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Abstract

We often reach conclusions partially on the basis that we do not
have evidence that the conclusion is false. A newspaper story warn-
ing that the local water supply has been contaminated would prevent
a person from drinking water from the tap in her home. This sug-
gests that the absence of such evidence contributes to her usual belief
that her water is safe. On the other hand, if a reasonable person re-
ceived a letter telling her that she had won a million dollars, she would
consciously consider whether there was any evidence that the letter
was a hoax or somehow misleading before making plans to spend the
money. All to often we arrive at conclusions which we later retract
when contrary evidence becomes available. The contrary evidence de-
feats our earlier reasoning. Much of our reasoning is defeasible in this
way. Since around 1980, considerable research in Al has focused on
how to model reasoning of this sort. In this paper, I describe one
theoretical approach to this problem, discuss implementation of this
approach as an extension of Prolog, and describe some application of
this work to normative reasoning, learning, planning, and other types
of automated reasoning.



1 Introduction

A goal in reasoning is to reach true conclusions and to avoid false conclusions.
But we also require that our conclusions be justified. These two constraints
are not the same; a justified belief can be false, and a true belief can be
unjustified. Although true beliefs are our ultimate goal, we in fact have no
guarantee of truth beyond the justification we have for our beliefs. If the
methods we use to reach new conclusions based on old conclusions preserves
truth, then once we reach a conclusion we cannot later reject it because of
new information. We could only reject an earlier conclusion if we rejected
some reason it was based on. We call reasoning of this sort monotonic.
Human reasoning is not and should not be monotonic. We often reject old
conclusions based on new evidence, even when those old conclusions were
justified at the time we arrived at them. Justification preserving reasoning
is mot monotonic.

Why do I say that human reasoning should be nonmonotonic? Because
monotonic reasoning is too restrictive. Monotonic reasoning in general and
truth preserving reasoning in particular work primarily to prevent us from
reaching false conclusions. It only allows us to reach conclusions that we
could not possibly doubt so long as our original reasons remain intact. It can
be dangerous to believe things that are false, but it can be just as dangerous
not to believe things that are true. We need a reasoning system that lets us
draw likely conclusions with less than conclusive evidence. And we need a
mechanism for correcting this kind of reasoning in light of further evidence.

It sounds like I am describing reasoning under uncertainty, and that is
certainly part of what I have in mind. But in fact the absence of information
can sometimes be a positive reason for believing something. Is there any
milk in the refrigerator? We look and we do not see any milk. The failure
to find evidence of milk in this case is a good reason to believe that there
is no milk in the refrigerator. For another example, I believe that there is
a cat in front of me. I believe this because there appears to be a cat in
front of me. That seems to be ample evidence. Of course, we can think of
situations where I would be wrong. I might be hallucinating, or there might
be a holograph of a cat, or there might be a mirror and the cat I think I
see in front of me is actually behind me. But I have no reason to believe
that I am hallucinating, and there is no evidence of a holographic projector
or of a mirror. The absence of evidence that my perceptual circumstances



are abnormal provides part of the justification for my belief that there is a
cat in front of me. If I knew I were reacting to some medication and having
hallucinatory experiences, for example, I might not even form the belief that
there is a cat in front of me. This is not reasoning with uncertainty in the
normal sense. It is recognizing that the absence of information can help
justify our beliefs.

I am going to describe a particular approach to nonmonotonic reasoning.
I will discuss the formal theory behind this approach, work that has been
done on implementing this theory, and some applications that have been
developed using this approach to nonmonotonic reasoning.

2 Defeasible Logic and its Language

I begin by explaining what I mean by a nonmonotonic system of reasoning in
the context of formal systems. Suppose that |— is the consequence relation
of some formal system Y. Then ¥ is monotonic just in case for any two sets
S and T of formulas and any formula ¢ of the language of ¥, if T |- ¢, then
TUS |- ¢. Any reasoning system that preserves truth must be monotonic.
But a reasoning system that preserves justification will not be monotonic. A
justified belief might well be false, and a true belief might well be unjustified.
If we learned that a justified false belief was false, then it would no longer
be justified. That means that a belief that ¢ might be justified based on
our belief in some other set of propositions S, but there could be a set of
propositions 7" such that if we came to believe all the propositions in T we
would no longer be justified in believing ¢.

Many nonmonotonic formalisms use a special unary operator to mark
peculiar conditions in rules. As long as all the conditions for the rule are sat-
isfied, the consequent of the rule is detachable. For example, in autoepistemic
logic we can always derive y from ¢, ~K~), and ¢ A ~K~1) D x. By con-
trast, defeasible systems use rules whose consequents may not be detachable
even when their antecedents are derivable ([14, 13, 7, 8, 30, 29, 21]). Detach-
ment of the consequent of one of these defeasible rules may be defeated by a
fact or another rule. The competing rule may either rebut the first rule by
supporting a conflicting consequent, or it may simply undercut the first rule
by identifying a situation in which the rule does not apply ([30]). Defeasible
logic uses strict rules, defeasible rules, and undercutting defeaters.



We define atomic formulas in the usual way. A literal is any atomic
formula or its negation. All and only literals are formulas of our language.
Where ¢ is an atomic formula, we say ¢ and ~¢ are the complements of each
other. —¢ denotes the complement of any formula ¢, positive or negative.

