
Hard Problems for Simple Default LogisBart SelmanDepartment of Computer SieneUniversity of TorontoToronto, Ontario, Canada M5S 1A4Otober 28, 2002AbstratKautz, H.A. and B. Selman, Hard problems for simple default logis,Arti�ial Intelligene 49 (1991) 243{279.We investigate the omplexity of reasoning with a number of limited de-fault logis. Surprising negative results (the high omplexity of simplethree literal default rules) as well as positive results (a fast algorithmfor skeptial reasoning with binary defaults) are reported, and souresof omplexity are disussed. These results impat on work on defeasibleinheritane hierarhies as well as default reasoning in general.1 IntrodutionIt has been suggested that some kind of default inferene an be used to simplifyand speed ommonsense reasoning. Researhers have appealed to default logisas a solution to the problem of generating and reasoning with large numbers of\frame axioms"; as a way of simplifying omplex probabilisti alulations; andreently as a way of \vivifying" (�lling out) an inomplete knowledge base, thussuppressing the omplexities of reasoning with unertainty [10, 11℄.While urrent formal theories of default inferene are omputationally muhworse than ordinary logi, it has been taitly assumed that this additional om-plexity arises from their use of onsisteny tests. Our interest in fast, speialpurpose inferene mehanisms led us to investigate very simple propositional,disjuntion-free systems of default reasoning, where onsisteny heking is triv-ial. Here, we thought, default reasoning should shine.This paper reports a number of surprising omplexity results involving re-strited versions of Ray Reiter's default logi [13℄. We de�ne a partially-orderedspae of propositional default theories of varying degrees of generality. For eahwe determine the omplexity of solving the following three problems: �ndingan extension; determining if a given proposition is true in some extension; anddetermining if a given proposition is true in all extensions.1



All of these problems are NP-hard for propositional, disjuntion-free defaultlogi. This shows that onsisteny heking is not the only soure of omplex-ity in default reasoning. We show that a ondition alled \ordering" (whihis related to strati�ation in logi programming) makes �nding an extensiontratable. The extension membership problems, however, remain intratable formost of the restrited logis. In partiular, these questions are NP-omplete forthe logi that most naturally represents ayli inheritane hierarhies. Systemswhose rules are similar in form to Horn lauses do admit a tratable algorithmfor testing membership in some extension. Finally, we present a polynomialalgorithm for testing the membership of a proposition in all extensions of thevery restrited lass of \normal unary" theories, thus settling an open questionin work on inheritane.The next part of the paper presents general redutions of �nding an extensionto testing membership in some extension, and that to testing membership inall extensions. This shows that for a large lass of default theories, it is atleast as hard to test the status of a single proposition as to ompute a ompleteextension.The �nal part of the paper provides some intuitive haraterizations of thesoures of omplexity in default reasoning. It suggests that the most eÆientuse of default information is to \esh out" the missing detail in a knowledgebase in a \brave" manner, a proess that orresponds to �nding an extension.A note on notation: throughout this paper, the symbols p, q, r, s, and t areused for propositional letters (also alled positive literals). The symbols a, b, ,x, y, and z are used for literals (propositional letters and their negations). Thegreek letters �, �, and  are used for formulas. The sign � is a meta-languageoperator that maps a positive literal to a negative literal and vie versa. Forexample, the expression � x 2 Ewhere E is a set of literals, is equivalent to the lengthy expressionif x = p for some letter p, then :x 2 E; otherwise, where x = :p forsome letter p, it is the ase that p 2 E.Use of this operator avoids the need to expliitly invoke a rule of negationelimination to onvert formulas of the form ::p to p.2 Reiter's default logiReiter formalized default reasoning by extending �rst-order logi with defaultinferene rules. This paper will not onsider the other nonmonotoni formalismsbased on modal logi, irumsription, or model-preferene rules, although manyof the results it presents have ounterparts in those systems. (See [14, 15℄ for asimilar analysis of model-preferene theories.)A default theory is a pair (D;W ) where D is a set of default rules and Wa set of ordinary �rst-order formulas. This paper examines theories ontaining2



only semi-normal default rules, whih are of the form� : � ^ �where � is the prerequisite, � the onlusion, and �^ the justi�ation of a rule,eah of them formulas. The rule is intuitively understood as meaning that if �is known, and � ^  is onsistent with what is known, then � may be inferred.If  is missing, then the rule is normal. Default rules are sometimes written as� : � ^ = for typographi larity.An extension is a maximal set of onlusions that an be drawn from atheory. But are must be taken that the justi�ation of eah rule used in theonstrution of an extension be onsistent with the omplete ontents of theextension, not just with the non-default information.De�nition:Extension. Where E is a set of formulas, Th(E) is the dedutivelosure of E. E is an extension for the theory (D;W ) if and only if it satis�esthe following equations: E0 =W;and for i > 0,Ei+1 = Th(Ei) [ � ����� : � 2 D; � 2 Ei; and :� 62 E� ;E = 1[i=0Ei:Note the expliit referene to E in the de�nition of Ei+1. A theory an haveseveral, one, or no extensions.Although normal theories have a number of nie theoretial and ompu-tational properties, semi-normal rules are often needed to establish a priorityamong the defaults. For example, two default rules may have oniting on-lusions, yet have their preonditions satis�ed in the same situation. If normalrules were used, this kind of situation would lead to two di�erent extensions.One may know, however, that the �rst rule should always take priority over theseond when both apply. This an be enoded by adding the negation of thepreondition of the �rst rule to the justi�ation of the seond rule. Formally,given rules Æ1 and Æ2, whereÆ1 = �1 : �1 ^ 1�1 ; Æ2 = �2 : �2 ^ 2�2 ;in order to establish Æ1 as being of higher priority than Æ2, replae Æ2 by Æ02:Æ02 = �2 : �2 ^ 2 ^ :�1�2 :One kind of priority that this sheme an enode is the \spei�ity" orderingthat intuitively should appear in an inheritane hierarhy. For example, W may3



inlude the fat that \penguins are birds",1 and D defaults that assert thatpenguins don't y, and that birds do y. The �rst, more spei� default an begiven priority over the seond by enoding the pair asPenguin : :Fly:Fly ; Bird : Fly ^ :PenguinFly :3 ComplexityFollowing [8℄, we shall refer to a problem lass as \tratable" if a poly-nomial-time algorithm an solve all its instanes. It is not yet possible to provethat any of the problem lasses onsidered in this paper require exponential time,but many are as hard as any solvable in polynomial time by a nondeterministiomputer. Suh \NP-hard" problems are onsidered to be intratable.This paper only onsiders worst-ase omplexity. Sine the problem in-stanes that ause a partiular algorithm to run the longest time may rarelyarise, it would be useful to follow this worst-ase analysis by some kind of\average-ase" analysis. Suh an analysis would require some haraterizationof \average" ommonsense theories|a signi�ant task in its own right.Nonetheless, this worst-ase analysis is useful in revealing di�erent soures ofomplexity in default reasoning, and in providing eÆient algorithms for ertainproblem lasses. For example, Setion 5 inludes a polynomial-time algorithmfor omputing extensions of the speial lass of ordered default theories. Thisalgorithm is not neessarily orret for more general problem lasses; on theother hand, the obvious general algorithm for omputing extensions an takeexponential time on an ordered theory. One tratable algorithms are knownfor a number of useful lasses of default theories, a general algorithm an beonstruted that �rst tests to see if any of the speial ase algorithms apply,and if none does, invokes the intratable general method.This paper uses the standard terminology of NP-ompleteness, whih is sum-marized in Appendix A.4 A taxonomy of default theoriesTwo soures of omplexity in default theories are readily apparent: the inherentomplexity of the �rst-order omponent (W ), and the omplexity of determiningwhether the justi�ation of a default rule is onsistent with the urrently-derivedset of formulas. We will restrit our attention to �nite propositional theories inwhihW is simply a set (onjuntion) of literals. The preondition, justi�ation,and onsequene of eah default rule is also a onjuntion of literals. We willall suh a theory \disjuntion-free" (abbreviated \DF"). Thus determiningwhether a default rule is appliable to W is trivial: the preondition must be a1It remains an open problem to determine if a default theory must inlude this assertion,although a survey of the literature lends strong evidene to the onjeture. Certainly it istrue that every paper on nonmonotoni reasoning must inlude this example [5℄.4



