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Abstract

In the context of Dung’s argumentation framework, we
propose a general recursive schema for argumentation
semantics, based on decomposition along the strongly
connected components of the argumentation frame-
work. We introduce the fundamental notion of SCC-
recursiveness and show that all Dung’s admissibility-
based semantics are SCC-recursive, and therefore a spe-
cial case of our schema. The space of SCC-recursive
semantics provides a basis for the investigation of novel
proposals: starting from the analysis of several exam-
ples where Dung’s preferred semantics gives rise to
counterintuitive results, we introduce four novel SCC-
recursive semantics, able to overcome the limitations of
preferred semantics, while differing in other respects.
Among them, the CF2 semantics, which more radi-
cally departs from the traditional notion of admissibil-
ity, turns out to be the most satisfactory in all cases and,
in particular, is able to correctly deal with the thorny
problem of self-defeating arguments.
Keywords: Argumentation Semantics, Self-defeating
arguments, Odd-length cycles.

Introduction
In (Dung 1995), an abstract framework for argumentation
has been introduced where the origin and structure of the ar-
guments are not specified, and the interaction between them
is modeled by a binary relation indicating that an argument
attacks another one. Thanks to its generality, this frame-
work has been recognized as a unifying view of several
existing approaches for argumentation and non-monotonic
reasoning, and has also inspired subsequent proposals of
argumentation systems, e.g. (Prakken & Sartor 1997;
Vreeswijk 1997). The fundamental idea of Dung’s approach
is that of identifying a number of extensions, each repre-
senting a conflict-free set of arguments deemed to be collec-
tively acceptable. Defining a specific argumentation seman-
tics amounts to specifying the criteria for deriving a set of
extensions from an argumentation framework: an argument
is considered as justified if it belongs to all of the extensions.

The preferred semantics introduced in (Dung 1995) over-
comes the limitations of the previously proposed grounded
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semantics (concerning so-called floating arguments) and
stable semantics (concerning existence of extensions). How-
ever, we have shown in (Baroni & Giacomin 2003) that
some counterintuitive results arise in some significant ex-
amples concerning cyclic attack relationships, and we have
proposed a solution based on a recursive approach in the
definition of the extensions. In this paper, we generalize this
result in two directions. First, we point out that also all the
semantics introduced by Dung adhere to a general recursive
schema. Then, exploiting this schema, we are able to in-
troduce several novel semantics that overcome the problems
described in (Baroni & Giacomin 2003) while differing in
other aspects, including in particular the treatment of self-
defeating arguments.

Dung’s Approach: Counterexamples
The general theory proposed by Dung (Dung 1995) is based
on the primitive notion of argumentation framework:

Definition 1 An argumentation framework is a pair AF =
〈A,→〉, where A is a set, and →⊆ (A × A) is a binary
relation on A.

The idea is that arguments are simply conceived as the el-
ements of the set A, whose origin is not specified, and the
interaction between them is modeled by the binary relation
of attack →.

In the following, nodes that attack a given α ∈ A
are called defeaters of α, and form a set denoted as
parents(α) = {β ∈ A | β → α}. If parents(α) = ∅,
then α is called an initial node. Since we will frequently
consider properties of sets of arguments, we extend to them
the notations defined for the nodes.

Definition 2 Given an argumentation framework AF =
〈A,→〉, a node α ∈ A and two sets S, P ⊆ A, we define:

S → α iff ∃β ∈ S : β → α

α → S iff ∃β ∈ S : α → β

S → P iff ∃α ∈ S, β ∈ P : α → β

parents(S) = {α ∈ A | α → S}

outparents(S) = {α ∈ A | α 6∈ S ∧ α → S}

Dung’s theory relies on the fundamental notions of ac-
ceptability and admissibility:
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Figure 1: Two argumentation frameworks

Definition 3 Given an argumentation framework AF =
〈A,→〉:

• A set S ⊆ A is conflict-free if and only if 6 ∃α, β ∈ S such
that α → β.

• An argument α ∈ A is acceptable with respect to a set
S ⊆ A iff ∀β ∈ A, if β → α then also S → β.

• A set S ⊆ A is admissible iff S is conflict-free and each
argument in S is acceptable with respect to S, i.e. ∀β ∈ A
such that β → S we have that S → β.

On this basis, the notion of complete extension, intro-
duced as a unifying concept underlying all of the proposed
semantics, is defined as an admissible set E ⊆ A such that
every argument α ∈ A which is acceptable with respect to
E belongs to E. Then, two main notions of extensions are
introduced, corresponding to the grounded and preferred se-
mantics, respectively.

The first follows the so-called unique-status approach,
since for a given argumentation framework AF it always
identifies a single extension GEAF, called grounded exten-
sion, corresponding to the least (wrt. ⊆) complete extension
of AF: the set of arguments A can then be partitioned into
undefeated arguments, that belong to GEAF and are con-
sidered as justified, defeated argument, that are attacked by
GEAF and are rejected, and provisionally defeated argu-
ments, that are neither included in GEAF nor attacked by
it, reflecting, in a sense, a sort of undecided status. Fol-
lowing (Pollock 1992), the idea underlying the definition of
grounded extension is to start by considering as undefeated
the initial nodes, that have no defeaters, and then to proceed
towards the inside of the graph by rejecting (i.e. consider-
ing as defeated) nodes that have undefeated defeaters and by
accepting (i.e. considering as undefeated) nodes whose de-
featers are all defeated. Finally, nodes that cannot be labeled
in this way are all considered as provisionally defeated. For
instance, for the argumentation framework AF1 shown in
Figure 1 we have that GEAF1 = {α, γ}.

