
Induction From Answer Sets in Nonmonotonic
Logic Programs

CHIAKI SAKAMA
Wakayama University

Inductive logic programming (ILP) realizes inductive machine learning in computational logic.
However, the present ILP mostly handles classical clausal programs, especially Horn logic pro-
grams, and has limited applications to learning nonmonotonic logic programs. This article studies
a method for realizing induction in nonmonotonic logic programs. We consider an extended logic
program as a background theory, and introduce techniques for inducing new rules using answer
sets of the program. The produced new rules explain positive/negative examples in the context
of inductive logic programming. The proposed methods extend the present ILP techniques to a
syntactically and semantically richer framework, and contribute to a theory of nonmonotonic ILP.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic—computational logic; I.2.6 [Artificial Intelligence]: Learning—induction

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Answer sets, induction, nonmonotonic logic programs

1. INTRODUCTION

Induction realizes concept learning by constructing general sentences from ex-
amples. In the context of computational logic, inductive machine learning is
realized in the framework of Inductive Logic Programming (ILP) [Muggleton
1992; Muggleton and De Raedt 1994; Nienhuys-Cheng and De Wolf 1997]. ILP
provides a formal method for inductive learning and has advantages of us-
ing computational tools developed in logic programming. The goal of ILP is the
inductive construction of logic programs from examples and background knowl-
edge. Induction problems assume background knowledge which is incomplete,
otherwise there is no need to learn. Therefore, representing and reasoning with
incomplete knowledge are vital issues in ILP. On the other hand, the present
ILP mostly handles classical clausal theories, especially Horn logic programs.
However, it is known that logic programming based on classical Horn logic
is not sufficiently expressive for representing and reasoning with incomplete

Author’s address: Department of Computer and Communication Sciences, Wakayama University,
Sakaedani, Wakayama 640 8510, Japan; email: sakama@sys.wakayama-u.ac.jp.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1529-3785/05/0400-0203 $5.00

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005, Pages 203–231.

204 • C. Sakama

knowledge. In real life, humans perform default reasoning when one’s knowl-
edge is incomplete. Default reasoning is nonmonotonic in its feature, that is,
previously concluded facts might be withdrawn by the introduction of new infor-
mation. Horn logic programs are monotonic and inadequate for characterizing
nonmonotonic reasoning with incomplete information. To overcome such limi-
tations of Horn logic programming, nonmonotonic logic programming (NMLP)
is introduced by extending the representation language and enhancing the in-
ference mechanism [Baral and Gelfond 1994; Brewka and Dix 1997]. NMLP
aims at representing incomplete knowledge and reasoning with commonsense
in a program.

Induction is nonmonotonic reasoning in the sense that once induced hypothe-
ses might be changed by the introduction of new evidence. In ILP based on first-
order clausal logic, when one encounters new evidence, a theory which does not
account for the evidence is to be modified. For instance, observing a flock of
white swans one may induce the rule:

white(x) ← swan(x) .

When one finds a black swan, the above rule must be changed to account for the
new evidence. Using nonmonotonic logic, on the other hand, one does not nec-
essarily need to abandon a previously induced hypothesis in face of a counter-
example. For instance, by a flock of white swans one can induce a default rule
of Reiter [1980]:

swan(x) : while(x)
white(x)

,

representing “swans are normally white”. When one finds a black swan, the
above default rule is still effective by considering the black swan as an exception.
Thus, nonmonotonic logic would simplify an induction procedure and effectively
represent hypotheses by restricting the domain of applications [Gabbay et al.
1992].

In NMLP, default reasoning is realized using negation as failure (NAF). NAF
represents default negation in a program, and infers negation of a fact if it is not
provable in a program. Using an extended logic program [Gelfond and Lifschitz
1990], the above default rule is written as

white(x) ← swan(x), not ¬ white(x)

meaning that “if swan(x) holds and ¬white(x) is not proved, then conclude
white(x)”. Here, not is the negation-as-failure operator, which is distinguished
from classical negation ¬.

Some researchers in ILP, however, argue that negation as failure is inappro-
priate in machine learning. De Raedt and Bruynooghe [1990] say:

For concept learning, negation as failure (and the underlying closed
world assumption) is unacceptable because it acts as if everything
is known. Clearly, in learning this is not the case, since otherwise
nothing ought to be learned.

Although NAF or the closed world assumption is used for completing a theory,
it does not forbid the extension of the theory through induction. In fact, when

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 205

background knowledge is given as a Horn logic program, NAF infers negative
facts which are not proved from the program. If a new evidence E which is
initially assumed false under NAF is observed, this just means that the old
assumption ¬E is rebutted. The task of inductive learning is then to revise the
old theory to explain the new evidence. Thus, the use of NAF never invalidates
the need of learning in logic programming.

On the other hand, if NAF is excluded from a background program, we lose
the way of representing default negation in the program. This is a significant
drawback in representing knowledge and restricts application of ILP. In fact,
NAF enables to write shorter and simpler programs and appears in many basic
but practical Prolog programs. For instance, set difference in the relational
algebra is written as

r-s(x1, . . . , xk) ← r(x1, . . . , xk), not s(x1, . . . , xk),

where r and s are relations. Such a rule is not handled if background knowl-
edge is restricted to Horn logic programs. Moreover, induction produces general
rules, while rules normally have exceptions in real life. As presented above, non-
monotonic logic can effectively express exceptions which are represented using
NAF in NMLP. For instance, consider the following background knowledge B
and positive/negative examples E+/E−:

B : bird(x) ← penguin(x),
bird(a) ←, bird(b) ←, bird(c) ←,
penguin(d) ← .

E+ : fly(a), fly(b), fly(c).
E− : fly(d).

Then, a possible hypothesis is given as

fly(x) ← bird(x), not penguin(x) .

By contrast, it would require indirect and unsuccinct representation to specify
the same hypothesis using Horn logic programs. Handling exceptions is partic-
ularly important in the field of data mining. This is because in many applica-
tions a simple generalization might not cover all the instances in a database.
For instance, suppose that 95% of the patients suffering from a disease might
have similar symptoms, but 5% of them might have some unusual symptoms.
Under such circumstances, a small number of unusual cases is viewed as noisy
or exceptional data, but must be handled appropriately in the process of gen-
eralization [Cai et al. 1991].

Thus, realizing induction in the context of NMLP is an important and mean-
ingful step in ILP research. To realize induction in NMLP, it is necessary to ex-
tend the representation language and enhance reasoning ability in ILP. There
are several studies which extend the ordinary Horn ILP framework to non-
monotonic logic programs [Bain and Muggleton 1992; Dimopoulos and Kakas
1995; Martin and Vrain 1996; Inoue and Kudoh 1997; Seitzer 1997; Fogel and
Zaverucha 1998; Lamma et al. 2000; Otero 2001]. Generally speaking, how-
ever, ILP techniques in Horn logic programs are not directly applicable to

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

206 • C. Sakama

induction in NMLP due to the difference between nonmonotonic logic and classi-
cal clausal logic. For example, inverse resolution [Muggleton and Buntine 1992]
causes problems in the presence of NAF [Sakama 1999], and inverse entailment
[Muggleton 1995] is not applicable to NMLP in the original form [Sakama 2000].
Thus, to realize induction in nonmonotonic logic programs, it is necessary to
perform dedicated studies to develop new techniques for nonmonotonic ILP.

This article presents techniques of induction in nonmonotonic logic pro-
grams. We consider an extended logic program as a background theory. An
extended logic program can represent incomplete information in a program
by distinguishing two types of negation; classical (or explicit) negation and
default negation (negation as failure). The semantics of an extended logic pro-
gram is given by the answer sets [Gelfond and Lifschitz 1990], which represent
possible beliefs of the program. We then introduce a method of constructing
new rules from the answer sets of a program. The produced new rules explain
positive/negative examples in the context of ILP. The proposed algorithms are
efficiently realized for an important class of nonmonotonic logic programs in-
cluding stratified programs. From the viewpoint of NMLP, it provides a novel
application of answer set programming to concept learning in nonmonotonic
logic programs. Thus, the results of this paper combine techniques of the two
important fields of logic programming, NMLP and ILP, and contribute to a
theory of nonmonotonic inductive logic programming.

This article is a revised and extended version of Sakama [2001a]. The rest
of this article is organized as follows. Section 2 defines basic notions used in
this article. Section 3 provides induction algorithms for learning extended logic
programs from positive and negative examples. Section 4 discusses several
issues and Section 5 presents related work. Finally, Section 6 concludes the
article.

2. EXTENDED LOGIC PROGRAMS

A program considered in this article is an extended logic program (ELP)
[Gelfond and Lifschitz 1990], which is a set of rules of the form:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ m), (1)

where each Li is a literal and not represents negation as failure (NAF). The
literal L0 is the head and the conjunction L1, . . . , Lm, not Lm+1, . . . , not Ln is
the body. The conjunction in the body is identified with the set of conjuncts. For
a rule R, head(R) and body(R) denote the head and the body of R, respectively.
We allow a rule with the empty head of the form:

← L1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ 1), (2)

which is also called an integrity constraint. A rule with the empty body L ← is
identified with the literal L and is called a fact. An ELP is called a normal logic
program (NLP) if every literal appearing in the program is an atom. An NLP
P is called a Horn logic program if no rule in P contains NAF. A Horn logic
program is definite if it contains no integrity constraint. A rule is NAF-free if it
contains no not, that is, m = n for the rule (1) or (2). A program is NAF-free if
it consists of NAF-free rules.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 207

The rule (1) is semantically equivalent to the default rule:

L1 ∧ · · · ∧ Lm : ¬Lm+1, . . . , ¬Ln

L0
, (3)

where ¬ ¬ L = L. Thus, an ELP is considered a default theory of Reiter [1980].
Let Lit be the set of all ground literals in the language of a program. Any

element in Lit+ = Lit ∪ { not L | L ∈ Lit} is called an LP-literal and an
LP-literal not L is called an NAF-literal. For any LP-literal K , |K | = K if
K is a literal; and |K | = L if K = not L. For any LP-literal L, pred(L) de-
notes the predicate of L and const(L) denotes the set of constants appearing
in L. A proposition p is identified with the 1-ary atom p(nil) with the reserved
constant nil.1 A program, a rule, or an LP-literal is ground if it contains no
variable. Any variable in a program is interpreted as a free variable. A pro-
gram P is semantically identified with its ground instantiation, that is, the
set of ground rules obtained from P by substituting variables in P with ele-
ments of the Herbrand universe in every possible way. A ground instance of a
rule R is represented as Rθ where θ is a (ground) substitution that maps vari-
ables in R to ground terms. We shall use lowercase Greek letters to represent
substitutions.

