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tKautz, H.A. and B. Selman, Hard problems for simple default logi
s,Arti�
ial Intelligen
e 49 (1991) 243{279.We investigate the 
omplexity of reasoning with a number of limited de-fault logi
s. Surprising negative results (the high 
omplexity of simplethree literal default rules) as well as positive results (a fast algorithmfor skepti
al reasoning with binary defaults) are reported, and sour
esof 
omplexity are dis
ussed. These results impa
t on work on defeasibleinheritan
e hierar
hies as well as default reasoning in general.1 Introdu
tionIt has been suggested that some kind of default inferen
e 
an be used to simplifyand speed 
ommonsense reasoning. Resear
hers have appealed to default logi
sas a solution to the problem of generating and reasoning with large numbers of\frame axioms"; as a way of simplifying 
omplex probabilisti
 
al
ulations; andre
ently as a way of \vivifying" (�lling out) an in
omplete knowledge base, thussuppressing the 
omplexities of reasoning with un
ertainty [10, 11℄.While 
urrent formal theories of default inferen
e are 
omputationally mu
hworse than ordinary logi
, it has been ta
itly assumed that this additional 
om-plexity arises from their use of 
onsisten
y tests. Our interest in fast, spe
ialpurpose inferen
e me
hanisms led us to investigate very simple propositional,disjun
tion-free systems of default reasoning, where 
onsisten
y 
he
king is triv-ial. Here, we thought, default reasoning should shine.This paper reports a number of surprising 
omplexity results involving re-stri
ted versions of Ray Reiter's default logi
 [13℄. We de�ne a partially-orderedspa
e of propositional default theories of varying degrees of generality. For ea
hwe determine the 
omplexity of solving the following three problems: �ndingan extension; determining if a given proposition is true in some extension; anddetermining if a given proposition is true in all extensions.1



All of these problems are NP-hard for propositional, disjun
tion-free defaultlogi
. This shows that 
onsisten
y 
he
king is not the only sour
e of 
omplex-ity in default reasoning. We show that a 
ondition 
alled \ordering" (whi
his related to strati�
ation in logi
 programming) makes �nding an extensiontra
table. The extension membership problems, however, remain intra
table formost of the restri
ted logi
s. In parti
ular, these questions are NP-
omplete forthe logi
 that most naturally represents a
y
li
 inheritan
e hierar
hies. Systemswhose rules are similar in form to Horn 
lauses do admit a tra
table algorithmfor testing membership in some extension. Finally, we present a polynomialalgorithm for testing the membership of a proposition in all extensions of thevery restri
ted 
lass of \normal unary" theories, thus settling an open questionin work on inheritan
e.The next part of the paper presents general redu
tions of �nding an extensionto testing membership in some extension, and that to testing membership inall extensions. This shows that for a large 
lass of default theories, it is atleast as hard to test the status of a single proposition as to 
ompute a 
ompleteextension.The �nal part of the paper provides some intuitive 
hara
terizations of thesour
es of 
omplexity in default reasoning. It suggests that the most eÆ
ientuse of default information is to \
esh out" the missing detail in a knowledgebase in a \brave" manner, a pro
ess that 
orresponds to �nding an extension.A note on notation: throughout this paper, the symbols p, q, r, s, and t areused for propositional letters (also 
alled positive literals). The symbols a, b, 
,x, y, and z are used for literals (propositional letters and their negations). Thegreek letters �, �, and 
 are used for formulas. The sign � is a meta-languageoperator that maps a positive literal to a negative literal and vi
e versa. Forexample, the expression � x 2 Ewhere E is a set of literals, is equivalent to the lengthy expressionif x = p for some letter p, then :x 2 E; otherwise, where x = :p forsome letter p, it is the 
ase that p 2 E.Use of this operator avoids the need to expli
itly invoke a rule of negationelimination to 
onvert formulas of the form ::p to p.2 Reiter's default logi
Reiter formalized default reasoning by extending �rst-order logi
 with defaultinferen
e rules. This paper will not 
onsider the other nonmonotoni
 formalismsbased on modal logi
, 
ir
ums
ription, or model-preferen
e rules, although manyof the results it presents have 
ounterparts in those systems. (See [14, 15℄ for asimilar analysis of model-preferen
e theories.)A default theory is a pair (D;W ) where D is a set of default rules and Wa set of ordinary �rst-order formulas. This paper examines theories 
ontaining2



only semi-normal default rules, whi
h are of the form� : � ^ 
�where � is the prerequisite, � the 
on
lusion, and �^
 the justi�
ation of a rule,ea
h of them formulas. The rule is intuitively understood as meaning that if �is known, and � ^ 
 is 
onsistent with what is known, then � may be inferred.If 
 is missing, then the rule is normal. Default rules are sometimes written as� : � ^ 
=
 for typographi
 
larity.An extension is a maximal set of 
on
lusions that 
an be drawn from atheory. But 
are must be taken that the justi�
ation of ea
h rule used in the
onstru
tion of an extension be 
onsistent with the 
omplete 
ontents of theextension, not just with the non-default information.De�nition:Extension. Where E is a set of formulas, Th(E) is the dedu
tive
losure of E. E is an extension for the theory (D;W ) if and only if it satis�esthe following equations: E0 =W;and for i > 0,Ei+1 = Th(Ei) [ �
 ����� : �
 2 D; � 2 Ei; and :� 62 E� ;E = 1[i=0Ei:Note the expli
it referen
e to E in the de�nition of Ei+1. A theory 
an haveseveral, one, or no extensions.Although normal theories have a number of ni
e theoreti
al and 
ompu-tational properties, semi-normal rules are often needed to establish a priorityamong the defaults. For example, two default rules may have 
on
i
ting 
on-
lusions, yet have their pre
onditions satis�ed in the same situation. If normalrules were used, this kind of situation would lead to two di�erent extensions.One may know, however, that the �rst rule should always take priority over these
ond when both apply. This 
an be en
oded by adding the negation of thepre
ondition of the �rst rule to the justi�
ation of the se
ond rule. Formally,given rules Æ1 and Æ2, whereÆ1 = �1 : �1 ^ 
1�1 ; Æ2 = �2 : �2 ^ 
2�2 ;in order to establish Æ1 as being of higher priority than Æ2, repla
e Æ2 by Æ02:Æ02 = �2 : �2 ^ 
2 ^ :�1�2 :One kind of priority that this s
heme 
an en
ode is the \spe
i�
ity" orderingthat intuitively should appear in an inheritan
e hierar
hy. For example, W may3



in
lude the fa
t that \penguins are birds",1 and D defaults that assert thatpenguins don't 
y, and that birds do 
y. The �rst, more spe
i�
 default 
an begiven priority over the se
ond by en
oding the pair asPenguin : :Fly:Fly ; Bird : Fly ^ :PenguinFly :3 ComplexityFollowing [8℄, we shall refer to a problem 
lass as \tra
table" if a poly-nomial-time algorithm 
an solve all its instan
es. It is not yet possible to provethat any of the problem 
lasses 
onsidered in this paper require exponential time,but many are as hard as any solvable in polynomial time by a nondeterministi

omputer. Su
h \NP-hard" problems are 
onsidered to be intra
table.This paper only 
onsiders worst-
ase 
omplexity. Sin
e the problem in-stan
es that 
ause a parti
ular algorithm to run the longest time may rarelyarise, it would be useful to follow this worst-
ase analysis by some kind of\average-
ase" analysis. Su
h an analysis would require some 
hara
terizationof \average" 
ommonsense theories|a signi�
ant task in its own right.Nonetheless, this worst-
ase analysis is useful in revealing di�erent sour
es of
omplexity in default reasoning, and in providing eÆ
ient algorithms for 
ertainproblem 
lasses. For example, Se
tion 5 in
ludes a polynomial-time algorithmfor 
omputing extensions of the spe
ial 
lass of ordered default theories. Thisalgorithm is not ne
essarily 
orre
t for more general problem 
lasses; on theother hand, the obvious general algorithm for 
omputing extensions 
an takeexponential time on an ordered theory. On
e tra
table algorithms are knownfor a number of useful 
lasses of default theories, a general algorithm 
an be
onstru
ted that �rst tests to see if any of the spe
ial 
ase algorithms apply,and if none does, invokes the intra
table general method.This paper uses the standard terminology of NP-
ompleteness, whi
h is sum-marized in Appendix A.4 A taxonomy of default theoriesTwo sour
es of 
omplexity in default theories are readily apparent: the inherent
omplexity of the �rst-order 
omponent (W ), and the 
omplexity of determiningwhether the justi�
ation of a default rule is 
onsistent with the 
urrently-derivedset of formulas. We will restri
t our attention to �nite propositional theories inwhi
hW is simply a set (
onjun
tion) of literals. The pre
ondition, justi�
ation,and 
onsequen
e of ea
h default rule is also a 
onjun
tion of literals. We will
all su
h a theory \disjun
tion-free" (abbreviated \DF"). Thus determiningwhether a default rule is appli
able to W is trivial: the pre
ondition must be a1It remains an open problem to determine if a default theory must in
lude this assertion,although a survey of the literature lends strong eviden
e to the 
onje
ture. Certainly it istrue that every paper on nonmonotoni
 reasoning must in
lude this example [5℄.4



