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Abstract

The notion of assumption-based framework generalises and refines the use
of abduction to give a formalisation of non-monotonic reasoning. In this
framework, a sentence is a non-monotonic consequence of a theory if it can
be derived monotonically from a theory extended by means of acceptable as-
sumptions. The notion of acceptability for such assumptions is formulated
in terms of their ability successfully to “counterattack” any “attacking” set
of assumptions. One set of assumptions is said to “attack” another if the
first set monotonically implies a consequence which is inconsistent with an
assumption in the second set. This argumentation-theoretic criterion of ac-
ceptability is based on notions first introduced for logic programming and
used to give a unified account of such diverse semantics for logic program-
ming as stable models, partial stable models, preferred extensions, stable
theories, well-founded semantics, and stationary semantics. The new frame-
work makes it possible to generalise various improvements first introduced
for the semantics of logic programming and to apply these improvements to
other formalisms for non-monotonic reasoning.

The paper investigates applications of the framework to logic program-
ming, abductive logic programming, logic programs extended with “classi-
cal” negation, default logic, autoepistemic logic, and non-monotonic modal
logic.

1 Introduction

In this paper we define a generalised framework for assumption-based rea-
soning and show how it can be applied both to logic programming and to

"Appeared in Proc. 2nd Tnternational Workshop on TLogic Programming and Non-
monotonic Reasoning, (A. Nerode and T.. Pereira eds.) MTT Press (1993).
2This work was done while the anthor was a visitor at Tmperial College



other formalisms for non-monotonic reasoning. The new framework was in-
spired by Dung’s general argumentation framework [6], but is formulated
differently as a generalisation of the abductive frameworks of Poole [16] and
Eshghi and Kowalski [7].

The new framework generalises the approach of [16] and shows how any
monotonic logic can be extended to a non-monotonic logic by appropriately
identifying a set of candidate assumptions and specifying the conditions un-
der which a theory can be extended by an acceptable set of assumptions.
It replaces the notion that a set of assumptions is acceptable if it is consis-
tent with the theory by the more refined notion that it is acceptable if it is
consistent with the theory and can “counterattack” any “attacking” set of
assumptions. A set of assumptions is said to “attack” another if together
with the theory it implies a consequence which is inconsistent with some
assumption contained in the other set. Like Dung’s argumentation-theoretic
framework, the assumption-based framework investigated in this paper gen-
eralises the notion of attacking and counterattacking sets of assumptions
introduced for logic programming by Kakas, Kowalski and Toni [13]. Tt
also defines a new notion of counterattack which improves upon previous
definitions.

The framework makes it possible to generalise various improvements first
introduced for the semantics of logic programming and to apply these im-
provements to other formalisms for non-monotonic reasoning. In this pa-
per we will propose such improvements specifically for a number of existing
approaches to abductive logic programming, extended logic programming,
default logic, autoepistemic logic and non-monotonic modal logic.

The paper is organised into four main parts: The first introduces the gen-
eral assumption-based framework and the improved notion of counterattack,
the second applies the framework to logic programming, the third to abduc-
tive logic programming and to logic programming extended with so-called
“classical” negation, and the fourth part to default logic, autoepistemic logic
and non-monotonic modal logic.

2 Basic definitions
In this paper, a deductive system is a pair (L, R) such that

e [ is a formal language with a special formula L€ £, denoting falsity,

e R is a set of inference rules of the form

where o, a1, ...,0, € L and n > 0.

Notice that logical axioms can be represented as inference rules with n = 0.
Any set of formulae T C L is called a theory.



A deduction from a theory T is a sequence (31,...,3,,, where m > 0, such
that, for all 2 = 1,...,m,

e 6,¢T,or

...,
e there exists % in R such that aq,...,a, € {B1,....0;1}

7
T F o« means that there is a deduction from T whose last element is a. A
theory T is said to be inconsistentif T F 1L, and consistent otherwise.

Th(T) is the set {a € L|T F a}.

Definition 2.1 An assumption-based framework

is a pair (£, R), Ab) such that
e (L, R)is a deductive system,

o AbC L.

