Kripke structures on bilattices

Martin Balaz
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava
balaz@ii.fmph.uniba.sk

June 1, 2004

Abstract

This paper extends stable model semantics of many valued logics
for logic programs with explicit negation. We will use bilattices as
truth value space introduced by [4] and studied in [2] and we will
build a Kripke structure, which provides a more detailed semantics
for logic programs. This approach is used for dynamic logic programs
as it is described in [6].

Keywords: Extended logic program, bilattice, Kripke structure.

1 Introduction

The purpose of this paper is to define a Kripke structure associated with an
extended logic program. Kripke structure can be viewed as a graph, where
nodes are pairs of interpretations (I, J). Each node represents our knowledge
about the world. The interpretations approximate the state K of the world,
if I <K <JI[1].

In the beginning, we have no knowledge available. In other words an ini-
tial interpretation which always assigns the lowest truth value and another
interpretation which always assigns the greatest truth value. By applying
information contained in the rules of the program, we can bring those inter-
pretations closer to each other. In the case we can not apply any rule, we
accept the assumption of a default negation. Our goal is to reach a node of
the form (1, I) which only approximates one interpretation 1.

2 Lattices and bilattices

The set of truth values is partially ordered by a relation, which is reflexive,
antisymmetric and transitive. A partially ordered set is a lattice if supremum
and infimum exist for any two elements. We will use the notations a A b for
infimum of a and b and a V b for supremum of a and b and we will call A the
meet and V the join.

In general the supremum and infimum do not exist for any subset. A
lattice L is called complete if supremum and infimum exist for any nonvoid
subset of L. We will denote infinitary meet and join by A and \/. The bottom
is denoted by L and the top by T.

A lattice L has a negation operation if there is a mapping ~: L — L such
that ~~ 2 = x and x < y implies ~ y < ~ .

The set L° of all mappings from a set S to a lattice L with ordering
< defined as f < g if f(s) < g(s) for all s € S is a lattice. If L has
negation operation, this induces a negation operator on L° according to

(~ f)(s) = ~ f(s).

Example 1. Sets {0,1}, {0,3, 1} and interval (0, 1) with the linear ordering
on real numbers are complete lattices. Generally, a lattice can have more
negation operators. The mapping x +— 1 — x is a negation operator which
will be used in the following examples.

A bilattice is a set B together with two partial orderings <; and <;
such that (B, <;) and (B, <;) are lattices. The relation <; is an ordering
of the degree of truth. The ordering <; is thought of as ranking degree of
information.

A bilattice B has a negation operation if there is a mapping ~: B — B
such that it reverses the <; ordering, leaves unchanged the <; ordering and
~~ a = a. A bilattice B has a conflation operation if there is a mapping
— : B — B such that it leaves the <; ordering unchanged, reverses the <;
ordering and — — a = a.

We say that a € B is exact if a = —a and a € B is consistent if a <;
—a. The bilattice (B, <;, <;) is complete if (B, <;) and (B, <;) are complete
lattices.

The set B of all mappings from S to a bilattice B with the orderings <,
and <; defined as f <; g (resp. f <; g) if f(s) <; g(s) (vesp. f(s) <; g(s))
for all s € S is a bilattice. If B has a negation operation (resp. conflation op-
eration), this induces the negation operation (reps. the conflation operation)

on B according to (~ f)(s) = ~ f(s) (resp. (—f)(s) = —f(s)).

3 Extended language

We need to extend first order language [5] to contain explicit negation and
nullary connectives. An extended alphabet Ay contains variables, constants,
function and predicate symbols, nullary connectives from L, unary {not, —}
and binary {A,V,—} connectives, quantifiers {V,3} and punctuation sym-
bols.

A variable or a constant is a term. If f is an n-ary function symbol and
t1,...,t, are terms, then f(ty,...,t,) is a term. If p is an n-ary predicate
symbol and ¢y, ..., t, are terms, then p(ti,...,t,) is an atom. Objective literal
is an atom or the explicit negation of an atom. Default literal is an objective
literal or the default negation of an objective literal.