subset of W , and the interse
tion of W with the negation of ea
h literal in thejusti�
ation must be empty. The extended theory is again a set (
onjun
tion)of literals. Although an extension is, by de�nition, an in�nite, dedu
tively
losed set of formulas, any extension of a disjun
tion-free theory is equivalentto the dedu
tive 
losure of a �nite set of literals. Hen
eforth, when we speak of\
omputing an extension", we will mean 
omputing su
h a �nite set of literals.The following fun
tions a

ess the 
omponents of default rules of this re-stri
ted form.De�nition:pre, 
on
l, just*, just. WhereÆ = a1 ^ � � � ^ al : b1 ^ � � � ^ bm ^ 
1 ^ � � � ^ 
nb1 ^ � � � ^ bmand none of the 
i are the same as any of the bi, letpre(Æ) = fa1; : : : ; alg;
on
l(Æ) = fb1; : : : ; bmg;just*(Æ) = f
1; : : : ; 
ng;just(Æ) = just*(Æ) [ 
on
l(Æ):Any inferential power su
h systems possess resides in the default rules;the only non-default inferen
e rules that apply are negation elimination and
onjun
tion-in and -out (to 
onvert, e.g., f�; �g to � ^ � and vi
e versa). Thereader should remember, in parti
ular, that be
ause the default rules are in fa
trules and not axioms, the prin
iple of reasoning by 
ases does not apply. Forexample, given a theory with empty W and rulesp : qq ; :p : qq ;one may not 
on
lude q.Further restri
tions on the form of the default rules leads to the hierar
hyshown in Fig. 1. The bla
k arrows lead from the more restri
ted 
lasses to themore general 
lasses. A negative 
omplexity result (that is, a transformationfrom an NP-hard problem) for a 
lass in the hierar
hy applies also to all elementsabove it. A positive 
omplexity result (that is, a polynomial-time algorithm) fora 
lass applies also to all 
lasses below it. The 
lasses of theories are as follows:{ Unary : These theories restri
t the prerequisite to a single letter and the
onsequen
e to a single literal. In the 
ase of a positive 
onsequen
e,the justi�
ation may in
lude a single additional negative literal. Unarytheories have a simple graphi
al notation, as shown in Fig. 2. Positive andnegative default ar
s appear, where optional 
an
el links may be atta
hedto positive ar
s. Note that only positive information enables or 
an
els thedefault. Unary theories are a simple example of the kind of graph-basedrepresentational systems inspired by Fahlman's work on NETL [7℄, andare a restri
ted 
ase of Etherington's \network theories" [6, p. 91℄.5



{ Disjun
tion-free ordered : \Ordering" is a synta
ti
 property of defaulttheories developed in [6, p. 86℄ as a suÆ
ient (but not ne
essary) 
ondi-tion for a theory to have an extension. The basi
 idea is to make surethat the appli
ation of a default rule 
an never enable another rule whose
on
lusion is in
onsistent with the justi�
ation of the �rst rule. Formally,given a disjun
tion-free theory (D;W ) and a set lits 
ontaining the literalsin the theory, de�ne � and � to be the smallest relations over lits � litssu
h that� � is re
exive,� � is a superset of �,� � and � are transitive,� � is transitive through �; that is, for literals x, y, and z in lits :[(x� y ^ y� z) _ (x� y ^ y � z)℄ � x� z;� for every Æ 2 D, and every a 2 pre(Æ), b 2 
on
l(Æ), and 
 2 just*(Æ):a� b; � 
� b:Then (D;W ) is ordered if and only if it 
ontains no literal x su
h thatx� x.2 Ordered theories are quite expressive, but as we will see also havesome ni
e 
omputational properties. Later we will des
ribe how orderingis a generalization of the notion of strati�
ation in logi
 programming.{ Ordered unary : These theories have no 
y
les involving 
an
el ar
s, asshown in Fig. 2. Of all the 
lasses 
onsidered here, ordered unary the-ories possess the minimum amount of ma
hinery ne
essary to representinheritan
e hierar
hies with some notion of priority between rules.{ Disjun
tion-free normal : Normal theories are formally well-behaved, andpossess a resolution-based proof pro
edure. Normal theories are ordered.{ Horn: Horn 
lause non-default theories have proven useful for appli
a-tions in databases and expert systems. Satis�ability of propositional Horn
lauses 
an be determined in linear time [3℄. Therefore in the sear
h for\easy" default theories it is natural to 
onsider default theories whoserules are similar in form to Horn 
lauses: the literals in the prerequisiteare all positive, and the justi�
ation and 
onsequen
e are the same singleliteral.{ Normal unary : This �nal 
ategory falls in the interse
tion of all the oth-ers. Its graphi
al representation 
ontains only positive and negative de-fault impli
ation ar
s. Normal unary theories 
an represent inheritan
ehierar
hies with no \preemption strategy" between 
ompeting paths [16℄,but are more general, in that the graph need not be a
y
li
.2The de�nition of� given in [6℄ does not require that relation to be re
exive or a supersetof�. But the de�nitions agree on�, and on whether any parti
ular theory is ordered or not.6



Table 1: Forms of default rules in the various 
lasses of theories.Unary p : q=q; p : q ^ :r=p; p : :q=:q;Disjun
tion-free ordered a1 ^ � � � ^ al : b1 ^ � � � ^ bm ^ 
1 ^ � � � ^ 
n=b1 ^ � � � ^ bmand for no literal x is x� xOrdered unary p : q=q; p : q ^ :r=p; p : :q=:q;and for no literal x is x� xDisjun
tion-free normal a1 ^ � � � ^ al : b1 ^ � � � ^ bm=b1 ^ � � � ^ bmHorn p1 ^ � � � ^ pn : q=qp1 ^ � � � ^ pn : :q=:qNormal unary p : q=q; p : :q=:qTable 1 summarizes the forms of the rules that appear in ea
h kind of theory.In every 
ase, the elements of a rule are optional. For example, the pre
onditionof a rule may be empty.5 Finding an extensionIt is obvious that the question of whether a �rst-order default theory has anextension is unde
idable, be
ause the question of whether the justi�
ation ofa rule is 
onsistent with an extension is equally unde
idable. In the 
ase ofdisjun
tion-free theories, however, this 
onsisten
y test, as well as the test thatthe pre
ondition of a rule is satis�ed, redu
e to simple set operations. Further-more, the fa
t that the theories are �nite allows an extension to be 
onstru
tedby the appli
ation of one rule at a time. It is straightforward to rewrite thede�nition of an extension for this spe
ial 
ase:Lemma 1 (Extension of a disjun
tion-free theory) Let (D;W ) be a dis-jun
tion-free default theory. Then E is an extension of (D;W ) if and onlyif there exists a sequen
e of rules Æ1; Æ2; : : : ; Æn from D, and a series of setsE0; E1; : : : ; En su
h that for all i > 0:E0 =W;Ei = Ei�1 [ 
on
l(Æi);pre(Æi) � Ei�1;:9
 2 just(Æi) : � 
 2 En;:9Æ 2 D : pre(Æ) � En ^ 
on
l(Æ) 6� En^ :9
 2 just(Æ): � 
 2 En7



and E is the dedu
tive-
losure of En.This observation makes it possible to 
onstru
t a nondeterministi
 algorithmto de
ide if a disjun
tion-free theory has an extension. The ma
hine guesses anextension. It then tries to verify the extension by trying to 
onstru
t it startingwithW , and adding the 
on
lusion of any rule whose pre
ondition is 
ontained inthe 
urrent approximation and whose justi�
ation is 
onsistent with the guessedextension. When the loop halts the guess is 
orre
t just in 
ase the �nal approx-imation is the same as the extension. The �rst algorithm in Fig. 3 does just this.It takes as input not only the theory but two additional arguments, In and Out,whi
h restri
t the extensions that 
an be guessed. The set operations performedin the subroutine appli
able run in polynomial time, and in the worst 
ase theinner loop 
y
les jDj times and in ea
h 
y
le jDj or fewer rules are 
he
ked forappli
ability, so the algorithm also runs in nondeterministi
 polynomial time.Therefore the extension existen
e de
ision problem is in NP.The se
ond algorithm in the �gure a
tually 
omputes an extension, build-ing it from the 
on
lusions of rules one rule at a time. The In parameter ofND-Exists-Extension-Containing is passed to the 
urrent approximationtogether with the 
on
lusion of the next rule under 
onsideration. If the answeris \yes" then the 
on
lusion is added to the approximation. The main loop inthis algorithm iterates jDj times, thus proving our �rst theorem:Theorem 1 The problem of 
omputing an extension of a disjun
tion-free de-fault theory (or determining that none exists) is NP-easy.So, �nding an extension of a DF propositional theory is not harder than thehardest problem in NP. The question then be
omes: is there a deterministi
polynomial algorithm to 
ompute an extension of a disjun
tion-free theory?Unless P is NP, the answer is no. In fa
t, 3SAT 
an be redu
ed to the extensionexisten
e problem for unary theories. Suppose � is a formula in 3CNF. We 
an
onstru
t a default theory whose extension, if any, is a model of �. Four sets ofrules are needed. The �rst adds every letter or its negation to the \
andidate"extension. The se
ond adds spe
ial letters to stand for negative literals, sin
enegative literals 
annot appear in the pre
onditions of rules. The third group
he
ks that every 
lause is satis�ed. If the negation of every literal in some
lause is present in the 
andidate extension, then a spe
ial \failure" letter Fis added. The fourth group 
ontains a spe
ial \killer" rule. The pre
onditionof this rule is F , but its 
on
lusion, Z , is in
onsistent with the justi�
ation ofthe rule whi
h added F . This kind of \vi
ious 
y
le" undermines the 
andidateextension: it 
an't be a \real" extension after all! Thus, � is satis�able if andonly if the theory has an extension; that is, when no sequen
e of appli
ations ofdefault rules 
an ever 
on
lude F .The following makes this redu
tion pre
ise.De�nition:Mappings from 3CNF to defaults. Let � be a propositional3CNF formula. The fun
tion � maps ea
h positive literal to itself, and ea
hnegative literal :p to a new letter p0. Consider the following groups of defaultrules: 8



