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Abstract

Abduction in Logic Programming started in the late 80s, early 90s,
in an attempt to extend logic programming into a framework suitable
for a variety of problems in Artificial Intelligence and other areas of Com-
puter Science. This paper aims to chart out the main developments of the
field over the last ten years and to take a critical view of these develop-
ments from several perspectives: logical, epistemological, computational
and suitability to application. The paper attempts to expose some of the
challenges and prospects for the further development of the field.

1 Introduction

Over the last two decades, abduction has been embraced in AI as a nonmono-
tonic reasoning paradigm to address some of the limitations of deductive reason-
ing in classical logic. The role of abduction has been demonstrated in a variety
of applications. It has been proposed as a reasoning paradigm in Al for dia-
gnosis [6, 79], natural language understanding [6, 33, 3, 81], default reasoning
[70, 24, 20, 43], planning [23, 97, 61, 51], knowledge assimilation and belief
revision [47, 65], multi-agent coordination [5, 55] and other problems.

In the context of logic programming, the study of abductive inference star-
ted at the end of the eighties as an outcome of different attempts to use logic
programming for solving Al-problems. Facing the limitations of standard logic
programming for solving these problems, different researchers proposed to ex-
tend logic programming with abduction. Eshghi [23] introduced abduction in



logic programming in order to solve planning problems in the Event Calculus
[56]. In this approach, abduction solves a planning goal by ezplaining it by an
ordered sets of events -a plan- that entails the planning goal. This approach
was further explored by Shanahan [97], Missiaen et al. [62, 61], Denecker [16],
Jung [41] and recently in [51, 52]. Kakas and Mancarella showed the applic-
ation of abduction in logic programming for deductive database updating and
knowledge assimilation [46, 48]. The application of abduction to diagnosis has
been studied in [8, 9] within an abductive logic programming framework whose
semantics was defined by a suitable extension of the completion semantics of
LP.

In parallel to these studies of abduction as an inferential method, Eshghi and
Kowalski [24] and later Kakas and Mancarella in [45, 47] and Dung in [20], used
abduction as a semantical device to describe the non-monotonic semantics of
Logic Programming (in a way analogous to Poole in [70]). In [13, 11], abductive
logic programming was investigated from a knowledge representation point of
view and its suitability for representing and reasoning on incomplete information
and definitional and assertional knowledge was shown.

For these reasons, Abductive Logic Programming! (ALP) [43, 44] was recog-
nised as a promising computational paradigm that could resolve many limita-
tions of logic programming with respect to higher level knowledge representation
and reasoning tasks. ALP has manifested itself as a framework for declarative
problem solving suitable for a broad collection of problems.

Consequently, at the start of the 90s, a number of abductive systems were
developed. In [47], the abductive procedure of [24] for computing negation as
failure through abduction was extended to the case of general abductive predic-
ates and later in [49, 53, 52] this was extended to incorporate constraint solving
of CLP in a new framework called ACLP that integrates features of abductive
and constraint logic programming. Another early abductive procedure was de-
veloped in [8] using the completion. [12] proposed SLDNFA, an extension of
SLDNF with abduction allowing non-ground abductive hypotheses. In [31] an
abductive procedure that can be regarded as a hybrid between SLDNFA and
the procedure of Console et al has been defined based on explicit rewrite rules
with the completion and equality. This has later [103] incorporated constraint
solving in a similar way to the ACLP procedure. A bottom up procedure, later
combined with some top down refinement, was given in [92] and [36]; the latter
system was an implementation using the Model Generator MGTP developed
on the multiprocessor machine developed at ICOT. Another recent abductive
procedure in LPis that of AbDual [1] which exploits tabling techniques from
XSB.

Despite these efforts and the many potential applications for abduction, it
has taken considerable time and effort to develop computationally effective sys-
tems based on abduction for practical problems. The field has faced (and to
some extend continues to do so) a number of challenges at the logical, method-

! The July/August 2000 volume (Vol. 44) of the journal of Logic Programming is a spe-
cial issue on Abductive Logic Programming. This contains several papers that open new
perspectives on the relationship between abduction and other computational paradigms.



ological and implementational level. In the recent past, important progress has
been made on all these levels. The aim of this chapter is to give a comprehensive
overview of the state of the art of Abductive Logic Programming, to point to
problems and challenges and to sketch recent progress.

The rest of the paper is organised as follows. Section 2 briefly reviews the
study of abduction in AI and philosophy and situates Abductive Logic Pro-
gramming within this broad context. Section 3 gives the formal definition of
abduction, and reviews the different formal semantics that have been proposed
in the literature. Section 4 reviews the different ALP frameworks that have been
developed so far analysing their potential scope to applications and their links
to other extensions of LP. The paper ends with a discussion of future challenges
and prospects of development for the field of ALP.

2 What is abduction?

Abduction emerged in the context of philosophical studies in logic. There are
many views on what is abduction. The aim of this section is to give our personal
view as we believe is emerging from recent studies in the field of Artificial
Intelligence and Logic Programming.

2.1 What is an explanation?

The term abduction was introduced by the logician and philosopher C.S. Pierce
(1839-1914) who defined it as the inference process of forming a hypothesis that
explains given observed phenomena [66]. Often abduction has been defined
broadly as any form of “inference to the best explanation” [40] where best refers
to the fact that the generated hypothesis is subjected to extra quality conditions
such as (a form of) minimality or some economic criterion. This definition is
extremely general and covers forms of hypothetical reasoning in a wide range of
different settings, from human scientific discovery in philosophical treatments
of human cognition to formally defined reasoning principles in formal and com-
putational logic.