subset of W , and the intersetion of W with the negation of eah literal in thejusti�ation must be empty. The extended theory is again a set (onjuntion)of literals. Although an extension is, by de�nition, an in�nite, dedutivelylosed set of formulas, any extension of a disjuntion-free theory is equivalentto the dedutive losure of a �nite set of literals. Heneforth, when we speak of\omputing an extension", we will mean omputing suh a �nite set of literals.The following funtions aess the omponents of default rules of this re-strited form.De�nition:pre, onl, just*, just. WhereÆ = a1 ^ � � � ^ al : b1 ^ � � � ^ bm ^ 1 ^ � � � ^ nb1 ^ � � � ^ bmand none of the i are the same as any of the bi, letpre(Æ) = fa1; : : : ; alg;onl(Æ) = fb1; : : : ; bmg;just*(Æ) = f1; : : : ; ng;just(Æ) = just*(Æ) [ onl(Æ):Any inferential power suh systems possess resides in the default rules;the only non-default inferene rules that apply are negation elimination andonjuntion-in and -out (to onvert, e.g., f�; �g to � ^ � and vie versa). Thereader should remember, in partiular, that beause the default rules are in fatrules and not axioms, the priniple of reasoning by ases does not apply. Forexample, given a theory with empty W and rulesp : qq ; :p : qq ;one may not onlude q.Further restritions on the form of the default rules leads to the hierarhyshown in Fig. 1. The blak arrows lead from the more restrited lasses to themore general lasses. A negative omplexity result (that is, a transformationfrom an NP-hard problem) for a lass in the hierarhy applies also to all elementsabove it. A positive omplexity result (that is, a polynomial-time algorithm) fora lass applies also to all lasses below it. The lasses of theories are as follows:{ Unary : These theories restrit the prerequisite to a single letter and theonsequene to a single literal. In the ase of a positive onsequene,the justi�ation may inlude a single additional negative literal. Unarytheories have a simple graphial notation, as shown in Fig. 2. Positive andnegative default ars appear, where optional anel links may be attahedto positive ars. Note that only positive information enables or anels thedefault. Unary theories are a simple example of the kind of graph-basedrepresentational systems inspired by Fahlman's work on NETL [7℄, andare a restrited ase of Etherington's \network theories" [6, p. 91℄.5



{ Disjuntion-free ordered : \Ordering" is a syntati property of defaulttheories developed in [6, p. 86℄ as a suÆient (but not neessary) ondi-tion for a theory to have an extension. The basi idea is to make surethat the appliation of a default rule an never enable another rule whoseonlusion is inonsistent with the justi�ation of the �rst rule. Formally,given a disjuntion-free theory (D;W ) and a set lits ontaining the literalsin the theory, de�ne � and � to be the smallest relations over lits � litssuh that� � is reexive,� � is a superset of �,� � and � are transitive,� � is transitive through �; that is, for literals x, y, and z in lits :[(x� y ^ y� z) _ (x� y ^ y � z)℄ � x� z;� for every Æ 2 D, and every a 2 pre(Æ), b 2 onl(Æ), and  2 just*(Æ):a� b; � � b:Then (D;W ) is ordered if and only if it ontains no literal x suh thatx� x.2 Ordered theories are quite expressive, but as we will see also havesome nie omputational properties. Later we will desribe how orderingis a generalization of the notion of strati�ation in logi programming.{ Ordered unary : These theories have no yles involving anel ars, asshown in Fig. 2. Of all the lasses onsidered here, ordered unary the-ories possess the minimum amount of mahinery neessary to representinheritane hierarhies with some notion of priority between rules.{ Disjuntion-free normal : Normal theories are formally well-behaved, andpossess a resolution-based proof proedure. Normal theories are ordered.{ Horn: Horn lause non-default theories have proven useful for applia-tions in databases and expert systems. Satis�ability of propositional Hornlauses an be determined in linear time [3℄. Therefore in the searh for\easy" default theories it is natural to onsider default theories whoserules are similar in form to Horn lauses: the literals in the prerequisiteare all positive, and the justi�ation and onsequene are the same singleliteral.{ Normal unary : This �nal ategory falls in the intersetion of all the oth-ers. Its graphial representation ontains only positive and negative de-fault impliation ars. Normal unary theories an represent inheritanehierarhies with no \preemption strategy" between ompeting paths [16℄,but are more general, in that the graph need not be ayli.2The de�nition of� given in [6℄ does not require that relation to be reexive or a supersetof�. But the de�nitions agree on�, and on whether any partiular theory is ordered or not.6



Table 1: Forms of default rules in the various lasses of theories.Unary p : q=q; p : q ^ :r=p; p : :q=:q;Disjuntion-free ordered a1 ^ � � � ^ al : b1 ^ � � � ^ bm ^ 1 ^ � � � ^ n=b1 ^ � � � ^ bmand for no literal x is x� xOrdered unary p : q=q; p : q ^ :r=p; p : :q=:q;and for no literal x is x� xDisjuntion-free normal a1 ^ � � � ^ al : b1 ^ � � � ^ bm=b1 ^ � � � ^ bmHorn p1 ^ � � � ^ pn : q=qp1 ^ � � � ^ pn : :q=:qNormal unary p : q=q; p : :q=:qTable 1 summarizes the forms of the rules that appear in eah kind of theory.In every ase, the elements of a rule are optional. For example, the preonditionof a rule may be empty.5 Finding an extensionIt is obvious that the question of whether a �rst-order default theory has anextension is undeidable, beause the question of whether the justi�ation ofa rule is onsistent with an extension is equally undeidable. In the ase ofdisjuntion-free theories, however, this onsisteny test, as well as the test thatthe preondition of a rule is satis�ed, redue to simple set operations. Further-more, the fat that the theories are �nite allows an extension to be onstrutedby the appliation of one rule at a time. It is straightforward to rewrite thede�nition of an extension for this speial ase:Lemma 1 (Extension of a disjuntion-free theory) Let (D;W ) be a dis-juntion-free default theory. Then E is an extension of (D;W ) if and onlyif there exists a sequene of rules Æ1; Æ2; : : : ; Æn from D, and a series of setsE0; E1; : : : ; En suh that for all i > 0:E0 =W;Ei = Ei�1 [ onl(Æi);pre(Æi) � Ei�1;:9 2 just(Æi) : �  2 En;:9Æ 2 D : pre(Æ) � En ^ onl(Æ) 6� En^ :9 2 just(Æ): �  2 En7



and E is the dedutive-losure of En.This observation makes it possible to onstrut a nondeterministi algorithmto deide if a disjuntion-free theory has an extension. The mahine guesses anextension. It then tries to verify the extension by trying to onstrut it startingwithW , and adding the onlusion of any rule whose preondition is ontained inthe urrent approximation and whose justi�ation is onsistent with the guessedextension. When the loop halts the guess is orret just in ase the �nal approx-imation is the same as the extension. The �rst algorithm in Fig. 3 does just this.It takes as input not only the theory but two additional arguments, In and Out,whih restrit the extensions that an be guessed. The set operations performedin the subroutine appliable run in polynomial time, and in the worst ase theinner loop yles jDj times and in eah yle jDj or fewer rules are heked forappliability, so the algorithm also runs in nondeterministi polynomial time.Therefore the extension existene deision problem is in NP.The seond algorithm in the �gure atually omputes an extension, build-ing it from the onlusions of rules one rule at a time. The In parameter ofND-Exists-Extension-Containing is passed to the urrent approximationtogether with the onlusion of the next rule under onsideration. If the answeris \yes" then the onlusion is added to the approximation. The main loop inthis algorithm iterates jDj times, thus proving our �rst theorem:Theorem 1 The problem of omputing an extension of a disjuntion-free de-fault theory (or determining that none exists) is NP-easy.So, �nding an extension of a DF propositional theory is not harder than thehardest problem in NP. The question then beomes: is there a deterministipolynomial algorithm to ompute an extension of a disjuntion-free theory?Unless P is NP, the answer is no. In fat, 3SAT an be redued to the extensionexistene problem for unary theories. Suppose � is a formula in 3CNF. We anonstrut a default theory whose extension, if any, is a model of �. Four sets ofrules are needed. The �rst adds every letter or its negation to the \andidate"extension. The seond adds speial letters to stand for negative literals, sinenegative literals annot appear in the preonditions of rules. The third groupheks that every lause is satis�ed. If the negation of every literal in somelause is present in the andidate extension, then a speial \failure" letter Fis added. The fourth group ontains a speial \killer" rule. The preonditionof this rule is F , but its onlusion, Z , is inonsistent with the justi�ation ofthe rule whih added F . This kind of \viious yle" undermines the andidateextension: it an't be a \real" extension after all! Thus, � is satis�able if andonly if the theory has an extension; that is, when no sequene of appliations ofdefault rules an ever onlude F .The following makes this redution preise.De�nition:Mappings from 3CNF to defaults. Let � be a propositional3CNF formula. The funtion � maps eah positive literal to itself, and eahnegative literal :p to a new letter p0. Consider the following groups of defaultrules: 8



