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other formalisms for non-monotonic reasoning. The new framework was in-spired by Dung's general argumentation framework [6], but is formulateddi�erently as a generalisation of the abductive frameworks of Poole [16] andEshghi and Kowalski [7].The new framework generalises the approach of [16] and shows how anymonotonic logic can be extended to a non-monotonic logic by appropriatelyidentifying a set of candidate assumptions and specifying the conditions un-der which a theory can be extended by an acceptable set of assumptions.It replaces the notion that a set of assumptions is acceptable if it is consis-tent with the theory by the more re�ned notion that it is acceptable if it isconsistent with the theory and can \counterattack" any \attacking" set ofassumptions. A set of assumptions is said to \attack" another if togetherwith the theory it implies a consequence which is inconsistent with someassumption contained in the other set. Like Dung's argumentation-theoreticframework, the assumption-based framework investigated in this paper gen-eralises the notion of attacking and counterattacking sets of assumptionsintroduced for logic programming by Kakas, Kowalski and Toni [13]. Italso de�nes a new notion of counterattack which improves upon previousde�nitions.The framework makes it possible to generalise various improvements �rstintroduced for the semantics of logic programming and to apply these im-provements to other formalisms for non-monotonic reasoning. In this pa-per we will propose such improvements speci�cally for a number of existingapproaches to abductive logic programming, extended logic programming,default logic, autoepistemic logic and non-monotonic modal logic.The paper is organised into four main parts: The �rst introduces the gen-eral assumption-based framework and the improved notion of counterattack,the second applies the framework to logic programming, the third to abduc-tive logic programming and to logic programming extended with so-called\classical" negation, and the fourth part to default logic, autoepistemic logicand non-monotonic modal logic.2 Basic de�nitionsIn this paper, a deductive system is a pair (L; R) such that� L is a formal language with a special formula ?2 L, denoting falsity,� R is a set of inference rules of the form�1; : : : ; �n�where �; �1; : : : ; �n 2 L and n � 0.Notice that logical axioms can be represented as inference rules with n = 0.Any set of formulae T � L is called a theory.2



A deduction from a theory T is a sequence �1; : : : ; �m, wherem > 0, suchthat, for all i = 1; : : : ; m,� �i 2 T , or� there exists �1; : : : ; �n�i in R such that �1; : : : ; �n 2 f�1; : : : ; �i�1g.T ` � means that there is a deduction from T whose last element is �. Atheory T is said to be inconsistent if T `?, and consistent otherwise.Th(T ) is the set f� 2 L jT ` �g.De�nition 2.1 An assumption-based frameworkis a pair h(L; R); Abi such that� (L; R) is a deductive system,� Ab � L.The elements of Ab are called assumptions and the set Ab represents theset of all candidate assumptions that can be used to extend a given theory.Notice that deductive systems are monotonic. Non-monotonicity arises be-cause a set of assumptions which acceptably extends a given theory may beunacceptable for a larger theory.The notion of assumption-based framework can be viewed as a directgeneralisation of Poole's abductive framework. Whereas he considers onlythe deductive system of �rst-order logic, we admit deductive systems forany monotonic logic. Moreover, whereas Poole allows a set of assumptions toextend a theory if it is consistent with the theory, we allow such an extensionif it is consistent with the theory and can successfully counterattack anyattack.In this section we will assume that an arbitrary but �xed assumption-based framework h(L; R); Abi is given.De�nition 2.2 Given a theory T and sets of assumptions � and A,A attacks � (with respect to T ) if and only ifthere exist � 6=? and � 2 � such thatT[A ` �, andf�; �g `?.In other words,A attacks � with respect to a theory T if there is a deductionfrom T [A which contradicts one of the assumptions in �. This deductioncan be regarded as an argument against �, based upon the assumptions inA. In the sequel, we will normally omit the quali�cation \with respect toT" when the identity of T is clear from the context.A consistent set of assumptions � is admissible (or acceptable) if it cancounterattack any set of assumptions A that attacks it. Before we de�neadmissibility more formally, we need to de�ne the notion of counterattack.Several alternative notions of counterattack will be investigated in this pa-per. The following de�nition presents the most important of these.3