Given a set S ⊂ Lit, we define

S+ = S ∪ {not L | L ∈ Lit \ S}.
S+ is called the expansion set of S. A set S(⊆ Lit) satisfies the conjunction of
ground LP-literals C = (L1, . . . , Lm, not Lm+1, . . . , not Ln) (written as S |= C)
if {L1, . . . , Lm} ⊆ S and { Lm+1, . . . , Ln} ∩ S = ∅. S satisfies a ground rule R
(written as S |= R) if S |= body(R) implies S |= head(R). In particular, S
satisfies a ground integrity constraint of the form (2) if {L1, . . . , Lm} �⊆ S or
{ Lm+1, . . . , Ln} ∩ S �= ∅. When a rule R contains variables, S |= R means that
S satisfies every ground instance of R.

The semantics of ELPs is given by the answer set semantics [Gelfond and
Lifschitz 1990]. First, let P be an NAF-free program and S ⊂ Lit. Then, S is a
consistent answer set of P if S is a minimal set that satisfies every ground rule
in the ground instantiation of P and does not contain both L and ¬L for any
L ∈ Lit. Next, let P be any program and S ⊂ Lit. Then, define the NAF-free
program P S as follows: a rule L0 ← L1, . . . , Lm is in P S iff there is a ground rule
L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln in the ground instantiation of P such
that { Lm+1, . . . , Ln} ∩ S = ∅. Here, L0 is possibly empty. Then, S is a consistent
answer set of P if S is a consistent answer set of P S . A consistent answer set is
simply called an answer set hereafter. An ELP may have none, one, or multiple
answer sets. When an ELP P is an NLP, answer sets coincide with stable models
of [Gelfond and Lifschitz 1988]; a definite Horn logic program has the unique
answer set which is the least Herbrand model. Regarding an ELP as a collection
of default rules of (3), the deductive closure of each answer set coincides with
an extension of the corresponding default theory [Gelfond and Lifschitz 1990].

1This is just a technical requirement to handle propositions and predicate atoms in a uniform
manner.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

208 • C. Sakama

A program P is consistent if it has an answer set; otherwise, P is inconsistent.
Throughout the article, a program is assumed to be consistent unless stated
otherwise. A program P is called categorical if it has a unique answer set [Baral
and Gelfond 1994]. If a rule R is satisfied in every answer set of P , it is written
as P |= R; otherwise, P �|= R. In particular, P |= L if a literal L is included in
every answer set of P ; otherwise, P �|= L.

Example 2.1. The program

a ← not b,
b ← not c

has the unique answer set {b}, hence, it is categorical.
The program

a ← not b,
b ← not a

has two answer sets {a} and {b}, which represents two alternative beliefs.
The program

a ← not a

has no answer set, hence it is inconsistent.

The predicate dependency graph of a program P is a directed graph such
that nodes are predicates in P and there is a positive edge (respectively, neg-
ative edge) from p1 to p2 if there is a rule R in P such that head(R) has the
predicate p1 and body(R) contains a literal L (respectively, not L) such that
pred(L) = p2. We say that p1 depends on p2 (in P) if there is a path from p1 to
p2. On the other hand, p1 strongly depends on p2 if for every path containing
the node p1, p1 depends on p2. Also, p1 negatively depends on p2 if any path
from p1 to p2 contains an odd number of negative edges. A program contains a
negative-cycle if there is a predicate which negatively depends on itself. A rule
R is called negative-cycle-free if there is no negative edge from pred(head(R))
to itself. The literal dependency graph is defined in the same manner as the
predicate dependency graph with the only difference that nodes are ground lit-
erals in the ground instantiation of P . For two ground literals L1 and L2, the
relation that L1 (strongly/negatively) depends on L2 is defined analogously to
the predicate case.

Example 2.2. Let P be the program:

R1 : p(x) ← not q(x),
R2 : q(x) ← not r(x),
R3 : q(x) ← s(x),
R4 : r(x) ← not r(x).

In P , p strongly and negatively depends on q, and p negatively depends on s
but not strongly depends on s. Rules R1 − R3 are negative-cycle-free, while R4
is not.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 209

3. INDUCTION IN NONMONOTONIC LOGIC PROGRAMS

3.1 Induction from a Positive Example

Positive examples are facts which are known to be true. In this section, we first
consider induction from a positive example. The problem setting considered
here is as follows.

Given:

—A background knowledge base P as an extended logic program;
—A positive example L as a ground literal such that

P �|= L ; (4)
—A target predicate that is subject to learn.

Find: A rule R such that

— P ∪ {R} is consistent and satisfying the relation
P ∪ {R} |= L ; (5)

— R has the target predicate in its head.

It is assumed that P , R, and L have the same underlying language.2

In the above problem setting, Assumption (4) means that the given example
L is not true in the background knowledge base, since if P |= L there is no
need to introduce R. A target predicate is a prespecified predicate representing
a concept that is subject to learn. In case of induction from a positive example,
we identify the target predicate with the one appearing in the example. The
problem is then how to construct a rule R satisfying Relation (5) automatically.

We first provide a couple of propositions that are used later.

PROPOSITION 3.1. Let P be a program and R a rule such that P ∪ {R} is
consistent. For any ground literal L, P ∪ {R} |= L and P |= R imply P |= L.

PROOF. Suppose that P ∪ {R} |= L, P |= R and P �|= L. Then, there is an
answer set S of P such that L �∈ S. By P |= R, S |= R and S |= {R}S . Then S
is an answer set of P S ∪ {R}S , hence an answer set of P ∪ {R}. As L �∈ S, this
contradicts the assumption P ∪ {R} |= L.

PROPOSITION 3.2. Let P be a program and L a ground literal such that
pred (L) appears nowhere in P. For any rule R that is negative-cycle-free, if
there is a ground instance Rθ of R with a substitution θ such that P ∪ {Rθ} |= L,
then P ∪ {R} |= L.

PROOF. Let R = (H ← �) where � is a conjunction of LP-literals. Since
P does not contain the predicate of L, P ∪ {Rθ} |= L implies L = Hθ .
Suppose that P ∪ {Rθ} has the answer sets S1, . . . , Sn. By P ∪ {Rθ} |= L,
L ∈ Si and Si |= �θ for i = 1, . . . , n. Since pred(L) = pred(H) appears
nowhere in P and R is negative-cycle-free, P ∪ {R} has the answer sets

2Throughout the article, in induction problems we assume that predicates, functions and constants
in the language are those appear in background knowledge and examples.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

210 • C. Sakama

Ti = Si ∪ {Hσ | Rσ is a ground instance of R such that Ti |= �σ }. Thus, every
answer set of P ∪ {R} contains L, hence P ∪ {R} |= L.

The result of Proposition 3.2 does not hold in general if a rule R contains a
negative-cycle.

Example 3.1. Let P be the program:

move(a, b) ←,
move(b, a) ← .

Then, for the rule

R : win(x) ← move(x, y), not win(y)

and the substitution θ = { x/a, y/b}, P ∪ {Rθ} has the unique answer set
{ move(a, b), move(b, a), win(a)}. Thus, P ∪ {Rθ} |= win(a). On the other hand,
P ∪ {R} �|= win(a), because P ∪ {R} has another answer set { move(a, b),
move(b, a), win(b)}.

By Proposition 3.1, P �|= L and P ∪ {R} |= L imply

P �|= R. (6)

Relation (6) is a necessary condition for the induction problem satisfying (4)
and (5). By Proposition 3.2, on the other hand, if an example L has a predicate
which does not appear in P , then finding a negative-cycle-free rule Rθ such that
P ∪ {Rθ} |= L leads to the construction of R satisfying (5). This is a sufficient
condition for R.

Proposition 3.2 assumes that the predicate of L appears nowhere in P just
by a technical reason. In induction problems, this condition is considered less
restrictive by the following reason. In many induction problems, an example L
is a newly observed evidence such that the background program P contains no
information on pred(L). On the other hand, when P contains a rule with pred(L)
in its head, the problem of computing hypotheses satisfying P ∪ {R} |= L is
usually solved using abduction [Kakas et al. 1998], which seeks the cause of
L in P . Moreover, when pred(head(R))(= pred(L)) appears nowhere in P , the
condition that R is negative-cycle-free guarantees the consistency of P ∪ {R}
whenever P is consistent. The conditions of Proposition 3.2 are relaxed when
P and R are NAF-free.

COROLLARY 3.3. Let P be an NAF-free program and L a ground literal. If
there is an NAF-free rule R such that P ∪ {R} is consistent and there is a
ground instance Rθ of R with a substitution θ such that P ∪ {Rθ} |= L, then
P ∪ {R} |= L.