In the context of formal logic, abduction is often defined as follows. Given a
logical theory T representing the expert knowledge and a formula @) represent-
ing an observation on the problem domain, abductive inference searches for an
explanation formula &£ such that:

e & is satisfiable? w.r.t. T and
e it holds that® T = & — Q

In general, £ will be subjected to further restrictions such as the aforementioned
minimality criteria and criteria restricting the form of the explanation formula
(e.g. by restricting the predicates that may appear in it). This view defines

21f £ contains free variables, 3(€) should be satisfiable w.r.t. T.
30r, more general, if Q and £ contain free variables: T = V(£ — Q).



an abductive explanation of an observation as a formula which logically entails
the observation. However, some have argued, with good reasons, that it is more
natural to view an explanation as a cause for the observation [40]. A well-known
example is as follows [80]: the disease paresis is caused by a latent untreated
form of syphilis. The probability that latent untreated syphilis leads to paresis
is only 25%. Note that in this context, the directionalities of entailment and
causality are opposite: syphilis is the cause of paresis but does not entail it, while
paresis entails syphilis but does not cause it. Yet a doctor can ezxplain paresis
by the hypothesis of syphilis while paresis cannot account for an explanation for
syphilis.

In practice, examples where causation and entailment do not correspond are
rare*. It turns out that in many applications of abduction in AI, the theory
T describes explicit causality information. This is notably the case in model-
based diagnosis and in temporal reasoning, where theories describe effects of
actions. By restricting the explanation formulas to the predicates describing
primitive causes in the domain, an explanation formula which entails an obser-
vation gives a cause for the observation. Hence, for this class of theories, the
logical entailment view implements the causality view on abductive inference.

2.2 Relationship to other reasoning paradigms

As a form of hypothetical reasoning, abduction is a versatile and informative
way of reasoning on incomplete or uncertain knowledge. Incomplete knowledge
does not entirely fix the state of affairs of the domain of discourse while uncertain
knowledge is defeasible in the sense that its truth in the domain of discourse
is not entirely certain. In the presence of incomplete knowledge, deduction is
the reasoning paradigm to determine whether a statement is true in all possible
states of affairs; abduction returns an explanation formula corresponding to a
collection of possible states of affairs in which the observation would be true or
would be caused. As such, abduction is strongly related to model generation and
satisfiability checking and can be seen as a refinement of these forms of reasoning.
By definition, the existence of an abductive answer proves the satisfiability
of the observation. But abduction returns more informative answers; answers
which describe the properties of a class of possible states of affairs in which the
observation is valid.

Many philosophers and logicians have argued that abduction is a generalisa-
tion of induction [28]. Indeed, induction can also be seen as a form of inference
to the best explanation. But the philosophical definition of abduction is so gen-
eral and abstract that it covers many forms of inference that could otherwise be
formally distinguished. In the context of formal logic and its relation to problem
solving, the term abduction has been used to denote a form of reasoning that
can be distinguished from inductive reasoning. In most current applications of

4See [7] where the relation between causal and evidential modeling and reasoning is studied
and linked to abduction.



abduction the goal is to infer extentional knowledge, knowledge that is specific
to the particular state or scenario of the world. In applications of induction,
the goal is to infer intentional knowledge, knowledge that universally holds in
many different states of affairs and not only in the current state of the world.
For example, an abductive solution for the problem that my car does not start
this morning is the explanation that the battery is empty. This explanation is
extentional. On the other hand, an inductive inference is to derive from a set of
examples the rule that if the battery is empty then the car will not start. This is
intentional knowledge. As a consequence of this distinction, abductive answers
and inductive answers have a very different format. In particular, inductive
answers are mostly general rules that do not refer to a particular scenario while
abductive answers are usually simpler formulas, often sets of ground atoms, that
describe the causes of the observation in the current scenario. This distinction
in the form of the answer is one of the reasons that induce strong differences in
the underlying inference procedures.

2.3 Abduction and Declarative Knowledge Representa-
tion

In the early days of logic-based Al, deduction was considered as the fundamental
problem solving paradigm of declarative logic [60]. Standard logic programming
belongs to this paradigm and is based on deductive query solving. However, it
can be shown easily that in many applications, abduction is a more natural
option for declarative problem solving. The argument is as follows.

The process of declarative knowledge representation starts with the design of
an alphabet. This alphabet defines the ontology of the domain of discourse and
is designed to represent the objects, concepts and relationships in the problem
domain. In the next phase, the human expert can begin with the knowledge
description phase in which he or she expresses his or her knowledge by formal
statements.

It is obvious that the choice of the alphabet is a determining factor for the
quality of a specification. If the alphabet is complex and does not have a simple
correspondence to the objects, concepts, relations and functions of the domain
of discourse, this will complicate the knowledge description phase. For example,
to express that ” persons are men or women”, it is natural to choose the alphabet
person/1,man/1,woman/1. The rule can be expressed by:

Vz.person(x) — man(x) V woman(x)

If we had represented the set of persons by a balanced binary tree, this would
have complicated significantly the expression of the above knowledge.
Consequently, to obtain a declarative knowledge representation, the choice
of the alphabet is governed by criteria of isomorphism between this and the
concepts used by the human expert. However, the choice of the alphabet de-
termines also what kind of inference is needed to solve a specific computational



problem. Once the alphabet is fixed, any computational problem of searching
for a possible extension of certain unknown predicates that satisfies certain con-
ditions is by definition an abductive inference problem or a model generation
problem®. Such computational problems occur very frequently. For example,
assume that we want to solve the problem of time tabling lectures at a univer-
sity. Three important types of objects in this domain are lectures, time slots and
class rooms. Lectures take place in class rooms and at some time slots. The nat-
ural choice to represent these relations is by predicates, e.g. time_of lecture/2
and room_of lecture/2. Now, observe that at this stage, although only the al-
phabet is determined, we know already that solving the time tabling problem
requires the computation of a table of time_of lecture/2 and room_of lecture/2
atoms that satisfies certain data, constraints and conditions imposed on correct
schedules. Computing such tables is an abductive task, not a deductive task.