Rules are a class of expressions distinct from formulas. Rules are con-
structed using three primitive symbols: —, =, and ~». Where AU {¢} is a
set of formulas, A—¢ is a strict rule, A=¢ is a defeasible rule, and A ~ ¢
is an undercutting defeater. In each case, we call A the antecedent of the
rule and we call ¢ the consequent of the rule. Where A =3D {«}, we denote
A—¢ as Y—¢, and similarly for defeasible rules and defeaters. Antecedents
for strict rules and defeaters must be non-empty; antecedents for defeasible
rules may be empty. We will call a rule of the form @=¢ a presumption and
represent it more simply as =¢. While we allow variables in rules, we will
treat such rules as schemata for all their instantiations.

Strict rules can never be defeated. They not only do not have excep-
tions, but could not have exceptions. We may think of them as expressing
a necessary connection between antecedent and consequent. Examples of
the kind of claim we would represent by a strict rule are “Bachelors are not
married” and “Penguins are birds.” Defeasible rules represent weaker con-
nections which can be defeated. Examples are “Penguins live in Antarctica”
and “Birds fly.” An example of a presumption is “Presumably, there is no life
on the moon.” Undercutting defeaters are too weak to support an inference.
Their role is to call into question an inference we might otherwise be inclined
to make. We represent such caveats using “might” as in “A damp match
might not burn.”

A defeasible theory must include an initial set of facts and a set of rules,
but it must include more. Rules are in conflict with each other when their
antecedents are satisfied and their consequents are incompatible. Obviously,
two rules with consequents ¢ and —¢ will conflict, but rules will also conflict
in other cases. For example, rules with consequents “my carpet is square”
and “my carpet is circular” will conflict. One component of a defeasible
theory will be a set of conflict sets. Each conflict set will represent a minimal
set of incompatible formulas. We want the set of conflict sets to reflect the
necessary relations embodied in our strict rules. If {¢, ¥} —x is in our theory,
then {¢, 1, —x} should be one of our conflict sets. Thus, we want our set of
conflict sets to include all pairs containing a formula and its complement and
we want it to be “closed” under the strict rules in the theory. The exact sense
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of this closure under the strict rules in the theory is given in the definition of
a closed defeasible theory below. Notice that since a conflict set may contain
more than two formulas, three or more rules may conflict even though no
proper subgroup of those rules conflicts.

This notion of explicitly defining the conflict sets for a theory is one way
of responding to the problem of deciding when rules conflict. This is one of
the most serious obstacles to developing a constructive syntactic approach
to defeasible or nonmonotonic reasoning. In earlier work, I suggested that
two rules conflict just in case the consequent of one is the complement of
the other. Schurtz [37] suggests that this should be extended to any rules
with incompatible consequents. Makinson suggests that we should detach
the consequents of norms iteratively “while controlling for ‘consistency with
the condition’ in a piecemeal way” ([15], page 20.) But recognizing exactly
when the consequents of two rules or a set of rules will lead to inconsistency
is a serious problem, particularly for first-order logic where the question is
not decidable. By restricting our formal language severely and introducing
the notion of closure under strict rules, we have an answer to the problem in
at least a limited case.

Another component of a defeasible theory will be a precedence relation.
This relation provides a way of adjudicating conflicts between conflicting
rules. When we want to apply a defeasible rule A=-¢, we must look at all
conflict sets to which ¢ belongs. In each such set, there must be one member
1 different from ¢ such that for every rule with consequent 1) either the
antecedent of the rule fails or A=-¢ takes precedence over the rule. More
will be said about the precedence relation after the definition of a defeasible
proof has been presented.

The theories we will consider, then, consist each of a set of literals (rep-
resenting initial facts about the world,) a set of rules, a set of conflict sets
(closed under the strict rules in the theory,) and a precedence relation.

Definition 1 A closed defeasible theory is a quadruple (F, R,C, <) such
that

1. F s a set of formulas,
2. R is a set of rules,

3. C is a set of finite sets of formulas such that for every formula ¢,



(0') {¢a _|¢} € C; and
(b) for every S € C and A—¢ in R, if p € S, then AU(S—{¢}) € C,

and

4. <18 an acyclic binary relation on the non-strict rules in R.

3 Semantics

The most common approach to developing a semantics for nonmonotonic
systems is the fized-point approach. In fixed-point systems, we consider su-
persets of a theory which satisfy certain constraints. These fixed-points are
also called extensions of the theory. Typically, every default rule in the
system is either failed (the antecedent is not contained in the extension,)
defeated, or applied (its consequent is in the extension.) An extension is in
some sense a smallest set that satisfies this requirement. The sense of ‘small-
est’ used here is not always simply the set theoretic notion. A single theory
may have multiple extensions. When a theory has multiple extensions, one
option is to take the consequences of the theory to be the intersection of all
the extensions of the theory, the so-called “skeptical” approach. In general,
either there are no algorithms for generating the extensions of a theory or
generating the extensions is computationally expensive. (However, see [5] for
some work on testing to see if a formula is a member of an“admissible set”
without having to generate the entire set.) Furthermore, a particular theory
may not have an extension. Examples of what I am calling fixed-point the-
ories include default logic [32], autoepistemic logic [17, 12], or in the deontic
arena, allowed entailments [18].

