so x ∈ rkl
(
E1
Ik
)
. Therefore the

bridge rule is satisfied by I.
Given an into-bridge rule k : E1

v→ l : E2 ∈ B, we ought to show that
rkl
(
E1
Ik
)
⊆ E2

Il . Let x ∈ rkl
(
E1
Ik
)
. Then there is y ∈ Vk such that l : x ∈ rl(y).

But since T is complete, it must be the case that E2 ∈ Ll(x) and hence x ∈ E2
Il .

Therefore the bridge rule is satisfied by I.
The last thing in order to verify that I is indeed a model of T is to show

that I satisfies the transitivity requirement. We ought to show that for each
k, l,m ∈ I, if y ∈ rkl(x) and z ∈ rlm(y) then also z ∈ rkm(x). Given the two
assumptions we know by construction that l : y ∈ rk(x) and m : z ∈ rl(y).
That means that x ∈ Vk was initialized after several “chained” applications of
the w→-rule starting from y ∈ Vl and y in turn after several “chained” w→-rule
applications starting from z ∈ Vm. In that case however rl(y) ⊆ rk(x). Hence
m : z ∈ rk(x) and so z ∈ rkm(x).

And thus I is a distributed model of T that satisfies the transitivity condition
and CIi 6= ∅ – in other words, C is satisfiable in Ti with respect to T.

Completeness. Given T with index set I, a concept C and i ∈ I such that C
is satisfiable in Ti with respect to T, we shall prove that the algorithm answers
“C is satisfiable”, if run on input T, C and i. Let I be a distributed model of



T with CIi 6= ∅, we know that one must exist. We will simulate the run of the
algorithm. During the initialization Ti is set to 〈{s0}, ∅, {s0 7→ {C}}, ∅〉 and all
the other Tj , i 6= j, are set to 〈∅, ∅, ∅, ∅〉. There is no clash in T . We will show
by induction (on the number of tableau expansion steps) that after each tableau
expansion step the completion tree T is expanded in such a way that no clash is
introduced. In order to demonstrate this, we inductively construct an auxiliary
mapping π :

⋃
i∈I Vi →

⋃
i∈I ∆

Ii to track the relation between I and T . This
mapping will keep the property (∗):

For each node x ∈ Vi, for each i ∈ I: if C ∈ Li(x) then π(x) ∈ CIi .

Let x be an arbitrary member of CIi , place π(s0) = x. So, if a tableaux expan-
sion rule is triggered in some x ∈ Vi of the clash-free completion tree T (from
induction hypothesis), we consider several cases, based on the kind of rule that
was triggered:

1. u-rule is triggered in x because E1uE2 ∈ Li(x). Then by induction hypoth-
esis π(x) ∈ E1 u E2

Ii . In that case also π(x) ∈ E1
Ii and π(x) ∈ E2

Ii , and
hence the property (∗) is maintained after the algorithm adds E1 and E2 to
Li(x).

2. t-rule is triggered in x because E1 t E2 ∈ Li(x). Then by induction hy-
pothesis π(x) ∈ E1 t E2

Ii . In that case however either π(x) ∈ E1
Ii or

π(x) ∈ E2
Ii . Without loss of generality let it be the case that π(x) ∈ E1

Ii .
Without loss of generality we assume that the algorithm adds E1 to Li(x),
as a non-deterministic decision takes place. Hence the property (∗) is main-
tained after this step.

3. ∃-rule is triggered in x because it has an R-successor y, and ∃R.E1 ∈ Li(x).
Then π(x) ∈ ∃R.E1

Ii and so there is some y′ ∈ ∆Ii such that y′ ∈ E1
Ii and

〈π(x), y′〉 ∈ RIi . When the algorithm generates a new node y in this step we
set π(y) = y′ and the property (∗) is maintained.

4. ∀-rule is triggered in x because it has an R-successor y, and ∀R.E1 ∈ Li(x),
as a consequence E1 is added to Li(y). We know that y was created by an
application of the ∃-rule and hence π(y) is an R-successor of x in Ii. But Ii
is a model of Ti and hence π(y) ∈ yIi since from induction hypothesis we
know that π(x) ∈ ∀R.E1

Ii . Hence (∗) is maintained after this step.
5. T -rule is triggered in x, resulting to adding nnf(¬E1 t E2) into Li(x).