The example illustrates a general phenomenon in the use of logic for prob-
lem solving. The choice of the ontology and the alphabet can fix the sort of
inference needed to solve the computational problem. If the alphabet is chosen
in accordance with the natural structure of the domain of discourse, very often
(but not always), abductive inference or model generation is needed. Vice versa,
if one insists on using deductive inference or is forced to do so by lack of an al-
ternative, the choice of the alphabet must be done in function of this choice.
For example, the university time tabling problem can be solved by deductive
query solving (e.g. in Prolog or CLP) but in this case a different and more
complex ontology is used (e.g. a list of atoms or tuples). The use of this more
complex ontology reduces the readability and modularity and makes the logic
specification problem dependent hence reducing its reusability.

Of course, in many cases, the choice of the representation is not governed
merely by issues of natural representation but also and even more by issues of
computational effectiveness. Clearly, there is a trade-off here. While the use of a
more complex ontology may seriously reduce the elegance of the representation,
it may greatly augment the expressivity to encode procedural, heuristic and
strategic information on how to solve the computational problem. The aim of
the research of intelligent search and inference methods is to push this trade-off
in the direction of more declarative representations.

3 Abductive Logic Programming

This section presents briefly how abduction has been defined in the context of
logic programming.

An Abductive Logic Programming theory is defined as a triple (P, A,IC)
consisting of a logic program, P, a set of ground abducible atoms A% and a set
of classical logic formulas IC, called the integrity constraints, such that no atom
p € A occurs in the head of a rule of P.

5Recall the close relationship between abduction and model generation, as explained in the
previous section.
6In practice, the abducibles are specified by their predicate names.



In the field of Abductive Logic Programming, the definition of abduction is
usually specialised in the following way:

Definition 3.1 Given an abductive logic theory (P, A,T), an abductive explan-
ation for a query @ is a set A C A of ground abducible atoms such that:

e PUAEQ
° PUA'ZIC
e P UA is consistent.

Some remarks are in order. First, this definition is generic in two different
ways. One is that it defines the notion of an abductive solution in terms of
any given semantics of standard logic programming. Each particular choice of
semantics defines its own entailment relation |=, its own notion of consistent
logic programs and hence its own notion of what an abductive solution is. In
practice, the three main semantics of logic programming have been used to
define different abductive logic frameworks.

Another way in which the definition is generic is the choice of the syntax.
In most applications, the syntax is that of normal logic programs with negation
as failure but some have investigated the use of abduction in the context of
extended logic programming [37] or constraint logic programming [49].

When integrity constraints IC' are introduced in the formalism, one must
define how they constrain the abductive solutions. There are different views on
this. Early work on abduction in Theorist in the context of classical logic [70],
was based on the consistency view on constraints. In this view, any extension
of the given theory T with an abductive solution A is required to be consistent
with the integrity constraints IC: T'U IC U A is consistent.

The above definition implements the entailment view: the abductive solution
A together with P should entail the constraints. This view is strictly stronger
than the consistency view and is the one taken in most versions of ALP.

The above definition aims to define the concept of an abductive solution
for a query but does not define abductive logic programming as a logic in its
own right as a pair of syntax and semantics. However, a notion of generalized
model can be defined, originally proposed in [45], which suggests the following
definition.

Definition 3.2 M is a model of an abductive logic framework (P, A,IC) iff
there exists a set A C A such that M is a model of PUA (according to some
LP-semantics) and M is a classical model of IC, i.e. M |=IC.

The entailment relation between abductive logic frameworks and classical lo-
gic formulas is then defined in the standard way as follows:

(P,A,IC [ F iff for each model M of (P,A,C), M EF.

Note that also this definition is generic in the choice of the semantics of logic
programming. This way, abductive extensions of stable semantics [45] and of



well-founded semantics [68] have been defined. Also the completion semantics
has been extended [8] to the case of abductive logic programs. The semantics of
completion semantics of an abductive logic framework (P, A, IC) is defined by
the mapping it to its completion. This is the first order logic theory consisting
of :

e UN, the set of unique names axioms, or Clarks equality theory.
o IC

e comp(P, A), the set of completed definitions for all non-abducible predic-
ates.

As argued in [11], in many applications of ALP, the set P in an abductive
logic framework (P, A,IC) represents the human expert’s strong definitional
knowledge, i.e. knowledge which fully determines one or a group of predicates
in terms of other open predicates. Each rule represents a case in which the
defined predicate in the head will be true; the program P is an exhaustive
enumeration of the cases. The set A is the set of open predicates. The set P
of rules defines the defined atoms. The open predicates have no definition. The
human expert’s weaker assertional knowledge is represented by the theory IC of
integrity constraints. To emphasize this way of interpreting ALP in the context
of knowledge representation, Abductive Logic Programming is also sometimes
called Open Logic Programming [11].

4 Abductive Logic Programming Frameworks

The framework defined in the previous section is generic in the syntax and
semantics. In the past ten years, the framework has been instantiated (and
sometimes has been extended) in different ways. The aim of this section is to
present briefly a number of these alternative frameworks in an attempt to show
the wider variety of motivations and approaches that are found in Abductive
Logic Programming. These different instantiations differ from each other by
using different formal syntax or semantics, or sometimes simply because they
use a different inference method, hence induce a different procedural semantics.
Although this variety of approaches was useful at the beginning of the field we
will argue in section 6 that the convergence of these approaches is an important
problem for the field that needs current attention.