The fixed-point semantics presented here for our defeasible language is
due to Donnelly ([4].) First, we want a set of literals that includes all the
initial literals in a theory and that also complies with all the rules in that
theory.

Definition 2 Let T be a closed defeasible theory. A set K of literals is T-
compliant if and only if

1. Fr CK,
2. ¢ € K if there is A—¢ € Ry such that A C K, and



3. ¢ € K if there is A=¢ € Ry such that A C K, and for all S € Cr, if
¢ € S then there is ¢y € S — (Fr U ¢) such that

(a) for all B—¢ € Ry, BZ K,
(b) for all B= € Ry, either B L K or B=t <y A=¢, and
(c) for all B~ € Ry, either B € K or B~ <r A=¢.

Compliance with the rules in a theory is not enough. If it were, we
could take our extensions to be those T-compliant sets that have no proper
subsets that are T-compliant. The problem with this approach is that we
can still have gratuitous beliefs represented in such a set. Take for example
a theory T for which Ky =3D {¢},rR=3D {¢=1¢, x=0,0=x,{x,0}= ~v},
<7r=3D 0, and-Gust contains all pairs of atomic formulas and their negations.
Then intuitively we only want ¢ and v in our extensions of 7. But the set
S =3D {¢, x,0} is also a smallest T-compliant set. We would say that from
the point of view of T, belief in x and € is gratuitous. But each supports
the other once they are accepted, and together they defeat the inference to
1. However, if we remove both x and # from S, nothing in the remaining
set {@} together with the rules in Ry requires us to put either of x and 6
back into the set. That is, we can throw these two literals away and what
is left does not force us to put them back. This should not happen with an
extension of a defeasible theory.

Definition 3 Let T be a closed defeasible theory. A set of literals FE is a
T-extension if and only if

1. E is T-compliant, and
2. there is not K C E with K #3D 0 such that

(a) Fr CE — K,
(b) ¢ & K if there is A—¢ € Rr such that AC E - K,

(¢) & & K if there is A=¢ € Ry such that A C E — K, and for all
S € Cr, if ¢ € S then there is ¢ € (S — (Fr U {¢}) such that
i. forallB—+Y € Ry, BZ E—-K,
1. for all B=v € Ry, either B E — K or B=vYy <r A=¢,
and



11. for all B~) € Ry, either BZ E — K or B~y <y A=¢.

We will say that a literal ¢ is defeasibly entailed by a defeasible theory T'
just in case ¢ is in every T-extension.

Definition 4 Where T is a closed defeasible theory and ¢ is a literal, T R ¢
if and only if for every T-extension E, ¢ € F.

4 Proof Theory

As was mentioned before, several well-known approaches to nonmonotonic
reasoning develop a fixed-point semantics but provide no proof theory to go
with it. In at least some cases, it appears that no constructive proof theory
is possible. T must confess that the semantics presented here was developed
long after considerable work had already been done on a constructive proof
theory for defeasible reasoning. While a fixed-point semantics without a
proof theory might be intellectually satisfying in some respects, practical
application is difficult or impossible. And it certainly isn’t an attractive
model for the nonmonotonic reasoning of ordinary people.! The semantics
was then designed with the proof theory in mind. After we present the proof
theory we will investigate the relationship between the proof theory and the
semantics.

The defeasible logic presented here is a refinement of the system presented
in [22]. Our proof theory will provide a constructive way to establish that
a particular formula is derivable from a theory without having to generate
a fixed-point or extension for the theory. Every theory will have a unique
closure in the logic.

In order to apply a defeasible rule, it will sometimes be necessary to show
that a competing rule is not satisfied, that is, that it’s antecedent conditions
are not derivable. Thus, a proof will include both positive and negative
defeasible assertions.

LOf course, we should want our formal systems to resemble the reasoning system of
ordinary people, but we generally don’t want a formal system that mirrors exactly what
ordinary people do. After all, ordinary people often reason very badly. What we want to
do is to discover those patterns where their reasoning is at its best and then try to extend
those patterns to correct other cases where their reasoning goes astray.



Definition 5 o is a positive defeasible assertion iff there is a defeasible
theory T and a formula ¢ such that 0 =3D T |~ ¢. o is a negative defeasible
assertion iff there is a defeasible theory T and a formula ¢ such that o =3D
T~ ¢. o is a defeasible assertion iff o is either a positive defeasible
assertion or a negative defeasible assertion.

A negative assertion T ~| ¢ is intended to make a stronger statement
than T [/ ¢. T ~| ¢ indicates that there is a demonstration that ¢ does not
follow from 7. Before we can detach the consequent of a defeasible rule,
we will need to establish that it is not defeated by some conflicting rule.
To do this, we will often need to show that the antecedent of a conflicting
rule cannot be satisfied. What we need, then, are complementary notions
of derivation and refutation. We will sometimes need to show that some
formula is refutable in order to show that another formula is derivable, and
we will also sometimes need to show that some formula is derivable in order
to show that another formula is refutable. Of course, by “refutable” we do
not mean that a formula can be shown to be false. Instead, we mean only
that we can show that it is not derivable. I think both of these uses of the
terms “refute” and “refutation” occur in ordinary usage, but it is important
to keep in mind which is intended here.

