
Well-Supported Models
of Disjunctive Logic Programs

Martin Baláž balaz@ii.fmph.uniba.sk

Comenius University, Faculty of Mathematics, Physics and Informatics,
Mlynská dolina, 842 48 Bratislava, Slovakia

Abstract. The stable models semantics is nowadays one of the most
accepted semantics. For logic programs without disjunction, there also
exists the well-supported model semantics. It describes the same set of
models, but in spite of the stable model semantics it uses level mappings
which can be used to detect cyclic dependencies among literals.

We are interested in similar characterization of stable models of logic
programs with disjunction. We will use AND/OR graphs to formalize
the derivation of stable models and to detect cyclic dependencies among
literals.

1 Introduction

Stable models [1, 2] are minimal models of a program reduct, which is obtained
from the original program by evaluation of default literals. Stable models of logic
programs without disjunction are supported [3], i.e. for every true atom there
must exists a rule containing it in the head and having satisfied body. From the
original definition of stable models, it is not easy to see that there must exists
a supporting rule whose assumptions in addition do not strictly depend on the
conclusion.

Example 1. The model M = {a, b} of the logic program P = {a ← b; b ← a} is
supported. The atom a is supported by a rule a← b and the atom b is supported
by the rule b ← a. But the truth value of a can not be derived from b, because
to derive the truth value of b we already have to know the truth value of a. The
model M of P is not stable.

For logic programs without disjunction, there also exists the well-supported
model semantics [4]. A model is well-supported if every true atom is supported by
a rule whose assumptions are derived before its conclusion. The level of derivation
of an atom is expressed by level mapping. In general, there may exist more
level mappings, each of them corresponds to different way of derivation. An
assumption of a rule strictly depends on the conclusion of the rule if there does
not exists a level mapping representing the derivation of the model such that
the level of the conclusion is greater than level of the assumption. It has been
shown that stable models coincide with well-supported models.

In the case of logic programs with disjunction, we need to distinguish between
weak and strong support [5]. A rule weakly supports an atom in its head if it
has satisfied body. If the supported atom is the only true atom in the head, it is
strongly supported.

Example 2. The interpretation M = {a, b} is a stable model of the logic program
P = {a ∨ b; a← b; b← a}. To incrementally derive M , we need to use not only
strongly supporting rules but also weakly supporting rules. The rule a∨ b is the
only rule we can start with. It weakly supports both atoms a and b. If we derive
the atom a, by using the rule b← a we later derive the atom b. Symmetrically,
if we derive the atom b, by using the rule a← b we can derive the atom a. The
only reason, why we need the weakly supporting rule, is that the atoms a and b
occurring in the head of the same rule a ∨ b are cyclic dependent.

It is important that we use the weakly supporting rule a∨b to derive only one
atom at once. M is also a model of the logic program P ′ = {a∨ b}, but it is not
stable. If we use a∨ b to derive a, there is no rule left to derive b. Symmetrically,
if we use a ∨ b to derive b, there is no rule left to derive a.

Like in the case of logic programs without disjunction, the derivation proce-
dure avoids cyclic dependencies between literals, but only if they do not occur
in the heads of rules.

In the next sections we show how we can use the non-deterministic immedi-
ate consequence operator for defining one step of derivation. We use AND/OR
graphs to formalize derivation procedure of minimal models. Then we extend
the well-support for disjunctive logic programs and show how level mappings
are related to derivations.

2 Preliminaries

A (propositional) language is a countable set L of atoms. A literal is either
an atom A or its default negation not A. A rule is a formula r of the form
A1 ∨ . . . ∨ Am ← Lm+1 ∧ . . . ∧ Ln where 1 ≤ m ≤ n, and Ai, 1 ≤ i ≤ m, are
atoms, Li,m < i ≤ n, are literals. The disjunction A1 ∨ . . .∨Am is called a head
of the rule r (denoted by head(r)) and the conjunction Lm+1∧ . . .∧Ln is called
a body of the rule r (denoted by body(r)). For simplicity, if the body of a rule
is empty, we will skip the symbol “←”. A disjunctive logic program (DLP) is
a countable set of rules and a normal logic program (NLP) is a countable set of
rules not containing disjunction. A positive disjunctive logic program (PDLP) is
a DLP which does not contain default negation. A positive logic program (PLP)
is a NLP which does not contain default negation.

A dependency graph of a DLP is a directed graph where nodes are atoms
and an atom A is connected to an atom B iff there exists a rule containing A
in the body and B in the head. A DLP is head cycle free iff it does not contain
a rule with two different atoms in the head which appear in the same cycle in
the dependency graph.