De�nition 2.3 Given a theory T and sets of assumptions � and A,1) � counterattacks1 A if and only if� attacks A;2) � counterattacks2 A if and only if� attacks A orT [A is inconsistent.The de�nitions below are all relative to the notion of counterattack, andare adapted from those given by Dung [6]. We will argue in this paper thatthe �rst two de�nitions, of admissible and preferred sets of assumptions, canprovide the basis for an improved semantics for non-monotonic reasoning ingeneral.De�nition 2.4 A set of assumptions � is admissible(with respect to a theory T ) if and only if� T [� is consistent, and� for all sets of assumptions A,if A attacks �, then � counterattacks A.Note that the empty set of assumptions is admissible with respect to anyconsistent theory.De�nition 2.5 A set of assumptions � is preferred(with respect to a theory T ) if and only if� is maximally (with respect to set inclusion) admissible.It is easy to see that, for every consistent theory, there always exists a set ofassumptions which is preferred.The following two de�nitions, of complete and grounded sets of assump-tions, provide the basis for a sceptical semantics. Informally, a consistentset of assumptions is complete if it consists of all the assumptions that itdefends, where it defends an assumption if it counterattacks any attackagainst that assumption. A set of assumptions is grounded if it is minimallycomplete. In logic programming the notion of groundedness corresponds tothe well-founded semantics [20, 4].De�nition 2.6 A set of assumptions � is complete(with respect to a theory T ) if and only if� T [� is consistent, and� � = f� j� 2 Ab and8 A� Ab, if A attacks f�g, then � counterattacks A g.4



De�nition 2.7 A set of assumption � is grounded(with respect to a theory T ) if and only if� is minimally (with respect to set inclusion) complete.The following de�nition, of stable set of assumptions, provides the basis fora credulous semantics. As we will see later in this paper, this semanticscorresponds to many of the semantics which have been proposed for dif-ferent formalisms for non-monotonic reasoning, including the stable modelsemantics of logic programming [8], and extensions in default logic [18], au-toepistemic logic [15] and non-monotonic modal logic [14]. Intuitively, aconsistent set of assumptions is stable if it attacks every assumption it doesnot contain.De�nition 2.8 A set of assumptions � is stable(with respect to a theory T ) if and only if� T [� is consistent, and� 8� 2 Ab, if � 62 � then � attacks f� g.The following three properties are direct consequences of the de�nitions anddo not depend upon the counterattacks relation. Given a theory T and aset of assumptions �:� If � is preferred then � is admissible.� If � is complete then � is admissible.� If � is grounded then � is complete.The following property holds for all the notions of counterattack de�ned inthis paper:� If � is stable then � is preferred.To show how the notions de�ned in this section can be used to provide a uni-form formulation of many existing approaches to non-monotonic reasoning,we will need the notion of extension given in the following de�nition.De�nition 2.9 E is a preferred (stable, complete or grounded) extensionof a consistent theory T if and only if there exists (with respect to T )a preferred (stable, complete or grounded, respectively)set of assumptions � such that E = Th(T [�).E is a preferred (stable, complete or grounded) extensionof an inconsistent theory T if and only if E = Th(T ).We will argue that admissible and preferred sets of assumptions withcounterattacks2 provide a better semantics for non-monotonic reasoningthan either stable sets or admissible sets with counterattacks1. Conse-quently, we introduce the notions of weakly admissible and weakly preferredsets and weakly preferred extensions to make it easier to refer to these notionslater in the paper: 5



De�nition 2.10 A set of assumptions � is weakly admissible(with respect to a theory T ) if and only if� is admissible with counterattacks2.De�nition 2.11 A set of assumptions � is weakly preferred(with respect to a theory T ) if and only if� is preferred with counterattacks2.De�nition 2.12 E is a weakly preferred extension of a theory Tif and only if E is a preferred extension of T with counterattacks2.As mentioned in the introduction of this paper, our notion of assumption-based framework was inspired by Dung's argumentation-based framework[6]. The role of assumptions in our approach is played by (abstract) argu-ments in Dung's approach. On the one hand, assumptions can be viewedmathematically as a special case of arguments; on the other hand, argumentscan be understood in our framework as deductions from a theory extendedwith assumptions.Dung's notion of attack is more abstract than ours. We have attemptedto identify notions of attack and counterattack which are as speci�c as pos-sible, but also general enough to capture as many existing approaches tonon-monotonic reasoning as possible. Later, when we investigate autoepis-temic and non-monotonic modal logics, we will extend our framework toinclude a notion of preference to capture better the semantics of these log-ics.3 Logic programmingWe will assume that the semantics of a logic program containing variables isgiven by the set of all its variable-free instances over some Herbrand universe.HB will stand for the Herbrand base of variable-free atoms formulated overthis Herbrand universe, HBnot will stand for the set fnot p j p 2 HBg andLit will stand for HB [ HBnot.The assumption-based framework for logic programming is h(L; R); Abiwhere� L = f?g [ Lit [fp  l1; : : : ; ln j p 2 HB; l1; : : : ; ln 2 Lit; and n � 0g;� R is the set of all inference rules of the formp  l1; : : : ; ln; l1; : : : ; lnpwhere p 2 HB, l1; : : : ; ln 2 Lit, and n � 0, and of the formp; not p?where p 2HB, 6