PROOF. A consistent NAF-free ELP has the unique answer set. Suppose that
P1 and P2 are consistent NAF-free programs that have the answer sets S1 and
S2, respectively. Then, P1 ⊆ P2 implies S1 ⊆ S2. Since P ∪ {R} is consistent
and P ∪ {Rθ} ⊆ P ∪ {R}, the answer set of P ∪ {Rθ} is a subset of the answer
set of P ∪ {R}. Hence, the result holds.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 211

Corollary 3.3 is useful for ILP problems without NAF.
We use these necessary and sufficient conditions for induction in ELPs. To

simplify the problem, in the rest of this section we consider a program P , which
is function-free and categorical. We later consider noncategorical programs in
Section 4.1.

Definition 3.1. Given two ground LP-literals L1 and L2, the relation L1 ∼
L2 holds if pred(L1) = pred(L2) and const(L1) = const(L2). Let L be a ground
LP-literal and S a set of ground LP-literals. Then, L1 in S is relevant to L if
either (i) L1 ∼ L or (ii) for some LP-literal L2 in S, const(L1) ∩ const(L2) �= ∅
and L2 is relevant to L. Otherwise, L1 is irrelevant to L.

Given a program P and an example L, a ground LP-literal K is involved
in P ∪ {L} if |K | appears in the ground instance of P ∪ {L}. Otherwise, K is
disinvolved in P ∪ {L}.

Suppose that a background knowledge base P has the unique answer set S.
By (6), the following relation holds.

S �|= R. (7)

Then, we start on finding a rule R which satisfies Condition (7). Consider the
integrity constraint ← � with

� = {K ∈ S+ | K is relevant to L and is involved in P ∪ {L}}
where S+ is the expansion set of S. Note that we consider a function-free pro-
gram P , so � consists of finite LP-literals. Since S does not satisfy this integrity
constraint,

S �|= ← � (8)

holds. That is, ← � is a rule which satisfies Condition (7).
Next, by (4), it holds that P �|= L. Then, L �∈ S, thereby not L ∈ S+. Since

not L in S+ is relevant to L, the integrity constraint ← � contains not L in its
body. Then, shifting the literal L to the head produces

L ← �′ (9)

where �′ = � \ {not L}.
Finally, Rule (9) is generalized by constructing a rule R∗ such that

R∗θ = (L ← �′) (10)

for some substitution θ .
The algorithm IASpos (Induction from Answer Sets using a positive example)

is presented in Figure 1.
The rule R∗ satisfies Condition (6).

PROPOSITION 3.2. Let P be a categorical program and R∗ a rule obtained by
the algorithm IASpos. Then, P �|= R∗.

PROOF. Suppose a rule L ← �′ of (10). As �′ ⊆ S+ and L �∈ S, S �|= L ← �′.
Thus, S does not satisfy a ground instance (10) of R∗. Hence, S �|= R∗, thereby
P �|= R∗.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

212 • C. Sakama

Fig. 1. Induction from answer sets using a positive example.

The next theorem provides a condition of R∗ to become a solution satisfying
Relation (5).

THEOREM 3.5. Let P be a categorical program, L a ground literal represent-
ing a positive example, and R∗ a rule obtained by the algorithm IASpos. If R∗ is
negative-cycle-free and pred (L) appears nowhere in P, then P ∪ {R∗} |= L.

PROOF. Let R∗θ = (L ← �′) be the rule of (10). For the answer set S of P ,
S |= �′. Since pred (L) does not appear in P , S ∪ {L} becomes the answer set of
P ∪ {R∗θ}. Thus, P ∪ {R∗θ} |= L. As R∗ is negative-cycle-free, the result holds
by Proposition 3.2.

COROLLARY 3.6. Let P be a categorical program and R∗ a rule obtained by
the algorithm IASpos. If R∗ is negative-cycle-free and pred (head (R∗)) appears
nowhere in P, then P ∪ {R∗} is also categorical.

PROOF. Let S be the answer set of P . When R∗ is negative-cycle-free and
pred(head(R∗)) appears nowhere in P , S ∪ {head(R∗σ) | R∗σ is a ground in-
stance of R∗ such that S |= body(R∗σ)} becomes the unique answer set of
P ∪ {R∗}. Hence, the result follows.

Example 3.2. Consider the following background program P and the pos-
itive example L:

P : bird(x) ← penguin(x),
bird(tweety) ←,
penguin(polly) ← .

L : flies(tweety).

Initially, it holds that

P �|= flies(tweety).

Our goal is then to construct a rule R satisfying

P ∪ {R} |= flies(tweety).

First, the expansion set S+ of P is

S+ = { bird(tweety), bird(polly), penguin(polly),
not penguin(tweety), not flies(tweety), not flies(polly),

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 213

not ¬bird(tweety), not ¬bird(polly), not ¬penguin(polly),
not ¬penguin(tweety), not ¬flies(tweety), not ¬flies(polly)}.

From S+ picking up LP-literals which are relevant to L and are involved in
P ∪ {L}, the integrity constraint:

← bird(tweety), not penguin(tweety), not flies(tweety)

is constructed. Next, shifting flies(tweety) to the head produces

flies(tweety) ← bird(tweety), not penguin(tweety) .

Finally, replacing tweety by a variable x, the rule

R∗ : flies(x) ← bird(x), not penguin(x)

is obtained, where P ∪ {R∗} |= flies(tweety) holds.

3.2 Induction from a Negative Example

In induction problems, negative examples are considered as well as positive
ones. Negative examples are facts which are known not to be true. We next con-
sider induction from a negative example. The problem is presented as follows:

Given:

—A background knowledge base P as an extended logic program;
—A negative example L as a ground literal such that

P |= L ; (11)

—A target predicate which is subject to learn.

Find: A rule R such that

— P ∪ {R} is consistent and satisfying the relation

P ∪ {R} �|= L ; (12)

— R has the target predicate in its head.

As before, it is assumed that P , R, and L have the same underlying language.
The problem setting is in contrast to the case of induction from a positive

example. Condition (11) presents that the given negative example is initially
true in the background knowledge base. The goal is then to find a rule R sat-
isfying (12). Another difference is in the selection of a target predicate. In case
of positive examples, the target predicate is identified with the one appearing
in a positive example. This is because the purpose of induction from a positive
example is to construct a new rule which entails the positive example. In case of
negative examples, on the other hand, a negative example L is already entailed
from the background program P . The purpose is then to block the entailment
of L by introducing some rule R to P . In this situation, the rule R does not
have the predicate of L in its head in general. The target predicate is then
distinguished from the one appearing in L.

Note that in induction from a negative example, our problem setting is
slightly different from the one in classical ILP. In classical monotonic logic,

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

214 • C. Sakama

when P |= L for a negative example L, there is no way to introduce a new rule
R to satisfy P ∪ {R} �|= L. The task is then to change some existing rules in
P to block the derivation of L, and the target predicate is usually identical to
the one appearing in a negative example. By contrast, we do not change ex-
isting rules in a program, but introduce a new rule for this purpose. Such a
solution is characteristic when the background theory is a nonmonotonic logic
program.3

As the case of positive examples, we first introduce a necessary condition for
computing R.

PROPOSITION 3.7. Let P be a program and R a rule such that P ∪ {R} is
consistent. For any ground literal L, P ∪ {R} �|= L and P |= R imply P �|= L.

PROOF. Suppose that P ∪ {R} �|= L, P |= R and P |= L. Then, for any answer
set S of P , L ∈ S. By P |= R, S |= R and S |= {R}S . Then, S is an answer set
of P S ∪ {R}S , hence an answer set of P ∪ {R}. As L ∈ S, this contradicts the
assumption P ∪ {R} �|= L.

PROPOSITION 3.8. Let P be a program and L a ground literal. Suppose a
ground rule Rθ with a substitution θ such that P ∪ {Rθ} �|= L. If P ∪ {Rθ} |= R
and P ∪ {R} is consistent, then P ∪ {R} �|= L.

PROOF. Since P ∪ {Rθ} �|= L, there is an answer set S of P ∪ {Rθ} such that
L �∈ S. By P ∪ {Rθ} |= R, every answer set of P ∪ {Rθ} satisfies R, thereby
S |= R. Then, S is an answer set of a consistent program P ∪ {R}. Hence,
P ∪ {R} �|= L.

Example 3.3. Consider the following background program P and the neg-
ative example L:

P : p(x) ← not q(x),
r(a) ← .

L : p(a).

Let R = q(x) ← r(x) and θ = {x/a}. Then, P ∪ {Rθ} |= R, so that P ∪ {Rθ} �|= L
implies P ∪ {R} �|= L.

By Proposition 3.7, the relation

P �|= R (13)

is a necessary condition for the problem satisfying (11) and (12). On the other
hand, if we successfully find a ground rule Rθ such that P ∪ {Rθ} �|= L, P ∪
{Rθ} |= R, and P ∪ {R} is consistent, then P ∪ {R} �|= L holds by Proposition 3.8.

Using these results, we construct a rule in a manner similar to the case of a
positive example.

In the rest of this subsection, a program P is assumed to be function-free
and categorical. Suppose that a background knowledge base P has the unique

3We later discuss (dis)advantage of our solution in Section 4.2.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 215

answer set S. By (13), the relation

S �|= R

holds. The integrity constraint ← � is constructed with the set � ⊆ S+ of ground
LP-literals which are relevant to the negative example L and are involved in
P ∪ {L}. Remark that L ∈ � by (11). Then, the relation

S �|= ← �

holds. To construct an objective rule from the integrity constraint ← �, we shift
a literal which has a target predicate.

We select a target predicate as the predicate of an LP-literal K on which L
strongly and negatively depends in the literal dependency graph of P . Thus, if
� contains an LP-literal not K , which contains the target predicate satisfying
this condition, we construct the rule

K ← �′ (14)

from ← � where �′ = � \{not K }. Note that there may be none, one, or multiple
K satisfying the above condition. Here, we restrict our attention to the case
that the selection of K is possible and decidable, that is, there is a single not K
in � such that L strongly and negatively depends on K in P .