(A) for ea
h letter p that appears in �, the rules:: pp ; : :p:p ;(B) for ea
h letter p that appears in �, the rules:p : :p0:p0 ; : p0 ^ :pp0 ;(C) for ea
h 
lause x _ y _ z of �, the following three rules, where Fxy, Fxyz,F , and Z are new letters:�(� x) : Fxy ^ :�(y)Fxy ;Fxy : Fxyz ^ :�(z)Fxyz ;Fxyz : F ^ :ZF ;(D) the single rule: F : ZZ :Thus we see that a 3CNF formula is satis�able if and only if the defaulttheory 
onsisting of an empty W and a D made up of groups (A), (B), (C), and(D) has an extension. This proves the next theorem:Theorem 2 The problem of determining whether a unary default theory hasan extension is NP-
omplete. The 
orresponding problem of 
omputing a set ofliterals equivalent to an extension (or determining that none exists) is NP-hard.As noted earlier, ordered theories 
annot fall vi
tim to the kind of vi
ious
y
le used in this redu
tion. In fa
t, the extension existen
e problem is trivialfor ordered theories: they always have extensions. One might think that it ispossible to 
onstru
t an extension of an ordered theory by simply applying anyrule whi
h applies to W , then any rule whi
h applies W and the 
on
lusions ofthe �rst rule, and so on, until no rules apply. But this is not the 
ase. Considera theory 
ontaining an empty W and just two rules:Æ1 = : q ^ :pq ; Æ2 = : pp :The rule Æ1 applies toW , but there is no sequen
e of rule appli
ations beginningwith Æ1 that leads to an extension. Intuitively, Æ2 is of higher priority; that rulemust be 
onsidered for appli
ation before Æ1. So what is needed is a way toderive a priority ordering on the rules of an ordered theory, given the orderingon its literals. The following de�nition does just that.9



De�nition:� over D. Let (D;W ) be a disjun
tion-free ordered theory, and� be de�ned over the literals of the theory as des
ribed above. Then for anyÆ1; Æ2 2 D, Æ1 � Æ2if and only if 9b 2 
on
l(Æ1); 
 2 just*(Æ2) : b� � 
:Lemma 3 in the appendix proves that � is in fa
t a partial order. In theexample just given, the theory orders q � p, so that Æ2 � Æ1, as desired. One�nds an extension by 
omputing the partial order over the rules, topologi
allysorting the rules by the order, and then repeatedly �ring the lowest ranked rulewhi
h is appli
able. Figure 4 presents the algorithm, whose proof of 
orre
tnessappears in Appendix B. The 
omputationally most intensive part of the pro
essturns out to be the transitive 
losure operation needed to 
ompute �, whi
hrequires 
ubi
 time. This leads to the following theorem:Theorem 3 There is an O(n3) algorithm that �nds an extension of a dis-jun
tion-free ordered theory, where n is the length of theory.This result is signi�
ant for several reasons. As we noted before, orderedunary theories 
an represent default inheritan
e hierar
hies, as was demon-strated by [4℄. This gives an eÆ
ient algorithm for �nding some extension,that is, some 
onsistent interpretation, of su
h inheritan
e hierar
hies. Thisform of default inheritan
e has been 
alled \
redulous" reasoning by Touretzkyet al. [18℄. It is of further interest that the eÆ
ien
y 
omes from ordering, andnot from the fa
t that the theories are unary, nor from the fa
t that inheri-tan
e hierar
hies are 
ompletely a
y
li
. The requirement that the graphi
alrepresentation of the inheritan
e hierar
hy be a
y
li
 (a 
ondition imposed byTouretzky [19℄ and followed in the literature ever sin
e) is a suÆ
ient 
onditionfor ordering, but is not ne
essary. For example, the theory 
ontaining just therules Penguin : :Flier:Flier ; Flier : :Penguin:Penguinis ordered, but would not be admitted by most de�nitions of an inheritan
ehierar
hy.This result is also important be
ause of its relation to logi
 programming.It has been known for some time [2, 12℄ that strati�ed logi
 programs (without\
ut") 
an be mapped into default logi
 theories, by turning 
lauses of the form:b! a1; : : : ; am;:
1; : : : ;:
ninto default rules of the form:a1 ^ � � � ^ am : :
1; : : : ;:
nb :10



These rules are not semi-normal, and therefore not ordered. But it is not diÆ
ultto show that translation into rules of the forma1 ^ � � � ^ am : b ^ :
1 ^ � � � ^ :
nbyields an ordered default theory with the same unique extension. Therefore wealso have a polynomial algorithm for propositional strati�ed logi
 programming.Although ordered theories are still quite expressive, some natural situationsdo map into unordered theories. Consider the \
orrupt 
ity government" ex-ample illustrated in Fig. 5. We are using default rules to represent the 
on-
ept \most". This year, most Republi
an 
oun
ilmen are running for oÆ
e,as are most Demo
rati
 
oun
ilmen. Furthermore, most 
oun
ilmen runningfor oÆ
e are under indi
tment. The Distri
t Attorney is Demo
rati
, and willpush the 
ases against the Republi
ans mu
h harder than the 
ases against theDemo
rats. Therefore most Republi
an 
oun
ilmen who are under indi
tmentare not running for oÆ
e. This �nal 
ondition is most naturally represented bya justi�
ation on the default rule for Republi
ans running for oÆ
e, that is,Republi
an : Running ^ :UnderIndi
tmentRunning :The alternative of making \not Republi
an" a justi�
ation on the \under in-di
tment" rule would leave the theory ordered but would 
hange the meaningof the theory. It is easy to verify that there are worlds where most Republi
answho are running for oÆ
e are under indi
tment, and yet most Republi
ans whoare under indi
tment are not running for oÆ
e.In summary, �nding an extension is tra
table for ordered theories and in-tra
table for the non-ordered ones 
onsidered in this paper, as shown by thetop-most horizontal line in Fig. 1. Intra
tability is 
aused by the apparent needto 
onsider all possible sequential orderings of rule appli
ations to see if any donot lead to situations where the 
on
lusion of an appli
able rule 
ontradi
ts thejusti�
ation of a previously applied rule.6 Membership in some extensionAn extension 
an be thought of as a 
omplete set of beliefs whi
h is 
onsistentwith a given set of defaults. Often one is 
on
erned, however, with the statusof only a parti
ular proposition. Asking if a proposition p is a member of someextension of a theory is equivalent to asking if it is reasonable to believe p; thatis, whether there is a good argument for p. The same theory may provide goodarguments for both p and :p; but the 
omplementary literals must appear indi�erent extensions.Reiter [13℄ showed that p holds in some extension of a normal theory justin 
ase there is a top-down default proof of p. (A top-down default proof is,roughly, a sequen
e of non-default proofs; the �rst proves the goal given W andthe 
on
lusions of some set of the default rules; the next proves the ante
edents11



of those defaults, perhaps given the 
on
lusions of another set of default rules;and so on, until a proof that only depends onW is rea
hed.) As we noted above,Touretzky's notion of \
redulous" reasoning is similar to �nding an extension;he has no notion similar to determining membership in some extension.The nondeterministi
 algorithm given in Fig. 3 that solves the generalizedversion of the extension existen
e de
ision problem also solves this problem.The fun
tion 
allND-Exists-Extension-Containing(fxg; ;; D;W )returns \yes" whenever x appears in some extension . Thus:Theorem 4 The problem of determining if a given literal appears in some ex-tension of a disjun
tion-free theory is in NP.One might think that 
he
king the status of a single literal is easier than
omputing an entire extension. Unfortunately, this is not the 
ase. Default logi
is \non-lo
al" in the sense that to determine the status of any proposition, onemust 
onsider all intera
tions between all rules and axioms. Is the problem thenof equivalent 
omplexity to 
omputing an extension? Surprisingly, the answer isagain in general no. While �nding an extension is tra
table for ordered theories,determining membership in some extension is NP-
omplete. In fa
t, we willprove two stronger results, for two spe
ial 
ases of ordered theories: orderedunary and disjun
tion-free normal.First, 
onsider the ordered unary 
ase. We will use a redu
tion like theone used in the proof of Theorem 2 above, but will eliminate the \killer" rule(D), whi
h makes the theory unordered. Then we add the following rule, whi
hmakes sure that an extension 
ontains a new letter T whenever it does not
ontain the \failure" letter F :(E) : T ^ :FT :The reader 
an verify that the theory generated by applying mappings (A), (B),(C), and (E) to a 3CNF formula � is ordered unary. Furthermore, � is satis�ableif and only if this theory has an extension 
ontaining T . Thus:Theorem 5 Determining if a given literal appears in some extension of anordered unary theory is NP-
omplete.Next, 
onsider the 
ase of disjun
tion-free normal theories. Normal theoriesallow negative literals to appear in the pre
ondition whi
h simpli�es the redu
-tion. The default rules in set (A) again are used to guess a truth assignment.A se
ond set of rules 
he
ks that ea
h 
lause in � is satis�ed by the extension:12