The elements of Ab are called assumptions and the set Ab represents the
set of all candidate assumptions that can be used to extend a given theory.
Notice that deductive systems are monotonic. Non-monotonicity arises be-
cause a set of assumptions which acceptably extends a given theory may be
unacceptable for a larger theory.

The notion of assumption-based framework can be viewed as a direct
generalisation of Poole’s abductive framework. Whereas he considers only
the deductive system of first-order logic, we admit deductive systems for
any monotonic logic. Moreover, whereas Poole allows a set of assumptions to
extend a theory if it is consistent with the theory, we allow such an extension
if it is consistent with the theory and can successfully counterattack any
attack.

In this section we will assume that an arbitrary but fixed assumption-

based framework (L, R), Ab) is given.

Definition 2.2 Given a theory T and sets of assumptions A and A,
A attacks A (with respect to T') if and only if
there exist a #£ 1 and § € A such that

TUAF «, and

{a, B} F L.

In other words, A attacks A with respect to a theory T if there is a deduction
from T UA which contradicts one of the assumptions in A. This deduction
can be regarded as an argument against A, based upon the assumptions in
A. In the sequel, we will normally omit the qualification “with respect to
T” when the identity of T is clear from the context.

A consistent set of assumptions A is admissible (or acceptable) if it can
counterattack any set of assumptions A that attacks it. Before we define
admissibility more formally, we need to define the notion of counterattack.
Several alternative notions of counterattack will be investigated in this pa-
per. The following definition presents the most important of these.



Definition 2.3 Given a theory T and sets of assumptions A and A,

1) A counterattacks, Aif and only if
A attacks A;

2) A counterattacksy A if and only if
A attacks A or
T UA is inconsistent.

The definitions below are all relative to the notion of counterattack, and
are adapted from those given by Dung [6]. We will argue in this paper that
the first two definitions, of admissible and preferred sets of assumptions, can
provide the basis for an improved semantics for non-monotonic reasoning in
general.

Definition 2.4 A set of assumptions A is admissible
(with respect to a theory T') if and only if

e T U A is consistent, and

o for all sets of assumptions A,
if A attacks A, then A counterattacks A.

Note that the empty set of assumptions is admissible with respect to any
consistent theory.

Definition 2.5 A set of assumptions A is preferred
(with respect to a theory T') if and only if
A is maximally (with respect to set inclusion) admissible.

It is easy to see that, for every consistent theory, there always exists a set of
assumptions which is preferred.

The following two definitions, of complete and grounded sets of assump-
tions, provide the basis for a sceptical semantics. Informally, a consistent
set of assumptions is complete if it consists of all the assumptions that it
defends, where it defends an assumption if it counterattacks any attack
against that assumption. A set of assumptions is grounded if it is minimally
complete. In logic programming the notion of groundedness corresponds to
the well-founded semantics [20, 4].

Definition 2.6 A set of assumptions A is complete
(with respect to a theory T') if and only if

e T U A is consistent, and

e A={a|a¢€ Ab and
YV AC Ab, if A attacks {a}, then A counterattacks A }.



Definition 2.7 A set of assumption A is grounded
(with respect to a theory T') if and only if
A is minimally (with respect to set inclusion) complete.

The following definition, of stable set of assumptions, provides the basis for
a credulous semantics. As we will see later in this paper, this semantics
corresponds to many of the semantics which have been proposed for dif-
ferent formalisms for non-monotonic reasoning, including the stable model
semantics of logic programming [8], and extensions in default logic [18], au-
toepistemic logic [15] and non-monotonic modal logic [14]. Intuitively, a
consistent set of assumptions is stable if it attacks every assumption it does
not contain.

Definition 2.8 A set of assumptions A is stable
(with respect to a theory T') if and only if

e T U A is consistent, and
o Vo€ Ab,if a & A then A attacks {«a}.