Then (∗) is maintained as Ii is a model of Ti and so it holds that π(x) ∈
(nnf(¬E1 t E2))

Ii .
6. w→-rule is triggered in x because E2 ∈ Li(x) and j : E1

w→ i : E2 ∈ B.
From induction hypothesis, π(x) ∈ E2

Ii , and hence π(x) ∈ rji(y′) for some

y′ ∈ E1
Ij . Set π(y) = y′ for the node y that is newly created in Vi as the

result of this expansion step. The label Lj(y) has been set to E1 but since

y′ ∈ E1
Ij then (∗) is maintained.

7. v→-rule is triggered in x because of E1 ∈ Li(x), j : y ∈ ri(x) and i : E1
v→

j : E2 ∈ B, resulting to adding E2 into Lj(y). From induction hypothesis

have π(x) ∈ E1
Ii . Observe that the definition of w→-rule and the inductive

construction of π(·) in previous steps also assure that j : y ∈ ri(x) implies



π(y) ∈ rij(π(x)). This is because initialization of new y ∈ Vj always follows
incoming r-edge and r is transitive because of computational consistency. It
follows that π(y) ∈ E2

Ij , since I is a distributed model of T and the bridge
rule assures this. Hence (∗) is maintained even after this step.

We already know that the algorithm always terminates. Once this happens,
it follows that T is now complete, because no rule is applicable, and clash-free,
because the property (∗) is maintained all the way up to this point. Hence the
algorithm answers “C is satisfiable” and hence the theorem. ut

The algorithm for the original DDL semantics of (Serafini et al. 2005) is
obviously truly distributed in the sense that it supports a scenario in which
several autonomous reasoning services run independently, one for each local
ontology, and communicate by passing queries. While this is also the case for
the newly introduced algorithm, it is not necessarily that obvious. In order to
clarify this, we provide a message protocol that handles w→-rule and v→-rule
execution in a truly distributed fashion, and it also collects the information
that the completion tree is complete within the reasoner that has initialized the
computation. The algorithm employs three kinds of messages querySat(x, r, C),
answerSat(x,C, answer), and pushConcept(x,C). In the message based version,
the algorithm starts by initializing the local completion tree Tj when asked
for satisfiability of some j-local concept C with respect to T. More local com-
pletion trees are initialized during the runtime by passing a querySat(x, r, C)
message every time the w→-rule is fired. When v→-rule is fired, the consequences
of the into-bridge rule are propagated by passing a pushConcept(x,C) message.
Once a local completion tree Tk is complete this is announced by passing a
answerSat(x,C, answer) message to the local reasoner that has triggered the
computation in Tk. Detailed specification of the protocol messages is given in
Fig. 9.

5 Related Work

A distributed tableaux reasoning algorithm for the original semantics of DDL
has been introduced by Serafini & Tamilin (2005), Serafini et al. (2005) and
implemented in the system DRAGO5. This algorithm is based on a fix-point
characterization of the original DDL semantics. Given a set of bridge rules Bij

between Ti and Tj , define the operator Bij(·) as follows:

Bij(Ti) =


G v

n⊔
k=1

Hk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ti |= A v
n⊔
k=1

Bk,

i : A
w→ j : G ∈ Bij ,

i : Bk
v→ j : Hk ∈ Bij ,

1 ≤ k ≤ n


.

5 DRAGO Reasoner homepage: http://drago.itc.it/ .

http://drago.itc.it/


querySat(x, r, C):
Send: if G ∈ Lj(x) for some x ∈ Vj , i : C w→ j : G ∈ B, and x is
not blocked, pass the message querySat(x, rj(x), C) to Ti.
Receive: upon receipt of a message querySat(x, r, C) from Ti, create
new completion tree 〈{s0}, ∅, {s0 7→ {C}}, {s0 7→ {i : x} ∪ r}〉
within Tj and start the computation. Record the sent message in
Sj .

answerSat(x,C, answer):
Send: if the local completion tree for concept C within Tj , that
has been initialized due the message querySat(x, r, C) previously re-
ceived from Ti, is now complete, and there are no outgoing messages
recorded in Sj , send the message answerSat(x,C, answer) to Ti
with answer set to true if Tj is clash-free and to false otherwise.
Receive: upon receipt of a message answerSat(x,C, answer) from
Ti, remove the message querySat(x, r, C) from Sj , that has been
previously send to Ti. If answer is false then add E u¬E to Lj(x)
for some new concept name E.

pushConcept(x,C):
Send: if D has been added to Lj(x) in the previous step, for some
x ∈ Vj , then for each j : D v→ i : H ∈ B s.t. i : y ∈ rj(x) send
the message pushConcept(y,H) to Ti.
Receive: upon receipt of a message pushConcept(x,C) from Ti, add
C to Lj(x).