Our defeasible proofs will have a tree-structure rather than the usual
linear structure. Those familiar with logic programming will know that a
query can succeed, fail finitely, or fail infinitely. A query fails infinitely
when an attempt to prove it can proceed indefinitely without succeeding and
without failing in the usual sense. One way a query can fail infinitely is
when there is circularity in a theory and the same new query to be proved
occurs repeatedly. For example, if our theory contains no formulas and only
the single rule ¢p—¢, then the use of the rule p—¢ in an attempt to find a
proof can lead us to try to prove ¢ by proving ¢ ad infinitum. This is what
an automated theorem prover will do if it has no way to check for loops;
but of course a proof theory is not committed to any particular method for
generating proofs. All that is necessary for ¢ to follow from 7" is that there
is one successful proof of ¢ from 7. However, when showing that T refutes
¢, we will need to show that all efforts to prove ¢ from 7" must fail. One way
an attempt can fail is by looping. Giving our proofs a tree structure makes
it possible to recognize and use such infinite failures within the proof theory.
Alternatively, we might try a labeled logic a ld Gabbay [6] where the labels



carry the same information as the descendants of a node in a proof tree.

Definition 6 7 is o defeasible argument tree iff T is a finite tree and
there is a defeasible theory th(T) such that for every node n in T there is a
formula ¢ such that n is labeled either th(T) k ¢ or th(T) ~ ¢.

Definition 7 Let o be a defeasible argument tree and let n be a node in o.

The depth of n in o is k (dp(n,o) =3D k) iff n has n—1 ancestors in o. The
depth of o is k (dp(c) =3D k) iff k =3D maz{j : there is a node m € o such
that dp(m, o) =3D j}.

So far, we have used the notion of the antecedent of a rule succeeding
or failing informally. Before presenting our basic defeasible proof theory, we
will say precisely what it means for sets of formulas to succeed or fail at a
node in a defeasible argument tree.

Definition 8 Let T be a defeasible argument tree, th(T) =3D T, n be a node
i T, and A be a set of formulas.

1. A succeeds at n iff for all $ € A, n has a child labeled T |~ ¢.
2. A fails at n iff there is ¢ € A such that n has a child labeled T ~| ¢.

Definition 9 7 is a defeasible proof (d-proof) iff T is a defeasible ar-
gument tree, th(T) =3D T, and one of the following conditions holds for every
noden in T.

1. n is labeled T |~ ¢ and either

(0/) ¢ € FT;
(b) [Strict Detachment] there is A—¢ € Ry such that A succeeds
atn, or

(c) [Factual Detachment] there is A=¢ € Ry such that A succeeds
at n and for all S € Cr, if § € S then there isp € S— (FrU{¢})
such that

i. for all B—y € Ry, B fails at n,

1. for all B=1 € Ry, either B fails at n or B=y <1 A=¢,
and

10



iti. for all B~ € Ry, either B fails at n or B~ <p A=¢.
2. n is labeled T ~ ¢ and there is S € Cr such that

(0,) ¢¢FT7

(b) [Failure of Strict Detachment] for all A—¢ € Ry, A fails at
n, and

(c) [Failure of Defeasible Detachment] for all A=¢ € Ry, either
i. A fails at n, or
ii. thereis S € Cr such that ¢ € S and for all € S—(FrUu{¢}),
either
A. there is B— € Ry such that B succeeds at n,

B. there is B=1 € Ry such that B succeeds atn and B=-1) 41
A=¢, or

C. there 1s B~ € Ry such that B succeeds at n and B~
Y A A=¢.

3. [Failure by Looping] n is labeled T ~ ¢, n has an ancestor m in T
such that m is labeled T ~ &, and every node in T between n and m is
labeled with a negative defeasible assertion.

The Failure by Looping condition in Definition 9 needs some justification.
To apply a defeasible rule, we sometimes need to show that a competing rule
is not satisfied. We do this by showing that every attempt to derive the
antecedent of the competing rule fails. Suppose the antecedent contains ¢.
Then we must explore every way that we might derive ¢. If we discover one
way of deriving ¢ that requires us to derive ¢, then we can be sure that if ¢
is to be derived at all then there must be some way of doing it that is not
circular. Thus, we can reject any circular attempts to establish ¢. This in
no way allows us to avoid examining all the non-circular ways that ¢ might
be established. What Failure by Looping amounts to is the recognition that
if there is no non-circular way to establish a formula, then there is no way
to establish it.

Definition 10 ¢ is defeasibly derivable from T (T ~p ¢) iff there is a
d-proof Ty such that the top node in Ty is labeled T 1~ ¢.
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Definition 11 ¢ is defeasibly refutable in T (T~ ¢) iff there is a d-
proof Ty such that the top node in Ty is labeled T ~| ¢.

For 7, as described in Definition 10 or 11, we will say that 7, establishes
T ~p ¢ or T ~p ¢ respectively.

Definition 12 A set of formulas A is defeasibly derivable from T (T' vp A)
iff for allp € A, T ~p ¢.

Definition 13 A set of formulas A is defeasibly refutable in T' (T'~p A)
iff there is ¢ € A such that T ~p ¢.

Given our informal notion of refutation, it should not be possible to both
derive and refute the same formula from a defeasible theory. After all, a
refutation is supposed to be a demonstration that the refuted formula cannot
be derived. The following theorem establishes this essential property for our
basic defeasible logic.

Theorem 1 [Coherence] If T ~p ¢, then T |/68-¢.