An objective literal or a nullary connective is a (well-formed) formula. If
F and G are formulas, then so are (not F), (FANG), (FVG), (F — G). If
F is a formula and z is a variable, then (VaxF') and (JzF) are formulas. An
extended first order language Ly, given by an extended alphabet Aj consists
of the set of all formulas constructed from the symbols of the alphabet Aj.

An extended rule is a formula of the form

where L is a default literal, each L; is a default literal or nullary connective
and x; ...z, are all the variables occurring in Iy A --- A L,,. We will denote
this clause by

L—1Ly,....,L,

L is called the head and L A--- A L, is called the body of the extended rule.
An extended program is a finite set of extended rules.

Example 2. P = {a « 1,b < %0 < not a,a «<— not b,—b < b} is an
extended program.

4 Interpretations and models

A ground term is a term containing no variables. Similarly, a ground formula
is a formula not containing variables. The Herbrand universe U is the set of
all ground terms and the Herbrand base B is the set of all ground objective
literals. The Herbrand interpretation is a mapping from B to a complete
lattice L.

An interpretation I can be extended to a formula valuation vy (wrt I) of
the closed formulas such that each objective literal is given its truth value
according to I and each nullary connective is assigned to itself. If the formula

3

has the form not F, F AN G, F'V GG, than the truth value of the formula is
Vg (F), vi(F) Avi(G), vi(F) Vur(G). If the formula has the form F — G,
then the truth value of the formula is T if v;(F) < v;(G). Otherwise, its
truth value is L. If the formula has the form Vx F’, then the truth value of the
formula is Ao, vi(F{z/d}), where {z/d} is the substitution that replaces
each x in F' by d. If the formula has the form JxF', then the truth value of
the formula is \/ o, vi(F{z/d}).

So far corresponding positive and negative objective literals have been
independent. Next property constrains their truth values. The Herbrand
interpretation [is called coherent, if 1(—A) < ~ I(A) holds for every atom
A.

A Herbrand interpretation I models an extended rule ¢ if v;(c) = T and
models an extended program P if I models each ¢ € P.

Example 3. I = {a — %,b — %,—-a — 0,-b — %} is a coherent model of
the program P = {a <« %,b < %,b < not a,a < not b, —b «— b}.
IL={a—%b— % —-a— 0,-b— %} is not a coherent model of P.

5 Stable models

An extended definite program does not contain any default negation. Let P
be an extended definite program, Z be a set of all interpretations of P and
L be an objective literal. The operator T : Z — 7 is defined as follows:

Tp(I)(L) = I(L) v\ wi(body(c))
ceP
head(c)=L

Let Tp 10({) = L. Tp T a(l) = T(T T (o — 1)({)), if « is successor

ordinal and Tp T o(f) = \/ T T B(I), if «v is limit ordinal.
B<a

Theorem 5.1. Let P be an extended definite logic program. Then Tp T w(L)
is the least model of P.

An extended normal program can contain a default negation in the bodies
of the rules. Let I be an interpretation, P be an extended normal program.
P is a program obtained from P by replacing all negative default literals L
with nullary connectives vy(L). If I coincides with minimal model of P;, we
say that I is stable interpretation for P.

In the case of two valued logic the definition of stable interpretations [3]
was extended to answer sets. Because in many valued logic the interpreta-
tion is defined as a function and not as a set, we will use the term ”stable
interpretation instead of the term ”answer set“.

4

Lemma 5.2. FEvery stable interpretation of an extended normal program is
its model.

An extended generalized program can contain a default negation in the
bodies and also in the heads of the rules. Let P be an extended generalized
program. We will denote P rules with a positive default literal in the head
and P~ rules with a negative default literal in the head. If I is a stable
interpretation for P*, we say that I is a stable interpretation for P.

6 Approximations

In the previous section, we have not used the rules in P~ for computation
of the stable interpretation. They are only used as a consistency check for
a model. Operators transforming approximations can use all of them. The
rules from P determine the lower bound and the rules from P~ the upper
bound.