4.1 Approaches under the completion semantics for LP

Abduction through Deduction One of the first ALP frameworks is that
of [8]. The syntax in this framework is that of hierarchical logic pro-
grams’ with a predefined set of abducible predicates. The formal syntax

7A hierarchical program is one without recursion.



is an extension of Clark’s completion semantics [7] in which only the non-
abducible predicates are completed. The main aim of this work was to
study the relationship between abduction and deduction in the setting of
nonmonotonic reasoning. In particular, many characterisations of non-
monotonic reasoning such as circumscription, predicate completion, ex-
planatory closure implement a sort of closure principle allowing to extract
implicit negative information out of explicit positive information. What
is shown in this work is that the abductive explanations to a query with
respect to a set of (non-recursive) rules can be characterised in a deductive
way if we apply the completion semantics as a closure principle.

Formally, given is a (hierarchical) abductive logic program P with abdu-
cibles A. Its completion Py consists of iff-definitions for the non-abducible
predicates. These equivalences allow to rewrite any observation O to an
equivalent formula F' in the language of abducible predicates such that
Po = O + F. The formula F, called the ezplanation formula, can be
seen as a disjunctive characterisation of all abductive solutions of O given
P. The restriction to hierarchical programs ensures termination of a pro-
cedure to compute the explanation formula.

The above abductive framework has been used to formalize diagnostic
problem solving and classification in nonmonotonic inheritance hierarch-
ies [8, 19], and has been extended to characterize updates in deductive
databases [10]. The completion semantics is also the basis for the "know-
ledge compilation” optimization of abductive problem solving described
in [9].

SLDNFA and Open Logic Programming SLDNFA [12, 15] is an abduct-
ive extension of SLDNF-resolution [59], suitable for abductive reasoning in
the context of abductive logic programs under the completion semantics.
This procedure came out of the early attempts to implement Al-planning
using abductive reasoning in the event calculus. Early experiments with
the procedure were in the context of temporal reasoning and planning [16].

In a number of subsequent knowledge representation and reasoning ex-
periments with abductive logic programming and SLDNFA [14, 17], the
attention gradually shifted to the logical, semantical and representational
aspects of the formalism rather than the abductive reasoning. SLDNFA
was shown to be useful not only for abductive problems but also for de-
ductive problems. To stress these aspects, [11] developed Open Logic
Programming, an LP knowledge representation framework for represent-
ing incomplete knowledge. Like the TBOX in description logics, an open
logic program represents a set of definitions, while the constraints rep-
resent assertions, like the ABOX in description logics. The link with
description logics was further investigated in [99).

Recently, the work on OLP has progressed in two directions. At the com-
putational level, a serious effort was done for improving the computational
performance and expressivity of the SLDNFA procedure, for example by



integrating it with CLP-solvers and higher order aggregates [101]. On the
logical level, a problem with OLP is that it is based on the weak com-
pletion semantics which does not correctly deal with positive inductive
definitions such as transitive closure. For this reason, OLP has evolved
into ID-logic[18], an integration of classical logic with inductive definitions
under well-founded semantics.

SLDNFA has been applied in experiments with planning and temporal
reasoning [16], scheduling and Constraint Satisfaction[67, 101].

The IFF Framework The IFF framework is also based on the completion
semantics. It was initially developed as a unifying framework for integrat-
ing abduction and view updates [30, 31]. An extension of it [102, 57] was
developed to deal with built-in predicates as in constraint logic program-
ming, aimed at applications such as job-shop scheduling, and semantic
query optimisation [57, 103]. Later, a modification of the IFF proof pro-
cedure incorporating negation as failure was proposed [84], arising from
experimenting with the use of the proof procedure to model the reason-
ing underlying agents [55] and the specification and management of active
rules in databases.

The main underlying LP semantics used in this framework is Fitting’s
three-valued completion semantics. In this framework it is also possible
[57], for if and only if definitions to be defined explicitly by the user.
The IFF proof procedures apply a number of rewrite rules to goals, to
obtain a disjunction of answers to some initial goal. The main rewrite
rules are unfolding, namely backward reasoning with the iff definitions,
and propagation, namely forward reasoning with the integrity constraints.
Answers to goals are conjunctions of abducible atoms, and, possibly denial
integrity constraints.

Recently, this framework has been applied to problems of multi-agents

systems, information integration [83] and management of information net-
works [98].

4.2 Approaches under stable and well-founded semantics

In Logic Programming other semantics have been proposed as refinements of the
completion semantics. These include the stable model semantics [32] and the
well-founded model semantics [100]. The following ALP frameworks use these
semantics for their underlying LP framework.

Bottom up Abduction This work aimed to develop efficient abductive in-
ference procedures for ALP under Kakas and Mancarella’s generalized
stable model semantics [45]. The approach was based on a translation
of Abductive logic programs into pure logic programs with stable model
semantics [93]. Abductive solutions w.r.t. the original abductive logic
program correspond to stable models of its translation. [93] developed a

10



system for bottom-up stable model computation and used the resulting
system to compute abductive solutions. This system is an extension of the
procedure for computing well-founded models of [27, 82] and dynamically
checks integrity constraints during the computation of stable models and
uses them to derive facts.

A purely bottom-up approach has the problem that the system may make
many choices for atoms which may not be leading to the query or may
simply be irrelevant for the query. To avoid these drawbacks, later the
bottom up system was integrated with a procedure for top-down expect-
ation [94, 95] in the model generator. This top-down procedure searches
for atoms and rules that are relevant for the query (and the integrity con-
straints) and thus helps to steer the search into the direction of a solution.

This framework has been applied to problems of Legal Reasoning [91, 89]
particularly for the computation of similarity of cases and to problems of
Consistency Management in Software Engineering [90].

ACLP: Abductive Constraint Logic Programming The ACLP framework
grew as an attempt to address the problem of providing a high-level de-
clarative programming or modeling environment for problems of Artificial
Intelligence which at the same time has an acceptable computational per-
formance. Its roots come from the work on abduction and negation as
failure in [24] and the early definitions of Abductive Logic Programming
[45, 46, 43]. Its key elements are (i) the support of abduction as a central
inference of the system, to facilitate declarative problem solving, and (ii)
the use of constraint solving to enhance the efficiency of the computa-
tional process of abductive inference as this is applied on the high-level
representation of the problem at hand.