Fig. 9. The message protocol for the newly introduced distributed tableaux algorithm.
For each kind of message we specify when the message is sent from some local reasoning
service Tj and also what happens when the message is received in some local reasoning
service Tj (Tj is always the local reasoning service). An auxiliary data structure Sj is
introduced in each Tj in order to track messages that have been sent in order to assure
termination.



Consequently another operator, denoted by B, is defined:

B
(
{Ti}i∈I

)
=

Ti ∪⋃
j 6=i

Bji (Tj)

 .

As showed by (Serafini et al. 2005), the B operator always has a fix-point B∗(T)
when repeatedly applied on a distributed TBox T. Moreover, T |=ε i : φ if and
only if the i-th component TBox of B∗(T) locally entails φ. Consequently, the
standard SHIQ tableaux reasoning algorithm (Horrocks et al. 1999) is used with
one additional bridge rule (see Fig. 10). The unsatisfiability check called by Bij-
rule is done by running the same algorithm again for the i-concept that is being
checked. Compared to the algorithm introduced in this paper, this algorithm
does not keep track of the domain relation r and does not in fact construct a
true distributed tableau that would correspond to a particular distributed model
of the input concept. Instead it cleverly uses the fix-point characterization and
constructs multiple local tableaux in order to guarantee the existence of such a
model. Most prominently, all consequences that are added to the triggering node
if the unsatisfiability check is successful are estimated prior to the unsatisfiability
check is executed. In contrast, in our approach computation in remote ontology is
triggered by one message and consequences are announced back to the triggering
node once they are computed, possibly by several independent messages. We
believe that keeping precise track of all model structures, including the domain
relation and dividing the communication into more fine-grained messages may
provide better grounds for future optimization. In a sense we may conclude, that
in the way how calls are made to the remote tableaux, the original algorithm
by Serafini et al. (2005) resembles more a black box approach, whereas the
newly introduced algorithm is more like a glass box approach. Another significant
difference between the two algorithms is unlike the newly introduced algorithm,
the original one is able to handle cyclic bridge rules; a blocking strategy that
is employed to achieve this was described by Tamilin (2007, Sect. 5.3.4, p. 91).
Finally, it is worth noting that the newly introduced algorithm is easily adjusted
to correspond to the original DDL semantics (by setting ri(y) to {j : x} and not
to {j : x} ∪ rj(x) in the w→-rule).

Bij -rule:
If G ∈ Lj(x), i : A w→ j : H ∈ Bij ,
BH ⊆ {〈Bk, Hk〉 | i : Bk

v→ j : Hk ∈ Bij},
B = {B | 〈B,X〉 ∈ BH}, H = {H | 〈Y,H〉 ∈ BH}, H *
Lj(x)
and A u ¬

⊔
B is unsatisfiable w.r.t T in Ti

then set Lj(x) = Lj(x) ∪ {
⊔
H}.

Fig. 10. The tableaux expansion rule used in the original DDL algorithm (Serafini &
Tamilin 2005).



Another distributed ontology framework is called E-connections (Cuenca
Grau et al. 2004). Here, inter-ontology roles (called links) are employed instead
of concept mapping. A dedicated set of symbols εij is used for (directed) links
between Ti and Tj . Links are then used in existential and value restrictions, and
complex concepts involving links are formed (for instance the i-concept ∃E.C is
composed using the link E ∈ εij and the j-concept C). Semantically, a combined
interpretation consists of local interpretations Ii with non-empty domains ∆Ii

and each link E ∈ εij is interpreted by EI ⊆ ∆Ii × ∆Ij . Reasoning support
for E-connections is provided by extending the tableaux reasoning algorithm for
SHIF(D). The two tableaux rules that are essential to handle links are depicted
in Fig. 11. There is a notable correspondence between the ∃link -rule and our w→-
rule and also between the ∀link -rule and our v→-rule. This is not that surprising,
given the known correspondence between DDL and E-connections (Kutz et al.
2004). Given the nature of E-connections the ∀link -rule works exactly the other
way around, compared to our v→-rule, and in this respect the instantiation of
a j-tree by one application of the ∃link -rule and possibly multiple applications
of the ∀link -rule resembles an unsatisfiability check call from the Bij-rule of the
original DDL algorithm. Remarkably, the exact mechanism how this happens
within the E-connections algorithm seems to be more transparent and prone to
optimization. The algorithm introduced in this paper in addition keeps track on
the domain relation, which is needed to handle subsumption propagation along
chains of bridge rules. There is no domain relation within E-connections, and
hence no need for such a feature.