� Ab =HBnot.A logic program P is a theory, P � L, in such an assumption-based frame-work.The interpretation of negative literals as abducibles was �rst presentedin [7], and was the basis for the preferred extension semantics [4], the stabletheory and acceptability semantics [11], and the argumentation-theoreticinterpretation for the semantics of logic programming presented in [13].The instance of the de�nition 2.2 of attack for the assumption-basedframework h(L; R); Abi for logic programming is the following:� Given a logic program P and sets of assumptions � and A,A attacks � if and only if P [ A ` p, for some not p 2 �.Note that this de�nition coincides with that presented in [13].By instantiating the di�erent de�nitions presented in section 2 withrespect to the assumption-based framework for logic programming withcounterattacks1, we can obtain di�erent existing semantics for negation asfailure.Theorem 3.1 Given a logic program P , and counterattacks1 as the de�ni-tion of counterattacks,(a) M is a stable model [8] of Pif and only ifthere is a stable extension E of P , such that M = E\HB;(b) given a set of assumptions �,P [� is a complete scenario [4](and Th(P [�)\Lit is a well-founded model [20]) of Pif and only ifP [� is a stationary expansion [17] of Pif and only if� is complete (grounded respectively) with respect to P ;(c) given a set of assumptions �,P [� is a preferred extension in the sense of [4](and P [� is an admissible scenario [4]) of Pif and only ifTh(P [�)\ Lit is a partial stable model [19] of Pif and only if� is preferred (� is admissible respectively) with respect to P .This theorem is an immediate consequence of results presented by Dung in[4, 6], together with results in [3] and [12].The following example shows that preferred extensions are better thanstable models. 7



Example 3.1 The program fp not pghas no stable extension, but it has a preferred extension corresponding to thepreferred set of assumptions ;. Preferred extension semantics is consequentlymore modular than stable model semantics. For example, the programfq; p not pghas no stable extension, but it has a preferred extension containing q.3.1 Stable theories and acceptability semanticsTo capture stable theory and acceptability semantics [11] we need two newnotions of counterattack, di�erent from those introduced in de�nition 2.3.For simplicity, we present these notions in the assumption-based frameworkfor logic programming. However, they can also be de�ned more generallyand can be applied to any other assumption-based framework.De�nition 3.1 Given a logic program P and sets of assumptions � and A,� counterattacks3 A if and only if�[A attacks A�� 3.The following theorem is an immediate consequence of de�nition 3.1 and thede�nitions given in [11].Theorem 3.2 Given a program P ,a set of assumptions � is weakly stable [11](and P [� is a stable theory [11]) with respect to Pif and only if� is admissible (preferred respectively)with respect to P with counterattacks3.The following example shows that counterattacks3 is \better" thancounterattacks1.Example 3.2 The programfq  not p; p not pghas only one admissible set of assumptions, ;, with counterattacks1. How-ever, it has the admissible set fnot qg with counterattacks3, because theonly attack against it, fnot pg, is inconsistent.3In the published version of this paper counterattacks3 was de�ned by�[A attacks A.As noted by Noboru Iwayama, with this de�nition theorem 3.2 does not hold.8