In an ACLP abductive theory the program, P, and the integrity con-
straints, IC, are defined over a CLP language with finite domain con-
straints. Its semantics is given by a form of Generalised Model semantics
which extends (in the obvious way) the definition 3.1 above when our un-
derlying LP framework is that of CLP. Negation in P is given meaning
through abduction and is computed in a homogeneous way as any other
abducible. The general computation model of ACLP consists of a co-
operative interleaving between hypotheses and constraint generation, via
abductive inference, with consistency checking of abducible assumptions
and constraint satisfaction of the generated constraints. The integration
of abductive reasoning with constraint solving in ACLP is cooperative, in
the sense that the constraint solver not only solves the final constraint
store generated by the abductive reduction but also affects dynamically
this abductive search for a solution. It enables abductive reductions to be
pruned early by setting new suitable CLP constraints on the abductive
solution that is constructed.

ACLP has been applied to several different types of problems includ-
ing scheduling, planning, time tabling and information integration. The

11



framework of ACLP has also been integrated [54] with Inductive Logic
Programming to allow a form of machine learning under incomplete in-
formation.

Extended and Preference Abduction In order to broaden the applicability
of ALP in AT and databases, Inoue and Sakama propose two kinds of
extensions of ALP: Extended abduction [37] and Preference abduction [38].

Extended abduction is an extension of an abductive inference method that
does not only infer new abductive atoms but may also remove abductive
atoms given in the abductive program.

Several methods were proposed for computing extended abduction. [39]
proposed a model generation method with term rewriting. In [86, 35],
transformation methods are proposed that reduce the problem of com-
puting extended abduction to a standard abductive problem. Extended
abduction has several potential applications such as abductive theory re-
vision and abduction in nonmonotonic theories, view update in deductive
databases, theory update, contradiction removal, system repair problems
with model checking, and inductive logic programming (see [37, 86, 35]).

In preference abduction, priorities between different literals of the program
are given. These priorities induce a preference order on the models of the
abductive program and on the abductive solutions to queries. The goal of
preference abduction is to compute most preferred solutions. A procedure
to compute preference abduction has been defined in [38].

Preference abduction can be used in resolution of the multiple extension
problem in nonmonotonic reasoning, skeptical abduction, reasoning about
rule preference, and preference view update in legal reasoning [38].

ABDUAL: Abduction in extended LP [1] proposes the ABDUAL frame-
work, an abductive framework based on extended logic programs. An
abductive logic program in this framework is a tuple < P, A, IC >, where
P is an extended logic program (with both explicit and default negation),
IC a set of constraints and A a set of ground objective literals i.e. atoms
or explicitly negated atoms. The declarative semantics of this formalism
is based on the well-founded semantics for extended programs.

In the ABDUAL system, a tabling mechanism has been integrated with
the abductive reasoning. The systems executes an abductive query in two
stages. First, the program is transformed by adding for each rule R of
the finite ground program a new rule for the falsity of R. The resulting
program is called the dual program. The evaluation method uses tabling,
and operates on the dual program.

The ABDUAL framework has been applied in medical diagnosis [25], reas-
oning about actions [2], solving inconsistencies in metaphorical reasoning
[58] and diagnosis of power grid failure [4].

12



Probabilistic Horn Abduction and Independence Choice Logic Probabilistic
Horn abduction [73], which later evolved into the independent choice lo-
gic [75], is a way to combine logical reasoning and belief networks into a
simple and coherent framework. Its development has been motivated by
the Theorist system [77] but it has been extended into a framework for
decision and game-theoretic agents, that includes logic programs, belief
networks, Markov decision processes and the strategic form of a game as
special cases. In particular, it has been shown that it is closely related to
Bayesian networks [69], where all uncertainty is represented as probabil-
ities.

An independent choice logic theory is made up of two parts:

e a choice space consisting of disjoint sets of ground atoms. The ele-
ments of a choice space are called alternatives.

e an acyclic logic program such that no element of an alternative unifies
with the head of a clause.

The semantics is model-theoretic. There is a possible world for each choice
of one element from each alternative. What is true in a possible world is
given by the stable model of the atoms chosen and the logic program.
Intuitively the logic program gives the consequences of the choices. This
framework is abductive in the sense that the explanations of an observa-
tion g provide a concise description of the worlds in which g is true. Belief
networks can be defined by having independent probability distributions
over the alternatives. Intuitively, we can think of nature making the choice
of a value for each alternative. In this case Bayesian conditioning corres-
ponds exactly to the reasoning of the above framework of independent
choice logic. This can also be extended to decision theory where an agent
can make some choices and nature others [75], and to the game-theoretic
case where there are multiple agents who can make choices.

Different implementations of the ICL and its various special cases exist.
These include Prolog-style implementations that find explanations top-
down [72, 78], bottom-up implementations (for the ground case) that use
a probabilistic variant of the conflicts used in model-based diagnosis [74],
and algorithms based on efficient implementations of belief networks that
also exploit the context-specific independent inherent in the rule forms
[76]. Initial studies of application of ICL have centered around problems
of diagnosis and robot control.