(A) for eah letter p that appears in �, the rules:: pp ; : :p:p ;(B) for eah letter p that appears in �, the rules:p : :p0:p0 ; : p0 ^ :pp0 ;(C) for eah lause x _ y _ z of �, the following three rules, where Fxy, Fxyz,F , and Z are new letters:�(� x) : Fxy ^ :�(y)Fxy ;Fxy : Fxyz ^ :�(z)Fxyz ;Fxyz : F ^ :ZF ;(D) the single rule: F : ZZ :Thus we see that a 3CNF formula is satis�able if and only if the defaulttheory onsisting of an empty W and a D made up of groups (A), (B), (C), and(D) has an extension. This proves the next theorem:Theorem 2 The problem of determining whether a unary default theory hasan extension is NP-omplete. The orresponding problem of omputing a set ofliterals equivalent to an extension (or determining that none exists) is NP-hard.As noted earlier, ordered theories annot fall vitim to the kind of viiousyle used in this redution. In fat, the extension existene problem is trivialfor ordered theories: they always have extensions. One might think that it ispossible to onstrut an extension of an ordered theory by simply applying anyrule whih applies to W , then any rule whih applies W and the onlusions ofthe �rst rule, and so on, until no rules apply. But this is not the ase. Considera theory ontaining an empty W and just two rules:Æ1 = : q ^ :pq ; Æ2 = : pp :The rule Æ1 applies toW , but there is no sequene of rule appliations beginningwith Æ1 that leads to an extension. Intuitively, Æ2 is of higher priority; that rulemust be onsidered for appliation before Æ1. So what is needed is a way toderive a priority ordering on the rules of an ordered theory, given the orderingon its literals. The following de�nition does just that.9



De�nition:� over D. Let (D;W ) be a disjuntion-free ordered theory, and� be de�ned over the literals of the theory as desribed above. Then for anyÆ1; Æ2 2 D, Æ1 � Æ2if and only if 9b 2 onl(Æ1);  2 just*(Æ2) : b� � :Lemma 3 in the appendix proves that � is in fat a partial order. In theexample just given, the theory orders q � p, so that Æ2 � Æ1, as desired. One�nds an extension by omputing the partial order over the rules, topologiallysorting the rules by the order, and then repeatedly �ring the lowest ranked rulewhih is appliable. Figure 4 presents the algorithm, whose proof of orretnessappears in Appendix B. The omputationally most intensive part of the proessturns out to be the transitive losure operation needed to ompute �, whihrequires ubi time. This leads to the following theorem:Theorem 3 There is an O(n3) algorithm that �nds an extension of a dis-juntion-free ordered theory, where n is the length of theory.This result is signi�ant for several reasons. As we noted before, orderedunary theories an represent default inheritane hierarhies, as was demon-strated by [4℄. This gives an eÆient algorithm for �nding some extension,that is, some onsistent interpretation, of suh inheritane hierarhies. Thisform of default inheritane has been alled \redulous" reasoning by Touretzkyet al. [18℄. It is of further interest that the eÆieny omes from ordering, andnot from the fat that the theories are unary, nor from the fat that inheri-tane hierarhies are ompletely ayli. The requirement that the graphialrepresentation of the inheritane hierarhy be ayli (a ondition imposed byTouretzky [19℄ and followed in the literature ever sine) is a suÆient onditionfor ordering, but is not neessary. For example, the theory ontaining just therules Penguin : :Flier:Flier ; Flier : :Penguin:Penguinis ordered, but would not be admitted by most de�nitions of an inheritanehierarhy.This result is also important beause of its relation to logi programming.It has been known for some time [2, 12℄ that strati�ed logi programs (without\ut") an be mapped into default logi theories, by turning lauses of the form:b! a1; : : : ; am;:1; : : : ;:ninto default rules of the form:a1 ^ � � � ^ am : :1; : : : ;:nb :10



These rules are not semi-normal, and therefore not ordered. But it is not diÆultto show that translation into rules of the forma1 ^ � � � ^ am : b ^ :1 ^ � � � ^ :nbyields an ordered default theory with the same unique extension. Therefore wealso have a polynomial algorithm for propositional strati�ed logi programming.Although ordered theories are still quite expressive, some natural situationsdo map into unordered theories. Consider the \orrupt ity government" ex-ample illustrated in Fig. 5. We are using default rules to represent the on-ept \most". This year, most Republian ounilmen are running for oÆe,as are most Demorati ounilmen. Furthermore, most ounilmen runningfor oÆe are under inditment. The Distrit Attorney is Demorati, and willpush the ases against the Republians muh harder than the ases against theDemorats. Therefore most Republian ounilmen who are under inditmentare not running for oÆe. This �nal ondition is most naturally represented bya justi�ation on the default rule for Republians running for oÆe, that is,Republian : Running ^ :UnderInditmentRunning :The alternative of making \not Republian" a justi�ation on the \under in-ditment" rule would leave the theory ordered but would hange the meaningof the theory. It is easy to verify that there are worlds where most Republianswho are running for oÆe are under inditment, and yet most Republians whoare under inditment are not running for oÆe.In summary, �nding an extension is tratable for ordered theories and in-tratable for the non-ordered ones onsidered in this paper, as shown by thetop-most horizontal line in Fig. 1. Intratability is aused by the apparent needto onsider all possible sequential orderings of rule appliations to see if any donot lead to situations where the onlusion of an appliable rule ontradits thejusti�ation of a previously applied rule.6 Membership in some extensionAn extension an be thought of as a omplete set of beliefs whih is onsistentwith a given set of defaults. Often one is onerned, however, with the statusof only a partiular proposition. Asking if a proposition p is a member of someextension of a theory is equivalent to asking if it is reasonable to believe p; thatis, whether there is a good argument for p. The same theory may provide goodarguments for both p and :p; but the omplementary literals must appear indi�erent extensions.Reiter [13℄ showed that p holds in some extension of a normal theory justin ase there is a top-down default proof of p. (A top-down default proof is,roughly, a sequene of non-default proofs; the �rst proves the goal given W andthe onlusions of some set of the default rules; the next proves the anteedents11



of those defaults, perhaps given the onlusions of another set of default rules;and so on, until a proof that only depends onW is reahed.) As we noted above,Touretzky's notion of \redulous" reasoning is similar to �nding an extension;he has no notion similar to determining membership in some extension.The nondeterministi algorithm given in Fig. 3 that solves the generalizedversion of the extension existene deision problem also solves this problem.The funtion allND-Exists-Extension-Containing(fxg; ;; D;W )returns \yes" whenever x appears in some extension . Thus:Theorem 4 The problem of determining if a given literal appears in some ex-tension of a disjuntion-free theory is in NP.One might think that heking the status of a single literal is easier thanomputing an entire extension. Unfortunately, this is not the ase. Default logiis \non-loal" in the sense that to determine the status of any proposition, onemust onsider all interations between all rules and axioms. Is the problem thenof equivalent omplexity to omputing an extension? Surprisingly, the answer isagain in general no. While �nding an extension is tratable for ordered theories,determining membership in some extension is NP-omplete. In fat, we willprove two stronger results, for two speial ases of ordered theories: orderedunary and disjuntion-free normal.First, onsider the ordered unary ase. We will use a redution like theone used in the proof of Theorem 2 above, but will eliminate the \killer" rule(D), whih makes the theory unordered. Then we add the following rule, whihmakes sure that an extension ontains a new letter T whenever it does notontain the \failure" letter F :(E) : T ^ :FT :The reader an verify that the theory generated by applying mappings (A), (B),(C), and (E) to a 3CNF formula � is ordered unary. Furthermore, � is satis�ableif and only if this theory has an extension ontaining T . Thus:Theorem 5 Determining if a given literal appears in some extension of anordered unary theory is NP-omplete.Next, onsider the ase of disjuntion-free normal theories. Normal theoriesallow negative literals to appear in the preondition whih simpli�es the redu-tion. The default rules in set (A) again are used to guess a truth assignment.A seond set of rules heks that eah lause in � is satis�ed by the extension:12