The acceptability semantics was introduced in [11] to overcome certain dis-advantages of stable theories. Before presenting the de�nition, we note thatthe notion of admissibility could have been de�ned more generally, relativeto an already accepted set of assumptions.De�nition 3.2 Given a logic program P , sets of assumptions � and �0,and a speci�c de�nition of the counterattacks relation,� is acceptable to �0 if and only iffor all sets of assumptions A,if A attacks ���0, then � [�0 counterattacks A.De�nition 3.3 Given a logic program P and sets of assumptions � and A,� counterattacks4 A if and only ifA is not acceptable to � with counterattacks4.Notice that de�nition 3.3 is recursive and that de�nition 3.2 becomes recur-sive with counterattacks4.The following theorem is an immediate consequence of de�nitions 3.2and 3.3 and the de�nition of acceptability given in [11].Theorem 3.3 Given a program P and sets of assumptions � and �0,� is acceptable to �0 according to [11] with respect to P if and only if� is acceptable to �0 with respect to P with counterattacks4.Note that, given a logic program P and a set of assumptions �, if � isadmissible in the sense of [4] then � is weakly stable [11], and if � is weaklystable then � is acceptable to ; in the sense of [11] (see [13]).3.2 Improved semanticsIn this section we will illustrate the new semantics for negation as failure inlogic programming, based on the notions of weakly admissible and weaklypreferred sets of assumptions introduced in de�nitions 2.10 and 2.11. Thisnew semantics can be understood as an improvement of the stable theorysemantics, as demonstrated by the following example.Example 3.3 The logic programP = fp not q; q  not p; not qghas two preferred sets of assumptions with counterattacks3, fnot qg andfnot pg. The second set � = fnot pg can counterattack3 the attackA=fnot qg, because q can be derived from the combined attack�[A=fnot p; not qg. But it can be argued that this combined attack shouldnot be accepted because it is inconsistent with P . Its assumptions are heldneither by the defendant � nor by the prosecutor A. The notion of weaklypreferred set of assumptions (where counterattacks2 replacescounterattacks3) gives the intuitively correct result, only fnot qg, in thisexample. 9



Note that, given a logic program P , if a set of assumptions � is admissiblein the sense of [4] then � is weakly admissible and weakly stable [11] 4.In the same way we improve counterattacks3 by counterattacks2, we canimprove counterattacks4 by a new notion of acceptability. This is, however,beyond the scope of this paper.4 Extensions of logic programming4.1 Abductive logic programmingAn abductive logic program is a triple hP; Ab0; Ii, where P is a logic pro-gram, Ab0 is a set of variable-free atoms representing a set of abducibles,and I is a set of closed �rst-order formulas, representing integrity constraints.Without lost of generality (see [13]) we assume that integrity constraints arerepresented as clauses of the form? l1; : : : ; ln:We also assume that Ab0 is disjoint from the conclusions of clauses in P .As in section 3, we will assume that logic programs and integrity con-straints containing variables represent all their variable-free instances oversome Herbrand universe. Consequently, we will assume that programs andconstraints are variable-free.The assumption-based framework corresponding to a set of abduciblesAb0 is h(L; R); Abi where� L is the language of section 3, extended by all clauses of the form? l1; : : : ; lnwhere l1; : : : ; ln 2 Lit and n � 0,� R is the set of inference rules of section 3,� Ab = Ab0 [ HBnot.The notion of attacks presented in de�nition 2.2 can be written as:� Given an abductive logic program hP; Ab0; Iiand sets of assumptions � and Ain the assumption-based framework corresponding to Ab0,A attacks � (with respect to P [ I) if and only ifP[A ` p, for some not p 2 �, ornot a 2A, for some a 2 �\Ab0.4In the published version of this paper we also claimed that if � is weakly admissiblethen � is weakly stable [11], which is a mistake.10



Note that in this approach the integrity constraints I are used only to checkconsistency, and not to create attacks.The generalised stable model semantics of [10] is a special case of thegeneral de�nition of stability.Theorem 4.1 Given an abductive logic program hP; Ab0; Ii,M is a generalised stable model [10] of hP; Ab0; Ii if and only ifthere is a stable extension E of P [ I in the assumption-based frameworkcorresponding to Ab0 and M = E\HB.4.2 Improved semanticsThe generalised stable model semantics inherits the disadvantages of thestable model semantics illustrated in example 3.1. As in the case of normallogic programs, many of these disadvantages can be overcome by replacingstable models by preferred extensions. However, this one change alone (leav-ing counterattacks1 unchanged) does not overcome all problems, as shownby the following example.Example 4.1 Let the abductive program hP; Ab0; Ii be given byP = fp  agAb0 = fagI = f? a; ? not ag:Intuitively, the set of assumptions � = fnot pg should be admissible withrespect to P [ I , because p cannot hold. But � is not admissible withcounterattacks1 because A=fag attacks �, but � does not counterattack1A. However, � does counterattack2 A, because A is inconsistent.The notions of weakly admissible and weakly preferred sets of assumptionsgive the intuitively correct result in this and similar examples.4.3 Extended logic programmingExtended logic programming is the extension of logic programming to incor-porate explicit negation in addition to negation as failure. As in the case ofnormal logic programs and abductive logic programs, we will assume thatextended logic programs are variable-free. HB will stand for the Herbrandbase, HBe will stand for HB [ f: p j p 2 HB g and Lite will stand forHBe [ fnot l j l 2 HBe g.The assumption-based framework for extended logic programming ish(L; R); Abi where� L = f?g [ Lite [fl  l1; : : : ; ln j l 2 HBe; l1; : : : ; ln 2 Lite; and n � 0g;11