Rule (14) is generalized to R∗ as

R∗θ = (K ← �′)

by replacing constants with appropriate variables. The rule R∗, however, pro-
duces a negative-cycle in P ∪ {R∗} and the program P ∪ {R∗} is inconsistent in
general. This is because pred(L) strongly and negatively depends on pred(K)
in P , and �′ contains L. To obtain a consistent program, construct a rule R∗∗

as

R∗∗θ = (K ← �′′), (15)

where �′′ is obtained from �′ by dropping every LP-literal with a predicate that
strongly and negatively depends on pred(K) in P .

The algorithm IASneg (Induction from Answer Sets using a negative example)
is presented in Figure 2.

By its construction, R∗∗ satisfies Condition (13).

PROPOSITION 3.9. Let P be a categorical program and R∗∗ a rule obtained by
the algorithm IASneg . Then, P �|= R∗∗.

PROOF. Suppose a rule K ← �′′ of (15). As �′′ ⊆ S+ and K �∈ S, S �|= K ← �′′.
Thus, S does not satisfy a ground instance (15) of R∗∗, hence S �|= R∗∗ thereby
P �|= R∗∗.

The next theorem provides a sufficient condition for R∗∗ to become a solution
satisfying (12).

THEOREM 3.10. Let P be a categorical program, L a ground literal repre-
senting a negative example, and R∗∗θ a rule produced in the fourth step of
the algorithm IASneg. If P ∪ {R∗∗θ} |= R∗∗ and P ∪ {R∗∗} is consistent, then
P ∪ {R∗∗} �|= L.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

216 • C. Sakama

Fig. 2. Induction from answer sets using a negative example.

PROOF. Let R∗∗θ = (K ← �′′) be the rule of (15). Suppose that there is an
answer set S of P ∪ {R∗∗θ} such that S �|= �′′. Then, S is also the answer set
of P . On the other hand, by the construction of R∗∗θ , S |= �′′. Contradiction.
Thus, for any answer set S of P ∪ {R∗∗θ}, S |= �′′. Then, K ∈ S. Since L
strongly and negatively depends on K in P , L �∈ S. Hence, P ∪ {R∗∗θ} �|= L.
When P ∪ {R∗∗θ} |= R∗∗ and P ∪ {R∗∗} is consistent, the result holds by
Proposition 3.8.

Example 3.4. Consider the following background program P and the neg-
ative example L:

P : flies(x) ← bird(x), not ab(x),
bird(x) ← penguin(x),
bird(tweety) ←,
penguin(polly) ← .

L : flies(polly).

Initially, it holds that

P |= flies(polly).

Our goal is then to construct a rule R satisfying

P ∪ {R} �|= flies(polly).

First, the expansion set S+ of P is

S+ = {bird(tweety), bird(polly), penguin(polly), flies(tweety),
flies(polly), not penguin(tweety), not ab(tweety), not ab(polly),
not ¬bird(tweety), not ¬bird(polly), not ¬penguin(polly),
not ¬penguin(tweety), not ¬flies(tweety), not ¬flies(polly),
not ¬ab(tweety), not ¬ab(polly)}.

From S+ picking up LP-literals which are relevant to L and are involved in
P ∪ {L}, the following integrity constraint is constructed:

← bird(polly), penguin(polly), flies(polly), not ab(polly) .

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 217

Select ab as the target predicate where flies(polly) strongly and negatively de-
pends on ab(polly) in P . Then, shifting ab(polly) to the head, it becomes

ab(polly) ← bird(polly), penguin(polly), flies(polly) .

Dropping flies(polly) from the body and replacing polly by a variable x, we get

R∗∗ : ab(x) ← bird(x), penguin(x) .

Here, P ∪ {R∗∗θ} |= R∗∗ with θ = {x/polly} and P ∪ {R∗∗} is consistent, then
P ∪ {R∗∗} �|= flies(polly) holds.

The rule R∗∗ is further simplified as

ab(x) ← penguin(x)

using the second rule in P .

In contrast to the case of positive examples, for a categorical program P ,
P ∪ {R∗∗} is not necessarily categorical.

Example 3.5. Consider the following background program P and the neg-
ative example L:

P : p(x) ← not q(x),
r(b) ← not q(b).

L : p(a).

Here, P has the unique answer set {p(a), p(b), r(b)}. Then, the integrity con-
straint ← � becomes

← p(a), not q(a), not r(a).

As the target predicate is q, R∗∗ becomes

R∗∗ : q(x) ← not r(x).

The program P ∪ {R∗∗} has two answer sets: {q(a), q(b)} and {p(b), q(a), r(b)},
and P ∪ {R∗∗} �|= p(a) holds.

3.3 Induction from Multiple Examples

In Section 3.1, we presented an algorithm for induction from a single positive
example. The algorithm is also applicable to induction from a set of positive
examples by iteratively applying the procedure to each example. For instance,
suppose that the set of positive examples E = {flies(tweety), ¬flies(polly)} is
given to the program P of Example 3.2. Then, applying the algorithm IASpos to
each example, the rule

R∗
1 : flies(x) ← bird(x), not penguin(x)

is induced by the example flies(tweety), and the rule

R∗
2 : ¬flies(x) ← bird(x), penguin(x)

is induced by the example ¬flies(polly). As a result, P ∪ {R∗
1, R∗

2} |= L for every
L ∈ E. Generally, given a set of positive examples {L1, . . . , Ln}, the algorithm

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

218 • C. Sakama

IASpos is applied to each P ∪ {L1}, . . . , P ∪ {Ln}. When the resulting rules
R∗

1, . . . , R∗
n satisfy the condition of Theorem 3.5, P ∪ {R∗

1, . . . , R∗
n} |= Li holds

for i = 1, . . . , n. Formally,

THEOREM 3.11. Let P be a categorical program and {L1, . . . , Ln} a set of
ground literals representing positive examples. Suppose that a rule R∗

i is ob-
tained by the algorithm IASpos from P and Li (1 ≤ i ≤ n). If each R∗

i is
negative-cycle-free and pred(Li) (1 ≤ i ≤ n) appears nowhere in P, then
P ∪ {R∗

1, . . . , R∗
n} |= Li holds for i = 1, . . . , n.

PROOF. If each R∗
i is negative-cycle-free and pred(Li) = pred(head(R∗

i))
appears nowhere in P , the program P ∪ {R∗

1, . . . , R∗
n} has the answer

set S ∪ T where S is the answer set of P and T = {head (R∗
i σ) |

R∗
i σ is a ground instance of R∗

i (1 ≤ i ≤ n) such that S |= body(R∗
i σ)}. Let

R∗
i θi = (Li ← �′

i) be a rule produced in the fourth step of IASpos. Then, by the
construction of R∗

i θi, S |= �′
i, thereby Li ∈ T for i = 1, . . . , n. Hence, the result

holds.

The following result holds for induction from a set of negative examples.

THEOREM 3.12. Let P be a categorical program and {L1, . . . , Ln} a set of
ground literals representing negative examples. Suppose that a rule R∗∗

i θi =
(Ki ← �′′

i) is produced in the fourth step of the algorithm IASneg from P and
Li (1 ≤ i ≤ n) where P ∪ {R∗∗

i θi} |= R∗∗
i and P ∪ {R∗∗

i } is consistent. If pred(Ki)
depends on no pred(K j) (1 ≤ i, j ≤ n) in the predicate dependency graph of
a consistent program P ∪ {R∗∗

1 , . . . , R∗∗
n }, then P ∪ {R∗∗

1 , . . . , R∗∗
n } �|= Li for

i = 1, . . . , n.

PROOF. By the proof of Theorem 3.10, for any answer set S of P ∪ {R∗∗
i θi},

Li �∈ S and Ki ∈ S. Suppose that P ∪ {R∗∗
1 , . . . , R∗∗

n } |= Li for some i. Then,
Li ∈ T and Ki �∈ T for every answer set T of P ∪ {R∗∗

1 , . . . , R∗∗
n }. Here, Ki ∈ S\T

is due to the existence of some ground literal head(R∗∗
j σ) in T \ S (1 ≤ j ≤ n).

However, this cannot happen, since pred(Ki) does not depend on pred(K j) =
pred(head(R∗∗

j σ)). Thus, P ∪ {R∗∗
1 , . . . , R∗∗

n } �|= Li for i = 1, . . . , n.

When pred(Ki) depends on some pred(K j) (1 ≤ i, j ≤ n), the obtained rules
R∗∗

1 , . . . , R∗∗
n may interact with one another, and P ∪ {R∗∗

i } �|= Li (1 ≤ i ≤ n)
does not imply P ∪ {R∗∗

1 , . . . , R∗∗
n } �|= Li in general.

Example 3.6. Consider the following background program P and the neg-
ative examples L1 and L2:

P : p(x) ← not q(x),
r(a) ← q(b),
r(b) ←, s(a) ← .

L1 : p(a).
L2 : p(b).