Another important property of our proof theory is that defeasible rules
cannot produce any new contradictions. Any contradictions derivable in the
theory depend only on the strict rules and the initial set of literals in the
theory.

Definition 14 T Fp ¢ iff (Fp, {A—=¢ : A=t € Ry}, Cp, <7) bop ¢.

Theorem 2 [Consistency] If S € Cr and for all p € S, T ~p ¢, then for
allp € S, T Fp ¢.

Makinson and Schlecta [16] propose that a rule that has been defeated
might still act as a defeater for another rule. In the language of inheritance
nets, such a rule would be a link in what Makinson and Schlecta call a
“zombie path”. I note that the defeasible logic developed here rejects “zombie
paths”. My intuitions are closer to those of Touretzky and Thomason in [38].
A constructive approach to defeasible reasoning must also reject Makinson’s
and Schlecta’s notion of a “floating conclusion”. This is a formula that
belongs to the intersection of all extensions of a theory even though no rule
supporting the formula is satisfied in every extension.

Now we return to the relationship between our proof theory and our
semantics. Donnelly [4] proves the following result.
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Theorem 3 [Soundness| If T vy ¢, then T & ¢.

Donnelly also shows that our proof theory is not complete with respect
to our semantics. A literal ¢ may belong to every T-extension, but it may
depend on different paths in the various T-extensions. Since our proof theory
is sound, we will be unable to derive any “floating” conclusions. So long as
a theory has multiple extensions, there will be the possibility of floating con-
clusions. This implies a more general conclusion, not just the conclusion that
the defeasible logic presented here is not complete. Given any semantics for
nonmonotonic reasoning and any proof theory for that semantics, if floating
conclusions are possible in that semantics then the proof theory cannot be
both sound and complete.

5 Priorities, Specificity, and Normative Rea-
soning

One method for determining priorities of rules in defeasible theories is to use
specificity. A rule with antecedent A is said to be more specific than a rule
with antecedent B, relative to a theory T, if we can derive all of B from A
using only the rules in 7', but not vice versa. The precedence relation in a
theory might be based on such a notion of specificity. A more interesting
case, though, is where we already have some explicit relation on the rules
of a theory that we want to use as the core of our precedence relation. We
might then extend this core precedence relation by using specificity in all
those cases where the core precedence relation does not settle the matter. To
state this condition precisely, we will let R° =3D {r : r € R and the antecedent
of r is not empty }.

Definition 15 Let I' C<yp. Then T is I'-specific iff for all non-strict
r1,79 € Ry such that (r1,7m3) € T', A is the antecedent of r1, and B is the
antecedent of rq,

1. Zf <A,R%,CT, '<T> }'VDB and <B,R%,CT, '<T> ’\'|D A, then ro < T,
and

2. if (A, R, Cp, <7) ~p B or (B, Ry, Cr,<7) op A, then vy L7 1.
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A special case will be where we use specificity as our sole criterion for
adjudicating conflicts between non-strict rules. This amounts to taking the
empty set as our core precedence relation.

Definition 16 A theory T preserves specificity iff T is (0-specific.

An advantage of using I'-specific or specificity preserving theories is that
we can now compute whether one rule takes precedence over another. This be-
comes particularly important when we add a deontic operator O (for ‘ought’)
to our logic and represent norms (rules with deontic consequents.) The proof
theory for deontic defeasible logic requires additional principles to handle
the interaction between norms and other rules and to resolve some of the
paradoxes in standard deontic logics. Such a deontic extension of defeasible
logic is described in [22, 23].

Let’s call a theory 7' that contains norms a primary theory, and let’s
call a theory 7= that contains rules about which rules in 7" take precedence
over which other rules in 7" a precedence theory for 7. By doing proofs or
refutations in 7=, we can determine in at least some cases whether A=¢ <1
B=-1. Specificity is one way to assign priorities for rules, but there are
others. The principles of lex superior and lex posterior are familiar examples.
Suppose we have a theory T containing rules representing both federal laws
of the United States and laws of some particular state within the United
States. In the language of a second theory T, we have names for all the
rules in T and predicates federal, state and . Then 7~ can contain all
instances of the form

{federal(r), state(rs) }=rs C 1.

This would be a special instance of the principle of lex superior. Let

I' =3D {(T2>:T< P\’D T1 ETQ}

and suppose T is I'-specific. Now we can use a combination of lex superior
and specificity to determine precedence among the laws in our theory 7' of
normative use. And we can use proofs and refutations in 7= to determine the
core of the precedence relation for 7. Our complete defeasible theory now
has two components, a primary theory and a theory of precedence for the
primary theory. Notice that lex superior takes priority (at a higher level) over
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specificity since the definition of I'-specificity guarantees that specificity is
only applied when the core precedence relation I' does not determine priority.

Clearly, matters become more complex when we try to add lex posterior
to our precedence theory and when we try to include the laws of all fifty states
in the U.S. It may even turn out to be impossible to do this without violating
the requirement that <, must be non-cyclical. It is an open question whether
for any non-cyclic relation I' on the non-strict rules in a set R of rules, any
set F' of facts, and any conflicts set C for the language of F' and R, it is
possible to construct a theory 7" =3D (F, R, <, C) that is I-specific.