The grounded semantics, in a sense, makes the most re-
strictive choice among complete extensions, as in fact it se-
lects the least one. As a consequence, it is the most skeptical
among semantics encompassed in Dung’s framework and,
as such, provides a reference since arguments undefeated

according to the grounded semantics should be justified in
any other semantics. This extremely skeptical attitude pre-
vents grounded semantics to properly deal with some cases
related to the so-called floating arguments. Considering for
instance the argumentation framework AF2 of Figure 1, it
is easy to see that all arguments are provisionally defeated,
while node δ should be justified since its unique defeater γ
is attacked independently of the way the conflict between
α and β is solved. More generally, it has been shown in
(Schlechta 1993) that the inability to discriminate floating
arguments is not a specific disadvantage of grounded seman-
tics, but affects any possible single-status approach.

Preferred semantics overcomes such limitations by fol-
lowing a multiple-status approach, where the set of pre-
ferred extensions, denoted as PEAF, is defined as the set
of all maximal admissible sets, or equivalently of all maxi-
mal complete extensions. Thus, it turns out that PEAF2

=
{{α, δ}, {β, δ}}: δ is therefore included in all extensions
and is justified.

Limitations of preferred semantics have been pointed out
in (Baroni & Giacomin 2003): to have an idea, consider
the argumentation frameworks shown in Figure 2, that dif-
fer only in the length of the leftmost cycle. It can be seen
that AF3 admits only one extension consisting of the node
φ2, while AF4 admits three extensions whose intersection
is empty. Therefore, φ2 is justified in AF3 while no argu-
ment is justified in AF4. This turns out to be counterintuitive
considering, for instance, that these argumentation frame-
works can be regarded as simple variants of the example of
conflicting witnesses proposed in (Pollock 1994). Here, the
leftmost cycle represents a set of witnesses such that each of
them questions the reliability of another one, and this under-
cut relation is arranged in a cycle. The two-length cycle on
the right represents a couple of arguments with contradic-
tory conclusions, known in the literature as Nixon Diamond,
where φ1 is based on an assertion of one of the witnesses.
Intuitively, the length of the leftmost cycle, i.e. the number
of witnesses, should be irrelevant. However, as described
above, preferred semantics give a different treatment to φ2

in the two cases.
To solve this problem, it is of course necessary to modify

the definition of preferred extension. To this purpose, two di-
rections can be envisaged: the requirement of admissibility
can be replaced by a less restrictive one, or one should give
up the maximality property. However, this kind of modifica-
tions alone can be easily seen to give rise to counterintuitive
results even in the simplest cases of argumentation frame-
works. For instance, replacing maximal admissible sets (i.e.
preferred extensions) with maximal conflict-free sets yields
an intuitively acceptable treatment of AF3 and AF4, but in
general would produce a too large number of extensions,
drastically reducing the number of justified arguments (e.g.
none of the arguments in AF1 would be justified). In or-
der to properly constrain the set of extensions, in (Baroni
& Giacomin 2003) a recursive definition has been devised
where the recursion step is based on the decomposition of
the argumentation framework into strongly connected com-
ponents (SCCs). Though this definition was driven by the
critical examples considered, a subsequent deeper analysis
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Figure 2: Different handling of cycles by preferred seman-
tics

has shown that recursion along SCCs plays a more general
role in the foundations of argumentation semantics. In the
next section, we report the results of this analysis.

A General Recursive Schema
This section presents in a synthetic way our recent results
concerning a general recursive schema for argumentation
semantics, more details are given in (Baroni & Giacomin
2004). First, we need to introduce the notion of strongly
connected components.

Definition 4 Given an argumentation framework AF =
〈A,→〉, two nodes α, β ∈ A are path-equivalent iff either
α = β or there is a path from α to β and a path from β
to α. The strongly connected components of AF are the
equivalence classes of vertices under the relation of path-
equivalence. The set of the strongly connected components
of AF is denoted as SCC(AF).

Given a node α ∈ A, we will indicate the strongly connected
component α belongs to as SCC(α).

It is well-known that the graph made up by SCCs is
acyclic. Taking into account this property, the key idea
of our recursive schema consists in exploiting the order of
SCCs to construct extensions. More specifically, each ex-
tension E can be regarded as the union of disjoint subsets
each taken from a different SCC, namely:

E =
⋃

S∈SCC(AF)

(E ∩ S)

Our idea is that, for a given SCC S, the choice of the subset
E ∩S is only affected by the choices made in the SCCs that
precede S in the order mentioned above. In particular, such
choices determine a partition of the nodes of S into three
subsets, that are defined according to the following defini-
tion:

Definition 5 Given an argumentation framework AF =
〈A,→〉, a set E ⊆ A and a strongly connected component
S ∈ SCC(AF), we define:

• SD(E) = {α ∈ S | (E ∩ outparents(S)) → α}

• SP (E) = {α ∈ S | (E ∩ outparents(S)) 6→ α ∧ ∃β ∈
(outparents(S) ∩ parents(α)) : E 6→ β}

• SU (E) = S \ (SD(E) ∪ SP (E))

In words, if the set E is an extension, the set SD(E) consists
of the nodes of S attacked by E from outside S, the set
SU (E) consists of the nodes of S that are not attacked by
E and are defended by E (i.e. their defeaters from outside S
are all attacked by E), and SP (E) consists of the nodes of
S that are not attacked nor defended by E. We remark that,
thanks to the acyclicity of the SCC-graph, each of these sets
is determined by the elements of E that belong to the SCCs
antecedent to S in this graph.

To illustrate the above concepts, let us consider the argu-
mentation framework AF2 shown in Figure 1. It is easy
to see that AF2 admits three strongly connected compo-
nents, i.e. SCC(AF2) = {S1, S2, S3}, where S1 = {α, β},
S2 = {γ} and S3 = {δ}. Assuming that E ∩ S1 = {α}
(as in the case of one of the preferred extensions introduced
in the previous section), we have that SD

2 (E) = {γ}, while
SP

2 (E) = SU
2 (E) = ∅. In turn, assuming that E ∩ S2 = ∅,

it turns out that SU
3 (E) = {δ}, since δ is not attacked by

E and its unique defeater γ is attacked by E. Of course,
SD

3 (E) = SP
3 (E) = ∅.