An interpretation is a set of atoms. I satisfies an atom A (I |= A) iff A ∈ I,
and a literal not A (I |= not A) iff A 6∈ I. I satisfies a conjunction L1 ∧ . . .∧Ln,
n ≥ 0 (I |= L1 ∧ . . . ∧ Ln) iff it satisfies all literals Li, 1 ≤ i ≤ n, and I satisfies
a disjunction L1 ∨ . . . ∨ Ln, n ≥ 0 (I |= L1 ∨ . . . ∨ Ln) iff it satisfies at least one
literal Li, 1 ≤ i ≤ n. I satisfies a rule r (I |= r) iff it satisfies the head of r
whenever it satisfies the body of r. An interpretation I is a model of a DLP P
(I |= P) iff it satisfies all rules r from P .

A model M of P is minimal iff does not exists a model N of P such that
N ⊂ M . A model M of P is least iff for all models N of P holds M ⊆ N . By
MM (P) we will denote the set of all minimal models of P and by LM (P) we
will denote the least model of P .

An atom A in an interpretation I is supported by a rule r from a NLP P iff
A is the head of r and I satisfies the body of r. I is supported by P iff every
atom A in I is supported by a rule r from P . An atom A in an interpretation
I is weakly supported by a rule r from a DLP P iff A is in the head of r and
I satisfies the body of r. A is strongly supported by r if A is the only one true
atom weakly supported by r. We say that I is weakly (resp. strongly) supported
by P iff every atom A in I is weakly (resp. strongly) supported by a rule r from
P .

A reduct of a DLP P with respect to an interpretation I is a PDLP P I

obtained from P by removing rules containing false default literal in the body
and by removing all remaining default literals. We say that I is a stable model
of P if I is a minimal model of P I .

3 Minimal Models

The immediate consequence operator [6] computes all necessary consequences of
applicable rules in given interpretation. Applying such operator can be viewed
as one step of derivation.

Definition 1 (Immediate Consequence Operator). Let I be an interpreta-
tion and P be a PLP. An immediate consequence operator is defined as follows:

TP (I) = {head(r) | r ∈ P, I |= body(r)}

An α-iteration of an immediate consequence operator TP is defined as follows:

TP ↑ α =

∅ if α = 0
TP (TP ↑ β) if α is a successor ordinal of β⋃
β<α

TP ↑ β if α is a limit ordinal

Proposition 1. An interpretation I is a minimal model of a PLP P iff I is
a minimal fixpoint of TP , i.e. I is a fixpoint of TP (TP (I) = I) and there does
not exists a fixpoint J of TP such that J ⊂ I. [6]

The following proposition states that positive logic programs have always
only one minimal model which is in addition the least model. It can be computed
by iteration of the immediate consequence operator after at most ω steps.

Proposition 2. Let P be a PLP. Then LM (P) = TP ↑ ω. [6]

The disjunction in the heads of rules causes non-determinism. In general,
there exist more ways how to satisfy the head of a disjunctive rule. Therefore
the result of the non-deterministic immediate consequence operator [7] is not
only one interpretation, but a set of interpretations.

Definition 2 (Non-deterministic Immediate Consequence Operator).
Let I be an interpretation and P be a PDLP. A non-deterministic immediate
consequence operator NP is defined as follows:

NP (I) = MM ({head(r) | r ∈ P, I |= body(r)})

If we consider only positive logic programs, NP is a generalization of TP in the
sense that NP (I) = {TP (I)}. Like in the case of positive logic programs, minimal
models of positive disjunctive logic programs coincide with minimal fixpoints of
NP . However, minimal models can not be computed by straightforward iteration
of NP .

Proposition 3. An interpretation I is a minimal model of a PDLP P iff I is a
minimal fixpoint of NP , i.e. I is a fixpoint NP (I ∈ NP (I)) and there does not
exists a fixpoint of NP such that J ⊂ I. [7]

Example 3. The interpretation M = {a, b, c} is a minimal model of P = {a∨ b∨
c; b← a; c← b; a← c}. We have

NP (∅) = {{a}, {b}, {c}}
NP ({a}) = {{b}}
NP ({b}) = {{c}}
NP ({c}) = {{a}}

By iterating the non-deterministic immediate consequence operator NP we get
three possible computations:

∅, {a}, {b}, {c}, {a}, {b}, {c}, . . .
∅, {b}, {c}, {a}, {b}, {c}, {a}, . . .
∅, {c}, {a}, {b}, {c}, {a}, {b}, . . .

Any computation does not terminate in M . All of them alternate over interpre-
tations {a}, {b}, and {c}. The operator NP is not even monotone.