4.3 ALP Systems and their Applications

At the implementational level, several general purpose abductive logic program-
ming systems are in development and have been used in recent experiments and
initial applications.
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e The ACLP system [52, 42], developed at the University of Cyprus, imple-
ments the ACLP framework of ALP for a restricted sub-language of the
full ACLP framework. Currently, the ACLP system is implemented as a
meta-interpreter on top of the CLP language of ECLiPSe using the CLP
constraint solver of ECLiPSe to handle constraints over finite domains
(integer and atomic elements). The architecture of the system is quite
general and can be implemented in a similar way with other constraint
solvers. It can be obtained, together with information on how to use it,
from the following web address: http://www.cs.ucy.ac.cy/aclp/. Direct
comparison experiments [53] of ACLP with the underlying CLP system of
ECLiPSe have demonstrated the potential of ALP to provide a high-level
modeling environment which is modular and flexible under changes of the
problem, without compromising significantly the computational efficiency
of the underlying CLP framework.

ACLP has been applied to several different types of problems. Initial ap-
plications have concentrated on the problems of scheduling, time tabling
and planning. Other applications include (i) optical music recognition
where ACLP was used to implement a system that can handle recognition
under incomplete information, (ii) resolving inconsistencies in software re-
quirements where (a simplified form of) ACLP was used to identify the
causes of inconsistency and suggest changes that can restore consistency of
the specification and (iii) intelligent information integration where ACLP
has been used as a basic framework in the development of information me-
diators for the semantic integration of information over web page sources.
Although most of these applications are not of ”industrial scale” (with
the notable exception of a crew-scheduling [50] application for the small
sized company of Cyprus Airways) they have been helpful in indicating
some general methodological guidelines that can be followed when one is
developing abductive applications. The air-crew scheduling application
produced solutions that were judged to be of good quality, comparable
to manually generated solutions by experts of many years on the partic-
ular problem, while at the same time it provided a flexible platform on
which the company could easily experiment with changes in policy and
preferences.

e The SLDNFAC system is developed at the K.U.Leuven and implements
abduction in the context of ID-Logic, supporting directly general first or-
der classical axioms in the language. The system integrates constraint
solving with the general purpose abductive resolution SLDNFA. It is im-
plemented as a meta-interpreter on top of Sicstus prolog and is available
from http://www.cs.kuleuven.ac.be/ dtai/kt/systems-E.shtml.

The SLDNFAC system [101] has been used in the context of prototypical
constraint solving problems such as N-queens, logical puzzles, planning
problems in the blocks world, etc ... An extension of the system has also
been used for a small industrial application, namely the scheduling of

14



maintenance for units of power plants. Due to the use of higher order ag-
gregates (e.g. summation and cardinality), the problem was represented
by a very short and concise representation. The extended SLDNFAC sys-
tem with higher order predicates solved this problem by generating a finite
domain constraint store which was subsequently solved by the underlying
CLP-solver. Comparisons with a pure CLP-approach showed the benefit
of this approach: a combination of reasonable efficiency with much less
programming effort due to the modular concise declarative knowledge rep-
resentation in ID-logic. Recently, [67] compared SLDNFAC with different
other approaches for solving constraint problems including CLP, ACLP
and the Smodel system [64].

The bottom up abductive procedure of [93] has been implemented using
truth maintenance techniques together with top down expectation meth-
ods and has been used for a number of applications in the following two
domains.

Legal Reasoning: A dynamic notion of similarity of cases in legal reas-
oning is implemented using abductive logic programming. The input
of this system is legal factors, case bases and the current case and po-
sition of user (defendant or plaintiff). The system translates the case
bases and the current case into an abductive logic program. Using
the top-down proof procedure the system then computes important
factors and retrieves a similar case based on the important factors
and generates an explanation why the current case is similar to the
retrieved case which is preferable to user’s position [91]. The sys-
tem has also been extended so that legal rules and legal cases are
combined together for statutory interpretation [89].

Consistency Management in Software Engineering: This system com-
putes a minimal revised logical specification by abductive logic pro-
gramming. A specification is written in Horn clauses which is trans-
lated into an abductive logic program. Given an incompatibility
between this specification and new information the system computes
by abduction a maximally consistent program that avoid this incom-
patibility [90].

The ABDUAL system based on the abductive procedure of [1] is currently
implemented on top of XSB-Prolog integrating tabulation and abduction.
It consists of a preprocessor for generating the dual program, plus a meta-
interpreter for the tabled evaluation of abductive goals. A preliminary
metainterpreter for Abdual, written using the XSB system [104], is avail-
able from http://www.cs. sunysb.edu/ tswift. Work is currently being
done in order to migrate some of the tabling mechanisms of ABDUAL,
now taken care by the meta-interpreter, into the XSB-engine. Work is
also underway on the XSB system so that the counfounded set removal
operation can be implemented at the engine level.
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The ABDUAL system has been applied in medical psychiatric diagnosis

[25] as a result of an investigation into the logical representation and

automation of DSM-IV (Diagnostic and Statistical Manual of Mental Dis-

orders). The current user interface of the Diagnostica system (http://medicinerules.com)
uses abduction in a simple but clinically relevant way to allow for hypo-

thetical diagnosis: when there is not enough information about a patient

for a conclusive diagnosis, the system allows for hypothesizing possible

diagnosis on the basis of the limited information available. This is one of

the first applications of abduction that is been commercialised.

ABDUAL has also been employed to detect specification inconsistencies
in model-based diagnosis system for power grid failure [4]. Here abduction
is used to abduce hypothetical physically possible events that might cause
the diagnosis system to come up with a wrong diagnosis violating the
specification constraints.

e Two prototype implementations of the IFF procedure [31, 85] exist, one
in Java, of the original IFF proof procedure, the other one in April, of the
modification of the proof procedure suggested in [84]. The first prototype
has been embedded within a Voyager extension that allows interaction and
communication amongst multiple agents, as well as cooperative problem
solving. This prototype has been applied to information integration from
multiple sources [83], to the management of information networks [98], and
it has been integrated with PROGOL to learn preconditions of actions in
the frameworks of the event and situation calculi.

Another prototype implementation of the extension of the proof procedure
in [102] has been applied to job-shop scheduling [57] and semantic query
optimisation [103].