The following three properties are direct consequences of the definitions and
do not depend upon the counterattacks relation. Given a theory T and a
set of assumptions A:

o If A is preferred then A is admissible.
o If Ais complete then A is admissible.

o If A is grounded then A is complete.

The following property holds for all the notions of counterattack defined in
this paper:

o If Ais stable then A is preferred.

To show how the notions defined in this section can be used to provide a uni-
form formulation of many existing approaches to non-monotonic reasoning,
we will need the notion of extension given in the following definition.

Definition 2.9 F is a preferred (stable, complete or grounded) extension
of a consistent theory T if and only if there exists (with respect to T")

a preferred (stable, complete or grounded, respectively)

set of assumptions A such that = Th(T UA).

F is a preferred (stable, complete or grounded) extension

of an inconsistent theory T if and only if ' = Th(T).

We will argue that admissible and preferred sets of assumptions with
counterattackss provide a better semantics for non-monotonic reasoning
than either stable sets or admissible sets with counterattacks;. Conse-
quently, we introduce the notions of weakly admissible and weakly preferred
sets and weakly preferred extensions to make it easier to refer to these notions
later in the paper:



Definition 2.10 A set of assumptions A is weakly admissible
(with respect to a theory T') if and only if
A is admissible with counterattacks,.

Definition 2.11 A set of assumptions A is weakly preferred
(with respect to a theory T') if and only if
A is preferred with counterattacks,.

Definition 2.12 F is a weakly preferred extension of a theory T
if and only if F is a preferred extension of T with counterattacks,.

As mentioned in the introduction of this paper, our notion of assumption-
based framework was inspired by Dung’s argumentation-based framework
[6]. The role of assumptions in our approach is played by (abstract) argu-
ments in Dung’s approach. On the one hand, assumptions can be viewed
mathematically as a special case of arguments; on the other hand, arguments
can be understood in our framework as deductions from a theory extended
with assumptions.

Dung’s notion of attack is more abstract than ours. We have attempted
to identify notions of attack and counterattack which are as specific as pos-
sible, but also general enough to capture as many existing approaches to
non-monotonic reasoning as possible. Later, when we investigate autoepis-
temic and non-monotonic modal logics, we will extend our framework to
include a notion of preference to capture better the semantics of these log-
ics.

3 Logic programming

We will agsume that the semantics of a logic program containing variables is
given by the set of all its variable-free instances over some Herbrand universe.
‘HB will stand for the Herbrand base of variable-free atoms formulated over
this Herbrand universe, HB,; will stand for the set {notp|p € HB} and
Lit will stand for HB U HB,,:-

The assumption-based framework for logic programming is ((£, R), Ab)
where

L= {1} U Lity
{p—h,.... L peHB,ly,....1, € Lit, and n > 0},

o R is the set of all inference rules of the form
p—I,..., 10, [T
p
where p € HB, l1,....1, € Lit, and n > 0, and of the form

p,  notp
il

where p €HB,



o Ab=HB, .

A logic program P is a theory, P C L, in such an assumption-bhased frame-
work.

The interpretation of negative literals as abducibles was first presented
in [7], and was the basis for the preferred extension semantics [4], the stable
theory and acceptability semantics [11], and the argumentation-theoretic
interpretation for the semantics of logic programming presented in [13].

The instance of the definition 2.2 of attack for the assumption-based
framework (L, R), Ab) for logic programming is the following;:

e Given a logic program P and sets of assumptions A and A,
A attacks A if and only if PU A F p, for some notp € A.

Note that this definition coincides with that presented in [13].

By instantiating the different definitions presented in section 2 with
respect to the assumption-based framework for logic programming with
counterattacksy, we can obtain different existing semantics for negation as
failure.

Theorem 3.1 Given a logic program P, and counterattacksy as the defini-
tion of counterattacks,

(a) M is a stable model [8] of P
if and only if
there is a stable extension F of P, such that M = KFNHB;

(b) given a set of assumptions A,
PUA is a complete scenario [4]
(and Th(P U A)YNLit is a well-founded model [20]) of P
if and only if
P U A is a stationary expansion [17] of P
if and only if
A is complete (grounded respectively) with respect to P;

(¢) given a set of assumptions A,
P U A is a preferred extension in the sense of [{]
(and P U A is an admissible scenario [4]) of P
if and only if
Th(P U A)N Lit is a partial stable model [19] of P
if and only if
A is preferred (A is admissible respectively) with respect to P.