If we add the newly derived atoms to the previous instead of replacing them,
we get three monotone computations:

∅, {a}, {a, b}, {a, b, c}
∅, {b}, {b, c}, {a, b, c}
∅, {c}, {a, c}, {a, b, c}

All of them terminate in the same model M .

Now we use AND/OR graphs to define something like the iteration of the
non-deterministic immediate consequence operator.

4 AND-OR Graph

An AND-OR graph is a directed acyclic graph G = (V,E) with three distinct
kinds of nodes – AND-nodes, OR-nodes and terminals. Every node represents
a problem to solve and every edge represents the problem decomposition. To solve
an AND-node, all of its subproblems must be solved. To solve an OR-node, it is
sufficient to solve one of its subproblems. The solution for a terminal is already
known. A solution of a start node s is a minimal subgraph G′ = (V ′, E′) of G
such that

– s ∈ V ′
– if v ∈ V ′ is an AND-node then (v, v′) ∈ E′ for all (v, v′) ∈ E
– if v ∈ V ′ is an OR-node then (v, v′) ∈ E′ for one (v, v′) ∈ E

An OR-node is an interpretation I ⊂M such that I is not a model of P . To
model all rules from P , we choose a set of rules R ⊆ P not satisfied by I. In
general, there are many possibilities how to choose R. I is an OR-node, because
it is sufficient to choose only one set R to check the minimality of M .

An AND-node is a pair (I,R). The set NR(I) contains all minimal interpre-
tations J we need to add to I to satisfy R. (I,R) is an AND-node, because to
check if M is minimal we need test all interpretations I∪J such that J ∈ NR(I),
J ⊆M .

A terminal is an interpretation I ⊆M such that I is a model of P . If I = M ,
then all computations from I terminate in M . If I ⊂ M , then no computation
from I terminates in M .

Definition 3 (AND-OR graph). An AND-OR graph for a model M of a PDLP
P contains1

– AND-nodes (I,R) ∈ P(M)× P(P) where R ⊆ {r ∈ P | I 6|= r},
– OR-nodes I ∈ P(M) where I 6|= P ,
– and terminals I ∈ P(M) where I |= P .

There is an edge between

– OR-node I and AND-node (I,R), and
– AND-node (I,R) and OR-node or terminal I ∪ J where J ∈ NR(I).

A computation is an ordinal sequence of nodes. It is an extension of a path,
because it can contain concatenation of infinite paths. It starts in an OR-node,
following by alternating AND-nodes and OR-nodes and possibly terminates in
a terminal node.

Definition 4 (Computation). Let G be the AND-OR graph for a model M of
a PDLP P . A computation starting in an interpretation I ⊆ M is a (possibly
infinite) sequence of nodes I0, (I0, R0), I1, (I1, R1), . . . from G such that Iα, α ≥
0, are OR-nodes or terminals, (Iα, Rα), α ≥ 0, are AND-nodes, and

1 P(.) denotes the power set

– I0 = I
– if α is a successor ordinal of β, then (Iβ , Rβ) is connected to Iα
– if α is a limit ordinal, then Iα =

⋃
β<α Iβ

We say that a computation I0, (I0, R0), . . . , Iγ terminates in M (after at most δ
steps) iff Iγ = M (and γ ≤ δ).

A derivation is a subgraph. Like a computation extends a path, a derivation
extends a solution. An OR-node is the source for just one edge, an AND-node is
the source for all edges in the original AND-OR graph. Terminals are not sources
for any edge.

Definition 5 (Derivation). Let G = (V,E) be the AND-OR graph for a model
M of a DLP P . A derivation starting in an interpretation I ⊆M is a minimal
subgraph G′ = (V ′, E′) of G such that

– I ∈ V ′
– if v ∈ V ′ is an AND-node, then (v, v′) ∈ E′ for all (v, v′) ∈ E
– if v ∈ V ′ is an OR-node, then (v, v′) ∈ E′ for one (v, v′) ∈ E
– V ′ is closed, i.e. if I0, (I0, R0), I1, (I1, R1), . . . is a computation in G′, then⋃

α≥0 Iα ∈ V ′

We say that a derivation terminates in M (after at most δ steps) iff every
maximal computation in G′ terminates in M (after at most δ steps).

Example 4. The following graph is the AND-OR graph for the model M =
{a, b, c} of the program P = {a ∨ b ∨ c; b← a; c← b; a← c}.