� R is the set of all inference rules of the forml  l1; : : : ; ln; l1; : : : ; lnlwhere l 2 HBe, l1; : : : ; ln 2 Lite, and n � 0, and of the forml; not l?where l 2HBe,� Ab = fnot l j l 2 HBeg.The negation denoted by : is called \classical" negation in [9]. However, inthis paper we use the term \explicit" negation, because clauses of extendedlogic programs are treated more like inference rules than like classical impli-cations.The instance of the de�nition 2.2 of attack for extended logic program-ming is identical to the de�nition for logic programming, except that HB isreplaced by HBe.4.3.1 Answer set semanticsThe answer set semantics [9] is a special case of the general de�nition ofstability where extended logic programs are extended by the further clausesfl  p; :p j l 2 HBe, and p 2 HBg. As a result, this semantics is classicalonly in the sense that from an inconsistency any conclusion can be derived.Theorem 4.2 Given an extended logic program P ,M is an answer set [9] of P if and only ifthere is a stable extension E of the theoryP [ fl  p; :p j l 2 HBe, and p 2 HBg in the correspondingassumption-based framework and M = E\HBe.4.3.2 The Dung and Ruamviboonsuk semanticsDung and Ruamviboonsuk's semantics [5] is a special case of admissibilitysemantics with counterattacks1 where extended logic programs are furtherextended by the integrity constraints f? p; :p j p 2 HBg.Theorem 4.3 Given an extended logic program P and a set of assumptions�, P [� is an admissible scenario [5] of P if and only if� is admissible with respect to P [ f? p; :p j p 2 HBgin the corresponding assumption-based framework with counterattacks1.12



4.3.3 Improved semanticsAs in other cases, the admissibility (and preferred extension) semantics withcounterattacks1 sometimes gives intuitively incorrect results, as illustratedby the following example.Example 4.2 Consider the extended logic programf:p; p not qgfurther extended by the integrity constraintsf? p;:p j p 2 HBg:The set of assumptions fnot pg is not admissible with counterattacks1 be-cause fnot qg attacks fnot pg but cannot be counterattacked1 by fnot pg.Intuitively, however, the theory should have a preferred extension in whichnot p holds, because the attack fnot qg is inconsistent with the theory. Thisextension can be obtained by using weakly preferred extensions (withcounterattacks2 instead of counterattacks1).The de�nitions 2.10 and 2.11 in this case become:� Given an extended logic program P ,a set of assumptions � is weakly admissible (weakly preferred)if and only if � is admissible (preferred respectively)with respect to P [ f? p; :p j p 2 HBg in the correspondingassumption-based framework with counterattacks2.5 Default logicLet (L0;R0) be a deductive system for �rst-order logic, where L0 containsa special formula, ?, denoting falsity. Following [18], a default theory is apair (T; D) where� T � L0,� D is a set of default rules of the form� : M�1; : : : ;M�nwhere �; �1; : : : ; �n;  2 L0, and n � 0.We will assume that all defaults rules in D are closed, i.e. they containno free variables. (As in logic programming, default rules containing freevariables represent all their variable-free instances.)The assumption-based framework corresponding to D in such a defaulttheory (T; D) is h(L; R); Abi where 13