(F) Let xi _ yi _ zi stand for the ith lause of �. Then for eah lause i in �,the following three rules appear, where Ti is a new letter:xi : TiTi ; yi : TiTi ; zi : TiTi :The third group ontains a single rule whih simply heks that every lause issimultaneously satis�ed; that is, that some extension ontains all of the Ti:(G) where n is the number of lauses in �, the rule:T1 ^ T2 ^ � � � ^ Tn : TT :A 3CNF lause � is satis�able if and only if the theory given by mappings (A),(F), and (G) has an extension ontaining T . In other words:Theorem 6 Determining if a given literal appears in some extension of a dis-juntion-free normal default theory is NP-omplete.These redutions demonstrate that in order to determine if a literal appearsin some extension it is generally neessary (unless P is NP) to searh throughall possible extensions. This should give pause to those who would onsiderusing default rules to extend ordinary bakward-haining theorem proving, assuggested in Reiter's original paper. Default rules an expand the searh spaeexponentially. If the theorem prover hains bakward from the given goal, ap-plying default rules as needed, it an reah a state where some \wrong" defaulthas been applied earlier on, whih bloks ompletion of the proof. The systemannot be sure that there is no default proof until it tries all di�erent sequenesof the defaults.Is there any interesting lass of default theories whih does admit a tratablealgorithm? Reall that the preonditions of Horn default rules ontain onlypositive literals. This means that no default rule is enabled by applying adi�erent rule whih has a negative onlusion. Therefore, in order to onstruta default proof of a positive literal p, you do not need to onsider any rules withnegative onlusions. Beause the justi�ation and onlusions of the remainingrules are all positive, none of them an be mutually inonsistent. It is neverneessary to \undo" the appliation of a default rule during the attempt toprove p. The situation where the literal to be tested is negative di�ers only inthat one also uses a rule whose onlusion is the negative goal literal itself.The following lemma (whose proof appears in Appendix B) shows how totranslate the membership problem for Horn default theories into a dedutionproblem for a onsistent lassial Horn theory, but eliminating some of thenegative default rules.
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Lemma 2 Where (D;W ) is a Horn default theory and x is a literal, let H bethe following Horn theory :H =W [8><>:� � y ������� � : y=y 2 D and� y 62W and[(y 6=� x and y is positive) or y = x℄ 9>=>;Then x appears in some extension of (D;W ) i� H ` x.By the results of [3℄ the problem of determining if a literal follows from apropositional Horn theory an be solved in O(n) time, where n is the length ofthe theory. The translation an also be done in linear time, so therefore:Theorem 7 There is an O(n) algorithm whih determines if a given literalappears in any extension of a Horn default theory, where n is the length of thetheory.Horn default theories may have some pratial appliations in arti�ial intel-ligene, as a language for logi programming with default information. It wouldbe useful to let W ontain Horn lauses, instead of simply a set of literals, sothat both default and non-default information ould be represented. Unfortu-nately, Stillman [17℄ shows that this extension makes the membership deisionproblem NP-omplete.The middle horizontal line in Fig. 1 summarizes the results of this setion.Horn and normal unary theories are tratable, and the others intratable.7 Skeptial reasoningThe �nal kind of reasoning we examine is determining if a proposition holds inall extensions of a theory. This task has been alled \skeptial" reasoning inthe inheritane literature [18℄, beause it is the most autious form of defaultinferene. Intuitively, one may skeptially onlude p only when p appears inall sets of beliefs whih are onsistent with the default axioms. Skeptial rea-soning possesses several attrative properties absent from the other two tasks.First, the set of skeptial onlusions of a theory is losed under ordinary logialdedution, and the omposition of this set is �xed for any given theory. Thisleads to the pratial advantage of allowing deomposition in problem solving.For example, a system ould employ several proessors to ompute di�erentparts of the set of skeptial onlusions of a theory in parallel. The answersreturned by the proessors ould be simply onjoined. If the proessors wereomputing what held in di�erent arbitrary extensions, however, it would notmake sense to onjoin their answers. Seond, the onlusions of skeptial rea-soning often math our intuitions more losely than the onlusions reahed bythe other methods. Consider a ase where our default knowledge is truly am-biguous; suppose we believe that berries are by default edible, green fruit is bydefault poisonous, and we enounter a green berry. It seems more reasonable to14



withhold judgement until more information is gathered, rather than jump to anarbitrary onlusion, whih ould leave us either hungry or poisoned.3 Finally,skeptial reasoning provides the strongest notion of onsisteny. If the non-default part of the theory is onsistent, then one annot skeptially onludeboth p and :p. On the other hand, there may be some extension ontaining p,and some other extension ontaining :p.Note that skeptial reasoning annot be de�ned in terms of the test formembership in some extension; that is, one annot skeptially aÆrm p if noextension ontains :p. This is beause some extensions may ontain neither pnor :p.Skeptial reasoning falls in the lass o-NP, rather than NP. The nondeter-ministi algorithm for the generalized extension existene problem solves thisproblem as well. To determine if every extension of a theory ontains a literalx, we ask if there is any whih does not ontain x. That is, ifND-Exists-Extension-Containing(;; fxg; D;W )returns \yes", then the answer is \no, x does not appear in all extensions".Theorem 8 The problem of determining if a given literal appears in every ex-tension of a disjuntion-free theory is in o-NP.One might expet the omplexity results for skeptial reasoning to mirrorthose for the membership problem. Indeed, just as membership in some exten-sion is NP-omplete for ordered unary theories, membership in all extensions iso-NP-omplete for those theories. The redution uses the rules in groups (A),(B), and (C) from the analysis of the extension existene problem. Reall thatthese rules were set up to assert the \failure" letter F just in ase the potentialextension did not satisfy the 3CNF formula �. In other words, � is unsatis�ableif and only if F appears in all extensions of the theory ontaining just thoserules. This shows that:Theorem 9 Determining if a given literal appears in every extension of anordered unary theory is o-NP-omplete.The analogy between membership in all and in some extensions breaks down,however, when we ome to the lass of Horn theories. We were able to obtaina polynomial algorithm for testing membership in some extension by throwingout all the default rules with negative onlusions (exept those whih mathedthe literal to be tested). This annot be done when one wants to know if a literalholds in all extensions. We need to onsider extensions whih ontain neitherthe literal nor its negation; extensions where all proofs of the literal are blokedby the appliation of rules with negative onlusions. Appendix B inludes theproof of the following theorem:3As we will see below, skeptial reasoning is omputationally the most demanding form ofdefault reasoning, so in pratie one would like to have some idea of the \ost" of jumpingto the wrong onlusion in order to be able to deide what default reasoning strategy is mostappropriate. 15



Theorem 10 Determining if a given literal appears in every extension of aHorn default theory is o-NP-omplete.Intuitively, it is harder to �nd extensions whih leave the truth value of aletter undeided than it is to �nd ones whih assign it true or false. This theoremalso illustrates the tradeo� between \aution" and speed in default reasoning:the most onservative kind of reasoning in default logi is also the most omplex.The next setion of this paper inludes a general proof of this observation.The diÆulty in devising omplete and tratable algorithms for this kind ofskeptial reasoning has led some researhers to suppose that any formulation ofreasoning based on an intersetion of extensions is intratable. (In partiular,the polynomial form of skeptial reasoning developed in [9℄ is not orret a-ording to an intersetion of extensions or expansions semantis. Whether it isorret aording to our intuitions is, of ourse, another matter.) An examplewhih demonstrates this point is a version of the \extended Nixon diamond",shown in Fig. 6. Nixon inherits from \Voter" in all three extensions, but throughRepublian in one, Quaker in the other, and both in the third. (Note that in thedefault logi formulation, unlike in Touretzky's \path-based" system, no speialstatus given to the links that lead diretly out of a leaf node suh as Nixon.Touretzky treats suh links as representing strit impliations, rather than asdefaults.)This problem and others like it an be enoded entirely in a normal unarytheory. We have devised the �rst sound and omplete polynomial algorithm forskeptial reasoning in this logi. We will illustrate the entral idea behind thealgorithm by �rst onsidering the restrited ase where W is empty, and theliteral to be tested is positive. A polynomial algorithm for this ase is given inFig. 7. To determine if a proposition p holds in all extensions, the algorithmattempts to �nd a omplete set of literals ontaining :p whih is onsistent withsome extension that does not ontain p.The reader may gain some understanding of the Normal-Unary-All-Extensions-Pos algorithm by \running" it on the extended Nixon diamondexample. The set of rules D, where eah proposition is abbreviated by its initialletter, is: n : rr ; n : qq ; r : :q:q ; q : :r:r ; r : vv ; q : vv :Rather than inluding n in W , we will simply add a default rule whih alwaysadds n. Sine no rule adds :n, this yields exatly the same set of extensions,: nn :We wish to determine if v holds in all extensions. The three extensions of thetheory are: E1 � fn; r; q; vg;E2 � fn; r;:q; vg;16