Let (L, <) be a lattice. A bilattice B(L) based on a lattice L is a set L?
with two partial orderings:

o (a1,as) <¢ (b1,b2) & a1 < by,as < by
e (a1,a2) <; (b1,ba) & ay < by, by < ay

If L has a negation operator, then B(L) has a negation operator ~ (a,b) =
(~b,~ a). The mapping —(a,b) = (b, a) is a conflation operator for B(L).

The Herbrand approximation is mapping from B to B(L). Because the
bilattice (B(L))® is isomorphic with the lattice B(L?), the Herbrand approx-
imation can be also viewed as a pair of Herbrand interpretations.

The definition of a bilattice based on a lattice implies that A = (1, J) is
exact if I = J and consistent if I < J.

The approximation A = (I,.J) can be extended to a formula valuation
va (wrt A) of the closed formulas such that each objective literal is given
its approximation according to I and each nullary connective is assigned to
itself. If the formula has the form not F, F AN G, F V G, then the truth
value of the formula is v 4(F), va(F) Ava(G), va(F)Vua(G). If the formula
has the form F' — @, then the truth value of the formula is T if va(F) <
va(G). Otherwise, its truth value is L. If the formula has the form JzF,
then the truth value of the formula is \/,.,, va(F{z/d}), where {x/d} is the
substitution that replaces x by d. If the formula has the form Vz F', then the
truth value of the formula is A, va(F{z/d}).

The Herbrand approximation A is called coherent if A(—=B) <, ~ A(B)
holds for every atom B.

7 Kripke structures

Operators transforming approximations do not offer tools for a fine-grained
semantics needed in the case of dynamic programs. Not all rules applied
within one step of the iteration stay relevant after their update by a newer
program. Therefore we should define a structure containing more fine-grained
dependences between individual literals.

Example 4. Let P = {a <« %0 <« 1,b <« not a,a < not b,—b «— b}.
We start with the approximation w; = (L, T). By applying information
contained in the rules a < %, b «+ I, we can increase the lower bound of
a and lower bound of b to 3. By applying the coherence principle, we can
decrease the upper bound of —a and —b to 4. The rule —b « b increases the
lower bound for —b to 1.

Further in the resulting interpretation wy = {a € (%, T),b€ (3, T),—a €
(L,%3),-b € (1,%)}, no rule can be directly applied. However we have two
rules b < not a,a < not b with a default negation in the body of which
truth value is not exact. Now we can accept default negation under which
the upper bound is decreased to the lower bound. We have two choices:
a € (1,1) because the rule b < not a or b € (4,%) because the rule a < not b.

In the first case, we get a new interpretation wg = {a € (},2),b €
#,T),7a € (1L,3),-b € (1,1)} by applying the rule b < not a and by
applying coherence principle . The rule —b < b causes an inconsistency for
-b € (%,%) then.

In the second case, we get a new interpretation wy; = {a € (3, T),b €
(1,3),~a € (L,3),-b € (1,2)} by applying the rule a «— not b and by applying
coherence principle.

In this state, no rule can be applied and no default assumption bring-
ing new information can be accepted. Therefore we can decrease all upper
bounds to the lower bounds and we get an exact approximation wis = {a €

(£,4).b € (1,1),ae (L, 1),-be(12)}

Figure 1: Kripke structure associated with the program P

wy = {ae(L,T), be(L,T), naec(L,T), -be (Ll T)}
wy = {a€e(T), be(L,T), —-ae(l,3), -be(lL T)}
w3 = {ae(L,T), be(T), -ae(l,T), —be(l,3}
wy = {ae @, 7T), beT), -ae(l,}), -be(l,3}
Ws = {a € (J—’T)7 be (%743[)7 S (J—vT)7 -b € (ZIIMBI)}
wse = {a€(T), be@T), —ae(li), -be(t}
wy = {a€(d), be@T), —ae(li), -be(D)}
wsg = {a€(d), be@T), —ae(lP), -be(ld)}
wy {fae 1), be@1), —ae(lL}), -be 1)}
wig {ace @}, T), be#1), —ac(L}), -beD}
wiy {fae@T), be(ti), —ac(li), -be(iD}
wy = {a€#3), be(hi), —ac(l,l), -be(i1)}

Definition 7.1. Kripke structure associated with an extended program P is
a graph KCp = (W, p), where:

e W is a set of all coherent approximations for P.

e p=p UpyUps CW? (wy,wsy) € p if wy is consistent and w; # ws.
If the node w is the source of a p;-edge, it is not the source of any
p;-edge for i < j.