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 219

Here, P has the single answer set {p(a), p(b), r(b), s(a)}. Applying the algo-
rithm IASneg ,

R∗∗
1 : q(x) ← s(x), not r(x)

is obtained from P and L1, and

R∗∗
2 : q(x) ← r(x), not s(x)

is obtained from P and L2. The program P ∪ {R∗∗
1 } has the single answer set

{p(b), q(a), r(b), s(a)}, thereby P ∪ {R∗∗
1 } �|= L1. And the program P ∪ {R∗∗

2 }
has the single answer set {p(a), q(b), r(a), r(b), s(a)}, thereby P ∪ {R∗∗

2 } �|= L2.
However, P ∪ {R∗∗

1 , R∗∗
2 } has the single answer set {p(a), q(b), r(a), r(b), s(a)}

and P ∪ {R∗∗
1 , R∗∗

2 } |= L1. Note here that q depends on itself in P ∪ {R∗∗
1 , R∗∗

2 }.
When a mixed set of positive and negative examples is given to a program

P , we firstly induce rules by positive examples and incorporate them into P .
Then, in the resulting program P ′, we subsequently induce rules by negative
examples. In this case, however, it does not necessarily produce a solution which
satisfies both positive and negative examples. For instance, given the program

P : q(x) ← r(x),
q(a) ←, q(b) ←,
r(c) ←,

and the positive example L = p(a), the hypothesis

R∗ : p(x) ← q(x), not r(x)

is induced by IASpos and P ∪ {R∗} |= L. Next, given the negative example
L′ = p(b) to P ∪ {R∗}, the hypothesis

R∗∗ : r(x) ← q(x)

is induced by IASneg and P ∪ {R∗, R∗∗} �|= L′, but P ∪ {R∗, R∗∗} �|= L. This
failure comes from the fact that the program P has no information to distinguish
between a and b. As a result, the procedure fails to construct a general rule
which distinguishes p(a) and p(b).

When examples are successively given, the result of induction depends
on the order of examples in general. For instance, given the program P =
{bird(tweety)} and the positive example E1 = {has wing (tweety)}, the rule

R∗
1 : has wing(x) ← bird(x)

is induced by IASpos. Next, from the program P ∪{R∗
1} and the positive example

E2 = {flies(tweety)}, the rule

R∗
2 : flies(x) ← bird(x), has wing(x)

is induced by IASpos. By contrast, from P and E2 the rule

R∗
3 : flies(x) ← bird(x)

is induced, and from P ∪ {R∗
3} and E1 the rule

R∗
4 : has wing(x) ← bird(x), flies(x)

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

220 • C. Sakama

is induced. Thus, in incremental learning the order of examples taken into
consideration affects the induced program in general.4

In classical ILP, once a positive example is covered by induction, the example
is covered after further generalization. Suppose that a positive example L1 is
given to a first-order theory P and induction constructs a rule R1 satisfying
P ∪ {R1} |= L1. Suppose further that another positive example L2 is given
to the new knowledge base P1 = P ∪ {R1} and induction constructs a rule
R2 satisfying P1 ∪ {R2} |= L2. In this case, the knowledge base P1 ∪ {R2}
still implies the previous example L1, that is, P1 ∪ {R2} |= L1. This is due to
the monotonicity of classical logic. In case of nonmonotonic theories, however,
such monotonicity does not hold in general. That is, introducing R2 to P1 may
block the derivation of the previous example L1. For instance, put P = ∅,
R1 = (p ← not q), R2 = (q ← not r), L1 = p, and L2 = q. Then, P ∪ {R1} |= p
and P ∪ {R1, R2} |= q, but P ∪ {R1, R2} �|= p.

Such nonmonotonicity inevitably happens in nonmonotonic logic programs,
but it is an undesired property for induction. Our induction algorithm IASpos

has the monotonicity property with respect to positive examples if the obtained
rule R is negative-cycle-free and pred(head(R)) appears nowhere in the back-
ground program P . More precisely,

THEOREM 3.13. Let P be a categorical program, and L1 and L2 be ground
literals representing positive examples such that pred(L1) and pred(L2) appear
nowhere in P. Suppose that a negative-cycle-free rule R∗

1 is obtained by the
algorithm IASpos from P and L1. Also, suppose that a negative-cycle-free rule R∗

2
is obtained by the algorithm IASpos from P ∪ {R∗

1} and L2. Then, P ∪ {R∗
1, R∗

2} |=
Li (i = 1, 2).

PROOF. By Theorem 3.5, P ∪ {R∗
1} |= L1 and P ∪ {R∗

1} is categorical (Corol-
lary 3.6). Since R∗

2 has the predicate pred(L2) in its head and pred(L2) appears
nowhere in P , it holds that either (i) pred(L2) appears nowhere in P ∪ {R∗

1} or
(ii) pred(L2) = pred(L1). In case of (i), P ∪ {R∗

1, R∗
2} |= L2 by Theorem 3.5 and

P ∪ {R∗
1, R∗

2} is categorical. As the body of R∗
1 is still satisfied in the answer set

of P ∪ {R∗
1, R∗

2}, P ∪ {R∗
1, R∗

2} |= L1. In case of (ii), let L2 = head(R∗
2θ). By the

construction of R∗
2θ , the answer set S of P ∪ {R∗

1} satisfies body(R∗
2θ). Then,

P ∪ {R∗
1, R∗

2θ} has the answer set S ∪ {L2}, so that P ∪ {R∗
1, R∗

2θ} |= L1 and
P ∪ {R∗

1, R∗
2θ} |= L2. Since R∗

1 and R∗
2 are negative-cycle-free, the introduction

of any ground instance R∗
2σ to P ∪ {R∗

1, R∗
2θ} does not affect the entailment of

L1 and L2. Hence, P ∪ {R∗
1, R∗

2} |= L1 and P ∪ {R∗
1, R∗

2} |= L2.

For induction from negative examples, the following result holds:

THEOREM 3.14. Let P be a categorical program, and L1 and L2 be ground
literals representing negative examples. Suppose that a rule R∗∗

1 θ1 = (K1 ← �′′
1)

is produced in the fourth step of the algorithm IASneg from P and L1, where
P ∪ {R∗∗

1 θ1} |= R∗∗
1 and P ∪ {R∗∗

1 } is consistent and categorical. Also, suppose that

4In this example, however, unfolding R∗
2 in P ∪ {R∗

1} produces R∗
3, and unfolding R∗

4 in P ∪ {R∗
3}

produces R∗
1. Thus, the two programs P ∪ {R∗

1, R∗
2} and P ∪ {R∗

3, R∗
4} are semantically equivalent.

At the moment, it is unknown whether such an equivalence relation holds in general.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 221

a rule R∗∗
2 θ2 = (K2 ← �′′

2) is produced by the algorithm IASneg from P ∪ {R∗∗
1 }

and L2, where P ∪ {R∗∗
1 , R∗∗

2 θ2} |= R∗∗
2 and P ∪ {R∗∗

1 , R∗∗
2 } is consistent. If

pred(Ki) does not depend on pred(K j) for i, j = 1, 2 in P ∪ {R∗∗
1 , R∗∗

2 }, then
P ∪ {R∗∗

1 , R∗∗
2 } �|= Li (i = 1, 2).

PROOF. Similar to the proof of Theorem 3.12.

4. DISCUSSION

4.1 Induction in Noncategorical Programs

In Section 3, we considered induction in categorical programs. The proposed
algorithm is also extensible to noncategorical programs having multiple answer
sets. When a program has more than one answer set, different rules are induced
by each answer set. In induction from a positive example, Relation (6)

P �|= R

is a necessary condition as before. When P has multiple answer sets, this re-
lation presents that some answer set of P does not satisfy R. For each answer
set Si of P , we consider a rule Ri satisfying Relation (7)

Si �|= Ri .

A rule R∗
i is constructed from each Si in the same manner as presented in Sec-

tion 3.1. The result of Theorem 3.5 is then extended to noncategorical programs
as follows:

THEOREM 4.1. Let P be a program and L a ground literal representing a pos-
itive example. Suppose that P has the answer sets S1, . . . , Sn and the algorithm
IASpos produces the rules R∗

i using Si (i = 1, . . . , n). If each R∗
i is negative-cycle-

free and pred(L) appears nowhere in P, then P ∪ {R∗
1, . . . , R∗

n} |= L.

PROOF. If each R∗
i is negative-cycle-free and pred(L) appears nowhere in

P , P ∪ {R∗
1, . . . , R∗

n} is consistent. Let R∗
i θi = (L ← �′

i) be a rule pro-
duced in the fourth step of IASpos. By the construction of R∗

i θi, Si |= �′
i.

Thus, P ∪ {R∗
1θ1, . . . , R∗

nθn} has the answer sets S1 ∪ {L}, . . . , Sn ∪ {L}. Then,
P ∪ {R∗

1, . . . , R∗
n} has the answer sets Ti = Si ∪ {L} ∪ {head (R∗

j σ) |
R∗

j σ is a ground instance of R∗
j such that Si |= body(R∗

j σ) (1 ≤ j ≤ n)} for
i = 1, . . . , n. Hence, P ∪ {R∗

1, . . . , R∗
n} |= L.

Example 4.1. Consider the following background program P and the pos-
itive example L:

P : p(x) ← not q(x),
q(x) ← not p(x).

L : r(a).

Here, P has two answer sets S1 = {p(a)} and S2 = {q(a)}. Then, applying the
algorithm IASpos to each answer set, the rule

R∗
1 : r(x) ← p(x), not q(x)

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

222 • C. Sakama

is induced using S1, while the rule

R∗
2 : r(x) ← q(x), not p(x)

is induced using S2. As a result, P ∪ {R∗
1, R∗

2} |= L holds.

For induction from a negative example, Theorem 3.10 is extended to non-
categorical programs as follows.

THEOREM 4.2. Let P be a program and L a ground literal representing a
negative example. Suppose that P has the answer sets S1, . . . , Sn and the algo-
rithm IASneg produces the rules R∗∗

i θi = (K ← �′′
i) using Si (i = 1, . . . , n). If

P ∪ {R∗∗
1 θ1, . . . , R∗∗

n θn} |= R∗∗
i (i = 1, . . . , n) and P ∪ {R∗∗

1 , . . . , R∗∗
n } is consistent,

then P ∪ {R∗∗
1 , . . . , R∗∗

n } �|= L.

