
Well-Supported Models

of Disjunctive Logic Programs

Martin Baláº

Department of Applied Informatics

Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava, Slovak Republic

balaz@ii.fmph.uniba.sk

June 1, 2007

Abstract

The stable model semantics [GL88] is considered to be the most
accepted semantics for normal logic programs. The well-supported
model semantics [Fag90] is another characterization of stable models.
It uses the concept of level mappings which can be used to detect cyclic
rules.

The notion of stable model was also generalized for logic programs
with disjunction [IS93]. We are interested in a characterization of
stable models with level mappings in similar way as it was done for
logic programs without disjunction.

Keywords: Disjunctive logic program, stable model, well-supported
model

1 Introduction

Stable model is de�ned as a set of atoms derived from default assumptions.
If we partially evaluate all default literals in a logic program, a stable model
must be a minimal model of the reduced program.

First of all we would like to �nd some derivation procedure for minimal
models of disjunctive logic programs without negation. Then we can assign
the level of derivation for every atom in a model and study how stable models
are related with those level mappings.

1

2 Preliminaries

A language L is a countable (possibly in�nite) set of atoms. A literal is an
atom A or a default literal not A. A rule r is a formula of the form A1∨· · ·∨
Ak ← Ak+1∧· · ·∧Am∧not Am+1∧· · ·∧not An where 1 ≤ k ≤ m ≤ n and Ai,
1 ≤ i ≤ n are atoms. The disjunction head(r) = A1 ∨ · · · ∨ Ak is called the
head of r and the conjunction body(r) = Ak+1∧· · ·∧Am∧not Am+1∧not An

is called the body of r.
A disjunctive logic program (DLP) is a countable set of rules. A normal

logic program (NLP) does not contain disjunction, it contains only rules with
k = 1. A de�nite logic program (PLP) is a normal logic program without
negation and a de�nite disjunctive logic program (PDLP) is a disjunctive
logic program without negation, i.e. for all rules holds m = n.

The nodes in the dependency graph of a disjunctive logic program are
atoms. Two atoms are connected with the edge if exists a rule containing
one atom in the head and the other one in the body. A disjunctive logic
program is head cycle free if does not contain rule with two atoms in the
head which appear in the same cycle in the dependency graph.

An interpretation I is a member of the power set P(L) of a language
L. I satis�es an atom A if A ∈ I and I satis�es a default literal not A if
A 6∈ I. I satis�es a conjunction of literals if it satis�es all literals in the
conjunction and I satis�es a disjunction of literals if it satis�es some literal
in the disjunction. I is a model of a rule r if I satis�es the body of r implies
I satis�es the head of r.

A rule r in a normal logic program P supports an atom A with respect to
an interpretation I if A is the head of r and I satis�es the body of r. A rule
r in a disjunctive logic program P weakly supports an atom A with respect
to an interpretation I if A is in the head of r and I satis�es the body of r.
A rule r in a disjunctive logic program P supports an atom A with respect
to an interpretation I if r weakly supports A w.r.t. I and for all atoms B in
the head of r holds I satis�es B implies B equals A.

I is a model of a logic program P if it satis�es all rules in P . A model I
is minimal if does not exists a model J such that J ⊆ I implies J = I. A
model I is least if for all models J holds I ⊆ J . MM (P) denotes the set of
all minimal models of a logic program P .

A program reduct of a logic program P with respect to an interpretation
I is a logic program obtained from P by deleting all rules with default literal
in the body not satis�ed by I and by deleting all remaining default literals.
I is a stable model of P if I is a minimal model of the program reduct of
P with respect to I. SM (P) denotes the set of all stable models of a logic
program P .

2

3 Minimal Models

The set of minimal models is generally accepted as the semantics of logic pro-
grams without negation. In the following section we try to �nd a derivation
procedure to compute minimal models.

3.1 De�nite Logic Programs

In [vEK76] authors showed that there always exists the least model of a PLP
and it can be obtained from the empty interpretation by iterating the imme-
diate consequence operator.

De�nition 1 (Immediate Consequence Operator). Let I be an interpretation
of a PLP P . The immediate consequence operator TP and its iteration TP ↑ α
are de�ned as follows:

TP (I) = {head(r) | r ∈ P, I |= body(r)}

TP ↑ α =


∅ if α is 0
TP (TP ↑ β) if α is a successor ordinal of β⋃
β<α

TP ↑ β if α is a limit ordinal

An interpretation I is a �xpoint of the operator TP if I = TP (I). It is
a minimal �xpoint if it is a �xpoint and for all �xpoints J ⊆ I holds J = I.

Proposition 1. An interpretation I is a minimal model of a PLP P i� I is
a minimal �xpoint of TP .

Proposition 2. Let P be a PLP. Then TP ↑ ω is the least model of P .