(F) Let xi _ yi _ zi stand for the ith 
lause of �. Then for ea
h 
lause i in �,the following three rules appear, where Ti is a new letter:xi : TiTi ; yi : TiTi ; zi : TiTi :The third group 
ontains a single rule whi
h simply 
he
ks that every 
lause issimultaneously satis�ed; that is, that some extension 
ontains all of the Ti:(G) where n is the number of 
lauses in �, the rule:T1 ^ T2 ^ � � � ^ Tn : TT :A 3CNF 
lause � is satis�able if and only if the theory given by mappings (A),(F), and (G) has an extension 
ontaining T . In other words:Theorem 6 Determining if a given literal appears in some extension of a dis-jun
tion-free normal default theory is NP-
omplete.These redu
tions demonstrate that in order to determine if a literal appearsin some extension it is generally ne
essary (unless P is NP) to sear
h throughall possible extensions. This should give pause to those who would 
onsiderusing default rules to extend ordinary ba
kward-
haining theorem proving, assuggested in Reiter's original paper. Default rules 
an expand the sear
h spa
eexponentially. If the theorem prover 
hains ba
kward from the given goal, ap-plying default rules as needed, it 
an rea
h a state where some \wrong" defaulthas been applied earlier on, whi
h blo
ks 
ompletion of the proof. The system
annot be sure that there is no default proof until it tries all di�erent sequen
esof the defaults.Is there any interesting 
lass of default theories whi
h does admit a tra
tablealgorithm? Re
all that the pre
onditions of Horn default rules 
ontain onlypositive literals. This means that no default rule is enabled by applying adi�erent rule whi
h has a negative 
on
lusion. Therefore, in order to 
onstru
ta default proof of a positive literal p, you do not need to 
onsider any rules withnegative 
on
lusions. Be
ause the justi�
ation and 
on
lusions of the remainingrules are all positive, none of them 
an be mutually in
onsistent. It is neverne
essary to \undo" the appli
ation of a default rule during the attempt toprove p. The situation where the literal to be tested is negative di�ers only inthat one also uses a rule whose 
on
lusion is the negative goal literal itself.The following lemma (whose proof appears in Appendix B) shows how totranslate the membership problem for Horn default theories into a dedu
tionproblem for a 
onsistent 
lassi
al Horn theory, but eliminating some of thenegative default rules.
13



Lemma 2 Where (D;W ) is a Horn default theory and x is a literal, let H bethe following Horn theory :H =W [8><>:� � y ������� � : y=y 2 D and� y 62W and[(y 6=� x and y is positive) or y = x℄ 9>=>;Then x appears in some extension of (D;W ) i� H ` x.By the results of [3℄ the problem of determining if a literal follows from apropositional Horn theory 
an be solved in O(n) time, where n is the length ofthe theory. The translation 
an also be done in linear time, so therefore:Theorem 7 There is an O(n) algorithm whi
h determines if a given literalappears in any extension of a Horn default theory, where n is the length of thetheory.Horn default theories may have some pra
ti
al appli
ations in arti�
ial intel-ligen
e, as a language for logi
 programming with default information. It wouldbe useful to let W 
ontain Horn 
lauses, instead of simply a set of literals, sothat both default and non-default information 
ould be represented. Unfortu-nately, Stillman [17℄ shows that this extension makes the membership de
isionproblem NP-
omplete.The middle horizontal line in Fig. 1 summarizes the results of this se
tion.Horn and normal unary theories are tra
table, and the others intra
table.7 Skepti
al reasoningThe �nal kind of reasoning we examine is determining if a proposition holds inall extensions of a theory. This task has been 
alled \skepti
al" reasoning inthe inheritan
e literature [18℄, be
ause it is the most 
autious form of defaultinferen
e. Intuitively, one may skepti
ally 
on
lude p only when p appears inall sets of beliefs whi
h are 
onsistent with the default axioms. Skepti
al rea-soning possesses several attra
tive properties absent from the other two tasks.First, the set of skepti
al 
on
lusions of a theory is 
losed under ordinary logi
aldedu
tion, and the 
omposition of this set is �xed for any given theory. Thisleads to the pra
ti
al advantage of allowing de
omposition in problem solving.For example, a system 
ould employ several pro
essors to 
ompute di�erentparts of the set of skepti
al 
on
lusions of a theory in parallel. The answersreturned by the pro
essors 
ould be simply 
onjoined. If the pro
essors were
omputing what held in di�erent arbitrary extensions, however, it would notmake sense to 
onjoin their answers. Se
ond, the 
on
lusions of skepti
al rea-soning often mat
h our intuitions more 
losely than the 
on
lusions rea
hed bythe other methods. Consider a 
ase where our default knowledge is truly am-biguous; suppose we believe that berries are by default edible, green fruit is bydefault poisonous, and we en
ounter a green berry. It seems more reasonable to14



withhold judgement until more information is gathered, rather than jump to anarbitrary 
on
lusion, whi
h 
ould leave us either hungry or poisoned.3 Finally,skepti
al reasoning provides the strongest notion of 
onsisten
y. If the non-default part of the theory is 
onsistent, then one 
annot skepti
ally 
on
ludeboth p and :p. On the other hand, there may be some extension 
ontaining p,and some other extension 
ontaining :p.Note that skepti
al reasoning 
annot be de�ned in terms of the test formembership in some extension; that is, one 
annot skepti
ally aÆrm p if noextension 
ontains :p. This is be
ause some extensions may 
ontain neither pnor :p.Skepti
al reasoning falls in the 
lass 
o-NP, rather than NP. The nondeter-ministi
 algorithm for the generalized extension existen
e problem solves thisproblem as well. To determine if every extension of a theory 
ontains a literalx, we ask if there is any whi
h does not 
ontain x. That is, ifND-Exists-Extension-Containing(;; fxg; D;W )returns \yes", then the answer is \no, x does not appear in all extensions".Theorem 8 The problem of determining if a given literal appears in every ex-tension of a disjun
tion-free theory is in 
o-NP.One might expe
t the 
omplexity results for skepti
al reasoning to mirrorthose for the membership problem. Indeed, just as membership in some exten-sion is NP-
omplete for ordered unary theories, membership in all extensions is
o-NP-
omplete for those theories. The redu
tion uses the rules in groups (A),(B), and (C) from the analysis of the extension existen
e problem. Re
all thatthese rules were set up to assert the \failure" letter F just in 
ase the potentialextension did not satisfy the 3CNF formula �. In other words, � is unsatis�ableif and only if F appears in all extensions of the theory 
ontaining just thoserules. This shows that:Theorem 9 Determining if a given literal appears in every extension of anordered unary theory is 
o-NP-
omplete.The analogy between membership in all and in some extensions breaks down,however, when we 
ome to the 
lass of Horn theories. We were able to obtaina polynomial algorithm for testing membership in some extension by throwingout all the default rules with negative 
on
lusions (ex
ept those whi
h mat
hedthe literal to be tested). This 
annot be done when one wants to know if a literalholds in all extensions. We need to 
onsider extensions whi
h 
ontain neitherthe literal nor its negation; extensions where all proofs of the literal are blo
kedby the appli
ation of rules with negative 
on
lusions. Appendix B in
ludes theproof of the following theorem:3As we will see below, skepti
al reasoning is 
omputationally the most demanding form ofdefault reasoning, so in pra
ti
e one would like to have some idea of the \
ost" of jumpingto the wrong 
on
lusion in order to be able to de
ide what default reasoning strategy is mostappropriate. 15



Theorem 10 Determining if a given literal appears in every extension of aHorn default theory is 
o-NP-
omplete.Intuitively, it is harder to �nd extensions whi
h leave the truth value of aletter unde
ided than it is to �nd ones whi
h assign it true or false. This theoremalso illustrates the tradeo� between \
aution" and speed in default reasoning:the most 
onservative kind of reasoning in default logi
 is also the most 
omplex.The next se
tion of this paper in
ludes a general proof of this observation.The diÆ
ulty in devising 
omplete and tra
table algorithms for this kind ofskepti
al reasoning has led some resear
hers to suppose that any formulation ofreasoning based on an interse
tion of extensions is intra
table. (In parti
ular,the polynomial form of skepti
al reasoning developed in [9℄ is not 
orre
t a
-
ording to an interse
tion of extensions or expansions semanti
s. Whether it is
orre
t a

ording to our intuitions is, of 
ourse, another matter.) An examplewhi
h demonstrates this point is a version of the \extended Nixon diamond",shown in Fig. 6. Nixon inherits from \Voter" in all three extensions, but throughRepubli
an in one, Quaker in the other, and both in the third. (Note that in thedefault logi
 formulation, unlike in Touretzky's \path-based" system, no spe
ialstatus given to the links that lead dire
tly out of a leaf node su
h as Nixon.Touretzky treats su
h links as representing stri
t impli
ations, rather than asdefaults.)This problem and others like it 
an be en
oded entirely in a normal unarytheory. We have devised the �rst sound and 
omplete polynomial algorithm forskepti
al reasoning in this logi
. We will illustrate the 
entral idea behind thealgorithm by �rst 
onsidering the restri
ted 
ase where W is empty, and theliteral to be tested is positive. A polynomial algorithm for this 
ase is given inFig. 7. To determine if a proposition p holds in all extensions, the algorithmattempts to �nd a 
omplete set of literals 
ontaining :p whi
h is 
onsistent withsome extension that does not 
ontain p.The reader may gain some understanding of the Normal-Unary-All-Extensions-Pos algorithm by \running" it on the extended Nixon diamondexample. The set of rules D, where ea
h proposition is abbreviated by its initialletter, is: n : rr ; n : qq ; r : :q:q ; q : :r:r ; r : vv ; q : vv :Rather than in
luding n in W , we will simply add a default rule whi
h alwaysadds n. Sin
e no rule adds :n, this yields exa
tly the same set of extensions,: nn :We wish to determine if v holds in all extensions. The three extensions of thetheory are: E1 � fn; r; q; vg;E2 � fn; r;:q; vg;16