This theorem is an immediate consequence of results presented by Dung in
[4, 6], together with results in [3] and [12].

The following example shows that preferred extensions are better than
stable models.



Example 3.1 The program

{p — not p}

has no stable extension, but it has a preferred extension corresponding to the
preferred set of assumptions (). Preferred extension semantics is consequently
more modular than stable model semantics. For example, the program

{g, p—notp}

has no stable extension, but it has a preferred extension containing g¢.

3.1 Stable theories and acceptability semantics

To capture stable theory and acceptability semantics [11] we need two new
notions of counterattack, different from those introduced in definition 2.3.
For simplicity, we present these notions in the assumption-based framework
for logic programming. However, they can also be defined more generally
and can be applied to any other assumption-based framework.

Definition 3.1 Given a logic program P and sets of assumptions A and A,
A counterattackss A if and only if
AUA attacks ALA 3.

The following theorem is an immediate consequence of definition 3.1 and the
definitions given in [11].

Theorem 3.2 Given a program P,

a set of assumptions A is weakly stable [11]

(and P UA is a stable theory [11]) with respect to P
if and only if

A is admissible (preferred respectively)

with respect to P with counterattackss.

The following example shows that counterattackss is “better” than
counterattacksy.

Example 3.2 The program

{qg = notp, p—notp}

has only one admissible set of assumptions, (), with counterattacks,. How-
ever, it has the admissible set {nof ¢} with counterattackss, because the
only attack against it, {not p}, is inconsistent.

*Tn the published version of this paper counteratiackss was defined by
AUA attacks A.
As noted by Noboru Twayama, with this definition theorem 3.2 does not hold.



The acceptability semantics was introduced in [11] to overcome certain dis-
advantages of stable theories. Before presenting the definition, we note that
the notion of admissibility could have been defined more generally, relative
to an already accepted set of assumptions.

Definition 3.2 Given a logic program P, sets of assumptions A and Ag,
and a specific definition of the counterattacks relation,
A is acceptable to Ag if and only if
for all sets of assumptions A,
il A attacks A L Ag, then A U Aqg counterattacks A.

Definition 3.3 Given a logic program P and sets of assumptions A and A,
A counterattacks, A if and only if
A is not acceptable to A with counterattacks,.

Notice that definition 3.3 is recursive and that definition 3.2 becomes recur-
sive with counterattacks,.

The following theorem is an immediate consequence of definitions 3.2
and 3.3 and the definition of acceptability given in [11].

Theorem 3.3 Given a program P and sets of assumptions A and Ay,
A is acceptable to Ao according to [11] with respect to P if and only if
A is acceptable to Ag with respect to P with counterattacksy.

Note that, given a logic program P and a set of assumptions A, if A is
admissible in the sense of [4] then A is weakly stable [11], and if A is weakly
stable then A is acceptable to () in the sense of [11] (see [13]).

3.2 Improved semantics

In this section we will illustrate the new semantics for negation as failure in
logic programming, based on the notions of weakly admissible and weakly
preferred sets of assumptions introduced in definitions 2.10 and 2.11. This
new semantics can be understood as an improvement of the stable theory
semantics, as demonstrated by the following example.

Example 3.3 The logic program
P={p<mnotq, ¢ notp,notq}

has two preferred sets of assumptions with counterattackss, {notq} and
{notp}. The second set A = {notp} can counterattacks the attack
A={not ¢}, because ¢ can be derived from the combined attack
AUA={not p, not ¢q}. But it can be argued that this combined attack should
not be accepted because it is inconsistent with P. Tts assumptions are held
neither by the defendant A nor by the prosecutor A. The notion of weakly
preferred  set  of assumptions (where counterattacks,  replaces
counterattackss) gives the intuitively correct result, only {not ¢}, in this
example.