3.2 De�nite Disjunctive Logic Programs

There are more choices to satisfy a rule with disjunction in the head. In
general a PDLP can have more minimal models. We present the nondeter-
ministic immediate consequence operator introduced in [PT02].

De�nition 2 (Nondeterministic Immediate Consequence Operator). Let I
be an interpretation and P be a PDLP. The nondeterministic immediate
consequence operator NP is de�ned as follows:

NP (I) = MM ({head(r) | r ∈ P, I |= body(r)})

An interpretation I is a �xpoint of the operator NP if I ∈ NP (I). It is
a minimal �xpoint if it is a �xpoint and for all �xpoints J ⊆ I holds J = I.

3

Proposition 3. An interpretation I is a minimal model of a PDLP P i� I
is a minimal �xpoint of NP .

Example 1.
P = { a ∨ b ∨ c ←

b ← a
c ← b
a ← c }

We show that the nondeterministic immediate consequence operator NP can
not be directly used to compute the minimal model M = {a, b, c} by its
iteration. It holds that NP (∅) = {{a}, {b}, {c}} and NP ({a}) = {{b}},
NP ({b}) = {{c}}, NP ({c}) = {{a}}. Every iteration of the operator NP

would oscillate and not converge to M .
However if we do not drop intermediate results there are three possible

ways how to compute M . If we start with the empty interpretation ∅, we have
three choices how to satisfy the rule a∨b∨c←. We choose either the interpre-
tation {a}, {b} or {c}. Then we directly compute the rest of the model M by
applying the remaining rules. All three computations ∅, {a}, {a, b}, {a, b, c};
∅, {b}, {b, c}, {a, b, c} and ∅, {c}, {a, c}, {a, b, c} terminate in the same model
M .

Example 2.
P = { a ∨ b ←

c ←
a ← c
b ← c }

In the previous example we have seen that disjunctive rules cause splitting of
the computation. Also in this example both computations ∅, {a, c}, {a, b, c}
and ∅, {b, c}, {a, b, c} terminates in the same minimal model M = {a, b, c}.
However if we do not apply the disjunctive rule a ∨ b ← too soon, the com-
putation ∅, {c}, {a, b, c} terminates in M in deterministic way.

3.3 AND/OR Graphs

De�nition 3 (AND/OR Graph). The AND/OR graph of a PDLP P in
a language L is a directed acyclic graph G = (V, E). The set of vertices V
contains

• AND-nodes (I, R) ∈ P(L)× P(P) where ∅ ⊂ R ⊆ {r ∈ P | I 6|= r}.

• OR-nodes I ∈ P(L) where I 6|= P

• terminals I ∈ P(L) where I |= P

4

There is an edge between

• OR-node I and AND-node (I, R)

• AND-node (I, R) and OR-node or terminal J if J ∈ {I ∪M | M ∈
MM ({head(r) | r ∈ R})}

Terminals are models we want to reach from the empty interpretation. In
an OR-node we choose a set of rules to satisfy in the next step. In general
we don't choose all not satis�ed rules to avoid unnecessary splitting (see the
example 2). It is called an OR-node because it is enough to choose only one
set of rules. In an AND-node we must check if from every minimal expansion
satisfying chosen rules we reach the same terminal. It is called an AND-node
because we must check all such minimal expansions.

De�nition 4 (Computation). A computation in the AND/OR graph G =
(V, E) of a PDLP P is a sequence of interpretations {Iα}γα=0 such that

• Iα = ∅ if α is 0

• ((Iβ, Rβ), Iα) ∈ E for some Rβ ∈ P(P) if α is a successor ordinal of β

• Iα =
⋃

β<α

Iβ if α is a limit ordinal

A computation {Iα}γα=0 terminates in an interpretation I after at most δ

steps if I =
γ⋃

α=0

Iα is a terminal and γ ≤ δ.

De�nition 5 (Derivation). A derivation of an interpretation M is a minimal
subgraph G′ = (V ′, E ′) of the AND/OR graph G = (V, E) of a PDLP P such
that

• ∅ ∈ V ′

• if I ∈ V ′ is an OR-node then there exist an AND-node (I, R) ∈ V ′ and
an edge (I, (I, R)) ∈ E ′

• if (I, R) ∈ V ′ is an AND-node then J ∈ V ′ and ((I, R), J) ∈ E ′ for all
((I, R), J) ∈ E, J ⊆M

• the set of OR-nodes and terminals is closed, i.e. if {Iα}γα=0 is a compu-

tation in G′ then
γ⋃

α=0

Iα ∈ V ′

A derivation G′ terminates in an interpretation I after at most δ steps if
all terminating computations in G′ terminates in I after at most δ steps.

5

Proposition 4. If I is a minimal model of a PDLP P then there exists
a derivation of I in the AND/OR graph of P terminating in I after at most
ω steps.