{a, b, c}
↗ ↑ ↖

({a, b}, {c← b}) ({b, c}, {a← c}) ({a, c}, {b← a})
↑ ↑ ↑

({a, b}, ∅) � {a, b} ({b, c}, ∅) � {b, c} ({a, c}, ∅) � {a, c}
↑ ↑ ↑

({a}, {b← a}) ({b}, {c← b}) ({c}, {a← c})
↑ ↑ ↑

({a}, ∅) � {a} ({b}, ∅) � {b} ({c}, ∅) � {c}
↖ ↑ ↗

(∅, {a ∨ b ∨ c})
↑

(∅, ∅) � ∅

The following subgraph is a derivation starting in ∅ and terminating in M .

{a, b, c}
↗ ↑ ↖

({a, b}, {c← b}) (({b, c}, {a← c}) ({a, c}, {b← a})
↑ ↑ ↑
{a, b} {b, c} {a, c}
↑ ↑ ↑

({a}, {b← a}) ({b}, {c← b}) ({c}, {a← c})
↑ ↑ ↑
{a} {b} {c}

↖ ↑ ↗
(∅, {a ∨ b ∨ c})

↑
∅

In the previous derivation, we have three computations starting in ∅ and termi-
nating in M :

∅, (∅, {a ∨ b ∨ c}), {a}, ({a}, {b← a}), {a, b}, ({a, b}, {c← a}), {a, b, c}
∅, (∅, {a ∨ b ∨ c}), {b}, ({b}, {c← b}), {b, c}, ({b, c}, {a← b}), {a, b, c}
∅, (∅, {a ∨ b ∨ c}), {c}, ({c}, {a← c}), {a, c}, ({a, c}, {b← a}), {a, b, c}

Now we show that the existence of a derivation starting in ∅ and terminating
in a model M ensures the minimality of M .

Proposition 4. Let G be the AND-OR graph for a model M of a PDLP P .
Then M is a minimal model of P if there exists a derivation starting in ∅ and
terminating in M .

Proof. Let G′ be a derivation starting in ∅ and terminating in M . Let N ⊆ M
be a model of P . We show that there exists a computation I0, (I0, R0), . . . , Iγ
in G′ starting in ∅ and terminating in M such that Iα ⊆ N , 0 ≤ α ≤ γ, i.e.
M = Iγ ⊆ N .

For α = 0 we have Iα = ∅ ⊆ N . Let α be a successor ordinal of β and
Iβ ⊆ N . Let (Iβ , Rβ) be the AND-node in G′. Because N is a model of P , N
is also a model Rβ . Therefore there exists an interpretation J ∈ NRβ

(Iβ) such
that J ⊆ N and Iα = Iβ ∪ J ⊆ N . Let α be a limit ordinal and for all β < α
holds Iβ ⊆ N . Then Iα =

⋃
β<α Iβ ⊆ N . ut

Proposition 5. Let G be an AND-OR graph for a minimal model M of a PDLP
P . Then for all I ⊆ M there exists a derivation in G starting in I and termi-
nating in M after at most ω steps.

Proof. Let I ⊆ M and G′ be a derivation starting in I such that R = {r ∈ P |
J 6|= r} for all AND-nodes (J,R). Because M is minimal, G′ terminates in M .
Now we show that G′ terminates in M after at most ω steps.

Let I0, (I1, R1), . . . , Iγ be a computation in G′ starting in I and terminating
in M . Let α ≤ γ be a sucessor ordinal of β and Jβ ∈ NRβ

(Iβ) be an interpretation
such that Iα = Iβ ∪ Jβ . Then for all atoms A ∈ Jβ there exists a rule r ∈ Rβ
such that r strongly supports A with respect to Iα. Let Qβ = {A ← body(r) |
r ∈ Rβ strongly supports A ∈ Jβ with respect to Iα} and Q = I0 ∪

⋃
β<γ Qβ . It

holds that Iα = TQ(Iβ). Because TQ is a continuous operator [8] and Iγ = M ,
γ ≤ ω. ut

5 Well-Supported Models

The well-supported model semantics [4] uses level mappings. A level of an atom
expresses the level of its derivation. Every rule well-supporting an atom also
supports this atom. In addition, the assumptions of the rule must be derived
before the conclusion of the rule. It has been shown that well-supported models
of normal logic programs coincide with stable models.

Definition 6 (Well-Support). Let I be an interpretation and P be a NLP.
An atom A ∈ I is well-supported by a rule r ∈ P with respect to a level mapping
` iff A is supported by r and

∀L ∈ body(r): `(A) > `(L)

We say that I is well-supported by P with respect to ` iff every atom A ∈ I is
well-supported by a rule r ∈ P with respect to `. A model I of P is well-supported
if there exists a level mapping ` such that I is well-supported by P with respect
to `.