To give an example where SP (E) is not empty, let us con-
sider the argumentation framework AF3 shown in Figure
2. It is easy to see that, in this case, we have two SCCs,
i.e. SCC(AF3) = {S′

1, S
′
2}, where S′

1 = {α, β, γ} and
S′

2 = {φ1, φ2}. Assuming that E ∩ S′
1 = ∅ (as in the case

of the unique preferred extension admitted), we have that
S′D

2 (E) = ∅, S′P
2 (E) = {φ1} and S′U

2 (E) = {φ2}. In fact,
φ1 is attacked by γ which is not included in E nor attacked
by E, while φ2 has no defeaters outside S′

2.
Now, we need to investigate how E∩S can be defined for

each S on the basis of the above three sets. Intuitively, if S
is initial in the order of SCCs, the choice of E ∩ S depends
on S itself only. In other words, the possible choices for
E ∩S are exactly the same as the extensions of an argumen-
tation framework consisting only in S. If S is not initial, the
basic requirement that an extension is conflict-free leads to
exclude SD(E) from E, i.e. E ∩ S ⊆ (SP (E) ∪ SU (E)).
Roughly, the effect of previous SCCs is summarized by
the exclusion of SD(E), while subsequent SCCs do not
affect the choice in S, therefore one is lead to consider
a sort of reduced argumentation framework, consisting in
(SP (E)∪SU (E)). The idea of our schema is then to define
recursively E ∩ S referring to this restricted argumentation
framework. The recursion stops when the restricted argu-
mentation framework consists in a unique SCC.

To put the above concepts in formal terms, we need, first
of all, the notion of restriction of an argumentation frame-
work to a given subset of its nodes:

Definition 6 Let AF = 〈A,→〉 be an argumentation frame-
work, and let us consider a set of arguments S ⊆ A.



The restriction of AF to S is the argumentation framework
AF↓S = 〈S,→ ∩(S × S)〉.

The proposed general schema is then based on the prop-
erty of SCC-recursiveness: a semantics is SCC-recursive iff
its extensions are identified by means of a recursive defini-
tion along SCCs. Such definition is parametric with respect
to a base function: a specific SCC-recursive semantics is
characterized by its own base function.

Definition 7 A given argumentation semantics is SCC-
recursive iff, with reference to a generic argumentation
framework AF = 〈A,→〉, a set E ⊆ A is an extension
iff E ∈ FGAF(A),
where, for all sets C ⊆ A, E ∈ FGAF(C) iff

• E ∈ FG∗
AF(C) if |SCC(AF)| = 1 or A = ∅

• ∀S ∈ SCC(AF)
(E ∩ S) ∈ FGAF↓(SP (E)∪SU (E))

(SU (E) ∩ C) otherwise

where FG∗
AF(C) is a function that, given an argumentation

framework AF = 〈A,→〉 such that |SCC(AF)| = 1 and a
set C ⊆ A, gives a subset of 2A.

Definition 7 states that extensions of an argumentation
framework AF are identified by applying the recursive func-
tion FG to AF itself and to the set A of its nodes. The
function FG has two arguments, namely a generic argumen-
tation framework AF′ = 〈A′,→′〉 and a subset C of A′,
and returns a set of subsets of A′ (in particular, it returns
the set of extensions of AF′ when C = A′). The defini-
tion of FG reflects the intuitive ideas illustrated above: it is
based on the decomposition of AF′ into its SCCs and admits
two cases. In the case AF′ is made up of a unique strongly
connected component, FG directly coincides with the base
function denoted as FG∗

AF′(C). Therefore, when the origi-
nal argumentation framework AF has a unique SCC, it holds
that FGAF(A) = FG∗

AF(A). Otherwise, the second re-
cursive part of the definition applies to AF and FG∗, ap-
plied on restricted argumentation frameworks, will provide
the base of the recursion. Turning to the recursive part,
it is stated that for any SCC S FG is recursively applied
on AF↓(SP (E)∪SU (E)), i.e. on the restricted argumenta-
tion framework corresponding to the subset of S which sur-
vives the attacks from the preceding SCCs. The argument
SU (E)∩C identifies those nodes of this restricted argumen-
tation framework whose defeaters from outside S are all at-
tacked by E (according to choices in previous SCCs). In par-
ticular, when the recursive step is invoked on a SCC of the
original AF, C = A, and therefore (SU (E)∩C) = SU (E).
In deeper levels of recursion, the function is applied on inner
SCCs of restricted argumentation frameworks: in this case,
both parts of the definition rely on the argument C in order
to take into account the effect of choices in previous levels
of recursion within the restricted argumentation framework.
In fact, let Ŝ be such an inner SCC: ŜU (E) identifies only
the nodes which are not attacked by E and whose defeaters
are attacked by the subset of E belonging to the restricted
argumentation framework, while C identifies the same kind
of nodes referred to the part of E outside the restricted argu-
mentation framework chosen in previous levels of recursion.

Intersecting ŜU (E) and C yields, therefore, the nodes of Ŝ
that feature the above properties from both points of view.

Definition 7 provides a generic framework, where a par-
ticular SCC-recursive semantics is identified by its own base
function: it is interesting to notice that, in this context, to de-
fine a semantics it is sufficient to specify its behavior only on
single-SCC argumentation frameworks.

One may now wonder whether the property of SCC-
recursiveness characterizes a suitable family of semantics.
On the one hand, such family should be large enough to in-
clude previous significant approaches to argumentation se-
mantics, on the other hand it should be constrained enough
to support the definition of novel proposals based on reason-
able definitions of the base function.