� L = L0 [ fM � j� 2 L0 and � is closedg,� R is R0 extended with the set of all inference rules of the form�; M�1; : : : ;M�nwhere � :M�1; : : : ;M�n 2 D;and of the form :�; M �?where � 2 L0,� Ab = fM � j� 2 L0 and � is closedg.An assumption of the form M� intuitively means that � is consistent, i.e.that :� can not be derived.The notion of attack presented in de�nition 2.2 becomes:� Given a default theory (T; D) and sets of assumptions � and A,in the assumption-based framework corresponding to D,A attacks � if and only if T [ A ` :�, for some M� 2 �.The following theorem is a consequence of a theorem in [1].Theorem 5.1 E is an extension [18] of a default theory (T; D)if and only if there is a stable extension E 0 of T in theassumption-based framework corresponding to D and E = E 0 \ L0.As we have already seen earlier in this paper, the notion of stability is some-times too strong. This is illustrated for default logic by the following exam-ple, which is a variant of example 3.1.Example 5.1 The default theory (T; D) where T = ; andD = � :M:pp ; :Mqq �has no extension in Reiter's default logic. However, intuitively it should havean extension containing q.The problem with this example can be solved by replacing stability by admis-sibility, without changing counterattacks1. However, counterattacks1 givesother problems in other examples, because of the fact that in �rst-order logican inconsistent set of assumptions implies every sentence. Therefore, in de-fault logic an inconsistent set of assumptions attacks every non-empty setof assumptions. This is illustrated by the following example.14



Example 5.2 The default theory (T; D) where T = f:pg andD = � : Mrp ; :Mqq �should intuitively have an extension containing q. However, the only pre-ferred set of assumptions is ; in the corresponding assumption-based frame-work with counterattacks1. This is because fMrg is inconsistent with T andtherefore implies :q and attacks fMqg. But fMqg does not counterattack1fMrg. Replacing counterattacks1 by counterattacks2 (and therefore pre-ferred extensions by weakly preferred extensions) we obtain the intuitivelycorrect result.In the case of default logic, the de�nition 2.12 becomes:� Given a default theory (T; D),E is a weakly preferred extension of (T; D) if and only ifE is a preferred extension of T in the assumption-based frameworkcorresponding to D with counterattacks2.6 Assumption-based framework with preferencesIn this section we will present a generalisation of the assumption-basedframework which includes the notion of preferences between formulae inthe language. This will allow us to capture and to propose improvementsfor autoepistemic logic [15] and non-monotonic modal logic [14].De�nition 6.1 An assumption-based framework (with preferences) is a tripleh(L; R); Ab; �i such that� (L; R) is a deductive system (with ?2 L),� Ab � L,� � � L � L.Intuitively, p � q means that if p and q can not hold together then p shouldbe preferred to q.De�nition 6.2 Given a theory T and sets of assumptions � and A,A attacks � (with respect to T ) if and only ifthere exist � 6=? and � 2 � such thatT[A ` �,f�; �g `? and� � �. 15



Given this new de�nition of attack, the de�nitions of counterattack given insection 3 remain unchanged, as do the de�nitions of admissible, preferred,complete, grounded and stable sets of assumptions and extensions.Note that if � = L � L, the condition � � � plays no role in the de�ni-tion of attack, and therefore can be omitted. Consequently, the frameworkde�ned in section 3 is a special case of the framework presented here.This framework is related to the extension of Poole's abductive frame-work introduced by Brewka [2]. One major di�erence between our ap-proaches is that Brewka de�nes preference between abducibles whereas wede�ne preferences more generally between formulae of the language. Fur-ther work is necessary to determine whether our framework can captureBrewka's approach or whether some further generalisation of our frameworkis necessary for this purpose.6.1 Autoepistemic logicAutoepistemic logic [15] is based upon a deductive system (L; R), where Lis a propositional modal language containing a modality L, and R is somepresentation of classical propositional logic for the language L. The intendedmeaning of L� is that � is believed. As before, we assume that ?2 L.Following [15], E � L is an autoepistemic extension of a theory T � L ifand only if E = Th(T [ fL� j � 2 Eg [ f:L� j � 2 L �Eg).Autoepistemic logic can be formulated in terms of the assumption-basedframework h(L; R); Ab; �i where� Ab = f:L� j � 2 Lg [ fL� j � 2 Lg,� � is de�ned by: � � :L� and :L� � L�, for all � 2 L.In this framework both positive and negative beliefs can be assumptions.Intuitively, the preference relation expresses that we always prefer to knowwhether or not a proposition � holds, but if there is no such knowledge about�, and we have to make a choice between believing and not believing �, thenwe prefer to be sceptical, choosing :L� over L�.In the assumption-based framework corresponding to autoepistemic logic,the notion of attack becomes:� Given a theory T and sets of assumptions � and A,A attacks � if and only ifT [ A ` �, for some :L� 2 �, orT [ A ` :L�, for some L� 2 �.Notice that f:L�g attacks fL�g but not vice versa.Theorem 6.1 E is an autoepistemic extension of a theory T if and only ifE is a stable extension of T in the corresponding assumption-based frame-work. 16