Note that, given a logic program P, if a set of assumptions A is admissible
in the sense of [4] then A is weakly admissible and weakly stable [11] *.

In the same way we improve counterattackss by counterattacks,, we can
improve counterattacks, by a new notion of acceptability. This is, however,
beyond the scope of this paper.

4 Extensions of logic programming

4.1 Abductive logic programming

An abductive logic program is a triple (P, Abg, I), where P is a logic pro-
gram, Abg is a set of variable-free atoms representing a set of abducibles,
and I is a set of closed first-order formulas, representing integrity constraints.
Without lost of generality (see [13]) we assume that integrity constraints are
represented as clauses of the form

1~ 117...7177,.

We also assume that Abg is disjoint from the conclusions of clauses in P.
As in section 3, we will assume that logic programs and integrity con-
straints containing variables represent all their variable-free instances over
some Herbrand universe. Consequently, we will assume that programs and
constraints are variable-free.
The assumption-based framework corresponding to a set of abducibles

Abg is (L, R), Ab) where
e [ is the language of section 3, extended by all clauses of the form
1~ 117...7177,

where [1,...,1, € Lit and n > 0,
e R is the set of inference rules of section 3,
o Ab= Abyg U HB, .-
The notion of attacks presented in definition 2.2 can be written as:

e Given an abductive logic program (P, Abg, I)
and sets of assumptions A and A
in the assumption-based framework corresponding to Abg,
A attacks A (with respect to P U T) if and only if
PUA F p, for some notp € A, or
nota €A, for some a € ANAbg.

*Tn the published version of this paper we also claimed that if A is weakly admissible
then A is weakly stable [11], which is a mistake.

10



Note that in this approach the integrity constraints I' are used only to check
consistency, and not to create attacks.

The generalised stable model semantics of [10] is a special case of the
general definition of stability.

Theorem 4.1 Given an abductive logic program (P, Abg, T},

M is a generalised stable model [10] of (P, Abg, T) if and only if

there is a stable extension F. of P U T in the assumption-based framework
corresponding to Aby and M = ENHB.

4.2 TImproved semantics

The generalised stable model semantics inherits the disadvantages of the
stable model semantics illustrated in example 3.1. As in the case of normal
logic programs, many of these disadvantages can be overcome by replacing
stable models by preferred extensions. However, this one change alone (leav-
ing counterattacks, unchanged) does not overcome all problems, as shown
by the following example.

Example 4.1 Tet the abductive program (P, Abg, I') be given by

P=Ap—a}
Abo {(]}
I = {L~a, 1L+« nota}.

Intuitively, the set of assumptions A = {not p} should be admissible with
respect to P U I, because p cannot hold. But A is not admissible with
counterattacks, because A={a} attacks A, but A does not counterattack,
A. However, A does counterattacky A, because A is inconsistent.

The notions of weakly admissible and weakly preferred sets of assumptions
give the intuitively correct result in this and similar examples.

4.3 Extended logic programming

Fxtended logic programming is the extension of logic programming to incor-
porate explicit negation in addition to negation as failure. As in the case of
normal logic programs and abductive logic programs, we will assume that
extended logic programs are variable-free. 'HB will stand for the Herbrand
base, HB. will stand for HB U {-p|p € HB } and Lit. will stand for
HB. UA{notl|l € HB. }.

The assumption-based framework for extended logic programming is

((L,R), Ab) where

L= {1} U Lit.U
{0 —1,... 0|l €HB., Iy,...,1, € Lit., and n > 0},

11



e R is the set of all inference rules of the form

IHI17...7IWV7 117...7177,

l

where [ € HB., [1,...,1, € Lit., and n > 0, and of the form

l

notl
1

?

where | €HB.,
e Ab={notl|l € HB.}.

The negation denoted by — is called “classical” negation in [9]. However, in
this paper we use the term “explicit” negation, because clauses of extended
logic programs are treated more like inference rules than like classical impli-
cations.