As far as the first requirement is concerned, a confir-
mation of the generality of SCC-recursiveness is given by
Proposition 1, which states that Dung’s complete, preferred
and grounded semantics are SCC-recursive (proof is omit-
ted and can be found in (Baroni & Giacomin 2004)). To ob-
tain this result, it is necessary to generalize some definitions
of Dung’s theory by considering a specific subset C of A
from which acceptable arguments (that compose the exten-
sions) are selected (Dung’s original definitions are recovered
by letting C = A).

Definition 8 Given AF = 〈A,→〉 and a set C ⊆ A:

• A set E ⊆ A is admissible in C iff E is admissible
and E ⊆ C. We denote as ASAF(C) ≡ {E ⊆ C |
E is admissible} the set of admissible sets in C.

• A set S ⊆ A is a complete extension in C iff S ∈
ASAF(C), and every argument α ∈ C which is accept-
able with respect to S belongs to S. The set of complete
extensions in C will be denoted as CEAF(C).

• A preferred extension in C is a maximal element (wrt. set
inclusion) of ASAF(C). The set of preferred extensions
in C will be denoted as PEAF(C).

Proposition 1 Dung’s complete, preferred and grounded
semantics are SCC-recursive with the following base func-
tions:

• for complete semantics, FG∗
AF(C) = CEAF(C);

• for preferred semantics, FG∗
AF(C) = PEAF(C);

• for grounded semantics, FG∗
AF(C) =

{

{{α}} if C = A = {α} ∧ α 6→ α
{∅} otherwise

To better illustrate the general recursive schema, we now
provide some examples of its application to the argumen-
tation frameworks introduced in the previous section, with
reference to grounded and preferred semantics.

Example 1 Deriving the grounded extension of AF2

Let us consider the argumentation framework AF2 shown in
Figure 1. As discussed above, we have that SCC(AF2) =
{S1, S2, S3}, where S1 = {α, β}, S2 = {γ} and S3 = {δ}.
Let us show first how the general recursive schema, instan-
tiated with the base function introduced above for grounded
semantics, admits as the unique extension the grounded ex-
tension E = GEAF2

= ∅. According to Definition 7, E is



an extension iff E ∈ FGAF2
(A). Since AF2 includes more

than one SCC, the recursive part of the definition applies to
AF2 with C = A, yielding E ∈ FGAF2

(A) iff

∀S ∈ SCC(AF2) (E∩S) ∈ FGAF2↓(SP (E)∪SU (E))
(SU (E))

(1)
Accordingly, we now orderly examine the SCCs of AF2.
Considering S1, we have that outparents(S1) = ∅, there-
fore, independently of E, it holds that SD

1 (E) = SP
1 (E) =

∅ and SU
1 (E) = S1. As a consequence, (1) becomes

(E∩S1) ∈ FGAF2↓S1
(S1). Since AF2↓S1

is made up of the
unique SCC S1, the base case of Definition 7 applies, there-
fore (E ∩ S1) ∈ FG∗

AF2↓S1
(S1). Now, the base function

for the grounded semantics returns {∅} in this case, since
|S1| > 1, therefore we necessarily have that

E ∩ S1 = ∅ (2)

Since S1 is the only SCC preceding S2, (2) entails that,
for any E, SD

2 (E) = SU
2 (E) = ∅ and SP

2 (E) = S2.
In fact, (E ∩ outparents(S2)) 6→ γ, while both α and β,
which belong to (outparents(S2) ∩ parents(γ)), are not
attacked by E: according to Definition 5, this entails that
SP

2 (E) = {γ} = S2. As a consequence, (1) becomes
(E ∩ S2) ∈ FGAF2↓S2

(∅), which according to the base
case of Definition 7 yields (E ∩ S2) ∈ FG∗

AF2↓S2
(∅). Ap-

plying the base function of the grounded semantics, we get
FG∗

AF2↓S2
(∅) = ∅, since C = ∅ 6= A = S2. As a conse-

quence, for all E
E ∩ S2 = ∅ (3)

Considering now S3, it can be seen that (2) and (3) entail
that SD

3 (E) = SU
3 (E) = ∅ and SP

3 (E) = S3. In fact, the
only defeater of δ from the outside of S3, i.e. γ, is neither
included in E nor attacked by E. Reasoning in an analogous
way as for S2 we get then

E ∩ S3 = ∅ (4)

Finally, conditions (2), (3) and (4) uniquely identify E as ∅,
which corresponds to the grounded extension GEAF2 .

Example 2 Deriving the preferred extensions of AF2

Let us now examine how Definition 7 exactly identifies the
preferred extensions {α, δ} and {β, δ} of AF2. Again,
equation (1) holds, leading to consider orderly the three
SCCs. As for S1, the same considerations of the above ex-
ample apply, yielding (E ∩ S1) ∈ FG∗

AF2↓S1
(S1). Now,

FG∗
AF2↓S1

(S1) = PEAF2↓S1
(S1): since C = S1 = A,

PEAF2↓S1
(S1) simply returns the preferred extensions of

the Nixon Diamond made up of S1, i.e. PEAF2↓S1
(S1) =

{{α}, {β}}. Therefore, there are two alternatives for (E ∩
S1): we will follow just one of them, i.e. (E ∩ S1) = {α},
since the reasoning for the other is symmetric. Turning to
S2, we have that SD

2 (E) = {γ} = S2, since γ is attacked
by α ∈ E, and of course SU

2 (E) = SP
2 (E) = ∅. Therefore,

(1) yields (E ∩ S2) ∈ FGAF2↓∅
(∅). Since AF2↓∅ = 〈∅, ∅〉,

the base case of Definition 7 applies, yielding (E ∩ S2) ∈
FG∗

〈∅,∅〉(∅), which directly yields (E ∩ S2) = ∅. Only S3

remains to be considered, whose unique defeater from out-
side, namely γ, does not belong to E and is attacked by E,

entailing that SU
3 (E) = S3 and SD

3 (E) = SP
3 (E) = ∅.