5 Links of ALP to Other Extensions of LP

In parallel with the development of the above frameworks and systems for ALP it
has become clear that there exist strong links between ALP and other extensions
of Logic Programming. In some cases, these links were found to enhance the
capabilities of the ALP frameworks either in their computational effectiveness
or in their suitability for application. We present here briefly the main links of
ALP with other LP extensions.

Answer Set Programming(ASP) . Strong connections have been estab-
lished between abductive logic programming under generalised stable model
semantics and ASP [26]. At the level of semantics these two frameworks
are for a large class of theories (ASP admits only a special type of integ-
rity constraints) equivalent. They have though signifigant differences in
the computational models that they use. ASP works with a propositional
grounding of the theory together with a global satisfaction computation
whereas, as we have seen in the previous section, ALP computes directly
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on the non-propositional abductive theory. It is expected that an integ-
ration of these two approaches would enhance the capabilities of both
frameworks.

Inductive Logic Programming Abductive and inductive reasoning can be

combined together to enhance each other. Abductive reasoning can feed
into the inductive process to help prepare the data on which to general-
ise. Currently, the synthesis of ALP and ILP has been under investigation
[63, 105, 29] to allow a form of knowledge intensive learning with com-
plex background theories. In this, abductive inference is used to explain,
through the given theory, the example or training data thus giving al-
ternative possibilities for assimilating and generalising this data. Also the
framework of ILP can be extended to learn from incomplete background
data where the resulting theories are ALP theories. This allows the frame-
work to perform Multiple Predicate Learning in a natural way.

Constraint Logic Programming The integration of constraint solving in ab-

ductive logic programming is important both at the language level and the
implementation level. At the language level, it enhances the expressivity
of the language by allowing arithmetical expressions. At the implement-
ation level, experiments have shown that the use of constraint solving
techniques in abductive reasoning make the abductive computation much
more efficient. The integrated paradigm of ALP and CLP can be seen as a
high-level constraint programming environment that allows modular and
flexible representations of the problem domain. The potential benefits of
this paradigm are largely unexplored at the moment.

Disjunctive Logic Programming A correspondence between ALP and this

6

paradigm has been shown [87, 88, 106]. The hypothetical reasoning of
ALP and the reasoning with indefinite information of DLP can be inter-
changed. This allows theories in one framework to be transformed to the
other framework and thus to be executed in this other framework. For ex-
ample, it is possible to transform an ALP theory into a DLP one and then
use a system such as the recently developed dlv system [22] to answer
abductive queries. In addition, it has been shown [106] that abductive
proof procedures can be used as a basis to develop a computation of DLP
programs.

Challenges and Prospects for ALP

Over the last two decades many studies have shown how abductive reasoning
can be used to address a variety of problems. Many frameworks have been
developed for this paradigm. Despite these initial efforts, the field has faced
and to some extend continues to do so a number of challenges at the logical,
methodological and computational level in trying to achieve its long-term goal
of providing an effective declarative problem solving framework suitable for this
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variety of problems. In this section we attempt to chart out some of these
challenges.

6.1 Heterogenity of ALP

The term abduction is a very general term and denotes a broad class of reason-
ing phenomena. This generality carries over to ALP. As can be seen in section
4, ALP is a heterogeneous field. Not only there are quite different formalisms
and different semantics but abduction is sometimes used to denote concepts
at totally different conceptual levels. For example, in many of the frameworks
discussed earlier, abduction is a concept at the inferential level: it is a form of
logical inference. In other contexts, abduction is a concept at the semantical
level. For example, in the abductive semantics for negation as failure [24], ab-
duction is used as a semantical technique in a specific style of defining formal
semantics.

But to develop a computational logic, a focused effort at different levels
is needed: semantical research to clarify the declarative meaning, knowledge
representation research to clarify the applications of the logic, logical research to
explore the relation with other logics, and implementation research to investigate
how to implement efficient problem solvers. These efforts should link together
in a constructive and cross supporting way. The current heterogeneity in the
field makes this combination of efforts extremely difficult. More conceptual
homogeneity is needed. It is important that the field to some extend focusses
on its goals, its terminology, its logic(s) and semantics, and its procedures. More
homogeneity might be obtained by further elaborating the logical foundations
of ALP (see next section) and selecting a specific class of applications.

6.2 Epistemological foundations of ALP

One of the underlying problems of the field is the lack of epistemological found-
ations resulting in the heterogeneity exhibited by the field. The epistemological
study of a logic is concerned with the question of what knowledge can be ex-
pressed in a logic and lays the foundation for the systematic development of a
knowledge representation methodology for the logic. Hence an epistemological
study of ALP can contribute significantly to the understanding of the field at
the logical and methodological level.

What knowledge is represented by an abductive logic framework? With
exception of the work on OLP and ID-logic, this question has received very
little attention in ALP. The definition 3.1 of an abductive solution aims to
define the formal correctness criterion for abductive reasoning, but does not
address the question of how the ALP formalism should be interpreted. Also
the (generic) definition 3.2 of the formal model semantics of ALP does not
provide clear answers. For example, how is negation in ALP to be understood?
The extended completion semantics defined for ALP by Console, Thorasso and
Theseider Duprez [8] maps negation as failure literals to classical negation. On
the other hand, in [45] Kakas and Mancarella define a generalisation of stable
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semantics, in which negation as failure literals could also be interpreted as modal
literals =K p in autoepistemic logic or defaults [32]. Another open question is
the relationship to classical logic. An ALP framework may contain an arbitrary
FOL theory T. Does this mean that ALP is an extension of classical logic?
A model of an ALP framework is a classical model of T'; this suggests that at
the epistemological level, ALP is indeed an extension of FOL. On the other
hand, ALP is defined as a study of abductive reasoning while FOL is a study
of deductive reasoning. How could the first one be an extension of the second
one?