The instance of the definition 2.2 of attack for extended logic program-
ming is identical to the definition for logic programming, except that HB is
replaced by HB..

4.3.1 Answer set semantics

The answer set semantics [9] is a special case of the general definition of
stability where extended logic programs are extended by the further clauses
{l — p,=pll e HB., and p € HB}. As a result, this semantics is classical
only in the sense that from an inconsistency any conclusion can be derived.

Theorem 4.2 (Given an extended logic program P,

M is an answer set [9] of P if and only if

there is a stable extension F of the theory

PU{l «— p,=p|l € HB., and p € HB} in the corresponding
assumption-based framework and M = FNHB..

4.3.2 The Dung and Ruamviboonsuk semantics

Dung and Ruamviboonsuk’s semantics [5] is a special case of admissibility
semantics with counterattacks; where extended logic programs are further
extended by the integrity constraints { L — p, =-p|p € HB}.

Theorem 4.3 Given an extended logic program P and a set of assumptions
A, PUA is an admissible scenario [5] of P if and only if

A is admissible with respect to P U{ 1L — p, -p|p € HB}

in the corresponding assumption-based framework with counterattacksy.

12



4.3.3 Improved semantics

As in other cases, the admissibility (and preferred extension) semantics with
counterattacksy sometimes gives intuitively incorrect results, as illustrated
by the following example.

Example 4.2 Consider the extended logic program

{=p, p—notq}

further extended by the integrity constraints
{L—p,~p|peHB}

The set of assumptions {not p} is not admissible with counterattacks; be-
cause {not q} attacks {not p} but cannot be counterattacked; by {notp}.
Intuitively, however, the theory should have a preferred extension in which
not p holds, because the attack {not ¢} is inconsistent with the theory. This
extension can be obtained by using weakly preferred extensions (with
counterattacksy instead of counterattacksy).

The definitions 2.10 and 2.11 in this case become:

e Given an extended logic program P,
a set of assumptions A is weakly admissible (weakly preferred)
if and only if A is admissible (preferred respectively)
with respect to PU{ L < p, =p|p € HB} in the corresponding
assumption-based framework with counterattacks,.

5 Default logic

Let (Lo, Ro) be a deductive system for first-order logic, where Ly contains
a special formula, L, denoting falsity. Following [18], a default theory is a
pair (T, D) where

L4 Tg£07

e [ is a set of default rules of the form

Q:Mﬁ17"'7Mﬁn
v

where a, B1,...,0,, v € Lo, and n > 0.

We will assume that all defaults rules in I are closed, i.e. they contain
no free variables. (As in logic programming, default rules containing free
variables represent all their variable-free instances.)

The assumption-based framework corresponding to D in such a default

theory (T, D)is (L, R), Ab) where

13



o L=LoU{M¢p|¢p€ Lyand ¢is closed},
e R is Ry extended with the set of all inference rules of the form

@, Mﬁ17"'7Mﬁn

v
where Y Y
Q' 517"'7 ﬁnED7
v
and of the form
=g, M ¢
1

where ¢ € Ly,
o Ab={Mao|¢ € Lyand ¢ is closed}.

An assumption of the form M¢ intuitively means that ¢ is consistent, i.e.
that =¢ can not be derived.
The notion of attack presented in definition 2.2 becomes:

e Given a default theory (7, D) and sets of assumptions A and A,
in the assumption-based framework corresponding to D,

A attacks A if and only if TU A F -9, for some M¢p € A.

The following theorem is a consequence of a theorem in [1].

Theorem 5.1 F is an extension [18] of a default theory (T, D)
if and only if there is a stable extension F' of T in the
assumption-based framework corresponding to D and F = E'N L.

As we have already seen earlier in this paper, the notion of stability is some-
times too strong. This is illustrated for default logic by the following exam-
ple, which is a variant of example 3.1.

Example 5.1 The default theory (T, D) where T' = () and

M= M
o= i,

9
p q
has no extension in Reiter’s default logic. However, intuitively it should have
an extension containing gq.