Therefore, (E ∩ S3) ∈ FGAF2↓S3
(S3), which applying the

base case of Definition 7 yields (E ∩S3) ∈ FG∗
AF2↓S3

(S3):
in words, (E ∩ S3) is a preferred extension of the simple
argumentation framework made up of the node δ only, i.e.
(E ∩ S3) = {δ}. In conclusion, the alternative {α} for
(E ∩S1) considered so far yields the extension E = {α, δ}.
On the other hand, choosing the other alternative {β} and
reasoning in a symmetric way we get the extension {β, δ}.
Therefore, Definition 7 gives exactly the preferred exten-
sions.

Example 3 Deriving the unique preferred extension of AF3

The argumentation framework AF3 shown in Figure 2 has
two strongly connected components, i.e. SCC(AF3) =
{S1, S2} with S1 = {α, β, γ} and S2 = {φ1, φ2}. As in
previous examples, we orderly consider the SCCs of AF2 to
get the possible intersections with E, which must satisfy

∀S ∈ SCC(AF3) (E∩S) ∈ FGAF3↓(SP (E)∪SU (E))
(SU (E))

(5)
As for S1, which is an initial SCC, the base case of Defini-
tion 7 applies, yielding (E ∩ S1) ∈ FG∗

AF3↓S1
(S1). There-

fore, (E ∩ S1) must coincide with a preferred extension
of an argumentation framework made up of a three-length
cycle: actually, such argumentation framework admits the
empty set as the unique preferred extension, entailing that
(E ∩S1) = ∅. Turning to S2, it can be seen that, as a conse-
quence, SD

2 (E) = ∅, SP
2 (E) = {φ1} and SU

2 (E) = {φ2}.
In fact, there are no nodes in S2 that are attacked by E from
the outside, φ1 is attacked by γ which is neither included
in E nor attacked by E, while φ2 does not receive external
attacks since its unique defeater φ1 belongs to S2. There-
fore, (5) becomes (E ∩ S2) ∈ FGAF3↓S2

({φ2}), where
AF3↓S2

coincides with its unique SCC S2. Then, accord-
ing to the base case of Definition 7, we get (E ∩ S2) ∈
FG∗

AF3↓S2
({φ2}), i.e. (E ∩ S2) ∈ PEAF3↓S2

({φ2}). Ac-
cording to Definition 8, PEAF3↓S2

({φ2}) gives the maximal
admissible sets in AF3↓S2

contained in {φ2}. Now, the ad-
missible sets of AF3↓S2

are {φ1}, {φ2} and ∅. Clearly, {φ2}
is the only maximal one contained in C = {φ2}, therefore
(E∩S2) = {φ2}. Summing up, the only extension admitted
by Definition 7 is {φ2}.

Example 4 Deriving the grounded extension of AF3

As in the previous example, we apply (5) to the two SCCs
S1 and S2. The base function of the grounded semantics
applied to S1 gives the empty set as the only possibility
for E ∩ S1. Therefore, we are lead again to (E ∩ S2) ∈
FG∗

AF3↓S2
({φ2}). As C = {φ2} 6= A = S2, the base func-

tion for grounded semantics gives {∅} as the result. There-
fore, the only possible E is the empty set.

While in this section the recursive schema has been pre-
sented as a unifying concept underlying existing semantics,
we show in the next section that it provides a natural basis
for the definition and study of novel proposals of semantics.
We explore four alternative semantics that uniformly exhibit



the desired behavior in the examples described above, which
are critical for classical approaches, while differing in inter-
esting ways in the treatment of odd-length cycles and, as
a special case, of self-defeating arguments, two largely de-
bated issues in argumentation literature.

Exploring the Space of SCC-Recursiveness
In the framework of SCC-recursive semantics the investi-
gation of new semantics definitions turns out to be particu-
larly easy: on one hand, introducing a new semantics sim-
ply amounts to defining a particular base function, on the
other hand, the task of analyzing the relationships among
different semantics is simplified by the general schema. To
better appreciate this advantageous feature of our proposal,
we briefly investigate in this section four novel semantics,
directly derived by specializing Definition 7 in two main di-
rections.

Beyond Preferred Semantics
Our first direction of investigation aims at devising propos-
als alternative to preferred semantics, while preserving the
fundamental notions encompassed by Dung’s framework. In
this context, a key role is played by the intuitive concept of
defense, formally represented by admissible sets, therefore
complete admissible sets, i.e. complete extensions, are re-
garded as the most general family of conceivable extensions,
and any semantics should select its extensions among them.
The recursive schema turns out to completely include this
framework, since, as shown in previous section, all complete
extensions are recursively characterized. Therefore, consid-
ering the recursive schema does not introduce any limitation
in this respect.

Preferred semantics is generally considered as the most
satisfactory approach in this framework. However, as previ-
ously discussed, it fails to correctly deal with the argumenta-
tion framework AF3 of Figure 2 since the argument φ2 turns
out to be improperly justified. Let us briefly examine how a
solution to this problem can be devised.

First of all, note that in any framework based on defense
(i.e. admissibility), none of the arguments α, β, or γ can
be included in any extension, since any of them defeats its
only possible defender. As a consequence, also φ1 can not
be included in any extension, since there can not be defence
against its defeater γ. Therefore, the only complete exten-
sions of AF3 are {φ2} and ∅. While preferred semantics
prescribes {φ2} as the only extension, we aim at finding a
definition which admits the empty set as extension. Using
the general recursive schema to identify such definition, we
are lead to investigate E ∩ S for all S ∈ SCC(AF3) =
{S1, S2}, where S1 = {α, β, γ} and S2 = {φ1, φ2}. In
particular, since for any complete extension E we have that
(E ∩ S1) = ∅, it must be the case that SP

2 (E) = {φ1} and
SU

2 (E) = {φ2} (see Example 3). Therefore, Definition 7
yields (E∩S2) ∈ FG∗

AF3↓S2
({φ2}), and we look for a base

function such that FG∗
AF3↓S2

({φ2}) = ∅. A very simple
way to obtain this property in general is to impose that if
C ( A FG∗