E3 � fn;:r; q; vg:Therefore we expet the algorithm to return \yes".The omplete set of literals L is initially set toL1 = fn; r; q;:vg:L1 is positive onsistent, and all its elements are grounded. However, (r;:v) isnegative inonsistent, beause a rule with preondition r adds v, and no rulewhose preondition holds in L adds :v. So r is replaed by :r, yielding thenext version of L: L2 = fn;:r; q;:vg:Now the algorithm noties that (q;:v) is negative inonsistent, so q is replaed:L3 = fn;:r;:q;:vg:But now (n;:r) is negative inonsistent, so n must be replaed by :n.L4 = f:n;:r;:q;:vg:L4 is not positive onsistent, beause n is �xed positive. Therefore the algorithmreturns \yes"; v holds in all extensions.An algorithm for the more general ase of normal unary skeptial reasoningappears in Fig. 8. It transforms the input theory to the simpler ase by replaingliterals in W by new rules (as in the example above) and by substituting a newletter for a negative query. A proof of orretness and a omplexity analysis ofthe two algorithms appears in Appendix B. Thus:Theorem 11 Given a normal unary theory and a literal x, the Normal-Unary-All-Extensions algorithm returns \yes" if and only if every extension of thetheory ontains x. The time omplexity of the algorithm is O(n2), where n isthe length of the theory.In summary, all kinds of skeptial reasoning other than for normal unarytheories are intratable, as shown by the lowest horizontal line in Fig. 1. Stein[16℄ uses normal unary theories to apture so-alled \ideally skeptial" inheri-tane, whih is default inheritane without priorities. Thus, our algorithm anbe diretly applied to handle this, very onservative, form of inheritane. Itremains to be seen if there are interesting pratial appliations of this kind ofreasoning.8 Comparing the reasoning tasksThe omplexity results for the spei� lasses of default theories we onsideredshowed that the task of �nding an extension is no harder than determining ifa literal holds in some extension of a theory, whih in turn is no harder thanskeptial reasoning. This setion develops general results that show this is true17



for very broad lasses of disjuntion-free theories. (These general theorems donot make the previous results redundant; the results limited to the spei�lasses are stronger.)First we ompare �nding an extension to determining if a literal holds in someextension. The �rst algorithm presented in Fig. 9 redues the former problemto the latter. The algorithm works by maintaining an approximation to anextension in the variable E. It reates a new default rule whose preonditionis the onjuntion of all the literals in E, and whose onlusion is a new letterp. The orale Some-Extension determines that some extension of the originaltheory augmented with this new rule ontains p just when some extension ofthe original theory ontains all of E. The main loop of the algorithm makesE maximal, by trying to add eah literal to it. Note that a disjuntion-freenormal default rule is added to the theory. A requirement of this redution istherefore that the lass of default theories under onsideration be losed underthe addition of suh rules. Note that this redution is not too surprising givenour earlier result whih showed that the membership question is NP-ompletefor disjuntion-free normal theories.Theorem 12 For any lass of disjuntion-free theories that is losed under theaddition of a single disjuntion-free normal default rule, the problem of �ndingan extension is Turing-reduible to the problem of determining whether a givenliteral appears in some extension.The seond algorithm in Fig. 9 redues membership in some extension tomembership in all extensions. Where x is the literal to be tested, the redutionadds a new default rule with no preondition whose onlusion is � x. This rulean only fail to be applied to an extension whih ontains x. Therefore, we seethat some extension of the original theory ontains x if and only if it is not thease that every extension of the modi�ed theory ontains � x. This redutionapplies to any lass of theories losed under the addition of the new default rule,whih an be haraterized as follows:Theorem 13 For any lass of default theories that is losed under the additionof a rule of the form : � x= � x, determining if a given literal appears in someextension is Turing-reduible to the task of determining whether a given literalappears in all extensions.These redutions an be used to derive omplexity results for lasses of de-fault theories not spei�ally examined in this paper. For example, by Theorem12, any NP-ompleteness result for the problem of �nding an extension willarry over to that of membership in some extension, provided the lass of the-ories under onsideration is disjuntion-free and losed under the addition ofthe simple default spei�ed above. Going in the other diretion, a polynomialalgorithm for �nding an extension an be obtained from one for membership insome extension.The seond redution is even more general, and even applies to in�nite and�rst-order theories. Any lower bound result, suh as NP-hardness, PSPACE-18



ompleteness, undeidability, and so on, arries over from the problem of mem-bership in some to membership in all extensions. Likewise, a polynomial algo-rithm or deision proedure for skeptial reasoning immediately gives one formembership in some extension.9 ConlusionsWe have examined a wide range of simple default theories and have unoveredsome surprising worst-ase omplexity results. The problems of dedution andonsisteny heking are not the only soure of diÆulties in reasoning withdefaults. In the study of �nding an extension, the soure of omplexity an beharaterized as the problem of deteting inoherent yles in the rules, whihmake it hard to detet if a sequene of rule appliations is atually leadingtoward an extension. In the membership problems, the soure of omplexityan be haraterized as the exponential number of di�erent extensions that anbe generated by a set of defaults. One an think of the rules as speifying anondeterministi omputation, and the test for membership of a literal in someor all extensions as piking out a suessful omputation, or determining thatthere are none.Yet we also developed a number of interesting positive results. We presenteda polynomial algorithm to �nd an extension of a propositional ordered theory,and these theories appear to have many uses in AI and logi programming.In partiular, this lass inludes \redulous" reasoning in default inheritanehierarhies, but is stritly more general, in that rules may have any number ofpositive literals in the preonditions, and the graphi form of rules may inlude(ertain kinds of) yles. As noted earlier, the syntati onstraints traditionallyplaed on inheritane hierarhies do not orrespond to the onstraints atuallyneeded for eÆient reasoning. Ordered theories also subsume strati�ed logiprograms, but allow both negative and positive literals to appear anywhere ina rule.Horn default theories niely generalize lassial Horn theories and retainlinear omplexity for the problem of membership in some extension. Finally,we developed the �rst polynomial algorithm for determining the ontents of theintersetion of all extensions of a default theory|albeit a very restrited lassof theories.Last but not least, the general redutions between the reasoning tasks sug-gest how default logi may be most eÆiently used in problem solving. The riski-est, most redulous form of default reasoning is also the fastest. At least in thepropositional ase, it is possible to onstrut an eÆient problem solver whihsimply applies all its default rules to an input problem desription, forward-haining to a omplete extension. The abundane of detail in the extensionwould, one might hope, simplify or trivialize further inferene. This is the useof defaults suggested by Levesque in his proposal for \vivid reasoning" [10℄.Reiter identi�ed the notion of a \default logi proof" with determining if aformula held in some extension of a theory. The muh greater omplexity of the19