The problem with this example can be solved by replacing stability by admis-
sibility, without changing counterattacks,. However, counterattacks, gives
other problems in other examples, because of the fact that in first-order logic
an inconsistent set of assumptions implies every sentence. Therefore, in de-
fault logic an inconsistent set of assumptions attacks every non-empty set
of assumptions. This is illustrated by the following example.

14



Example 5.2 The default theory (T, D) where T'= {-p} and

{:Mr :Mq}
D= , ——
p q

should intuitively have an extension containing ¢g. However, the only pre-
ferred set of assumptions is ) in the corresponding assumption-based frame-
work with counterattacks,. This is because { Mr} is inconsistent with T and
therefore implies ~g and attacks {Mq}. But {Mq¢} does not counterattack,
{Mr}. Replacing counterattacks, by counterattacksy (and therefore pre-
ferred extensions by weakly preferred extensions) we obtain the intuitively
correct result.

In the case of default logic, the definition 2.12 becomes:

e Given a default theory (7, D),
F is a weakly preferred extension of (T, D) if and only if
F is a preferred extension of T in the assumption-based framework
corresponding to D with counterattacks,.

6 Assumption-based framework with preferences

In this section we will present a generalisation of the assumption-based
framework which includes the notion of preferences between formulae in
the language. This will allow us to capture and to propose improvements
for autoepistemic logic [15] and non-monotonic modal logic [14].

Definition 6.1 An assumption-based framework (with preferences)is a triple

(L, R), Ab, <) such that
e (L, R)is a deductive system (with Le L),
e AbC L,

e < CLXxL.

Intuitively, p < ¢ means that if p and ¢ can not hold together then p should
be preferred to g.

Definition 6.2 Given a theory T and sets of assumptions A and A,
A attacks A (with respect to T') if and only if
there exist a #£ 1 and § € A such that

TUAF a,

{a, B} F 1 and

a < .

15



Given this new definition of attack, the definitions of counterattack given in
section 3 remain unchanged, as do the definitions of admissible, preferred,
complete, grounded and stable sets of assumptions and extensions.

Note that if < = £ x L, the condition @ <  plays no role in the defini-
tion of attack, and therefore can be omitted. Consequently, the framework
defined in section 3 is a special case of the framework presented here.

This framework is related to the extension of Poole’s ahductive frame-
work introduced by Brewka [2]. One major difference between our ap-
proaches is that Brewka defines preference between abducibles whereas we
define preferences more generally between formulae of the language. Fur-
ther work is necessary to determine whether our framework can capture
Brewka’s approach or whether some further generalisation of our framework
is necessary for this purpose.

6.1 Autoepistemic logic

Autoepistemic logic [15] is based upon a deductive system (£, R), where L
is a propositional modal language containing a modality I, and R is some
presentation of classical propositional logic for the language £. The intended
meaning of L¢ is that ¢ is believed. As before, we assume that L€ L.
Following [15], 2 C L is an autoepistemic extension of a theory T C L if
and only if E=Th(TU{Lp|p € F}U{-Lod|p € L L E}).
Autoepistemic logic can be formulated in terms of the assumption-based

framework ((L, R), Ab, <) where

o« Ab={~Ls|s€LYU{lo| e L),
o < is defined by: ¢ < —=L¢ and =Ly < Lo, forall ¢ € L.

In this framework both positive and negative beliefs can be assumptions.
Intuitively, the preference relation expresses that we always prefer to know
whether or not a proposition ¢ holds, but if there is no such knowledge about
¢, and we have to make a choice hetween believing and not believing ¢, then
we prefer to be sceptical, choosing = L¢ over L.

In the assumption-based framework corresponding to autoepistemic logic,
the notion of attack becomes:

e Given a theory T and sets of assumptions A and A,
A attacks A if and only if
TUAFE ¢, forsome -[L¢ € A, or
TUAEF =Lo, for some Lo € A.