PROOF. Suppose that there is an answer set S of P ∪ {R∗∗
1 θ1, . . . , R∗∗

n θn} such
that S �|= �′′

i for any i = 1, . . . , n. Then, S becomes an answer set of P . On the
other hand, R∗∗

i θi (i = 1, . . . , n) is constructed by each answer set of P , so that
there is a rule R∗∗

i θi satisfying S |= �′′
i . Contradiction. Thus, for every answer set

S of P ∪ {R∗∗
1 θ1, . . . , R∗∗

n θn}, there is a rule R∗∗
i θi such that S |= �′′

i . Then, K ∈ S
and L �∈ S. Hence, P ∪ {R∗∗

1 θ1, . . . , R∗∗
n θn} �|= L. By P ∪ {R∗∗

1 θ1, . . . , R∗∗
n θn} |=

R∗∗
i (i = 1, . . . , n), every answer set of P ∪ {R∗∗

1 θ1, . . . , R∗∗
n θn} satisfies R∗∗

i ,
thereby S |= R∗∗

i (i = 1, . . . , n). Thus, S is an answer set of a consistent program
P ∪ {R∗∗

1 , . . . , R∗∗
n }. Hence, P ∪ {R∗∗

1 , . . . , R∗∗
n } �|= L.

In Section 3, we considered function-free background programs. When a pro-
gram P contains functions, the expansion set S+ is infinite in general. In this
case, the integrity constraint ← � is built from a finite subset � of S+, where
� consists of LP-literals which are relevant to the example L and are involved
in P ∪ {L}, and not L ∈ �.

Example 4.2. Consider the following background program P and the pos-
itive example L:

P : even(s(x)) ← not even(x),
even(0) ← .

L : odd(s(0)),

where P �|= L. Then, the expansion set of P becomes

S+ = {even(0), not even(s(0)), even(s(s(0))), . . . ,
not odd(0), not odd(s(0)), not odd(s(s(0))), . . .}.

Build the constraint as

← even(0), not odd(s(0)).

By shifting odd(s(0)) to the head and generalizing it, the rule

R∗ : odd(s(x)) ← even(x)

is obtained where P ∪ {R∗} |= L.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 223

In the above example, other solutions such as odd(s(x)) ← not even(s(x))
and odd(s(x)) ← even(s(s(x))) are also constructed by different selection of �.
The rule odd(s(x)) ← not odd(x) containing a negative-cycle is also constructed,
which becomes a solution. However, a rule with a negative-cycle does not always
become a solution, e.g., odd(s(x)) ← not odd(s(s(x))).

4.2 Correctness and Completeness

An induction algorithm is correct with respect to a positive example (respec-
tively, a negative example) L if a rule R produced by the algorithm satisfies
P ∪ {R} |= L (respectively, P ∪ {R} �|= L). We provided sufficient conditions to
guarantee the correctness of the proposed algorithm with respect to a positive
example (Theorem 3.5) and a negative example (Theorem 3.10).

On the other hand, an induction algorithm is complete with respect to a
positive example (respectively, a negative example) L if it produces every rule
R satisfying P ∪ {R} |= L (respectively, P ∪ {R} �|= L). The proposed algorithm
is incomplete with respect to both positive and negative examples. For instance,
in Example 3.2, the rule flies(tweety) ← bird(polly) explains flies(tweety) in P ,
while this rule is not constructed by the procedure IASpos. Generally, there exist
possibly infinite solutions for explaining an example. For instance, consider the
program P and the positive example L such that

P : r(f (x)) ← r(x),
q(a) ←,
r(b) ← .

L : p(a).

Then, the following rules

p(x) ← q(x),
p(x) ← q(x), r(b),
p(x) ← q(x), r(f (b)),

· · ·
all explain p(a). However, every rule except the first one appears meaningless.
In the presence of NAF, useless hypotheses

p(x) ← q(x), not q(b),
p(x) ← q(x), not r(a),

· · ·
are easily constructed by attaching arbitrary NAF-literal not L such that P �|= L
to the body of a rule. These examples show that the completeness of induction
algorithms without any restriction is of little value in practice because there are
huge number of useless hypotheses in general. What is important is selecting
meaningful hypotheses in the process of induction, and this is realized in our
algorithms by filtering out irrelevant or disinvolved LP-literals in the expan-
sion set S+ to construct the constraint ← �. Intuitively, irrelevant LP-literals
have no connection with the given example in a background program. In the

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

224 • C. Sakama

above example, r(b), r(f (b)), . . . are irrelevant to p(a). On the other hand, a
disinvolved LP-literal is an LP-literal L or not L such that L never appears
in a background program nor an example. For instance, in the above example
not ¬q(a) is relevant to p(a) in P , but ¬q(a) never appears in P ∪ {L} hence
not ¬q(a) is disinvolved. The conditions of relevance and involvement are con-
sidered inductive bias to reduce the search space of inductive hypotheses.

Our induction algorithms compute a single rule as a hypothesis, but can-
not find a set of hypotheses which work together to explain an example. For
instance, consider the background program P and the positive example L:

P : q ← not q, r,
r ← .

L : p.

Then, H = {p ← r, q ←} satisfies P ∪H |= L, but such a set of rules is not built
from the algorithm IASpos. In the above example, P is inconsistent (having no
answer set), so that the rule q ← is introduced to make P ∪ H consistent.

Our induction algorithms explain positive/negative examples by introducing
a new rule to a program, but they do not change nor delete existing rules in
the background program to explain new evidences. Techniques of modifying
the existing knowledge base using given examples are studied in the context of
theory refinement [Richards and Mooney 1995]. Our present algorithms are con-
sidered restrictive in the sense that they do not modify the existing knowledge
base. However, this restriction brings an advantage that it is easy to recover
the old knowledge base when there is an error in examples. That is, we can
recover the old knowledge base just by abandoning newly acquired knowledge.
Our algorithms do not change existing rules, but the result of induction often
has the same effect as modifying rules in a program. For instance, consider the
background program P and the positive example L:

P : p ← q, r,
q ← .

L : p.

The expansion set S+ of P becomes {q, not p, not r}, then the hypothesis R =
(p ← q, not r) is constructed by IASpos. On the other hand, the rules p ← q, r
and p ← q, not r in P ∪{R} are merged as p ← q, which is equivalent to the rule
obtained by dropping r from the first rule in P . Thus, combining our induction
algorithms with appropriate program transformation techniques would build
possible hypotheses in a more flexible manner.

4.3 Computability

In Section 3, we considered a program which is function-free and categori-
cal. An important class of categorical programs is (locally) stratified programs
[Przymusinski 1988]. When a stratified program P is function-free, the an-
swer set (or equivalently, the perfect model) M of P is constructed in time
linear in the size of the program [Schlipf 1995]. In this case, the expansion set
M+ = M ∪ {not A | A ∈ HB \ M }, where HB is the Herbrand base of P , is

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 225

also finite and the selection of relevant LP-literals (with respect to the input
example L) from M+ is done in polynomial-time.5 More precisely, let #p be the
number of predicates with the maximum arity k in P ∪{L} and #c the number of
constants in the Herbrand universe of P ∪ {L}. Then, the size of the expansion
set M+ of P has an upper bound of #p · (#c)k . As a result, a hypothesis R∗ or
R∗∗ is efficiently constructed from M+.

In a non-stratified program, computation of answer sets is intractable in
general. Nevertheless, once an answer set is obtained, a possible hypothesis
based on its expansion set is constructed in polynomial time.

5. RELATED WORK

5.1 Learning Nonmonotonic LPs

There are some ILP systems which learn nonmonotonic logic programs. Bain
and Muggleton [1992] introduce an algorithm called closed world specializa-
tion. In this algorithm, monotonic rules satisfying positive examples are first
constructed and they are subsequently specialized by incorporating NAF lit-
erals to the bodies of rules. Inoue and Kudoh [1997] and Lamma et al. [2000]
introduce algorithms for learning extended logic programs. They also divide
the process of learning nonmonotonic logic programs into two steps: produc-
ing monotonic rules by an ordinary induction algorithm for Horn ILP, then
specializing them by introducing NAF-literals to the bodies. However, these
algorithms based on Horn ILP have problems such that once nonmonotonic
rules are learned and incorporated into the background knowledge, Horn in-
duction algorithms cannot be applied anymore to the new (nonmonotonic) back-
ground knowledge. Nicolas and Duval [2001] present an algorithm for learn-
ing a default theory from a set of positive/negative examples. Since an ELP
is viewed as a default theory, the algorithm proposed in this article is also
considered a method of learning default theories. Comparing the results of in-
duction, they learn a set of seminormal default rules of the form (α : β ∧ γ)/γ ,
while default rules induced by our algorithms are not necessarily seminormal.
Like Bain and Muggleton [1992], Inoue and Kudoh [1997], and Lamma et al.
[2000], their algorithm relies on an ordinary Horn ILP procedure to acquire
concept definitions, which is followed by a prover for default logic to remove
exceptions.

In addition, there is an important difference between [Inoue and Kudoh 1997;
Lamma et al. 2000; Nicolas and Duval 2001] and ours for handling negative
examples. Those studies represent negative examples by negative literals and
define the problem of induction from a negative example L as finding a set of
default rules H satisfying P ∪ H |= L. By contrast, we give a negative example
L as a positive/negative literal and define the problem as computing a rule R
satisfying P ∪ {R} �|= L. Thus, they capture negative examples as negative facts
which should be entailed from a program, while we capture negative examples
as positive/negative facts which should not be entailed from a program. In the

5Normal logic programs (including stratified programs) do not include negative literals, so that the
condition of involvement is automatically satisfied (cf. footnote 2).