problem of determining membership in some extension over �nding an arbitraryextension indiates that great are will be needed in augmenting traditionalbakward-haining theorem provers with default rules, in order to not fall vitimto an exponential expansion of the searh spae.Finally, the most onservative use of default logi, skeptial reasoning, mayprove too omputationally intensive for any appliation. If default logi is yourtool of hoie, and you are onerned with the omplexity of inferene, it appearsthat you should design your theory so that any extension in fat yields a rea-sonable set of onlusions, and you should not depend on taking an intersetionof extensions to �lter out the good from the bad.A Terminology of NP-ompletenessFor an introdution to the theory of NP-ompleteness, see [8℄. The lass NPonsists of deision problems (ones whose solution is either \yes" or \no") thatan be solved by a nondeterministi algorithm that given a problem instane(1) guesses a data struture and (2) deterministially heks in polynomial timewhether the answer is \yes" or \no". The algorithm is said to solve the problemif and only if for any \yes"-instane of the deision problem, there exists a datastruture that leads to a \yes" answer after heking; whereas for any \no"-instane of the problem, no suh struture exists. An NP-omplete problemis a member of an NP to whih any problem in NP an be transformed inpolynomial time. A problem is in o-NP if its omplement is in NP, and anysuh problem an be transformed in polynomial time into a o-NP-ompleteproblem. A problem (not neessarily a deision problem) is NP-hard if an NP-omplete problem an be solved by a deterministi polynomial algorithm thatemploys an orale that solves the NP-hard problem. Conversely, a problemis NP-easy if it an be solved by a deterministi polynomial algorithm thatemploys an orale that solves a problem in NP. Hene an NP-easy problem isessentially \no harder" than any problem in NP. (That is, if P = NP, thenany NP-easy problem is polynomial. But in terms of the omplexity hierarhy,NP-easy properly inludes both NP and o-NP.)The NP-omplete problem 3SAT is that of determining the satis�ability ofa onjuntion of three-element lauses in propositional logi (3CNF ); that is, ofa formula of the form:� = (x1 _ y1 _ z1) ^ (x2 _ y2 _ z2) ^ � � � :The orresponding o-NP-omplete problem is determining the unsatis�abilityof suh a formula.B ProofsProof:Proof of Lemma 1(Sketh). It is easy to see that the lemma's de�nitionof an extension is equivalent to the original de�nition (presented in Setion 2) if20



the logial losure operation is applied to the E's on the right-hand side of theexpressions in the lemma. For example, �  2 En beomes �  2 Th(En). Theoriginal de�nition allows the appliation of a number of defaults at eah step,while the lemma e�etively strethes the appliations out into a single sequene.The di�erene is not signi�ant for �nite propositional theories. (The lemmafails for in�nite theories, beause there may not be any maximal n.)Let E be a set of literals and x a single literal. Observe that if E is onsistent,then x 2 E if and only if x 2 Th(E). Furthermore, if W is a onsistent set ofliterals, then appliations of semi-normal default rules will maintain onsisteny.Therefore the de�nitions are equivalent for onsistent disjuntion-free theories.On the other hand, if W is an inonsistent set of literals, then both by thelemma and by the original de�nition the inonsistent theory Th(W ) is the uniqueextension. So the de�nitions are fully equivalent for disjuntion-free theories.Note that the lemma fails for non-semi-normal �nite propositional theoriesontaining no disjuntions. This is beause the appliation of a non-semi-normaldefault rule to a onsistent set of literals an yield an inonsistent set.Q.E.D.Lemma 3 The relation � as de�ned over D in a disjuntion-free ordered theoryis a partial order.Proof: We show that � is transitive and irreexive over D.(transitive) Suppose Æ1 � Æ2 and Æ2 � Æ3. Then in must be the ase that9b1 2 onl(Æ1); 2 2 just*(Æ2) : b1 � � 2;9b2 2 onl(Æ2); 3 2 just*(Æ3) : b2 � � 3:The rule Æ2 indues the literal ordering� 2 � b2:So b1� � 3, whih entails that Æ1 � Æ3.(irreexive) Suppose it were the ase that Æ � Æ. Then it must be the asethat 9b 2 onl(Æ);  2 just*(Æ) : b� � :But this rule indues the literal ordering� � bwhih would imply that b� b, violating the de�nition of an ordered theory.Proof:Proof of Theorem 3(orretness) Let EFINAL be the value returned by Ordered-Find-Extension(D;W ). We laim that the following assertion is true at theend of the then lause in the algorithm::9 2 just(D[i℄) : �  2 EFINAL:21



Corretness of the algorithm follows immediately from this assertion and Lemma1. So suppose the assertion were false. Let Ej represent the value of the vari-able E after yle j of the outer loop, and D[ij ℄ be the rule seleted by theif statement in yle j. Suppose the assertion fails when j = j0. Plainly 62 onl(D[ij0 ℄), so  2 just*(D[ij0 ℄)and there must be some j1 > j0 suh that for j = j1,�  2 onl(D[ij1 ℄):Then by the de�nition of �, D[ij1 ℄ � D[ij0 ℄beause � �� . This implies thatij1 � ij0 :Now suppose that pre(D[ij1 ℄) � E(j0�1). Then the inner loop in yle j0 shouldhoose D[ij1 ℄ rather than D[ij0 ℄. But sine this is not the ase, there must existsome literal a suh thata 2 pre(D[ij1 ℄); a 62 E(j0�1):This a must have been added in either yle j0 or in some yle whih followsj0. First, onsider the possibility that a is added in yle j0. In that ase,a 2 onl(D[ij0 ℄) and thus �  � a. Also, sine a 2 pre(D[ij1 ℄) and �  2onl(D[ij1 ℄), we have that a�� . Thus, �  � � , whih ontradits thefat that our theory is ordered. Therefore, a must have been added in someyle j2 whih follows j0 and preedes j1:j0 < j2 < j1:Note that D[ij2 ℄ � D[ij0 ℄ beausea� � ; a 2 onl(D[ij2 ℄);  2 just*(D[ij0 ℄):Now by the previous argument pre(D[ij2 ℄) 6� E(j0�1), so there must be someliteral a0 suh that a0 2 pre(D[ij2 ℄); a0 62 E(j0�1):Again, we an show that a0 annot have been added in yle j0. For suppose itwas. Then, a0 2 onl(D[ij0 ℄) and thus �  � a0. Also, sine a0 2 pre(D[ij2 ℄)and a 2 onl(D[ij2 ℄), we have that a0 � a, and, again from D[ij1 ℄, we havea�� . Thus, � � � , whih ontradits the fat that our theory is ordered.22



Therefore, a must have been added by some rule D[ij3 ℄ whih �res at a ylej3, where j0 < j3 < j2 < j1:As before, D[ij3 ℄ � D[ij0�1℄ and pre(D[ij3 ℄) 6� Ej0 . The argument an berepeated any number of times, leading to an in�nite sequenej0 < � � � < j4 < j3 < j2 < j1:But sine there are a �nite number of rules in D, this is impossible.(omplexity) Let us suppose that the propositional letters of the input arerepresented by the odd integers 1 throughm�1, and the orresponding negativeliterals by the integers 2 through m. Note that n � m � 2n, where n is thelength of the theory. The variable E is represented by a vetor of length m, withE[i℄ = 1 when the literal represented by i is in E. The preondition, justi�ation(just*), and onlusion of eah default rule is stored as a list of integers.The �rst task is to ompute the ordering � on the literals. This relationan be stored in an m�m table, with entry (i; j) equal to 1 just in ase literali � literal j. The table is �rst set to all 0's exept for the diagonal (i; i) whihis set to all 1's (beause � is reetive), in O(m2) steps. Next the onstraintsderived from eah default rule (a � b and �  � b) initialize the table. Theonstraints on � indued by eah rule Æ an be alulated in jÆj2 time, so theinitialization step requires the following time:jDjXi=1 jÆij2 � 0� jDjXi=1 jÆij1A2 � n2:Finally the transitive losure of � is taken in O(m3) time [1℄. Thus this taskrequires O(m2 + n2 +m3) = O(n3) time.The next task is to ompute the ordering � on default rules. For eah pairof rules, ompare eah literal in the onlusion of the �rst rule with eah literalin the proper justi�ation (just*) of the seond rule. This takes the followingtime: jDjXi;j=1 jÆijjÆj j = jDjXi=1 jÆij0� jDjXj=1 jÆj j1A� jDjXi=1 jÆijn = n jDjXi=1 jÆij � n2:The result of this task is a list of length less than jDj2 desribing the relation�. Now we ome to the proper algorithm. The topologial sort of D is linearin the number of rules plus the number of pairs desribing �. So the sort isO(jDj+ jDj2) or more simply O(n2). 23