E3 � fn;:r; q; vg:Therefore we expe
t the algorithm to return \yes".The 
omplete set of literals L is initially set toL1 = fn; r; q;:vg:L1 is positive 
onsistent, and all its elements are grounded. However, (r;:v) isnegative in
onsistent, be
ause a rule with pre
ondition r adds v, and no rulewhose pre
ondition holds in L adds :v. So r is repla
ed by :r, yielding thenext version of L: L2 = fn;:r; q;:vg:Now the algorithm noti
es that (q;:v) is negative in
onsistent, so q is repla
ed:L3 = fn;:r;:q;:vg:But now (n;:r) is negative in
onsistent, so n must be repla
ed by :n.L4 = f:n;:r;:q;:vg:L4 is not positive 
onsistent, be
ause n is �xed positive. Therefore the algorithmreturns \yes"; v holds in all extensions.An algorithm for the more general 
ase of normal unary skepti
al reasoningappears in Fig. 8. It transforms the input theory to the simpler 
ase by repla
ingliterals in W by new rules (as in the example above) and by substituting a newletter for a negative query. A proof of 
orre
tness and a 
omplexity analysis ofthe two algorithms appears in Appendix B. Thus:Theorem 11 Given a normal unary theory and a literal x, the Normal-Unary-All-Extensions algorithm returns \yes" if and only if every extension of thetheory 
ontains x. The time 
omplexity of the algorithm is O(n2), where n isthe length of the theory.In summary, all kinds of skepti
al reasoning other than for normal unarytheories are intra
table, as shown by the lowest horizontal line in Fig. 1. Stein[16℄ uses normal unary theories to 
apture so-
alled \ideally skepti
al" inheri-tan
e, whi
h is default inheritan
e without priorities. Thus, our algorithm 
anbe dire
tly applied to handle this, very 
onservative, form of inheritan
e. Itremains to be seen if there are interesting pra
ti
al appli
ations of this kind ofreasoning.8 Comparing the reasoning tasksThe 
omplexity results for the spe
i�
 
lasses of default theories we 
onsideredshowed that the task of �nding an extension is no harder than determining ifa literal holds in some extension of a theory, whi
h in turn is no harder thanskepti
al reasoning. This se
tion develops general results that show this is true17



for very broad 
lasses of disjun
tion-free theories. (These general theorems donot make the previous results redundant; the results limited to the spe
i�

lasses are stronger.)First we 
ompare �nding an extension to determining if a literal holds in someextension. The �rst algorithm presented in Fig. 9 redu
es the former problemto the latter. The algorithm works by maintaining an approximation to anextension in the variable E. It 
reates a new default rule whose pre
onditionis the 
onjun
tion of all the literals in E, and whose 
on
lusion is a new letterp. The ora
le Some-Extension determines that some extension of the originaltheory augmented with this new rule 
ontains p just when some extension ofthe original theory 
ontains all of E. The main loop of the algorithm makesE maximal, by trying to add ea
h literal to it. Note that a disjun
tion-freenormal default rule is added to the theory. A requirement of this redu
tion istherefore that the 
lass of default theories under 
onsideration be 
losed underthe addition of su
h rules. Note that this redu
tion is not too surprising givenour earlier result whi
h showed that the membership question is NP-
ompletefor disjun
tion-free normal theories.Theorem 12 For any 
lass of disjun
tion-free theories that is 
losed under theaddition of a single disjun
tion-free normal default rule, the problem of �ndingan extension is Turing-redu
ible to the problem of determining whether a givenliteral appears in some extension.The se
ond algorithm in Fig. 9 redu
es membership in some extension tomembership in all extensions. Where x is the literal to be tested, the redu
tionadds a new default rule with no pre
ondition whose 
on
lusion is � x. This rule
an only fail to be applied to an extension whi
h 
ontains x. Therefore, we seethat some extension of the original theory 
ontains x if and only if it is not the
ase that every extension of the modi�ed theory 
ontains � x. This redu
tionapplies to any 
lass of theories 
losed under the addition of the new default rule,whi
h 
an be 
hara
terized as follows:Theorem 13 For any 
lass of default theories that is 
losed under the additionof a rule of the form : � x= � x, determining if a given literal appears in someextension is Turing-redu
ible to the task of determining whether a given literalappears in all extensions.These redu
tions 
an be used to derive 
omplexity results for 
lasses of de-fault theories not spe
i�
ally examined in this paper. For example, by Theorem12, any NP-
ompleteness result for the problem of �nding an extension will
arry over to that of membership in some extension, provided the 
lass of the-ories under 
onsideration is disjun
tion-free and 
losed under the addition ofthe simple default spe
i�ed above. Going in the other dire
tion, a polynomialalgorithm for �nding an extension 
an be obtained from one for membership insome extension.The se
ond redu
tion is even more general, and even applies to in�nite and�rst-order theories. Any lower bound result, su
h as NP-hardness, PSPACE-18




ompleteness, unde
idability, and so on, 
arries over from the problem of mem-bership in some to membership in all extensions. Likewise, a polynomial algo-rithm or de
ision pro
edure for skepti
al reasoning immediately gives one formembership in some extension.9 Con
lusionsWe have examined a wide range of simple default theories and have un
overedsome surprising worst-
ase 
omplexity results. The problems of dedu
tion and
onsisten
y 
he
king are not the only sour
e of diÆ
ulties in reasoning withdefaults. In the study of �nding an extension, the sour
e of 
omplexity 
an be
hara
terized as the problem of dete
ting in
oherent 
y
les in the rules, whi
hmake it hard to dete
t if a sequen
e of rule appli
ations is a
tually leadingtoward an extension. In the membership problems, the sour
e of 
omplexity
an be 
hara
terized as the exponential number of di�erent extensions that 
anbe generated by a set of defaults. One 
an think of the rules as spe
ifying anondeterministi
 
omputation, and the test for membership of a literal in someor all extensions as pi
king out a su

essful 
omputation, or determining thatthere are none.Yet we also developed a number of interesting positive results. We presenteda polynomial algorithm to �nd an extension of a propositional ordered theory,and these theories appear to have many uses in AI and logi
 programming.In parti
ular, this 
lass in
ludes \
redulous" reasoning in default inheritan
ehierar
hies, but is stri
tly more general, in that rules may have any number ofpositive literals in the pre
onditions, and the graphi
 form of rules may in
lude(
ertain kinds of) 
y
les. As noted earlier, the synta
ti
 
onstraints traditionallypla
ed on inheritan
e hierar
hies do not 
orrespond to the 
onstraints a
tuallyneeded for eÆ
ient reasoning. Ordered theories also subsume strati�ed logi
programs, but allow both negative and positive literals to appear anywhere ina rule.Horn default theories ni
ely generalize 
lassi
al Horn theories and retainlinear 
omplexity for the problem of membership in some extension. Finally,we developed the �rst polynomial algorithm for determining the 
ontents of theinterse
tion of all extensions of a default theory|albeit a very restri
ted 
lassof theories.Last but not least, the general redu
tions between the reasoning tasks sug-gest how default logi
 may be most eÆ
iently used in problem solving. The riski-est, most 
redulous form of default reasoning is also the fastest. At least in thepropositional 
ase, it is possible to 
onstru
t an eÆ
ient problem solver whi
hsimply applies all its default rules to an input problem des
ription, forward-
haining to a 
omplete extension. The abundan
e of detail in the extensionwould, one might hope, simplify or trivialize further inferen
e. This is the useof defaults suggested by Levesque in his proposal for \vivid reasoning" [10℄.Reiter identi�ed the notion of a \default logi
 proof" with determining if aformula held in some extension of a theory. The mu
h greater 
omplexity of the19