As in the other cases investigated in this paper, stable extensions have anumber of disadvantages compared with weakly preferred extensions.Example 6.1 The autoepistemic theory f:L� � �g, for example, similarto the logic program of example 3.1 and the default theory of example 5.1,has no stable extension but has an unique weakly preferred extension basedupon the empty set of assumptions.Similarly, the theory fL�g has no stable extension but has a uniqueweakly preferred extension.However, using weakly preferred extensions instead of stable extensionsdoes not solve all the problems, as illustrated by the following example.Example 6.2 The theory fL� � �g has two stable and weakly preferredextensions, one containing the assumption :L�, the other containing L�.The second extension is anomalous.One way to avoid the anomalous extension is to restrict assumptions tonegative beliefs, :L�, and to express positive introspection by means of anew inference rule �L�:For this purpose, we need to replace the deductive system (L; R) for au-toepistemic logic by one where R is based upon modal rather than classicallogic, as in non-monotonic modal logic.6.2 Non-monotonic modal logicNon-monotonic modal logic [14] can be formulated in terms of a deductivesystem (L; R) where L is a �rst-order modal language containing a modaloperator, L, and a special formula, ?, and where R is some presentation of amodal system for the language L, containing all instances of the necessitationrule of inference: �L� for all � 2 L:Following [14], E � L is called a �xed point of a theory T � L if and only ifE = Th(T [ f:L� j � 2 L � E and � is closed g).The assumption-based framework for non-monotonic modal logic ish(L; R); Ab; �i where� Ab = f:L� j � 2 L and � is closed g,� � is de�ned by: � � :L�, for any � 2 L.In the assumption-based framework corresponding to non-monotonic modallogic, the notion of attack becomes: 17



� Given a theory T and sets of assumptions � and A,A attacks � if and only ifT [ A ` �, for some :L� 2 �.Theorem 6.2 E is a �xed point of a theory T if and only ifE is a stable extension of T in the corresponding assumption-based frame-work.As elsewhere in this paper, the semantics can be improved by replacingstable extensions with weakly preferred extensions. For example, if the set Rconsists only of classical �rst-order logic and all instances of the necessitationrule, then weakly preferred extensions for the resulting framework, not onlygive the intuitively correct results for the theories f:L� � �g and fL�gof example 6.1, but also give the correct result, avoiding the anomalousextension, for the theory fL� � �g of example 6.2.7 ConclusionsThe generalised framework for assumption-based reasoning demonstratesthat di�erent formalisms for non-monotonic reasoning are based upon sim-ilar principles. As a consequence, improvements made to the semanticsof one formalism can be generalised and applied to other formalisms. Wehave illustrated this by arguing that admissible and preferred extensionsare better than stable extensions and that counterattacks2 is better thancounterattacks1. We �rst encountered this argument in the context of logicprogramming, but have investigated its generalisation and application toother formalisms for non-monotonic reasoning.The generalised framework investigated in this paper is a variant of theargumentation framework presented by Dung. The two frameworks di�erpartly in their treatment of inconsistency and partly in the di�erent levelsof abstraction with which they treat the notions of assumptions, argumentsand attacks. In preparing this paper we have investigated many variationsof the de�nitions, most of which are mathematically equivalent. It is quitelikely that further improvements can still be made. One particular matterwhich merits further consideration is the treatment of integrity constraintsand whether they should participate in the generation of attacks, or shouldbe con�ned to their present role in contributing only to inconsistencies.In this paper we have limited our attention to matters of semantics.Proof procedures have been investigated in detail for the logic programmingcase and its extensions in other papers, and some of these are reported in thesurvey [13]. Proof procedures for the new semantics presented in this paperrequire further investigation. In particular, proof procedures generalisingthose developed for logic programming may also prove to be useful for otherformalisms for non-monotonic reasoning.18
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