AF(C) = ∅. Taking this for granted, to com-
plete the definition of the base function only the case where

α

β

γ

AF5

φ

Figure 3: A problematic argumentation frameworks for
AD1-semantics

C = A remains to be specified. In this respect, the more di-
rect approach is to consider the set of preferred extensions,
obtaining the following base function:

FG∗
AF(C) =

{

PEAF(C) if C = A
{∅} otherwise

We denote the corresponding semantics as AD1.
While the AD1 semantics solves the problems related

to AF3, it fails in the argumentation framework AF5, pre-
sented in Figure 3. In fact, since AF5 consists of a single
SCC, AD1 and preferred semantics identify a unique ex-
tension {α, φ}, yielding these two arguments justified: this
behavior is counterintuitive since, as explained in (Baroni &
Giacomin 2003), replacing the 3-length attack-cycle with a
4-length one (and, more generally, replacing an odd-length
cycle with an even-length one) yields a radically different
result, where no argument is justified (as it is intuitive to ex-
pect independently of the cycle length). To overcome this
problem, we need to rule out {α, φ} as an extension. Notice
that the only defeater of both α and φ is γ, therefore in the
desired definition the node γ should retain the capability of
preventing α and φ to be accepted. To obtain this behav-
ior, we note that one of the defeaters of γ, actually β, is not
included in the extension. Exploiting this fact leads to re-
quire that an extension, in a sense, fully attacks its defeaters,
i.e. it includes all the defeaters of its defeaters. In particu-
lar, {α, φ} does not satisfy this condition since it does not
include β. These considerations lead to define the following
base function:

FG∗
AF(C) =

{

{E | E maximal in AS∗
AF} if C = A

{∅} otherwise

where

AS∗
AF = {F ⊆ A : F admissible and

∀α ∈ A : α → F, parents(α) ⊆ F}

We denote the corresponding semantics as AD2.

It can be verified that AD2 correctly deals with AF5, since
AS∗

AF5
= {∅}, and preserves the desired behavior in all of

the other problematic examples considered so far. In partic-
ular, in AF1, AF2, and AF4 the base function FG∗

AF(C) is
always invoked with C = A, and it turns out that in all cases
the preferred extensions of AF are exactly the elements of
AS∗

AF: therefore, AD2 prescribes the same extensions as
preferred semantics. As far as AF3 is concerned, it can be



seen that AD2 behaves as AD1, since in AF3↓S1
the only

admissible set is the empty set, which obviously belong to
AS∗

AF3↓S1
. Then, as for AD1, (E ∩ S2) is determined by

FG∗
AF3↓S2

({φ2}), which yields the empty set since C 6= A.
It is interesting to note that the requirement of including

all of the attackers of a node which attacks the extension, im-
posed in the base function of AD2, would be harmful rather
than useful outside the recursive schema: examples can eas-
ily be found where even initial nodes would not be justified.

Finally, we show in Proposition 2 that both AD1 and
AD2 fit in the Dung’s framework, as all of their extensions
are actually complete extensions. Proposition 2 relies on
two lemmas, whose proof is omitted: Lemma 1 is a general-
ization of the well-known property that preferred extensions
are complete extensions (Dung 1995), Lemma 2 is a direct
consequence of Dung’s Fundamental Lemma ((Dung 1995),
page 327).

Lemma 1 Given an argumentation framework AF =
〈A,→〉 and a set C ⊆ A, any preferred extension in C is
also a complete extension in C, i.e. PEAF(C) ⊆ CEAF(C).

Lemma 2 Let AF be an argumentation framework 〈A,→〉,
and let E be an admissible set of AF. If an argument α ∈ A
is acceptable with respect to E, then E 6→ α and α 6→ E.

Proposition 2 For any argumentation framework AF =
〈A,→〉, the extensions prescribed by AD1 and AD2 are
complete extensions.

Proof : According to the characterization of complete se-
mantics as SCC-recursive given in Proposition 1, any set E
which is decomposable according to Definition 7 with a base
function whose elements belong to CEAF(C) is a complete
extension. Therefore, to prove the claim it is sufficient to
show that the base functions introduced for AD1 and AD2
give elements belonging to CEAF(C) for any AF (consist-
ing of a unique SCC) and C.
Considering first AD1, we distinguish two cases for the base
function. If C = A, then FG∗

AF(C) = PEAF(C), and
the conclusion directly follows from Lemma 1. In the other
case, i.e. C ( A, FG∗

AF(C) = {∅}, therefore we have to
prove that ∅ is a complete extension in C: since ∅ is obvi-
ously admissible in C, the only thing to show is that any
α ∈ C is not acceptable with respect to ∅. This trivially
holds if C = ∅. Otherwise, a generic α ∈ C could only be
acceptable with respect to ∅ if parents(α) = ∅. However,
this is impossible, since α ∈ C and C ( A: taking into
account that the argumentation framework admits a unique
SCC, there must be an argument β ∈ A, β 6= α such that
β → α.
Let us turn now to AD2-semantics, and let us notice that,
if C ( A, the relevant base function coincides with that
of AD1-semantics, therefore the proof proceeds as in the
previous case. If instead C = A, then by definition any
E ∈ FG∗

AF(C) is a maximal element of AS∗
AF, i.e. it is a

maximal set such that it is admissible in AF and the follow-
ing property holds:

∀β ∈ A : β → E,parents(β) ⊆ E (6)

Since C = A and E is admissible, we have only to prove
that ∀α ∈ A which is acceptable with respect to E, α ∈ E.