— ((I1, 1), (I3, J2)) € py if exists ¢ € P with objective literal in the
head and
* Io(L) = I (L) V v, gy (body(c)) for L = head(c)
« I)(L) = I,(L) for L # head(c)
% Jo(—L) = Ji(—L)A ~ v,) (body(c)) for L = head(c)

* Jo(—L) = Ji(—L) for L # head(c)
— ((I1, 1), (I3, J3)) € py if exists ¢ € P with default literal in the
head and
s I,(L) = (L) for all L
* Jo(L) = Ji(L)N ~ v,) (body(c)) for L = not head(c)
« Jo(L) = Jy1(L) for L # not head(c)
— (({1, J1), (I3, J2)) € po if exists ¢ € P such that
vy, (body(c)) < v,) (head(c)) < vy, (body(c)) and
) =1(L) for all L
* Jo(L) = I, (L) for not L € body(c)
) = Ji(L) for not L ¢ body(c)
(I3, J3)) € ps if
x Iy(L) = I;(L) for all L
L)=1I(L) for all L

Let e = (u,v) be an edge. We say that u is the source and v is the target
for e. Let 0 = eq,...,e, be a path. We say, that ¢ is u-rooted, if u is the
source for e;. We say, that ¢ terminates in v, if v is the target for e, and is
not the source for any edge.

Theorem 7.1. Let 0 € Kp be a L-rooted path terminated in exact approxi-
mation w = (I,1). Then I is a coherent stable model for P.

Sketch of proof. The transformed program P; will do the same thing as de-
fault assumptions in Kripke structure. The operator Tp can use the trans-
formed rules corresponding to the rules in the path. The path terminates in
exact approximation, that means there is not an edge leading to an inconsis-
tent world. Therefore the interpretation I is a model for P. We have used in
the path only direct conclusions and default assumptions, the interpretation
I must conincide with minimal model of P;.]

Theorem 7.2. Let I be a coherent stable model for P. Then exists 1 -rooted
path o € Kp which terminates in the exact approximation w = (I,1).

Sketch of proof. Let I be a coherent stable model. The transformed program
P; represent default assumptions in py U ps-edges. If we use p; — edges
corresponding to the used tranformed rules in Tp T w, we get the path
terminating in the exact approximation (I, I).]

8

Conclusion

In this paper, it has been described how Kripke structures can be built.
This semantics characterization is more detailed than simple stable models.
The computation of stable models included in the Kripke structure is using
imformation in the rules with positive and negative default literal in the
head.

References

1]

Marc Denecker, Victor Marek, and Miroslaw Truszczynski. Approxima-
tions, stable operators, well-founded fixpoints and applications in non-
monotonic reasoning.

Melvin C. Fitting. Bilattices and the semantics of logic programming.
Journal of Logic Programming, 11(2):91-116, 1989.

M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In Fifth Int’l Conf.Symp. on Logic Programming, pages 1070—
1080. Seattle, 1988.

Matthew L. Ginsberg. Multivalued logics: A uniform approach to rea-
soning in artificial intelligence. Computational Intelligence, 4:265-316,
1988.

J. W. Lloyd. Foundations of Logic Programming, Second Edition.
Springer-Verlag, 1987.

Jén Sefréanek. A Kripkean semantics for dynamic logic programming.
Lecture Notes in Computer Science, 1955:469-77, 2000.

Martin Balaz (Mgr) is a postgraduate student at the Faculty of Math-

ematics, Physics and Informatics of the Comenius University in Bratislava.
His PhD-thesis supervisor is professor Jan Sefranek.