Notice that {=L¢} attacks {L¢} but not vice versa.
Theorem 6.1 F is an autoepistemic extension of a theory T if and only if

F is a stable extension of T in the corresponding assumption-based frame-
work.
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As in the other cases investigated in this paper, stable extensions have a
number of disadvantages compared with weakly preferred extensions.

Example 6.1 The autoepistemic theory {=L¢ D ¢}, for example, similar
to the logic program of example 3.1 and the default theory of example 5.1,
has no stable extension but has an unique weakly preferred extension based
upon the empty set of assumptions.

Similarly, the theory {I¢} has no stable extension but has a unique
weakly preferred extension.

However, using weakly preferred extensions instead of stable extensions
does not solve all the problems, as illustrated by the following example.

Example 6.2 The theory {I.¢ D ¢} has two stable and weakly preferred
extensions, one containing the assumption —1¢, the other containing I¢.
The second extension is anomalous.

One way to avoid the anomalous extension is to restrict assumptions to
negative beliefs, =1L¢, and to express positive introspection by means of a

o
Lo

For this purpose, we need to replace the deductive system (£, R) for au-

new inference rule

toepistemic logic by one where R is based upon modal rather than classical
logic, as in non-monotonic modal logic.

6.2 Non-monotonic modal logic

Non-monotonic modal logic [14] can be formulated in terms of a deductive
system (L, R) where L is a first-order modal language containing a modal
operator, I, and a special formula, 1, and where R is some presentation of a
modal system for the language £, containing all instances of the necessitation

¢

Lo
Following [14], I C L is called a fized point of a theory T' C L if and only if
E=Th(TUu{-Lo|¢d€ L L FEand ¢is closed }).

The assumption-based framework for non-monotonic modal logic is

(L, R), Ab, <) where

rule of inference:

for all ¢ € L.

o Ab={-L¢|¢ € L and ¢ is closed },
o <is defined by: ¢ < =Lg¢, forany ¢ € L.

In the assumption-based framework corresponding to non-monotonic modal
logic, the notion of attack becomes:
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e Given a theory T and sets of assumptions A and A,
A attacks A if and only if
TUAE ¢, for some =L € A.

Theorem 6.2 F is a fizred point of a theory T if and only if
F is a stable extension of T in the corresponding assumption-based frame-
work.

As elsewhere in this paper, the semantics can be improved by replacing
stable extensions with weakly preferred extensions. For example, if the set R
consists only of classical first-order logic and all instances of the necessitation
rule, then weakly preferred extensions for the resulting framework, not only
give the intuitively correct results for the theories {=1L¢ O ¢} and {L¢}
of example 6.1, but also give the correct result, avoiding the anomalous
extension, for the theory {I.¢ D ¢} of example 6.2.

7 Conclusions

The generalised framework for assumption-based reasoning demonstrates
that different formalisms for non-monotonic reasoning are based upon sim-
ilar principles. As a consequence, improvements made to the semantics
of one formalism can be generalised and applied to other formalisms. We
have illustrated this by arguing that admissible and preferred extensions
are better than stable extensions and that counteratiacks, is better than
counterattacksy;. We first encountered this argument in the context of logic
programming, but have investigated its generalisation and application to
other formalisms for non-monotonic reasoning.

The generalised framework investigated in this paper is a variant of the
argumentation framework presented by Dung. The two frameworks differ
partly in their treatment of inconsistency and partly in the different levels
of abstraction with which they treat the notions of assumptions, arguments
and attacks. In preparing this paper we have investigated many variations
of the definitions, most of which are mathematically equivalent. Tt is quite
likely that further improvements can still be made. One particular matter
which merits further consideration is the treatment of integrity constraints
and whether they should participate in the generation of attacks, or should
be confined to their present role in contributing only to inconsistencies.

In this paper we have limited our attention to matters of semantics.
Proof procedures have been investigated in detail for the logic programming
case and its extensions in other papers, and some of these are reported in the
survey [13]. Proof procedures for the new semantics presented in this paper
require further investigation. In particular, proof procedures generalising
those developed for logic programming may also prove to be useful for other
formalisms for non-monotonic reasoning.
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