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

226 • C. Sakama

framework of Inoue and Kudoh [1997], Lamma et al. [2000], and Nicolas and
Duval [2001], however, the distinction between positive and negative examples
no longer exists, since in ELPs and default theories positive and negative liter-
als have equal standings with respect to provability. In fact, their definition of
induction from negative examples is identical to the definition of induction from
positive examples. Our problem setting is based on the usual one in the clausal
ILP [Muggleton and De Raedt 1994; Nienhuys-Cheng and De Wolf 1997; Flach
2000] in which negative examples are defined as evidences which are not en-
tailed by the new knowledge base after induction. Note that we do not assume
the closed world assumption in our problem setting; hence, there is a room for
the existence of facts that are unknown to be true/false. On the other hand, our
method is also used for induction from negative examples which is considered
in Inoue and Kudoh [1997], Lamma et al. [2000], and Nicolas and Duval [2001]
by applying the algorithm IASpos to negative examples represented by negative
literals (see the introductory example in Section 3.3).

Dimopoulos and Kakas [1995] construct default rules with exceptions. They
represent exceptions by a prioritized hierarchy without using NAF and use an
ordinary ILP algorithm for learning, which is in contrast to our algorithms that
learn nonmonotonic rules with NAF. Bergadano et al. [1996] propose a system
for learning normal logic programs, but it selects hypotheses from candidates
given in input to the system and does not construct hypotheses. For other sys-
tems, Quinlan [1990] provides an induction algorithm which learns definite
clauses possibly containing negation in its body. Martin and Vrain [1996] in-
troduce an algorithm for learning NLPs under the 3-valued semantics. Fogel
and Zaverucha [1998] learn strict and call-consistent NLPs using subsumption
and iteratively constructed training examples. Algorithms of Quinlan [1990],
Martin and Vrain [1996], and Fogel and Zaverucha [1998] construct hypothe-
ses in a top-down manner, that is, generating hypotheses one after another
from general one to specific one. By contrast, our algorithms are bottom-up,
that is, a specific hypothesis is firstly constructed by an expansion set and
it is subsequently generalized. Generally, top-down algorithms are liable to
produce a relatively large hypotheses space without a guide for intelligent
search.

5.2 Induction from Stable Models

Seitzer [1997] proposes a system called INDED. It consists of a deductive en-
gine which computes the stable models or the well-founded model of a back-
ground normal logic program, and an inductive engine which empirically con-
structs hypotheses using the computed models and positive/negative examples.
In the inductive part, the algorithm constructs hypotheses using a generic top-
down manner, which is in contrast to the bottom-up method considered in this
article. The top-down induction algorithm is an ordinary one used in Horn
ILP.

Otero [2001] characterizes induction problems in normal logic programs
under the stable model semantics. He considers minimal and most specific
solutions by introducing facts to a program. For instance, in Example 3.2,

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 227

R = flies(tweety) ← is the most specific solution to satisfy P ∪ {R} |= L. He
also considers induction from several sets of examples such that: given an NLP
P and several sets of examples E1, . . . , En where Ei = E+

i ∪ E−
i (1 ≤ i ≤ n),

H is a solution of induction if there is a stable model Mi of P ∪ H such that
Mi |= E+

i and Mi �|= E−
i for each Ei. He then concludes that nonmonotonic hy-

potheses are only truly needed when the problem is induction from several sets
of examples. We do not consider problems of this type in this article. However,
his solution for a single set of examples is not a “usual” solution of induction. In
fact, the goal of induction is to explain examples not by just introducing facts,
but by constructing general rules. His solution is considered abduction rather
than induction.

5.3 Nonmonotonic Induction

In the field of ILP, it is often considered the so-called nonmonotonic problem
setting [Helft 1989]. Given a background Horn logic program P and a set E of
positive examples, it computes a hypothesis H which is satisfied in the least
Herbrand model of P ∪ E. This is also called the weak setting of ILP [De Raedt
and Lavrač 1993]. In this setting, any fact which is not derived from P ∪ E is
assumed to be false under the closed world assumption (CWA). By contrast, the
strong setting of ILP computes a hypothesis H which, together with P , implies
E, and does not imply negative examples. The strong setting is widely explored
in ILP and is also considered in this article.6 The nonmonotonic setting is called
“nonmonotonic” in the sense that it performs a kind of default reasoning based
on the CWA. Some systems take similar approaches using Clark’s completion
(e.g., De Raedt and Bruynooghe [1993]). The above-mentioned nonmonotonic
setting is clearly different from our problem setting. They still capture an in-
duction problem within clausal logic, while we consider the problem in non-
monotonic logic programs.

5.4 Inverse Entailment

Given the background Horn logic program B and a positive example E, inverse
entailment (IE) [Muggleton 1995] is based on the idea that a possible hypothesis
H satisfying the relation

B ∪ {H} |= E

is deductively constructed from B and E by inverting the entailment relation
as

B ∪ {¬E} |= ¬H.

When a background theory is a nonmonotonic logic program, however, the IE
technique cannot be used. This is because IE is based on the deduction theo-
rem in first-order logic, but it is known that the deduction theorem does not
hold in nonmonotonic logics in general [Shoham 1987]. Then, Sakama [2000]
reconstructs a theory of IE in nonmonotonic logic programs and introduces the

6The weak setting is also called descriptive/confirmatory induction, while the strong setting is
called explanatory/predictive induction [Flach 2000].

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

228 • C. Sakama

inverse entailment theorem in normal logic programs under the stable model
semantics as follows:

THEOREM 5.1 (SAKAMA 2000). Let P be an NLP and R a rule such that P ∪
{R} is consistent. For any ground LP-literal L, P |= not L and P ∪ {R} |= L
imply P |= not R.

Here, L is either A or not A for a ground atom A. And P |= not L means that
L is false in every stable model of P , and P |= not R means that R is satisfied
in no stable model of P . Theorem 5.1 is close to Propositions 3.1 and 3.7 in this
article, while there is a subtle difference between them. For the case of induc-
tion from a positive example, this article assumes the initial condition P �|= L,
then P ∪ {R} |= L implies P �|= R. When P is an NLP, the condition P �|= L
presents that L is false in some stable model of P , while P |= not L presents
that L is false in every stable model of P . The former condition is weaker than
the latter one in the sense that the former presents the falsity of the example
in P under credulous inference, while the latter is under skeptical inference.
As a result, the weaker condition implies P �|= R, and the stronger one im-
plies P |= not R. These two conditions coincide when a program is categorical.
Similar arguments are done for the case of induction from a negative example.
Compared with Sakama [2000], this paper formalizes the result for a wider
class of programs in a much simpler manner.

Muggleton [1998] proposes a modified version of IE which is complete for
building hypotheses in Horn theories. It constructs a hypothetical clause using
the enlarged bottom set which is the least Herbrand model of a background
program augmented by closed world negation. In a Horn logic program, the
expansion set S+ considered in this article has an effect similar to the enlarged
bottom set. However, Muggleton does not provide a condition for the correctness
nor handle induction from negative examples.

5.5 Answer Set Programming

Answer set programming (ASP) is a new paradigm of logic programming which
attracts much attention recently [Marek and Truszczyński 1999; Niemelä 1999;
Lifschitz 2002]. In the presence of negation as failure, a logic program generally
has multiple intended models, which is in contrast to the single least Herbrand
model in a Horn logic program. ASP views a program as a set of constraints
that every solution should satisfy, then it extracts solutions from the collection
of answer sets of the program. We constructed inductive hypotheses from an-
swer sets where a background theory and examples work as constraints which
inductive hypotheses should satisfy. Thus, induction problems in nonmonotonic
logic programs are captured as a problem of ASP. The result implies that ex-
isting proof procedures for answer set programming are used for computing
hypotheses in nonmonotonic ILP.

Answer sets are used for computing hypotheses in logic programming. For
instance, in abduction hypothetical facts which explain an observation are
computed using the answer sets of an abductive logic program [Kakas and
Mancarella 1990; Inoue and Sakama 1996; Eiter et al. 1999; Sakama and

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 229

Inoue 1999]. By contrast, in induction hypothetical rules that explain positive/
negative examples are constructed from a background theory and exam-
ples. We showed that such rules are automatically constructed using an-
swer sets of a program. The result indicates that answer sets are useful for
computing induction as well as abduction and exploits new application of
ASP.

6. CONCLUSION

Induction is a nonmonotonic inference from incomplete knowledge, while tech-
niques in ILP have been centered on monotonic clausal logic so far, especially
on Horn logic. To enrich the language and to enhance the reasoning capability,
extending the ILP framework to nonmonotonic logic programs is an important
step towards a better learning tool in AI. To achieve the goal, this article built
a theory of induction from nonmonotonic logic programs. We introduced algo-
rithms for constructing new rules from the answer sets of an extended logic
program, and provided conditions to explain positive and negative examples.
The proposed method extends the ILP framework to a syntactically and seman-
tically richer framework, and contributes to a theory of induction in nonmono-
tonic logic programs.

Commonsense reasoning and machine learning are indispensable for real-
izing intelligent information systems. Then, combining techniques of NMLP
and ILP in the context of nonmonotonic inductive logic programming (NMILP)
is meaningful and important [Sakama 2001]. Such combination will extend
the representation language on the ILP side, while it will introduce a learning
mechanism to programs on the NMLP side. From the practical viewpoint, such
combination will be beneficial for ILP to use well-established techniques of
NMLP. In fact, our induction algorithms construct hypotheses using answer
sets, so that it is realized on top of the existing procedures for answer set
programming.7 In contrast to clausal ILP, the field of NMILP is less explored
and several issues remain open. On the theoretical side, we used the answer
set semantics in this article, while a different theory of induction would be con-
structed using other NMLP semantics. On the practical side, NAF is useful to
express exceptions, and induction of nonmonotonic default rules would have an
important application in the field of data mining. These issues have yet to be
investigated.