∃link -rule:
If ∃E.C ∈ Li(x), E ∈ εij , x is not blocked and x has no E-
successor y with L(〈x, y, )〉 = {E},
then create a new E-successor (a j-node) y of x with Lj(y) = {C}.
(The new j-tree rooted in y will not be expanded until no more rules
apply to the i-tree.)

∀link -rule:
If ∀E.C ∈ Li(x), E ∈ εij , x is not blocked and there is an E-
successor y of x such that C /∈ Lj(y)
then set Lj(y) to Lj(y) ∪ {C}.

Fig. 11. The tableaux expansion rules of the algorithm for E-connections (Cuenca Grau
et al. 2004).

Yet another point of view on distributed ontologies is offered by Package-
based description logics, or P-DL (Bao et al. 2006). In P-DL, the intuition of
importing is pursued: every concept name belongs to some local ontology, but
can be also imported to and used by other ontologies in the system. The P-DL
semantics uses domain relations. In contrast to other approaches, only one-to-one
domain relations are allowed and also compositional consistency (that we have
borrowed and applied on DDL) is required. Local domains in P-DL semantics
are viewed as partially overlapping, and not disjoint. As a result, some of the



problems known for DDL, such as restricted knowledge propagation between
remote ontologies, that we also address in this paper, are not an issue for P-DL
according to Bao et al. (2006). On the other hand, in P-DL reasoning over a
distributed ontology is always equivalent to reasoning over the union of local
ontologies, which is not a goal of DDL. The distributed tableaux algorithm for
P-DL is introduced by Bao et al. (2006). It uses ALC as local language and
requires acyclic importing relation. It uses message-based protocol, similar to
the ours, and keeps track of the domain relation. Since imported concepts may
appear anywhere in the importing ontology, messages are invoked directly from
the adjusted ALC-tableaux rules.

A completely different approach to distributed ontology reasoning is taken by
Schlicht & Stuckenschmidt (2008), where distributed reasoning algorithm based
on resolution techniques is introduced. Yet another distributed ontology frame-
work called Integrated Distributed Description Logics (IDDL) is introduced by
Zimmermann (2007), a reasoning algortihm based on reduction to multiple DL
knowledge base that are checked for consistency independently is described by
Zimmermann & Le Duc (2008).

6 Conclusion

In this paper we studied possible adjustment of the standard semantics for DDL
in order to improve subsumption propagation between remote ontologies. This
can be seen as a completion of the earlier work of Homola (2008). After an
analysis of the properties that are (not) enjoyed by the different alternatives,
we found that the most appropriate extension is the one that satisfies the so
called transitivity condition. For this extension we develop a distributed tableaux
reasoning algorithm that would decide satisfiability of concepts and subsumption
with respect to the adjusted semantics. The algorithm that is introduced in this
paper handles chaining onto-bridge rules correctly, but it is unable to cope with
chaining into-bridge rules.

As in the case of the tableaux algorithm that is known for the original seman-
tics (Serafini et al. 2005), the newly introduced algorithm is also fully distributed
and it permits the scenario where every local ontology is governed by an au-
tonomous reasoning service and these services communicate by passing queries.
The local reasoner that has started the computation collects all the answers and
makes the final decision at the end. To demonstrate this fact more clearly, we
have provided a message-based protocol for the algorithm. Besides the fact that
each of these algorithms works under a different semantics, the main distinguish-
ing feature of the newly introduced algorithm is that communication between
local reasoners is divided into multiple messages. Computation is sparked in a
remote reasoner at some point and both reasoners continue to run independently.
If subsumption propagation is proved by the remote reasoner, the local reasoner
is acknowledged by a message. We believe that such behaviour may serve as a
base for more fine-grained optimization in the future.



The two most prominent open issues put forward by this paper are: extending
the algorithm so that it would handle the DDL under compositional consistency
semantics in full extent, that is, dealing also with chaining into-bridge rules; and,
extending the algorithm towards more expressive DL, since the current version
only supports ALC as the local representation language and requires acyclic con-
cept mapping. Computational handling of distributed knowledge bases in which
the concept mapping is not necessarily acyclic is an interesting problem, which is
to our best knowledge still unresolved also for the original DDL framework. Re-
maining research problems that are closely related to this work include practical
evaluation of the algorithm by implementation, complexity analysis for the deci-
sion problems, and combining, within a unified framework, the current approach
with that of Homola (2007), which has addressed the problem of interaction
between bridge-rules in DDL.
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