problem of determining membership in some extension over �nding an arbitraryextension indi
ates that great 
are will be needed in augmenting traditionalba
kward-
haining theorem provers with default rules, in order to not fall vi
timto an exponential expansion of the sear
h spa
e.Finally, the most 
onservative use of default logi
, skepti
al reasoning, mayprove too 
omputationally intensive for any appli
ation. If default logi
 is yourtool of 
hoi
e, and you are 
on
erned with the 
omplexity of inferen
e, it appearsthat you should design your theory so that any extension in fa
t yields a rea-sonable set of 
on
lusions, and you should not depend on taking an interse
tionof extensions to �lter out the good from the bad.A Terminology of NP-
ompletenessFor an introdu
tion to the theory of NP-
ompleteness, see [8℄. The 
lass NP
onsists of de
ision problems (ones whose solution is either \yes" or \no") that
an be solved by a nondeterministi
 algorithm that given a problem instan
e(1) guesses a data stru
ture and (2) deterministi
ally 
he
ks in polynomial timewhether the answer is \yes" or \no". The algorithm is said to solve the problemif and only if for any \yes"-instan
e of the de
ision problem, there exists a datastru
ture that leads to a \yes" answer after 
he
king; whereas for any \no"-instan
e of the problem, no su
h stru
ture exists. An NP-
omplete problemis a member of an NP to whi
h any problem in NP 
an be transformed inpolynomial time. A problem is in 
o-NP if its 
omplement is in NP, and anysu
h problem 
an be transformed in polynomial time into a 
o-NP-
ompleteproblem. A problem (not ne
essarily a de
ision problem) is NP-hard if an NP-
omplete problem 
an be solved by a deterministi
 polynomial algorithm thatemploys an ora
le that solves the NP-hard problem. Conversely, a problemis NP-easy if it 
an be solved by a deterministi
 polynomial algorithm thatemploys an ora
le that solves a problem in NP. Hen
e an NP-easy problem isessentially \no harder" than any problem in NP. (That is, if P = NP, thenany NP-easy problem is polynomial. But in terms of the 
omplexity hierar
hy,NP-easy properly in
ludes both NP and 
o-NP.)The NP-
omplete problem 3SAT is that of determining the satis�ability ofa 
onjun
tion of three-element 
lauses in propositional logi
 (3CNF ); that is, ofa formula of the form:� = (x1 _ y1 _ z1) ^ (x2 _ y2 _ z2) ^ � � � :The 
orresponding 
o-NP-
omplete problem is determining the unsatis�abilityof su
h a formula.B ProofsProof:Proof of Lemma 1(Sket
h). It is easy to see that the lemma's de�nitionof an extension is equivalent to the original de�nition (presented in Se
tion 2) if20



the logi
al 
losure operation is applied to the E's on the right-hand side of theexpressions in the lemma. For example, � 
 2 En be
omes � 
 2 Th(En). Theoriginal de�nition allows the appli
ation of a number of defaults at ea
h step,while the lemma e�e
tively stret
hes the appli
ations out into a single sequen
e.The di�eren
e is not signi�
ant for �nite propositional theories. (The lemmafails for in�nite theories, be
ause there may not be any maximal n.)Let E be a set of literals and x a single literal. Observe that if E is 
onsistent,then x 2 E if and only if x 2 Th(E). Furthermore, if W is a 
onsistent set ofliterals, then appli
ations of semi-normal default rules will maintain 
onsisten
y.Therefore the de�nitions are equivalent for 
onsistent disjun
tion-free theories.On the other hand, if W is an in
onsistent set of literals, then both by thelemma and by the original de�nition the in
onsistent theory Th(W ) is the uniqueextension. So the de�nitions are fully equivalent for disjun
tion-free theories.Note that the lemma fails for non-semi-normal �nite propositional theories
ontaining no disjun
tions. This is be
ause the appli
ation of a non-semi-normaldefault rule to a 
onsistent set of literals 
an yield an in
onsistent set.Q.E.D.Lemma 3 The relation � as de�ned over D in a disjun
tion-free ordered theoryis a partial order.Proof: We show that � is transitive and irre
exive over D.(transitive) Suppose Æ1 � Æ2 and Æ2 � Æ3. Then in must be the 
ase that9b1 2 
on
l(Æ1); 
2 2 just*(Æ2) : b1 � � 
2;9b2 2 
on
l(Æ2); 
3 2 just*(Æ3) : b2 � � 
3:The rule Æ2 indu
es the literal ordering� 
2 � b2:So b1� � 
3, whi
h entails that Æ1 � Æ3.(irre
exive) Suppose it were the 
ase that Æ � Æ. Then it must be the 
asethat 9b 2 
on
l(Æ); 
 2 just*(Æ) : b� � 
:But this rule indu
es the literal ordering� 
� bwhi
h would imply that b� b, violating the de�nition of an ordered theory.Proof:Proof of Theorem 3(
orre
tness) Let EFINAL be the value returned by Ordered-Find-Extension(D;W ). We 
laim that the following assertion is true at theend of the then 
lause in the algorithm::9
 2 just(D[i℄) : � 
 2 EFINAL:21



Corre
tness of the algorithm follows immediately from this assertion and Lemma1. So suppose the assertion were false. Let Ej represent the value of the vari-able E after 
y
le j of the outer loop, and D[ij ℄ be the rule sele
ted by theif statement in 
y
le j. Suppose the assertion fails when j = j0. Plainly
 62 
on
l(D[ij0 ℄), so 
 2 just*(D[ij0 ℄)and there must be some j1 > j0 su
h that for j = j1,� 
 2 
on
l(D[ij1 ℄):Then by the de�nition of �, D[ij1 ℄ � D[ij0 ℄be
ause � 
�� 
. This implies thatij1 � ij0 :Now suppose that pre(D[ij1 ℄) � E(j0�1). Then the inner loop in 
y
le j0 should
hoose D[ij1 ℄ rather than D[ij0 ℄. But sin
e this is not the 
ase, there must existsome literal a su
h thata 2 pre(D[ij1 ℄); a 62 E(j0�1):This a must have been added in either 
y
le j0 or in some 
y
le whi
h followsj0. First, 
onsider the possibility that a is added in 
y
le j0. In that 
ase,a 2 
on
l(D[ij0 ℄) and thus � 
 � a. Also, sin
e a 2 pre(D[ij1 ℄) and � 
 2
on
l(D[ij1 ℄), we have that a�� 
. Thus, � 
 � � 
, whi
h 
ontradi
ts thefa
t that our theory is ordered. Therefore, a must have been added in some
y
le j2 whi
h follows j0 and pre
edes j1:j0 < j2 < j1:Note that D[ij2 ℄ � D[ij0 ℄ be
ausea� � 
; a 2 
on
l(D[ij2 ℄); 
 2 just*(D[ij0 ℄):Now by the previous argument pre(D[ij2 ℄) 6� E(j0�1), so there must be someliteral a0 su
h that a0 2 pre(D[ij2 ℄); a0 62 E(j0�1):Again, we 
an show that a0 
annot have been added in 
y
le j0. For suppose itwas. Then, a0 2 
on
l(D[ij0 ℄) and thus � 
 � a0. Also, sin
e a0 2 pre(D[ij2 ℄)and a 2 
on
l(D[ij2 ℄), we have that a0 � a, and, again from D[ij1 ℄, we havea�� 
. Thus, � 
� � 
, whi
h 
ontradi
ts the fa
t that our theory is ordered.22



Therefore, a must have been added by some rule D[ij3 ℄ whi
h �res at a 
y
lej3, where j0 < j3 < j2 < j1:As before, D[ij3 ℄ � D[ij0�1℄ and pre(D[ij3 ℄) 6� Ej0 . The argument 
an berepeated any number of times, leading to an in�nite sequen
ej0 < � � � < j4 < j3 < j2 < j1:But sin
e there are a �nite number of rules in D, this is impossible.(
omplexity) Let us suppose that the propositional letters of the input arerepresented by the odd integers 1 throughm�1, and the 
orresponding negativeliterals by the integers 2 through m. Note that n � m � 2n, where n is thelength of the theory. The variable E is represented by a ve
tor of length m, withE[i℄ = 1 when the literal represented by i is in E. The pre
ondition, justi�
ation(just*), and 
on
lusion of ea
h default rule is stored as a list of integers.The �rst task is to 
ompute the ordering � on the literals. This relation
an be stored in an m�m table, with entry (i; j) equal to 1 just in 
ase literali � literal j. The table is �rst set to all 0's ex
ept for the diagonal (i; i) whi
his set to all 1's (be
ause � is re
e
tive), in O(m2) steps. Next the 
onstraintsderived from ea
h default rule (a � b and � 
 � b) initialize the table. The
onstraints on � indu
ed by ea
h rule Æ 
an be 
al
ulated in jÆj2 time, so theinitialization step requires the following time:jDjXi=1 jÆij2 � 0� jDjXi=1 jÆij1A2 � n2:Finally the transitive 
losure of � is taken in O(m3) time [1℄. Thus this taskrequires O(m2 + n2 +m3) = O(n3) time.The next task is to 
ompute the ordering � on default rules. For ea
h pairof rules, 
ompare ea
h literal in the 
on
lusion of the �rst rule with ea
h literalin the proper justi�
ation (just*) of the se
ond rule. This takes the followingtime: jDjXi;j=1 jÆijjÆj j = jDjXi=1 jÆij0� jDjXj=1 jÆj j1A� jDjXi=1 jÆijn = n jDjXi=1 jÆij � n2:The result of this task is a list of length less than jDj2 des
ribing the relation�. Now we 
ome to the proper algorithm. The topologi
al sort of D is linearin the number of rules plus the number of pairs des
ribing �. So the sort isO(jDj+ jDj2) or more simply O(n2). 23