Proposition 5. Let I be an interpretation and P be a PDLP. Then I is
a minimal model of P if exists a derivation of I in the AND/OR graph of P
terminating in I.

Proposition 6. An interpretation I is a minimal model of a HCF PDLP P
if exists a derivation of I in the AND/OR graph of P terminating in I after
at most ω steps containing just one terminating computation.

4 Well-Supported Models

A level mapping assigns to each atom its level of derivation. Intuitively an
atom in the head can be derived only when all literals in the body were
already derived.

4.1 Normal Logic Programs

De�nition 6 (Well-Support). Let I be an interpretation, P be a NLP and `
be a level mapping. A rule r ∈ P well-supports an atom A ∈ I with respect
to I and ` if r supports A with respect to I and

• r supports A with respect to I

• ∀L ∈ body(r) : `(A) > `(L)

A model I of a NLP P is well-supported with respect to a level mapping ` if
for all atoms A ∈ I exists a rule r ∈ P well-supporting A with respect to I
and `.

Proposition 7. Let I be an interpretation and P be a NLP. Then I is
a stable model of P i� exists a level mapping ` such that I is a well-supported
model of P with respect to `.

4.2 Disjunctive Logic Programs

If the rules can contain the disjunction in the head, we should distinguish
two kinds of support [BD95]. The weaker form of support does not require
the supported atom to be the only one satis�ed atom in the head as it is
in the case of stronger form. The reason are possible cycles in the head of

6

a rule. But what we require is that the well-supported atom is derived as
the �rst atom in the head. The consequence is that a rule can well-support
at most one atom.

De�nition 7 (Well-Support). Let I be an interpretation, P be a DLP and
` be a level mapping. A rule r ∈ P weakly well-supports an atom A ∈ I with
respect to I and ` if

• r weakly supports A with respect to I

• ∀L ∈ body(r) : `(A) > `(L)

• ∀B ∈ head(r) : I |= B, B 6= A =⇒ `(B) > `(A)

A rule r ∈ P well-supports an atom A ∈ I with respect to I and ` if

• r supports A with respect to I

• ∀L ∈ body(r) : `(A) > `(L)

A model I of a DLP P is (weakly) well-supported with respect to a level
mapping ` if for all atoms A ∈ I exists a rule r ∈ P (weakly) well-supporting
A with respect to I and `.

Proposition 8. Let I be a model of a DLP P . Let {Iα}γα=0 be a computation
in a derivation of I terminating in I in the AND/OR graph of P I . Let ` be
a level mapping such that `(A) = α if A ∈ Iα+1 \ Iα, otherwise `(A) = 0.
Then I is a weakly well-supported model of P with respect to `.

Proposition 9. Let I be an interpretation and P be a HCF DLP. Then I is
a stable model of P i� exists a level mapping ` such that I is a well-supported
model of P with respect to `.

5 Conclusions

We have showed how minimal models can be derived in AND/OR graphs of
logic programs without negation. We have seen that disjunction in the head
can cause splitting of computations. The splitting is necessary only if there
is a cycle in the head of a rule. Finally we have showed how stable models of
disjunctive logic programs are related with (weakly) well-supported models.

7

References

[BD95] Stefan Brass and Jürgen Dix. Characterizations of the stable seman-
tics by partial evaluation. In Proceedings of the 3rd International
Conference on Logic Programming and Nonmonotonic Reasoning,
LPNMR'95, pages 85�98. Springer-Verlag, 1995.

[Fag90] François Fages. A new �xpoint semantics for general logic programs
compared with the well-founded and the stable model semantics. In
Proceedings of the 7th International Conference on Logic Program-
ming, ICLP'90, pages 442�458. MIT Press, 1990.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model se-
mantics for logic programming. In Proceedings of the 5th Inter-
national Conference on Logic Programming, ICLP'88, pages 1070�
1080. MIT Press, 1988.

[IS93] Katsumi Inoue and Chiaki Sakama. Transforming abductive logic
programs to disjunctive programs. In Proceedings of the 10th Inter-
national Conference on Logic Programming, ICLP'93, pages 335�
353. MIT Press, 1993.

[PT02] Nikolay Pelov and Mirosªaw Truszczy«ski. Semantics of disjunc-
tive programs with monotone aggregates - an operator-based ap-
proach. In Proceedings of the 10th International Conference on
Logic Programming and Nonmonotonic Reasoning, LPNMR 2002,
pages 327�334. Springer-Verlag, 2002.

[vEK76] Maarten van Emden and Robert Anthony Kowalski. The semantics
of predicate logic as a programming language. Journal of the ACM,
23(4):733�742, 1976.

Martin Baláº (RNDr) is a lecturer at the Faculty of Mathematics,
Physics and Informatics of the Comenius University in Bratislava. His PhD-
thesis supervisor is assistant professor PhDr. Ján �efránek, CSc.

8