Cheking that rule D[i℄ is appliable to E takes jD[i℄j time. Cheking allthe rules to �nd an appliable one takesjDjXi=1 jD[i℄j � nsteps. Eah rule applies at most one, so this hek has to be performed at mostjDj times. Therefore all the alls to appliable require O(jDjn) = O(n2) time.Eah union of E with onl(D[i℄) also takes jD[i℄j time, and again this step isperformed at most jDj times, so again the time is O(n2).The total time for the algorithm is therefore O(n3 +n2 +n2) = O(n3). It isinteresting to note that the most expensive part of the algorithm is taking thetransitive losure of the literal ordering.Q.E.D.Proof:Proof of Lemma 2()) Suppose x appears in some extension E of (D;W ). By Lemma 1 thereare a �nite number of approximations Ei to E . Let Ej be the lowest numberedapproximation suh that x 2 Ej . If j = 0 then x 2 W so of ourse H ` x.Otherwise x 2 onl(Æj) whih implies that pre(Æj) � x 2 H . It is apparentfrom the onstrution of Ej that one an extrat a forest of default rules all withpositive onlusions rooted at pre(Æj) and with leaves in W . All of the Hornlauses orresponding to these rules must be in H as well. Then this foresttogether with Æj onstitutes a proof of x from H .(() Suppose H ` x. Note that H must be onsistent; therefore there existsa linear resolution style proof tree T of x from H . Traverse T in an order withvisits a node after visiting all of its hildren; the result is a linearization of theHorn lauses used in the proof of x. Eliminate any lause whih appears in Wor earlier in the sequene. Replae eah lause by the orresponding defaultrule whih generates it. It is lear then that the resulting sequene is a pre�xof a sequene of rules whose appliation to W leads to an extension ontainingx.Q.E.D.Proof:Proof of Theorem 10 An arbitrary 3CNF formula � is unsatis�able if andonly if F holds in every extension of the theory ontaining rules in groups (H),(I), and (J) below:(H) for eah letter p whih appears in �, with p0 = �(p), the four rules:: pp ; : p0p0 ; p0 : :p:p ; : :p0:p0 ;(I) likewise for eah letter p, the following rule, where F is a new letter:p ^ p0 : FF ;24



(J) for eah lause x _ y _ z of �, the rule:�(� x) ^ �(� y) ^ �(� z) : FF :We prove the equivalent statement, that � is satis�able if and only if someextension does not ontain F .(if ) Let E be an extension not ontaining F . By the rules in group (H), forany letter p, every extension ontains either fp; p0g, fp;:p0g, or f:p; p0g. Sinenone of the rules in group (I) applied in E , the �rst alternative never ourredfor any p. Thus p0 an be taken to stand for :p. Thus the fat that no rule ingroup (J) ould have applied in E means that one of the literals in eah lauseof � appeared in E . So E is a model for �, and � is satis�able.(only if ) Suppose M is a truth assignment for �. Let E be the dedutivelosure of the set of literals whih hold in M , together with p0 or :p0 for everyliteral :p or p respetively whih holds in M . Then E is an extension of thedefault theory. Note that E is grounded by the rules in groups (H), and thatnone of the rules in groups (I) or (J) apply. In partiular, F does not appear inE .Q.E.D.Proof:Proof of Theorem 11 The orretness proof of the Normal-Unary-All-Extensions-Pos algorithm is based on the following loop invariant:Lemma 4 Given a set of normal unary defaults D and a positive literal pk, thefollowing property is maintained eah time through the while loop in Normal-Unary-All-Extensions-Pos(pk,D):INV: If L ontains :q and E is an extension of D that doesnot ontain pk, then E does not ontain q.Proof:(By indution on the number of times through the loop).Base ase (upon entering the while statement). L = fp1; p2; :::;:pk; :::; png.The only negative literal in L is :pk. So, INV holds.Indution step. Let L be the omplete set of literals after l times through thebody of the loop, and L0 the updated L after one additional time through. Bythe indution hypothesis, L has property INV. Clearly, if the ondition in theif statement is false, we have L0 = L. And thus, INV holds for L0. Otherwise,L0 = (L � fpg) [ f:pg where p in L is suh that (1) not grounded(p,L;D)or (2) neg-inonsistent(p,:q,L;D) for some :q in L. We will now show byontradition that INV holds for L0. Assume that L0 does not satisfy INV, i.e.,there exists an extension E? of D that does not ontain pk but does ontainsome letter s suh that :s in L0. If s 6= p, then INV would not hold for L either,violating the indution hypothesis. So, s = p.Case 1. not grounded(p,L,D). Sine p in E?, there must exist a sequeneof one or more rules that adds p to the extension, i.e., there exists a sequeneq0; q1; :::; qm = p suh that(a) qj in E?, 0 � j � m, 25



(b) : q0=q0 in D, and() pj�1 : pj=pj in D, 1 � j � m.Now, by the indution hypothesis, we have pj in L with 0 � j � m, sine thesepositive literals are in an extension E? of D that does not ontain pk. Therefore,grounded(p,L,D). Contradition.Case 2. neg-inonsistent(p,:q,L,D). From neg-inonsistent(p,:q,L,D), itfollows that(a) p and :q in L,(b) p : q=q in D,() ::q/:q not in D, and(d) for eah rule r : :q=:q in D, we have :r in L.By the indution hypothesis it follows that E? does not ontain q (sine Lontains :q), and neither does E? ontain an r with a rule r : :q=:q in D(sine, if E? would ontain suh an r then, by the indution hypothesis, Lontains r and therefore (d) is false). Contradition. Moreover, sine : :q=:qnot in D, it follows that E? does not ontain :q either. Now, sine p in E?,it follows that the rule p : q=q in D is appliable. But sine neither q nor :qis in E?, E? violates the �xed point property of a default logi extension [13,Theorem 2.5℄. So, no suh E? exists. Contradition.From the base ase and the indution step, it follows by �nite indution thatINV is maintained.We will now prove the orretness of the Normal-Unary-All-Extensions-Pos algorithm.Lemma 5 Given a set of normal unary defaults D and a positive literal pk, thealgorithm Normal-Unary-All-Extensions-Pos returns \yes" i� every extensionof D ontains pk. The time omplexity of the algorithm is O(n2), where n isthe length of D.Proof: First, we will show that:The algorithm returns \yes" i� every extension of D ontains pk.()) By ontradition. Assume the algorithm returns \yes" while there existssome extension E? of D that does not ontain pk. Note that L is not pos-onsistent upon exiting. So, there exists some q suh that :q in L with �xed-pos(q,L,D), i.e.,(a) : q=q in D,(b) : :q=:q not in D, and() for eah rule of the form r : :q=:q in D, we have :r in L.Also, by Lemma 4, L has the property INV. Now, sine E? is an extension ofD that does not ontain pk, it follows from INV that E? does not ontain q.Moreover, by (b), (), and INV it follows that E? does not ontain :q either(no rule present or appliable to add :q to E). It follows that : q=q in D isappliable. But sine E? does not ontain q, E? violates the �xed point propertyof a default logi extension [13, Theorem 2.5℄. Therefore, no suh E? exists.Contradition. 26



(() Assume the algorithm returns \no". Therefore, L upon exiting is suhthat(a) pos-onsistent(L,D),(b) for eah letter q in L, we have grounded(q,L,D),() there do not exist q and :r in L suh that neg-inonsistent(q,:r,L,D),and(d) :pk in L.We will onstrut a set of literals from L, and show that the dedutive losureof this set is an extension of D that does not ontain pk. Thereby, we willhave shown the ontrapositive of the (-diretion.Let neg-supported(:p,L,D) i� : :p=:p in D or there exists a q in L anda rule q : :p=:p in D, and let E = Th(fp j p in Lg [ f:p j :p in L andneg-supported(:p,L,D) g). We will now show that E is an extension of Dthat does not ontain pk.First, by (d) and the de�nition of E it follows that E does not ontain pk.From (b) and the de�nition of E it also follows that eah positive literal inE is grounded, i.e., for eah p in E there is a sequene of one or more rulesstarting with a rule of the form : q0=q0 that brings in p. Now, onsiderstarting o� with the empty set and applying all the rules (and only those)that bring in all positive letters of E , to obtain E0. Now, by the de�nitionof E it follows that all negative letters in E an subsequently be broughtin by rules in D that are appliable at E0. After applying those rules,and only those, in a sequene starting at E0, we obtain a set E and itsdedutive losure E . It now remains to be shown that: (1) no subsequentappliation of rules an undermine the justi�ation of any rule applied sofar (i.e., make some previously applied rule non-appliable), and (2) noadditional literals an be brought in by any of the rules in D.Case 1. Follows immediately from the fat that we have only normal defaultsin D.Case 2. By ontradition. Assume more literals an be added to E by furtherrule appliations. Let r or :r be the �rst suh literal that an thus beadded. By de�nition of E and the fat that L is a omplete set of literals,it follows that :r must be in L, and therefore, the �rst new literal thatan be brought in must be a positive one, i.e., r (if :r ould be broughtin then we would have neg-supported(:r,L,D) and :r would already bein E , ontradition). Note that sine r is added by a normal default, Eannot ontain :r. The literal r an only be brought in via one of thefollowing rule appliations:� Appliation of a rule : r=r. Sine there are no rules to bring in :r (fromde�nition of E), we have : :r=:r not in D, and for eah rule s : :r=:rin D, we have :s in L. From : r=r in D it follows that �xed-pos(r,L,D).And thus, we have that L is not pos-onsistent. Contradition with (a).� Appliation of a rule t : r=r. As argued above, we again have that : :r=:rnot in D and for eah rule s : :r=:r in D, we have :s in L. Now, sine27