Notice in the example of lex superior, the rule used to express this prin-
ciple is defeasible. But why shouldn’t this be a strict rule? Indeed, why
should we need defeasibility at all in a precedence theory? The doctrine of
states’ rights in some interpretations of the U.S. Constitutional illustrates
the need for defeasible rules in precedence theories. Once again, lex supe-
rior should tell us that Constitutional law should take precedence over either
federal or state law. So we get a nice, neat three-level normative system.
But the position of the southern states in the American Civil War was that
the Constitution prohibits the federal government from enacting laws limit-
ing the powers of the state governments in certain areas. If this principle of
states’ rights were to prevail, then the principle of lex superior would have
to be defeasible. It would have exceptions in any case where a federal law
contradicted a state law and the subjects of these two conflicting laws fell
under the umbrella of the Constitutional guarantee of states’ rights.

6 Implementation

6.1 d-Prolog

The design of defeasible logic has been influenced by issues of implementation,
and particularly of implementation in Prolog, from the beginning. d-Prolog
is a nonmonotonic extension of the Prolog programming language. There
have been several versions of d-Prolog dating back to 1986 (see [27].) The
latest version is an implementation of an earlier version of defeasible logic
described in [19, 20]. A complete description of this version of d-Prolog is in
[2, chapter 11].

Here are some of the features of the latest version of d-Prolog, including
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some of the ways the defeasible logic it implements differs from the formal
logic described earlier in this paper.

1. d-Prolog does not implement Failure by Looping.

2. d-Prolog is not closed under strict rules. Conflict pairs have only two
members. All pairs of literals and their complements form a conflict
pair. Other conflict pairs can be listed explicitly using the predicate
incompatible/2.

3. Because d-Prolog is not closed under strict rules, inference using strict
rules is handled differently. When the conditions of two competing
strict rules are only defeasibly satisfied, d-Prolog treats the two rules
as though they defeat each other and the consequent of neither rule is
detached. The purpose of this strategy is to limit the contradictions
that can be derived to those that follow from the strict rules and initial
facts alone.

4. In d-Prolog, the query
?7- spec.

toggles between enabling and disabling specificity. In response to the
query, d-Prolog informs the user whether specificity has just been en-
abled or disabled. Even if specificity is enabled, the programmer can
still add clauses for the predicate sup/2 to force resolution of conflicts
between rules where specificity fails to determine superiority. When
d-Prolog is loaded, specificity is enabled by default.

We begin by defining the language of d-Prolog. One unary functor neg
and two binary infix functors :=(( and :~ are added to Prolog. neg is a sound
negation operator which we distinguish from the built-in negation-by-failure
(NBF) operator not. Where Atom is an atomic clause, Atom and neg Atom
are complements of each other. neg Atom can occur in either the Head or
the Body of a rule. Clauses of the form Head :=(( Body are called defeasible
rules, and clauses of the form Head :~ Body are called undercutting defeaters
or simply defeaters. A defeasible rule of the form Head :=(( true is called a
presumption. By contrast, ordinary Prolog rules are called strict rules.
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Conclusions may be derivable either strictly or defeasibly. A conclusion
is derivable strictly if and only if it is derivable from the facts and strict rules
in the knowledge base alone. A clause Goal is strictly derivable, then, just in
case the query ?- Goal. succeeds. A conclusion is defeasibly derivable if it
is derivable using all the clauses in the knowledge base including defeasible
rules, presumptions, and defeaters. Thus, a conclusion is defeasibly derivable
if it is strictly derivable. We introduce a new unary functor @ to invoke the
defeasible inference engine, and a clause Goal is defeasibly derivable just in
case the query 7- @ Goal. succeeds. We read @ Goal as ‘Defeasibly, Goal’
or as ‘Apparently, Goal’.

Another unary functor @@ is introduced to support exhaustive investi-
gation of queries. We want a way to find out with a single query whether
a ground atomic clause or its negation is either strictly or defeasibly deriv-
able. In response to the query ?- @@ Goal, d-Prolog will test for all these
possibilities and give an appropriate report: ‘definitely yes’, ‘definitely no’,
‘presumably yes’, ‘presumably no’, or ‘can’t tell’.

Here is an example of a d-Prolog knowledge base.

born_in(X,usa) :- born_in(X,atlanta).
neg born_in(X,usa) :=((

native_speaker (X,greek) .
born_in(stavros,atlanta) :=(( true.
native_speaker (stavros,greek) :=(( true.

For this knowledge base, d-Prolog responds to the query 7- @@ born_in(stavros,usa).
with the report ‘presumably yes’ because the strict rule is superior to the de-
feasible rule.
Another familiar example, the so-called Nixon Diamond, demonstrates
how two defeasible rules may defeat each other. We represent this example
in d-Prolog by the following facts and rules.

pacifist(X) :=(( quaker(X).

neg pacifist(X) :=(( republican(X).
quaker (nixon) .

republican(nixon) .

The correct response to the query

?7- Q@ pacifist(nixon)
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is ‘can’t tell’ since neither of the two defeasible rules is superior to the other
and each is rebutted by the other. However, we could decide that in this
kind of situation political party takes priority over religious affiliation. Then
we can add the following clause to our d-Prolog knowledge base.

sup((pacifist(X) :=(( quaker(X)),
(neg pacifist(X) :=(( republican(X))).