Che
king that rule D[i℄ is appli
able to E takes jD[i℄j time. Che
king allthe rules to �nd an appli
able one takesjDjXi=1 jD[i℄j � nsteps. Ea
h rule applies at most on
e, so this 
he
k has to be performed at mostjDj times. Therefore all the 
alls to appli
able require O(jDjn) = O(n2) time.Ea
h union of E with 
on
l(D[i℄) also takes jD[i℄j time, and again this step isperformed at most jDj times, so again the time is O(n2).The total time for the algorithm is therefore O(n3 +n2 +n2) = O(n3). It isinteresting to note that the most expensive part of the algorithm is taking thetransitive 
losure of the literal ordering.Q.E.D.Proof:Proof of Lemma 2()) Suppose x appears in some extension E of (D;W ). By Lemma 1 thereare a �nite number of approximations Ei to E . Let Ej be the lowest numberedapproximation su
h that x 2 Ej . If j = 0 then x 2 W so of 
ourse H ` x.Otherwise x 2 
on
l(Æj) whi
h implies that pre(Æj) � x 2 H . It is apparentfrom the 
onstru
tion of Ej that one 
an extra
t a forest of default rules all withpositive 
on
lusions rooted at pre(Æj) and with leaves in W . All of the Horn
lauses 
orresponding to these rules must be in H as well. Then this foresttogether with Æj 
onstitutes a proof of x from H .(() Suppose H ` x. Note that H must be 
onsistent; therefore there existsa linear resolution style proof tree T of x from H . Traverse T in an order withvisits a node after visiting all of its 
hildren; the result is a linearization of theHorn 
lauses used in the proof of x. Eliminate any 
lause whi
h appears in Wor earlier in the sequen
e. Repla
e ea
h 
lause by the 
orresponding defaultrule whi
h generates it. It is 
lear then that the resulting sequen
e is a pre�xof a sequen
e of rules whose appli
ation to W leads to an extension 
ontainingx.Q.E.D.Proof:Proof of Theorem 10 An arbitrary 3CNF formula � is unsatis�able if andonly if F holds in every extension of the theory 
ontaining rules in groups (H),(I), and (J) below:(H) for ea
h letter p whi
h appears in �, with p0 = �(p), the four rules:: pp ; : p0p0 ; p0 : :p:p ; : :p0:p0 ;(I) likewise for ea
h letter p, the following rule, where F is a new letter:p ^ p0 : FF ;24



(J) for ea
h 
lause x _ y _ z of �, the rule:�(� x) ^ �(� y) ^ �(� z) : FF :We prove the equivalent statement, that � is satis�able if and only if someextension does not 
ontain F .(if ) Let E be an extension not 
ontaining F . By the rules in group (H), forany letter p, every extension 
ontains either fp; p0g, fp;:p0g, or f:p; p0g. Sin
enone of the rules in group (I) applied in E , the �rst alternative never o

urredfor any p. Thus p0 
an be taken to stand for :p. Thus the fa
t that no rule ingroup (J) 
ould have applied in E means that one of the literals in ea
h 
lauseof � appeared in E . So E is a model for �, and � is satis�able.(only if ) Suppose M is a truth assignment for �. Let E be the dedu
tive
losure of the set of literals whi
h hold in M , together with p0 or :p0 for everyliteral :p or p respe
tively whi
h holds in M . Then E is an extension of thedefault theory. Note that E is grounded by the rules in groups (H), and thatnone of the rules in groups (I) or (J) apply. In parti
ular, F does not appear inE .Q.E.D.Proof:Proof of Theorem 11 The 
orre
tness proof of the Normal-Unary-All-Extensions-Pos algorithm is based on the following loop invariant:Lemma 4 Given a set of normal unary defaults D and a positive literal pk, thefollowing property is maintained ea
h time through the while loop in Normal-Unary-All-Extensions-Pos(pk,D):INV: If L 
ontains :q and E is an extension of D that doesnot 
ontain pk, then E does not 
ontain q.Proof:(By indu
tion on the number of times through the loop).Base 
ase (upon entering the while statement). L = fp1; p2; :::;:pk; :::; png.The only negative literal in L is :pk. So, INV holds.Indu
tion step. Let L be the 
omplete set of literals after l times through thebody of the loop, and L0 the updated L after one additional time through. Bythe indu
tion hypothesis, L has property INV. Clearly, if the 
ondition in theif statement is false, we have L0 = L. And thus, INV holds for L0. Otherwise,L0 = (L � fpg) [ f:pg where p in L is su
h that (1) not grounded(p,L;D)or (2) neg-in
onsistent(p,:q,L;D) for some :q in L. We will now show by
ontradi
tion that INV holds for L0. Assume that L0 does not satisfy INV, i.e.,there exists an extension E? of D that does not 
ontain pk but does 
ontainsome letter s su
h that :s in L0. If s 6= p, then INV would not hold for L either,violating the indu
tion hypothesis. So, s = p.Case 1. not grounded(p,L,D). Sin
e p in E?, there must exist a sequen
eof one or more rules that adds p to the extension, i.e., there exists a sequen
eq0; q1; :::; qm = p su
h that(a) qj in E?, 0 � j � m, 25



(b) : q0=q0 in D, and(
) pj�1 : pj=pj in D, 1 � j � m.Now, by the indu
tion hypothesis, we have pj in L with 0 � j � m, sin
e thesepositive literals are in an extension E? of D that does not 
ontain pk. Therefore,grounded(p,L,D). Contradi
tion.Case 2. neg-in
onsistent(p,:q,L,D). From neg-in
onsistent(p,:q,L,D), itfollows that(a) p and :q in L,(b) p : q=q in D,(
) ::q/:q not in D, and(d) for ea
h rule r : :q=:q in D, we have :r in L.By the indu
tion hypothesis it follows that E? does not 
ontain q (sin
e L
ontains :q), and neither does E? 
ontain an r with a rule r : :q=:q in D(sin
e, if E? would 
ontain su
h an r then, by the indu
tion hypothesis, L
ontains r and therefore (d) is false). Contradi
tion. Moreover, sin
e : :q=:qnot in D, it follows that E? does not 
ontain :q either. Now, sin
e p in E?,it follows that the rule p : q=q in D is appli
able. But sin
e neither q nor :qis in E?, E? violates the �xed point property of a default logi
 extension [13,Theorem 2.5℄. So, no su
h E? exists. Contradi
tion.From the base 
ase and the indu
tion step, it follows by �nite indu
tion thatINV is maintained.We will now prove the 
orre
tness of the Normal-Unary-All-Extensions-Pos algorithm.Lemma 5 Given a set of normal unary defaults D and a positive literal pk, thealgorithm Normal-Unary-All-Extensions-Pos returns \yes" i� every extensionof D 
ontains pk. The time 
omplexity of the algorithm is O(n2), where n isthe length of D.Proof: First, we will show that:The algorithm returns \yes" i� every extension of D 
ontains pk.()) By 
ontradi
tion. Assume the algorithm returns \yes" while there existssome extension E? of D that does not 
ontain pk. Note that L is not pos-
onsistent upon exiting. So, there exists some q su
h that :q in L with �xed-pos(q,L,D), i.e.,(a) : q=q in D,(b) : :q=:q not in D, and(
) for ea
h rule of the form r : :q=:q in D, we have :r in L.Also, by Lemma 4, L has the property INV. Now, sin
e E? is an extension ofD that does not 
ontain pk, it follows from INV that E? does not 
ontain q.Moreover, by (b), (
), and INV it follows that E? does not 
ontain :q either(no rule present or appli
able to add :q to E). It follows that : q=q in D isappli
able. But sin
e E? does not 
ontain q, E? violates the �xed point propertyof a default logi
 extension [13, Theorem 2.5℄. Therefore, no su
h E? exists.Contradi
tion. 26



(() Assume the algorithm returns \no". Therefore, L upon exiting is su
hthat(a) pos-
onsistent(L,D),(b) for ea
h letter q in L, we have grounded(q,L,D),(
) there do not exist q and :r in L su
h that neg-in
onsistent(q,:r,L,D),and(d) :pk in L.We will 
onstru
t a set of literals from L, and show that the dedu
tive 
losureof this set is an extension of D that does not 
ontain pk. Thereby, we willhave shown the 
ontrapositive of the (-dire
tion.Let neg-supported(:p,L,D) i� : :p=:p in D or there exists a q in L anda rule q : :p=:p in D, and let E = Th(fp j p in Lg [ f:p j :p in L andneg-supported(:p,L,D) g). We will now show that E is an extension of Dthat does not 
ontain pk.First, by (d) and the de�nition of E it follows that E does not 
ontain pk.From (b) and the de�nition of E it also follows that ea
h positive literal inE is grounded, i.e., for ea
h p in E there is a sequen
e of one or more rulesstarting with a rule of the form : q0=q0 that brings in p. Now, 
onsiderstarting o� with the empty set and applying all the rules (and only those)that bring in all positive letters of E , to obtain E0. Now, by the de�nitionof E it follows that all negative letters in E 
an subsequently be broughtin by rules in D that are appli
able at E0. After applying those rules,and only those, in a sequen
e starting at E0, we obtain a set E and itsdedu
tive 
losure E . It now remains to be shown that: (1) no subsequentappli
ation of rules 
an undermine the justi�
ation of any rule applied sofar (i.e., make some previously applied rule non-appli
able), and (2) noadditional literals 
an be brought in by any of the rules in D.Case 1. Follows immediately from the fa
t that we have only normal defaultsin D.Case 2. By 
ontradi
tion. Assume more literals 
an be added to E by furtherrule appli
ations. Let r or :r be the �rst su
h literal that 
an thus beadded. By de�nition of E and the fa
t that L is a 
omplete set of literals,it follows that :r must be in L, and therefore, the �rst new literal that
an be brought in must be a positive one, i.e., r (if :r 
ould be broughtin then we would have neg-supported(:r,L,D) and :r would already bein E , 
ontradi
tion). Note that sin
e r is added by a normal default, E
annot 
ontain :r. The literal r 
an only be brought in via one of thefollowing rule appli
ations:� Appli
ation of a rule : r=r. Sin
e there are no rules to bring in :r (fromde�nition of E), we have : :r=:r not in D, and for ea
h rule s : :r=:rin D, we have :s in L. From : r=r in D it follows that �xed-pos(r,L,D).And thus, we have that L is not pos-
onsistent. Contradi
tion with (a).� Appli
ation of a rule t : r=r. As argued above, we again have that : :r=:rnot in D and for ea
h rule s : :r=:r in D, we have :s in L. Now, sin
e27