t : r=r is appliable in E , t is in E and thus, t in L. Therefore, we haveneg-inonsistent(t,:r,L,D) for t and :r in L. Contradition with ().It follows that E is a �xed point of the defaults and grounded. So, E is anextension of D not ontaining pk, and thus, it is not the ase that everyextension of D ontains pk. This ompletes the orretness proof of thealgorithm.Finally, we will determine the time omplexity of the algorithm. Sine thenumber of positive literals in L is dereased by one eah time through thebody of thewhile loop with the possible exeption of the last time through,it follows from the de�nitions of grounded and neg-inonsistent that theloop body is exeuted at most N times (N is the number of distint propo-sitional letters in the theory). Computing pos-onsistent(L,D) an bedone in O(n), where n is the length of the theory. And, a pair of lettersp, :q suh that (not grounded(p; L;D)) or neg-inonsistent(p;:q; L;D))an also be found in time O(n). Therefore, the time omplexity of theNormal-Unary-All-Extensions-Pos algorithm is O(n2).Q.E.D.Proof:Proof of Theorem 11 (Continued). It is not diÆult to see that the set ofdefaults D0 is suh that a set of formulas E is an extension of (D;W ) if and onlyif E is an extension of (D0; ;). (New defaults are introdued that add the literalsfromW into eah extension; note that rules whih add literals inonsistent withW have to be removed|suh rules are not appliable in the original theory.)When the Normal-Unary-All-Extensions algorithm is queried with a posi-tive literal, the algorithm diretly alls the subroutine Exists-Ext-Without-Pos-Lits; a query with a negative literal x is onverted into one for a positiveliteral for the new letter p. The orretness of the algorithm follows from theobservation that the default rules added to D0 to obtain D00 are suh that allextensions of (D0; ;) ontain the negative literal x if and only if all extensionsof (D00; ;) ontain the positive literal p. This an be seen as follows. If (D0; ;)has some extension ontaining � x, then there will be some appliable defaultto add � x to the extension, and thus there is some default in the seond set ofdefaults added to D0 that an add :p to the orresponding extension of (D00; ;).If (D0; ;) has some extension that ontains neither x nor � x, then none of thedefaults that ould add x or � x will be appliable, and thus neither p nor :pan be added to the orresponding extension of (D00; ;). So, if (D0; ;) has an ex-tension that does not ontain x, then (D00; ;) has some extension that ontains:p or one that ontains neither p nor :p. Finally, assume that all extensionsof (D0; ;) ontain x. For eah extension ontaining x, there will be a orre-sponding extension of (D00; ;) ontaining p beause of the �rst set of defaultsadded to D0. Moreover, there are no other extensions of (D00; ;), sine if (D00; ;)had an extension ontaining :p, then there would exist an extension of (D0; ;)ontaining � x: ontradition; and, by a similar argument, (D00; ;) annot havean extension ontaining neither p nor :p. Thus, all extensions of (D0; ;) ontainthe negative literal x if and only if all extensions of (D00; ;) ontain the positiveliteral p. 28
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Figure 1: The hierarhy of default theories.31



Figure 2: Ordered and unordered unary default theories.
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ND-Exists-Extension-Containing(In;Out; D;W )input: A disjuntion-free theory (D,W ) and sets of literals In and Out.output: \Yes" i� there exists an extension ontaining all of Inbut none of Out.Guess E, an arbitrary onsistent superset of In disjoint from OutE0 := Wwhile [ 9Æ 2 D : appliable(Æ; E0; E) ℄ doE0:= E0 [ onl(Æ)if [ E0 6= E ℄then \no"else \yes"end.ND-Find-Extension(D, W )input: A disjuntion-free theory (D,W ).output: An extension of the theory, or \no" if there is none.if [: ND-Exists-Extension-Containing(;; ;; D;W ) ℄then return \no"E := ;for Æ 2 D doif [ND-Exists-Extension-Containing(E [ onl(Æ); ;; D;W ) ℄then E := E [ onl(Æ)return Eend.De�nitions:appliable(Æ; E0; E) i�(a) pre(Æ) � E0,(b) onl(Æ) 6� E0, and() :9p 2 just(Æ): � p 2 EFigure 3: Nondeterministi algorithm to �nd an extension of a disjuntion-freetheory.
33



Ordered-Find-Extension(D;W )input: A disjuntion-free ordered theory (D;W )output: An extension of the theory.Topologially sort D by �, so that D[i℄ is the i th rule in the orderingE := Wi := 1while [i � jDj ℄ doif [ appliable(D[i℄; E;E)℄thenbeginE := E [ onl(D[i℄)i := 1endelse i := i+ 1return Eend.Figure 4: Deterministi polynomial-time algorithm to �nd an extension of adisjuntion-free ordered theory.

Figure 5: An unordered default theory.34



Figure 6: The extended Nixon diamond.
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Normal-Unary-All-Extensions-Pos(pk; D)input: Positive literal pk and a set D of normal unarydefaults ontaining letters p1; : : : ; pn.output: \Yes" i� every extension of (D; ;) ontains pk.L := fp1; p2; : : : ;:pk; : : : ; pngwhile [ pos-onsistent(L;D) ℄ doif [ exists p;:q in L suh that( (NOT grounded(p; L;D))OR neg-inonsistent(p;:q; L;D)) ℄then L := (L� fpg) [ f:pgelse return \no"return \yes"end.De�nitions:�xed-pos(p; L;D) i�(a) : p=p 2 D,(b) : :p=:p 62 D, and() :q 2 L, for eah rule q : :p=:p 2 Dpos-onsistent(L;D) i�for all p, if �xed-pos(p; L;D), then p 2 Lgrounded(p; L;D) i�exists a sequene q0; q1; : : : ; qk = p suh that(a) qj 2 L, 0 � j � k,(b) : q0=q0 2 D, and() qj�1 : qj=qj 2 D, 1 � j � kneg-inonsistent(p;:q; L;D) i�(a) p and :q 2 L(b) p : q=q 2 D,() : :q=:q 62 D, and(d) :r 2 L, for eah rule r : :q=:q 2 DFigure 7: Skeptial reasoning algorithm with a positive literal and a set ofnormal unary defaults as input.
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Normal-Unary-All-Extensions(x;D;W )input: A literal x and a normal unary theory (D;W ).output: \Yes" i� every extension of the theory ontains x.D0 := fÆ 2 D j � onl(Æ) 62Wg [ f: y=y j y 2 Wgif [x is a positive literal℄then Normal-Unary-All-Extensions-Pos(x,D0)elsebeginLet p be a new letterD00 := D0 [ fpre(Æ) : p=p j Æ 2 D0 and onl(Æ) = fxgg[ fpre(Æ) : :p=:p j Æ 2 D0 and onl(Æ) = f� xggNormal-Unary-All-Extensions-Pos(p,D00)endend.Figure 8: Algorithm to determine if a literal holds in all extensions of a normalunary theory.Redution-Find-To-Some(D, W )input: A disjuntion-free theory (D;W ).output: An extension of the theory, or \no" if there is none.Let p be a propositional letter not appearing in (D;W )if [ :Some-Extension(p;D [ f: p=pg;W )℄then return \no"E := ;for eah literal x doif [Some-Extension(p;D [ fVE ^ x : p=pg;W )℄then E := E [ fxgreturn Eend.Redution-Some-To-All(x;D;W )input: A disjuntion-free theory (D,W ).output: \Yes" if (D;W ) has an extension ontaining x, otherwise \no".if [All-Extensions(� x; (D [ f: :x=:xg;W )℄then \no"else \yes"end. Figure 9: Turing redutions of reasoning tasks.37