We reason by contradiction, assuming that ∃α̂ ∈ A : α̂ /∈ E
and α̂ is acceptable with respect to E. In case E = ∅, the
acceptability of α̂ would entail that parents(α̂) = ∅, and
therefore the set {α̂} would be admissible. However, {α̂}
would clearly belong to AS∗

AF, contradicting the maximal-
ity of E = ∅. Therefore, let us now assume that E 6= ∅.
Recalling that α̂ /∈ E and that |SCC(AF)| = 1, there must
exist a path between α̂ and an element γ ∈ E. Since α̂ is
acceptable with respect to E, Lemma 2 entails that α̂ 6→ E,
therefore the above mentioned path must have the following
structure: α̂ → β1 → . . . → βn → γ, with n ≥ 1, such that
γ ∈ E and βi /∈ E for all i : 1 ≤ i ≤ n. In particular, this
entails that βn → E and parents(βn) * E, contradicting
equation (6). �

Beyond Admissibility
As pointed out in previous subsection, any admissibility-
based semantics is bound to exclude from any extension the
arguments included in an argumentation framework consist-
ing only of an odd-length attack cycle. Therefore odd-length
cycles admit only the empty extension, while instead even-
length cycles admit multiple extensions. This asymmetry in
the treatment of cycles has recently been indicated as puz-
zling by Pollock (Pollock 2001) and has been identified as
the primary cause of the counterintuitive behavior of pre-
ferred semantics discussed in (Baroni & Giacomin 2003).
In order to enforce a symmetric treatment of cycles, it is
necessary to explore another direction of investigation not
constrained by the admissibility requirement.

To start reasoning, consider that, to handle appropriately
the case of floating arguments shown in Figure 1, it is
necessary that two extensions exist for a two length-cycle,
each including one node. Considering then a 3-length cy-
cle, it turns out that, in an analogous case of floating de-
feat, three extensions must exist each including one node.
We notice that this set of extensions coincides with the
set of maximal conflict free sets of this simple argumenta-
tion framework, and the same holds in the two-length cycle
case. Therefore, referring to the general recursive schema,
in both cases we have that the whole set of extensions, i.e.
FGAF(A), coincides with the set of maximal conflict-free
sets of AF, which we will denote as MIAF. Since in the
considered cases |SCC(AF)| = 1, it must be the case that
FG∗

AF(A) = MIAF. Generalizing this idea, we obtain the
specification of the base function for the case where C = A,
i.e. FG∗

AF(C) = MIAF. Taking this for granted, to com-
plete the definition of the base function only the case where
C ( A remains to be specified. In this respect, it seems
reasonable to exploit the notion of maximal conflict-free set
to provide a uniform conceptual basis to the approach. Two
ways of applying this notion can be envisaged. On the one
hand, one may regard the inclusion in C as a requirement.
This gives rise to the following base function:

FG∗
AF(C) = MIAF↓C

We denote the corresponding semantics as CF1.
On the other hand, since the requirement of inclusion in

C is not strictly necessary, one may consider the following
base function where it is overlooked:



FG∗
AF(C) = MIAF

The corresponding semantics, denoted as CF2, has been
first proposed in (Baroni & Giacomin 2003), where it has
been derived following an alternative conceptual analysis.

It can be seen that both CF1 and CF2-semantics are able
to treat appropriately all of the argumentation frameworks
introduced so far. We describe, as an example, the case of
the argumentation framework AF3.

Example 5 Handling the argumentation framework AF3

Recall that SCC(AF3) = {S1, S2} with S1 = {α, β, γ}
and S2 = {φ1, φ2}. As for S1, which is an initial SCC,
the base case of Definition 7 applies, yielding (E ∩ S1) ∈
FG∗

AF3↓S1
(S1). Therefore, according to CF1-semantics

(E ∩ S1) must belong to MIAF↓C
with AF = AF3↓S1

and C = S1, which is of course equal to MIAF3↓S1
.

This is the same set prescribed by CF2-semantics, therefore
the two semantics agree in this case. Now, MIAF3↓S1

=

{{α}, {β}, {γ}}, leading to three alternative possibilities
for (E ∩ S1). Assuming that (E ∩ S1) = {γ}, we have
that SD

2 (E) = {φ1}, SU
2 (E) = {φ2} and SP

2 (E) = ∅.
Therefore, the base function is applied to the argumenta-
tion framework AF3↓{φ2} with C = {φ2}, yielding for
both semantics (E ∩ S2) = {φ2}. Therefore, we have an
extension E1 = {γ, φ2} for both semantics. Let us turn
now to the alternative (E ∩ S1) = {β}, which entails that
SU

2 (E) = S2 (as γ is attacked by β ∈ E). Therefore,
the base function is applied to the argumentation framework
AF3↓S2

with C = S2: it is easy to see that both seman-
tics give two alternatives for (E ∩ S2), namely {φ1} and
{φ2}. Therefore, we have for both semantics the additional
extensions E2 = {β, φ1} and E3 = {β, φ2}. Finally, if
(E ∩ S1) = {α}, we have that SP

2 (E) = {φ1}, SU
2 (E) =

{φ2} and SD
2 (E) = ∅. Then, the base function is applied

to the argumentation framework AF3↓S2
with C = {φ2}.

In this case, CF1 and CF2-semantics differ. In fact, CF1
gives MIAF↓C

which is equal to MIAF3↓{φ2}
, therefore

(E ∩ S2) = {φ2}, giving E4 = {α, φ2}. On the other
hand, CF2-semantics gives MIAF3↓S2

= {{φ1}, {φ2}},
yielding therefore the same extension E4 as CF1 and an ad-
ditional extension E5 = {α, φ1}.
Summing up, in both semantics no argument is justified, i.e.
included in all extensions, which is the intuitively desirable
handling.