t : r=r is appli
able in E , t is in E and thus, t in L. Therefore, we haveneg-in
onsistent(t,:r,L,D) for t and :r in L. Contradi
tion with (
).It follows that E is a �xed point of the defaults and grounded. So, E is anextension of D not 
ontaining pk, and thus, it is not the 
ase that everyextension of D 
ontains pk. This 
ompletes the 
orre
tness proof of thealgorithm.Finally, we will determine the time 
omplexity of the algorithm. Sin
e thenumber of positive literals in L is de
reased by one ea
h time through thebody of thewhile loop with the possible ex
eption of the last time through,it follows from the de�nitions of grounded and neg-in
onsistent that theloop body is exe
uted at most N times (N is the number of distin
t propo-sitional letters in the theory). Computing pos-
onsistent(L,D) 
an bedone in O(n), where n is the length of the theory. And, a pair of lettersp, :q su
h that (not grounded(p; L;D)) or neg-in
onsistent(p;:q; L;D))
an also be found in time O(n). Therefore, the time 
omplexity of theNormal-Unary-All-Extensions-Pos algorithm is O(n2).Q.E.D.Proof:Proof of Theorem 11 (Continued). It is not diÆ
ult to see that the set ofdefaults D0 is su
h that a set of formulas E is an extension of (D;W ) if and onlyif E is an extension of (D0; ;). (New defaults are introdu
ed that add the literalsfromW into ea
h extension; note that rules whi
h add literals in
onsistent withW have to be removed|su
h rules are not appli
able in the original theory.)When the Normal-Unary-All-Extensions algorithm is queried with a posi-tive literal, the algorithm dire
tly 
alls the subroutine Exists-Ext-Without-Pos-Lits; a query with a negative literal x is 
onverted into one for a positiveliteral for the new letter p. The 
orre
tness of the algorithm follows from theobservation that the default rules added to D0 to obtain D00 are su
h that allextensions of (D0; ;) 
ontain the negative literal x if and only if all extensionsof (D00; ;) 
ontain the positive literal p. This 
an be seen as follows. If (D0; ;)has some extension 
ontaining � x, then there will be some appli
able defaultto add � x to the extension, and thus there is some default in the se
ond set ofdefaults added to D0 that 
an add :p to the 
orresponding extension of (D00; ;).If (D0; ;) has some extension that 
ontains neither x nor � x, then none of thedefaults that 
ould add x or � x will be appli
able, and thus neither p nor :p
an be added to the 
orresponding extension of (D00; ;). So, if (D0; ;) has an ex-tension that does not 
ontain x, then (D00; ;) has some extension that 
ontains:p or one that 
ontains neither p nor :p. Finally, assume that all extensionsof (D0; ;) 
ontain x. For ea
h extension 
ontaining x, there will be a 
orre-sponding extension of (D00; ;) 
ontaining p be
ause of the �rst set of defaultsadded to D0. Moreover, there are no other extensions of (D00; ;), sin
e if (D00; ;)had an extension 
ontaining :p, then there would exist an extension of (D0; ;)
ontaining � x: 
ontradi
tion; and, by a similar argument, (D00; ;) 
annot havean extension 
ontaining neither p nor :p. Thus, all extensions of (D0; ;) 
ontainthe negative literal x if and only if all extensions of (D00; ;) 
ontain the positiveliteral p. 28



As 
an be seen from the algorithm, its time 
omplexity is dominated by thatof the pro
edure Normal-Unary-All-Extensions-Pos. Therefore, the time
omplexity of the algorithm is O(n2), where n is the length of the theory.Q.E.D.A
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Figure 1: The hierar
hy of default theories.31



Figure 2: Ordered and unordered unary default theories.
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ND-Exists-Extension-Containing(In;Out; D;W )input: A disjun
tion-free theory (D,W ) and sets of literals In and Out.output: \Yes" i� there exists an extension 
ontaining all of Inbut none of Out.Guess E, an arbitrary 
onsistent superset of In disjoint from OutE0 := Wwhile [ 9Æ 2 D : appli
able(Æ; E0; E) ℄ doE0:= E0 [ 
on
l(Æ)if [ E0 6= E ℄then \no"else \yes"end.ND-Find-Extension(D, W )input: A disjun
tion-free theory (D,W ).output: An extension of the theory, or \no" if there is none.if [: ND-Exists-Extension-Containing(;; ;; D;W ) ℄then return \no"E := ;for Æ 2 D doif [ND-Exists-Extension-Containing(E [ 
on
l(Æ); ;; D;W ) ℄then E := E [ 
on
l(Æ)return Eend.De�nitions:appli
able(Æ; E0; E) i�(a) pre(Æ) � E0,(b) 
on
l(Æ) 6� E0, and(
) :9p 2 just(Æ): � p 2 EFigure 3: Nondeterministi
 algorithm to �nd an extension of a disjun
tion-freetheory.
33



Ordered-Find-Extension(D;W )input: A disjun
tion-free ordered theory (D;W )output: An extension of the theory.Topologi
ally sort D by �, so that D[i℄ is the i th rule in the orderingE := Wi := 1while [i � jDj ℄ doif [ appli
able(D[i℄; E;E)℄thenbeginE := E [ 
on
l(D[i℄)i := 1endelse i := i+ 1return Eend.Figure 4: Deterministi
 polynomial-time algorithm to �nd an extension of adisjun
tion-free ordered theory.

Figure 5: An unordered default theory.34



Figure 6: The extended Nixon diamond.
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Normal-Unary-All-Extensions-Pos(pk; D)input: Positive literal pk and a set D of normal unarydefaults 
ontaining letters p1; : : : ; pn.output: \Yes" i� every extension of (D; ;) 
ontains pk.L := fp1; p2; : : : ;:pk; : : : ; pngwhile [ pos-
onsistent(L;D) ℄ doif [ exists p;:q in L su
h that( (NOT grounded(p; L;D))OR neg-in
onsistent(p;:q; L;D)) ℄then L := (L� fpg) [ f:pgelse return \no"return \yes"end.De�nitions:�xed-pos(p; L;D) i�(a) : p=p 2 D,(b) : :p=:p 62 D, and(
) :q 2 L, for ea
h rule q : :p=:p 2 Dpos-
onsistent(L;D) i�for all p, if �xed-pos(p; L;D), then p 2 Lgrounded(p; L;D) i�exists a sequen
e q0; q1; : : : ; qk = p su
h that(a) qj 2 L, 0 � j � k,(b) : q0=q0 2 D, and(
) qj�1 : qj=qj 2 D, 1 � j � kneg-in
onsistent(p;:q; L;D) i�(a) p and :q 2 L(b) p : q=q 2 D,(
) : :q=:q 62 D, and(d) :r 2 L, for ea
h rule r : :q=:q 2 DFigure 7: Skepti
al reasoning algorithm with a positive literal and a set ofnormal unary defaults as input.
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Normal-Unary-All-Extensions(x;D;W )input: A literal x and a normal unary theory (D;W ).output: \Yes" i� every extension of the theory 
ontains x.D0 := fÆ 2 D j � 
on
l(Æ) 62Wg [ f: y=y j y 2 Wgif [x is a positive literal℄then Normal-Unary-All-Extensions-Pos(x,D0)elsebeginLet p be a new letterD00 := D0 [ fpre(Æ) : p=p j Æ 2 D0 and 
on
l(Æ) = fxgg[ fpre(Æ) : :p=:p j Æ 2 D0 and 
on
l(Æ) = f� xggNormal-Unary-All-Extensions-Pos(p,D00)endend.Figure 8: Algorithm to determine if a literal holds in all extensions of a normalunary theory.Redu
tion-Find-To-Some(D, W )input: A disjun
tion-free theory (D;W ).output: An extension of the theory, or \no" if there is none.Let p be a propositional letter not appearing in (D;W )if [ :Some-Extension(p;D [ f: p=pg;W )℄then return \no"E := ;for ea
h literal x doif [Some-Extension(p;D [ fVE ^ x : p=pg;W )℄then E := E [ fxgreturn Eend.Redu
tion-Some-To-All(x;D;W )input: A disjun
tion-free theory (D,W ).output: \Yes" if (D;W ) has an extension 
ontaining x, otherwise \no".if [All-Extensions(� x; (D [ f: :x=:xg;W )℄then \no"else \yes"end. Figure 9: Turing redu
tions of reasoning tasks.37