The epistemological confusion of ALP complicates the development of a
systematic knowledge representation methodology and introduces a lack of co-
herence in the field. Moreover, it continues to blur the contributions of ALP at
the knowledge representation level to the logic-based Al community.

One possible answer to these questions can be found in the earlier men-
tioned theory of ID-logic [18]. An abductive logic framework (P, A,T) has a
natural embedding in ID-logic. P represents a definition of the non-abducible
predicates while T' represents a set of classical logic assertions. This view on
ALP induces a knowledge representation methodology similar and generalising
that of description logics (e.g. Krypton), and is based on the representation
of definitional knowledge by logic program rules and assertional knowledge by
constraints. In this view ALP is the study of abduction and model generation
in the context of definitional and assertional information.

6.3 Computational and Application Challenges

The computational challenges for the paradigm are considerable. The aim of
different abductive frameworks to provide a framework for solving a broad class
of problems formalised by high-level declarative representations, is extremely
difficult to realise. There are formal complexity results [21] that show that
in general the problem of computing abduction is very hard. For example, in
the general case of ALP frameworks with function symbols, the existence of
an abductive solution is an undecidable problem and in the datalog case, the
problem of computing abductive solutions is intractable.

On another more practical level this challenge for ALP can be compared to
that of CLP but where now we need to understand how we can satisfy effectively
a constraint theory that is given at a high logical level, many times beyond the
confined domain of arithmetic etc. In some cases, as recent experiments have
shown, it is possible to reduce effectively high level ALP representations to
lower level constraints that can then be handled by efficient specialised systems.
But not all problem can be handled in this way and hence it is instructive
for the field, at least at this stage of its development, to focus on particular
classes of application problems (see below at the end of this subsection) and
to develop particular computational techniques that would be appropriate for
these applications.

There are different ways to approach the problem of the computational com-
plexity of ALP. One way is to refine further the current ways to integrate tech-
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niques from Constraint Solving in abductive inference. As mentioned earlier,
recent experiments have shown that in some class of problems, high level ALP
representations can be reduced efficiently to lower level constraints that can
then be handled by efficient specialised systems. Such hybrid computational
models for ALP need further study. The interface of abductive reasoning with
specialised solvers can be a black box one but it is more interesting to examine
the case where the integration of such solvers affects dynamically the abductive
computation. For example, the generation of a finite domain constraint store
alongside with the abductive reduction could be used in many different ways to
affect this reduction and steer the search for an abductive solution. An import-
ant challenge for ALP is then to study how techniques from constraint solving
(and constraint programming more generally) can be incorporated or exploited
within the computation of ALP. The search problem of abduction can also bene-
fit from general techniques of heuristics in Artificial Intelligence. In particular,
due to the strong link between abduction and planning it would be useful to
study how recent developments of heuristic methods of search in planning could
be applied to the more general case of abductive computation.

Another complementary approach to addressing the computational hardness
of applying ALP would be to develop ALP systems in such a way that the user
has the facility to incrementally refine her /his model of the problem in a modular
way. Starting from a purely declarative model it should be possible to develop
models that contain more and more additional knowledge about the problem,
including non-declarative heuristic and operational control knowledge. Again
recent work suggests that this is a promising line of development but there is
no systematic study of how such an modeling environment would be designed
and build in ALP.

Abduction has a wide range of potential applications. But what essential
features characterise these applications? What features make the use of abduc-
tion more appropriate than other approaches? How do we evaluate the benefits
of using abduction in an applications? At the moment there are no clear an-
swers to these questions. One of the reasons for this is the fact that there is no
focus on the type of applications or primary problem solving tasks that have
been examined using abduction and ALP. In many cases the use of abduction
is ad hoc with no methodological guidelines on how to develop the application.

As mentioned above, the field needs to define prototypical classes of problems
with which it can fine-tune its methods. Three possibilities are:

e Constraint satisfaction problems where more and more problem specific
knowledge needs to be exploited. One approach to this as described above
would be to develop ALP as a high-level modeling environment over Con-
straint Programming that would allow the modular exploitation of the
additional knowledge.

e The problem of Planning seen as a specific case of the previous problem.

e Knowledge Intensive Learning where machine learning with a rich back-
ground knowledge can be performed only if the inductive methods are
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integrated with abduction. Here the integration of ALP with ILP could
provide a framework that enhances their separate capabilities.

7 Conclusion

Abductive logic programming grew out of attempts to use logic programming
techniques for a broad class of Al-problems. At present Abductive logic pro-
gramming presents itself as a ”conservative extension” of Logic Programming
that allows more declarative representations of problems. The main emphasis
till now has been on setting up different frameworks for abduction and showing
how they provide a general approach to declarative problem solving.

ALP still faces a number of problems, at the logical, methodological and
computational level typical for a field in an initial stage of development. We
are now beginning to understand the contributions of this field and to develop
solutions for the problems that the field faces.

At the logical level, ALP aims to be suitable for declarative knowledge rep-
resentation, thus facilitating maintenance, reusability and graceful modifiability.
Yet, ALP retains from logic programming the possibility of embedding high level
strategic information in an abductive program which allows us to speed up and
fine tune the computation. In this respect, ALP is able to combine the ad-
vantages of declarative specification and programming to a greater extent than
standard logic programming.

The field has also started to recognise the full extent of the problem and
the complexity of developing effective and useable ALP systems. The overall
task of ALP of providing a high-level general purpose modeling environment
which at the same time is computationally effective system is an extremely
difficult one. But we are beginning to learn how to analyse and break this
task down to appropriate subproblems that are amenable to study within our
current understanding of the field. The hope remains that within the high-level
programming environment that ALP could provide, the programmer will be
able to solve problems effectively in a translucent way.
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