Comparing SCC-Recursive Semantics
Agreement with Grounded Semantics
As emphasized in the first part of the paper, the grounded
semantics represents a sort of lower bound among argumen-
tation semantics, since the grounded extension is the least
among all conceivable extensions, namely complete exten-
sions. More generally, the agreement with grounded seman-
tics can be regarded as a fundamental requirement for any
argumentation semantics, as it appears evident considering
the characterization of grounded semantics provided by Pol-
lock (Pollock 1992) recalled above. As a confirmation of the

well-foundedness of the property of SCC-recursiveness, we
have obtained a result showing that for any SCC-recursive
semantics each of its extensions includes the grounded ex-
tension, as far as a very simple condition on the base func-
tion is satisfied (proof is omitted due to space limitations):

Proposition 3 Let us consider a SCC-recursive semantics
with base function FG∗. Then, the fact that, for any argu-
mentation framework AF, GEAF ⊆ E for all extensions E
prescribed by the semantics holds iff

FG∗
〈{α},∅〉({α}) = {{α}}.

In words, agreement with grounded semantics is ensured if
and only if the base function properly deals with the simplest
case of argumentation framework, i.e. a single node which
does not attack itself and therefore should be accepted. It
is easy to see that all of the novel semantics introduced in
previous section, namely AD1, AD2, CF1 and CF2, sat-
isfy this basic condition. On the other hand, as it will be
shown in the next section, they disagree among each other
on some significant examples largely debated in the litera-
ture (Prakken & Vreeswijk 2001).

Odd-Length Cycles and Self-Defeating Arguments
As already explained, CF1 and CF2-semantics depart from
admissibility-based approaches in the treatment of odd-
length cycles. To make this difference concrete in a simple
example, consider the argumentation framework AF6 shown
in Figure 4, corresponding to a floating defeat against ar-
gument δ by the nodes in the 3-length cycle. In this case,
any admissibility-based semantics admits the empty set as
the unique extension, and therefore this is the case for pre-
ferred, AD1 and AD2-semantics, which do not regard as
justified any argument. On the contrary, both CF1 and CF2-
semantics admit as extensions the sets {α, φ}, {β, φ} and
{γ, φ}, yielding δ defeated and φ justified. This behav-
ior is coherent with the notions of floating defeat and float-
ing acceptance introduced in (Makinson & Schlechta 1991).
As a consequence, this kind of examples discriminates
admissibility-based semantics from the proposed novel se-
mantics based on maximal conflict-free sets.

Self-defeating arguments are the extreme case of odd-
length cycles and have received a special attention in the
literature (Pollock 1994; Prakken & Vreeswijk 2001). The
argumentation framework AF7 shown in Figure 4 has been
considered as an example of problematic behavior of pre-
ferred semantics by Dung himself (Dung 1995). In fact, the
only preferred extension here is empty, though one can ar-
gue that since α attacks itself, β should be justified. This
problem is inherited by any admissibility-based semantics,
and therefore also affects AD1 and AD2-semantics.

Let us now consider how this case is handled by CF1
and CF2-semantics. First, note that AF7 is composed of
two SCCs, namely S1 = {α} and S2 = {β}. Start-
ing from the initial SCC S1, the base function applies to
AF7↓{α} with C = {α}: both CF1 and CF2-semantics
prescribe that (E ∩ S1) is a maximal conflict-free set of
S1. Since S1 consists just of a self-defeating argument, the
only conflict-free set is the empty set, therefore both CF1
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Figure 4: Handling odd-length cycles

and CF2-semantics exclude α from any extension. This in
turn entails that, for any extension E, SP

2 (E) = {β} while
SU

2 (E) = SD
2 (E) = ∅. Then, E ∩S2 ∈ FGAF↓{β}

(∅), and,
since AF↓{β} has obviously only one SCC, this entails that
E ∩ S2 ∈ FG∗

AF↓{β}
(∅). CF1 and CF2-semantics behave

differently in this case, due to the role of the argument C
in the definition of the relevant base functions. In particu-
lar, according to CF1-semantics (E ∩ S2) ∈ MIAF↓{β}↓∅

,
i.e. (E ∩ S2) must be equal to the empty set. On the other
hand, C plays no role in the base function of CF2-semantics,
yielding (E ∩ S2) ∈ MIAF↓{β}

, i.e. (E ∩ S2) = {β}. As
a consequence, CF1-semantics admits the empty set as the
unique extension, thus sharing with admissibility-based se-
mantics the inability to properly handle self-defeating argu-
ments. On the contrary, CF2-semantics is able to select the
only desired extension {β}, thus ruling out the role of the
self-defeating argument α.

Conclusions
In this paper, we have proposed a general recursive schema
that, while including Dung’s framework as a special case,
can be regarded as an alternative foundation of argumenta-
tion theory. In particular, in this more general framework,
the property of SCC-recursiveness appears to have the role
of a unifying notion, in a similar way as admissibility in
Dung’s framework. As a matter of fact, this notion turns out
to be effective as a basis supporting the development of al-
ternative semantics. In fact, any SCC-recursive semantics is
characterized by a base function defined over argumentation
frameworks consisting of a single SCC, and the general re-
quirement of agreement with the grounded semantics comes
almost for free, since it is sufficient that the base function
correctly treats single nodes without defeaters.

Exploiting the recursive schema, we have been able to
introduce four novel semantics all solving counterintuitive
examples affecting preferred semantics. The most satisfac-
tory behavior is achieved by CF2-semantics, originally in-
troduced in (Baroni & Giacomin 2003), which, in particular,
is the only one able to deal with self-defeating arguments.
It is worth noting that such semantics fully departs from the

admissibility notion in two respects: on one hand, it relies
on the less demanding notion of maximal conflict-free set,
on the other hand, as C plays no role in the base function, it
prevents any argument outside the extension to defeat other
arguments, while in case of admissibility-based semantics
(and CF1 as well) this does not hold for those of them not
attacked by the extension.

As for future work, we plan to further study the general
properties of the SCC-recursive schema, as well as the re-
lationships between different SCC-recursive semantics. In
particular, it would be interesting to characterize such rela-
tionships in terms of the notion of skepticism, i.e. on the ba-
sis of the level of commitment concerning the choices about
the justification status assigned to the arguments. Moreover,
the meaning and use of the novel semantics proposed in this
paper in different applications will be investigated.
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