Proposition 6. Let M be a model of a NLP P . Then M is stable iff M is
well-supported. [4]

A DLP P in a language L can be viewed as a PDLP P ∗ in the propositional
language L∗ = L∪ {not A | A ∈ L}. For a given interpretation I in L, by I− we
will denote the set of all true default literals, i.e. I− = {not A | A ∈ L, A 6∈ I}.
The interpretation I∗ = I ∪ I− in L∗ corresponds to the interpretation I in L.

Definition 7 (Well-Support). Let M be a model of a DLP P and G be the
AND/OR graph for a model M∗ of P ∗ ∪M−. We say that M is well-supported
iff there exists a derivation starting in ∅ and terminating in M∗.

Proposition 7. Let M be an interpretation and P be a DLP. Then M is a stable
model of P iff M∗ is a minimal model of P ∗ ∪M−.

Proof. Let M be a stable model of P . Then M is a minimal model of PM . It is
easy to see that M∗ is a model of P ∗∪M−. Let N ⊂M∗ be a model of P ∗∪M−.

Because N |= M−, N \M− ⊂M models PM . It is in the contradiction with the
assumption that M is a minimal model of PM .

Let M∗ be a minimal model of P ∗ ∪M−. It is easy to see that M is a model
of PM . Let N ⊂ M be a model of PM . Then N ∪M− ⊂ M∗ is a model of
P ∗ ∪M−. It is in the contradiction with the assumption that M∗ is a minimal
model of P ∗ ∪M−. Thus M is a stable model of P . ut

Corollary 1. Let M be a model of a DLP P . Then M is stable iff M is well-
supported.

Weakly well-supporting rules may have more true atoms in the heads, but
all of them are derived after assumptions. There is only one atom in the head
which is derived first. It is the only atom which is weakly well-supported.

Definition 8 (Weak and Strong Well-Support). Let I be an interpretation
and P be a DLP. An atom A ∈ I is weakly (resp. strongly) well-supported by
a rule r ∈ P with respect to a level mapping ` iff A is weakly (resp. strongly)
supported by r and

– ∀L ∈ body(r): `(A) > `(L)

– ∀B ∈ head(r): I |= B,B 6= A⇒ `(B) > `(A)

We say that I is weakly (resp. strongly) well-supported by P with respect to `
iff every atom A ∈ I is well-supported by a rule r ∈ P with respect to `.

Proposition 8. Let M be a stable model of a DLP P and G be the AND/OR
graph for P ∗∪M− and M∗. Let J0, (J0, R0), J1, (J1, R1), . . . , Iγ be a computation
starting in ∅ and terminating in M∗. Let ` be a level mapping such that `(L) =
min{α | L ∈ Jα} for all literals L. Then M is weakly well-supported by P with
respect to `.

Proof. Let A ∈ M and α = `(A) be a successor ordinal of β. Then there exists
a rule r ∈ Iβ such that r strongly supports A with respect to Iα, i.e. r weakly
well-supports A with respect to M and `. So M is weakly well-supported by P
with respect to `. ut

6 Conclusions

We used non-deterministic immediate consequence operator to define one step
of derivation of minimal models. We defined AND/OR graphs for models of
positive disjunctive logic programs and showed that the model M is minimal
iff there exists a derivation starting in ∅ and terminating in M after at most
ω steps. We used also AND/OR graphs for defining well-supported models of
disjunctive logic programs and showed that they coincide with stable models.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference on Logic Programming, ICLP’88,
MIT Press (1988) 1070–1080

2. Przymusinski, T.C.: Stable semantics for disjunctive programs. New Generation
Computing 9(3/4) (1991) 401–424

3. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge.
In: Foundations of deductive databases and logic programming. Morgan Kaufmann
Publishers Inc. (1988) 89–148

4. Fages, F.: A new fixpoint semantics for general logic programs compared with the
well-founded and the stable model semantics. In: Proceedings of the 7th Interna-
tional Conference on Logic Programming, ICLP’90, MIT Press (1990) 442–458

5. Brass, S., Dix, J.: Characterizations of the stable semantics by partial evaluation.
In: Proceedings of the 3rd International Conference on Logic Programming and
Nonmonotonic Reasoning, LPNMR’95, Springer-Verlag (1995) 85–98

6. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. Journal of the ACM 23(4) (1976) 733–742

7. Pelov, N., Truszczyński, M.: Semantics of disjunctive programs with monotone
aggregates – an operator-based approach. In: 10th International Workshop on Non-
Monotonic Reasoning, NMR 2004. (2004) 327–334

8. Lloyd, J.W.: Foundations of logic programming. Springer-Verlag New York, Inc.
(1984)