With this addition, the query
7- @@ pacifist(nixon).

produces the report ‘presumably no’.
We have begun work on a new version of d-Prolog that implements conflict
sets closed under strict rules and Failure by Looping.

6.2 d-GRAPHER

Knowledge based systems (KBSs) that model inference about specific domains
incorporate representations of the knowledge necessary to solve problems in
their domains. Another kind of decision support tool is needed that al-
lows users to model knowledge not already represented in the system. Such
an argumentation based system (ABS) would provide tools to help the user
represent knowledge about any domain. It would incorporate an inference
mechanism to help the user derive conclusions from the knowledge that has
been modeled. The system would make the inference process visible to the
user and allow the user to construct a variety of “what-if” scenarios easily
and quickly. While a KBS applies preselected argument structures to the
information provided by the user, an ABS would allow the user to construct
and evaluate competing arguments on any subject before making a decision.
Systems of this sort have been reported in [1, 10].

d-GRAPHER ([26] is an argumentation based system built around an im-
plementation of defeasible logic. Knowledge is represented in d-GRAPHER
using defeasible graphs, graphical representations of defeasible logic theories.
Nodes in a defeasible graph represent atoms (corresponding to consequents
of rules) or sets of literals (corresponding to the antecedents of rules.) Nodes
are connected by six kinds of arrows representing positive or negative strict,
defeasible, or defeater links. A negative link is a —, a =, or a~»with a bar
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through it. A negative link such as A /~¢ represents the rule A— ~ ¢. A
literal in a d-graph is marked true by displaying it in green and marked false
by displaying it in red. If it can be shown that neither an atom nor its nega-
tion can be derived, then both are displayed in yellow. In [25] we describe
an algorithm for propagating markings (colors) in a defeasible graph, and
we showed that for finite acyclical defeasible graphs with an initial partial
marking, this algorithm eventually marks every node in the graph. We also
showed that this algorithm is sound with respect to the earlier version of
defeasible logic implemented in d-Prolog. This means that our graph mark-
ing algorithm provides a sound, decidable proof theory for the fragment of
defeasible logic represented by defeasible graphs.

d-GRAPHER is a tool for building and reasoning with defeasible graphs.
The d-GRAPHER interface, written in Visual Basic, allows the user to build
and label defeasible graphs using a drag-and-drop method. The user can then
mark an initial set of atoms in the graph green (true) or red (false). When
the user clicks a button to begin inference, a representation of the graph is
sent to a Prolog inference engine. A complete set of markings is returned to
the interface and the graph is marked appropriately.

7 Applications

7.1 An Expert System

At least one expert or decision support system has been developed that uses
d-Prolog. FORE ([28]) helps a user select a business forecasting method from
among twenty available methods. The selection is based on sixteen different
criteria. An analysis of these criteria and how they affect the choice of a
forecasting method appeared in [9]. The results are organized into a matrix.
Within each cell of the matrix is an explanation of how the corresponding
criterion strongly or weakly indicates or counter indicates the correspond-
ing method. These explanations were converted into Prolog rules. A small
core of d-Prolog rules were then constructed to control the way in which
these indicators and counter indicators would determine the final selection
of a forecasting method. Using d-Prolog to control the way the other rules
interacted made it much easier to write the large set of rules representing
the selection matrix. In particular, it is not necessary to write exceptions
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into each rule. d-Prolog allows exceptions to be added as new rules without
altering rules that are already in the knowledge base.

The FORE interface asks the user questions about the user’s forecasting
requirements, data, and other criteria affecting the selection of a forecast-
ing method. These questions are asked on a need-to-know basis meaning
that answers to earlier questions can determine whether or not a question
needs to be asked later. The answers are used to determine which methods
are strongly or weakly indicated or counter indicated. Then the core of d-
Prolog rules is used to arrive at overall recommendations, determining which
methods are preferred given the user’s situation. The system then makes its
recommendations and provides an explanation for its recommendations.

7.2 Planning and Learning

Defeasible logic looks promising for use in planning and machine learning,
and some initial work has been done in these areas ([31].) This work involves
efforts to develop agents that can perform complex tasks in an artificial
environment. The environment, V-World, is a simulator written in Prolog
([24].) It supports development of artificial worlds with complex ontologies
similar to those seen in some video games. Agents can then be developed
that interact with these worlds, learning the ontology of the world through
interaction with objects and other actors and/or working to achieve a goal
that requires complex planning. A graphical interface allows the user to
observe the actions of ‘softbots’ as they move about a virtual world.

When an agent interacts with an object or actor in a V-World environ-
ment, the agent’s strength or damage level may increase or decrease as a
consequence of the interaction. In our learning experiments, the agent noted
a most salient feature of an object with which it interacted and combined
this feature with the consequences of the action in a defeasible rule. For
example, if the agent pushed against an object whose most salient feature
was that it was a tree and the interaction resulted in damage, then the agent
might learn the rule

damage_incurred :=((

tree(X),
push (X).
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This rule would guide the agent to avoid trees when its damage level was
high; but the imperative to experiment built into the agent would prompt
the agent to interact with a tree on another occasion if it was strong and
undamaged. On the next occasion, the agent might experience no damage
and an increase in strength when it pushed a tree. It would then look for a
next most salient feature of the tree it had just encountered and learn a new,
more specific rule such as

neg damage_incurred :~
tree(X),
fruit_bearing(X),
push(X) .

strength_enhanced :=((
tree(X),
fruit_bearing(X),
push(X) .