ACKNOWLEDGMENTS

The author thanks the anonymous referees for their valuable comments.

REFERENCES

BAIN, M. AND MUGGLETON, S. 1992. Non-monotonic learning. In Inductive Logic Programming,
S. Muggleton, Ed. Academic Press, Orlando, Fla., 145–161.

BARAL, C. AND GELFOND, M. 1994. Logic programming and knowledge representation. J. Logic
Prog. 19/20, 73–148.

7The algorithm IASpos of induction from a positive example is implemented by Guray Alsac at
Arizona State University. The system is available at http://www.wakayama-u.ac.jp/~sakama/IAS.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

230 • C. Sakama

BERGADANO, F., GUNETTI, D., NICOSIA, M., AND RUFFO, G. 1996. Learning logic programs with nega-
tion as failure. In Advances in Inductive Logic Programming, L. De. Raedt, Ed. IOS Press, 107–
123.

BREWKA, G. AND DIX, J. 1997. Knowledge representation with logic programs. In Proceedings of the
3rd Workshop on Logic Programming and Knowledge Representation. Lecture Notes in Artificial
Intelligence, vol. 1471. Springer-Verlag, New York, 1–51.

CAI, Y., CERCONE, N., AND HAN, J. 1991. Attribute-oriented induction in relational databases. In
Knowledge Discovery in Databases, G. P.-Shapiro and W. J. Frawley, Eds. AAAI Press, 213–228.

DE RAEDT, L. AND BRUYNOOGHE, M. 1990. On negation and three-valued logic in interactive concept
learning. In Proceedings of the 9th European Conference on Artificial Intelligence. Pitman, 207–
212.

DE RAEDT, L. AND BRUYNOOGHE, M. 1993. A theory of clausal discovery. In Proceedings of the
13th International Joint Conference on Artificial Intelligence. Morgan-Kaufmann, San Francisco,
Calif., 1058–1063.

DE RAEDT, L. AND LAVRAČ, N. 1993. The many faces of inductive logic programming. In Proceedings
of the 7th International Symposium on Methodologies for Intelligent Systems. Lecture Notes in
Artificial Intelligence, vol. 689. Springer-Verlag, New York, 435–449.

DIMOPOULOS, Y. AND KAKAS, A. 1995. Learning nonmonotonic logic programs: learning exceptions.
In Proceedings of the 8th European Conference on Machine Learning. Lecture Notes in Artificial
Intelligence, vol. 912. Springer-Verlag, New York, 122–137.

EITER, T., FABER, W., LEONE, N., AND PFEIFER, G. 1999. The diagnosis frontend of the dlv system.
AI Commun. 12, 99–111.

FLACH, P. A. 2000. Logical characterisations of inductive learning. In Handbook of Defeasible
Reasoning and Uncertainty Management Systems, D. M. Gabbay and R. Kruse, Eds., Vol. 4.
Kluwer Academic Publishers, 155–196.

FOGEL, L. AND ZAVERUCHA, G. 1998. Normal programs and multiple predicate learning. In Pro-
ceedings of the 8th International Workshop on Inductive Logic Programming. Lecture Notes in
Artificial Intelligence, vol. 1446. Springer-Verlag, New York, 175–184.

GABBAY, D., GILLIES, D., HUNTER, A., MUGGLETON, S., NG, Y., AND RICHARDS, B. 1992. The rule-based
systems project: using confirmation theory and non-monotonic logics for incremental learning.
In Inductive Logic Programming, S. Muggleton, Ed. Academic Press, Orlando, Fla., 213–230.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Pro-
ceedings of the 5th International Conference and Symposium on Logic Programming. MIT Press,
Cambridge, Mass., 1070–1080.

GELFOND, M. AND LIFSCHITZ, V. 1990. Logic programs with classical negation. In Proceedings of
the 7th International Conference on Logic Programming. MIT Press, Cambridge, Mass., 579–
597.

HELFT, N. 1989. Induction as nonmonotonic inference. In Proceedings of the 1st International
Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, San
Francisco, Calif., 149–156.

INOUE, K. AND KUDOH, Y. 1997. Learning extended logic programs. In Proceedings of the 15th In-
ternational Joint Conference on Artificial Intelligence. Morgan-Kaufmann, San Francisco, Calif.,
176–181.

INOUE, K. AND SAKAMA, C. 1996. A fixpoint characterization of abductive logic programs. J. Logic
Prog. 27, 2, 107–136.

KAKAS, A. C., KOWALSKI, R. A., AND TONI, F. 1998. The role of abduction in logic programming. In
Handbook of Logic in Artificial Intelligence and Logic Programming, D. M. Gabbay, C. J. Hogger,
and J. A. Robinson, Eds. Vol. 5. Oxford University Press, 235–324.

KAKAS, A. C. AND MANCARELLA, P. 1990. Generalized stable models: a semantics for abduction. In
Proceedings of the 9th European Conference on Artificial Intelligence. Pitman, 385–391.

LAMMA, E., RIGUZZI, F., AND PEREIRA, L. M. 2000. Strategies in combined learning via logic pro-
grams. Mach. Learn. 38, 1/2, 63–87.

LIFSCHITZ, V. 2002. Answer set programming and plan generation. Artif. Intel. 138, 39–54.
MAREK, V. W. AND TRUSZCZYŃSKI, M. 1999. Stable models and an alternative logic programming

paradigm. In The Logic Programming Paradigm—A 25 Year Perspective, K. R. Apt, et al., Ed.
Springer-Verlag, New York, 375–398.

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

Induction From Answer Sets in Nonmonotonic Logic Programs • 231

MARTIN, L. AND VRAIN, C. 1996. A three-valued framework for the induction of general logic pro-
grams. In Advances in Inductive Logic Programming, L. De. Raedt, Ed. IOS Press, 219–235.

MUGGLETON, S., Ed. 1992. Inductive Logic Programming. Academic Press, Orlando, Fla.
MUGGLETON, S. 1995. Inverse entailment and progol. New Gen. Comput. 13, 245–286.
MUGGLETON, S. 1998. Completing inverse entailment. In Proceedings of the 8th International

Workshop on Inductive Logic Programming. Lecture Notes in Artificial Intelligence, vol. 1446.
Springer-Verlag, New York, 245–249.

MUGGLETON, S. AND BUNTINE, W. 1992. Machine invention of first-order predicate by inverting
resolution. In Inductive Logic Programming, S. Muggleton, Ed. Academic Press, Orlando, Fla.,
261–280.

MUGGLETON, S. AND DE RAEDT, L. 1994. Inductive logic programming: theory and methods. J. Logic
Prog. 19/20, 629–679.

NICOLAS, P. AND DUVAL, B. 2001. Representation of incomplete knowledge by induction of default
theories. In Proceedings of the 6th International Conference on Logic Programming and Non-
monotonic Reasoning. Lecture Notes in Artificial Intelligence, vol. 2173. Springer-Verlag, New
York, 160–172.

NIEMELA, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intel. 25, 241–273.

NIENHUYS-CHENG, S.-H. AND DE WOLF, R. 1997. Foundations of Inductive Logic Programming.
Lecture Notes in Artificial Intelligence, vol. 1228. Springer-Verlag, New York.

OTERO, R. P. 2001. Induction of stable models. In Proceedings of the 11th International Conference
on Inductive Logic Programming. Lecture Notes in Artificial Intelligence, vol. 2157. Springer-
Verlag, New York, 193–205.

PRZYMUSINSKI, T. C. 1988. On the declarative semantics of deductive databases and logic pro-
grams. In Foundations of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan-
Kaufmann, San Francisco, Calif., 193–216.

QUINLAN, J. R. 1990. Learning logical definitions from relations. Mach. Learn. 5, 239–266.
REITER, R. 1980. A logic for default reasoning. Artif. Intel. 13, 81–132.
RICHARDS, B. L. AND MOONEY, R. J. 1995. Automated refinement of first-order Horn-clause domain

theories. Mach. Learn. 19, 2, 95–131.
SAKAMA, C. 1999. Some properties of inverse resolution in normal logic programs. In Proceedings

of the 9th International Workshop on Inductive Logic Programming. Lecture Notes in Artificial
Intelligence, vol. 1634. Springer-Verlag, New York, 279–290.

SAKAMA, C. 2000. Inverse entailment in nonmonotonic logic programs. In Proceedings of the 10th
International Conference on Inductive Logic Programming. Lecture Notes in Artificial Intelli-
gence, vol. 1866. Springer-Verlag, New York, 209–224.

SAKAMA, C. 2001. Nonmonotonic inductive logic programming. In Proceedings of the 6th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning. Lecture Notes in
Artificial Intelligence, vol. 2173. Springer-Verlag, New York, 62–80.

SAKAMA, C. 2001a. Learning by answer sets. In Proceedings of the AAAI Spring Symposium on
Answer Set Programming. AAAI Press, 181–187.

SAKAMA, C. AND INOUE, K. 1999. Updating extended logic programs through abduction. In Pro-
ceedings of the 5th International Conference Logic Programming and Nonmonotonic Reasoning.
Lecture Notes in Artificial Intelligence, vol. 1730. Springer-Verlag, New York, 147–161.

SCHLIPF, J. S. 1995. Complexity and undecidability results for logic programming. Ann. Math.
Artif. Intel. 15, 257–288.

SEITZER, J. 1997. Stable ILP: Exploring the added expressivity of negation in the background
knowledge. In Proceedings of IJCAI-97 Workshop on Frontiers of ILP.

SHOHAM, Y. 1987. Nonmonotonic logics: meaning and utility. In Proceedings of the 10th Inter-
national Joint Conference on Artificial Intelligence. Morgan-Kaufmann, San Francisco, Calif.,
388–393.

Received November 2001; revised November 2001; accepted August 2003

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.