A third encounter with a tree might result in a rule like

damage_incurred :=((
tree(X),
fruit_bearing(X),
thorny (X),
push(X) .

Of course, it might have been thorns that caused the damage in the
original encounter, but since we are assuming that this was not the most
salient feature of the tree, it was not the feature that the agent associated with
the damage. Each time the agent experiments with a kind of entity that it has
previously experienced, it uses the rules it has learned to predict the outcome
of the experiment. When the outcome is different from the prediction, the
agent determines the rule that supported the prediction, determines some
feature of the entity that is not included in the rule, forms a new rule that
will overrule or at least defeat the original rule, and adds it to its store of
knowledge. We found that eventually an agent developed rules that allowed
it to predict the outcomes of experiments unerringly in the relatively simple
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environments of V-World. In the process, some of the simpler rules learned
early in the agent’s history became useless appendages that were always
defeated by more specific rules learned later. If we added a procedure that
eventually removed rules that had not ‘fired’ for a long time, we might have
a reasonable though primitive model for how an agent learns the ontology of
its environment and of how that ontology is represented.

Just as the rules learned by our learning agent were defeasible, so were
the plans constructed by our planning agent. In these experiments, the agent
began with a full understanding of the ontology of its environment. Its goal
was to learn the geography of its environment, to locate some object, and to
transport this object to some location. Its task was complicated by various
obstacles: doors that required keys, guardians that could cause damage and
could only be safely by-passed through successful attacks or bribes, etc. The
agent began with a simple plan represented in a presumption, for example,

valid_plan([find(gold), take(gold), goto(castle)]) :=((
true.

If the agent found the gold and discovered that the gold was guarded by
a dragon, and it knew that a sword was required to eliminate dragons, then
it would add a rule like the following to its knowledge base.

valid_plan([find(sword), goto(dragon), attack(dragon),
goto(gold), take(gold), goto(castle)] :=((
true.

On the other hand, if the agent located the gold and it was unguarded,
then it would remove the rule holding the plan it had just acted on, delete
the first step, and assert the new, simpler rule:

valid_plan([take(gold), goto(castle)]) :-
true.

The agent also began with a set of rules telling it when plans were not
valid. Here are some examples.

neg valid_plan([Stepl_1) :=((

strength(low),
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Step \=((=(( goto(food).

neg valid_plan([Stepl_1) :=((
Step =(( take(Object),
guarded_by(Object, Actor).

The agent would also have a library of rules for very simple plans for
certain situations, for example,

valid_plan([goto(food)]) :=((
strength(low) .

Each move, the agent determined whether it could derive that there was
a valid plan according to its rules. If it derived a valid plan, then it based its
next move on that plan. If it could not derive a valid plan, then it called its
planning routine to generate a new plan that would be valid for at least one
move.

This approach to planning had some interesting consequences. Plans
that became invalid were not deleted. Plans were only deleted, one step at
a time, as they were executed. Thus at the end of a session it was possible
to examine plans that the agent had developed along the way but at some
point abandoned. But it was also possible for a plan to become invalid and
then later to become valid again. This would allow the agent to return to a
revalidated plan and pursue it again without having to develop a new plan.

Only a small number of experiments to investigate the value of defeasible
logic in learning and planning in simple environments have been completed,
but these experiments show promise for the approach. I hope to return to
this line of research in the near future.

7.3 Normative Reasoning

In an earlier section I alluded to an extension of defeasible logic that in-
corporated deontic operators. Hunter developed an extension of d-Prolog
that implemented some of the features of this defeasible deontic logic in [11].
But prior to that, other researchers had developed machinery for performing
normative reasoning within the framework of d-Prolog.

Ryu ([33]) used d-Prolog to model the lending policies of the Univer-
sity of Texas and to model small secured loans (pawns) as described in the
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Uniform Business Code. Dhanesha ([3]) later used d-Prolog to model the
parking regulations of George Mason University. Each of these authors built
additional machinery on top of the d-Prolog foundation to handle specific
issues that arose with regard to normative reasoning, although the way the
two authors approached these problems were rather different. In any case,
both of these studies have an ad hoc flavor and give the impression that the
models were developed pragmatically and with limited consideration for the
underlying theoretical issues involved in applying defeasible reasoning to nor-
mative contexts. Ryu and Lee published several later papers that explored
the theoretical questions ([34, 35, 36].)

8 Conclusions

The relative amount of effort that has been expended on theory develop-
ment, implementation, and applications for defeasible logic seems to me to
mirror the situation for research on nonmonotonic formalisms generally. A
great deal of work has gone into the development of theory and this work
continues in part because convergence has not occurred. Considerably less
work has been done on implementing nonmonotonic reasoning systems and,
as with defeasible logic, this work tends to lag behind the theoretical develop-
ment. In some cases, and this is certainly true for defeasible logic, experience
with implementations of earlier systems has uncovered issues that have led
to refinement of the underlying theories. Finally, the number of applications
involving nonmonotonic reasoning systems remains quite small when com-
pared to the effort that has gone into theoretical work. But applications will
not appear until implementations of nonmonotonic inference systems become
more widely available, and confidence in both the theoretical work and im-
plementations based on it depends finally on the development of interesting
applications.
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