
Logic Programs with Multiple Chances
Francesco Buccafurri and Gianluca Caminiti and Domenico Rosaci 1

Abstract. In human-like reasoning it often happens that differ-
ent conditions, partially alternative and hierarchically structured, are
mentally grouped in order to derive some conclusion. The hierarchi-
cal nature of such knowledge concerns with the possible failure of a
chance of deriving a conclusion and the necessity, instead of blocking
the reasoning process, of activating a subordinate chance. Traditional
logic programming (we refer here to Answer Set Programming) does
not allow us to express such situations in a synthetic fashion, since
different chances of deriving a conclusion must be distributed over
different rules, and conditions enabling the switching among chances
must be explicitly represented. We present a new language, relying
on Answer Set Programming, which incorporates a new modality
able to naturally express the above features. The merits of the pro-
posal about the capability of representing knowledge are shown both
by examples and by comparisons with other existing formalisms. A
translation to plain ASP is finally provided in order to give a practical
tool for computing our programs, since a number of optimized ASP
evaluation systems are nowadays available.

1 INTRODUCTION

In human-like reasoning it often happens that different conditions
are mentally grouped in order to derive some conclusion. Such con-
ditions represent different chances, partially overlapped, exploitable
as alternative ways for proceeding in the reasoning process. More-
over, following different kinds of ordering, like reliability, simplic-
ity, cost, and so on, different chances are hierarchically structured,
and the failure of a chance of deriving a conclusion, caused by un-
certainty conditions, enables the application of a subordinate chance.
This way, the reasoning process is not necessarily blocked by uncer-
tainty. Consider for example the diagnostic medical reasoning. The
doctor tries to recognize a classical clinical picture, in order to derive
a diagnosis, but often such a picture is unclear and incomplete. In this
case he typically adopts subordinate ways for reaching the same con-
clusion, like consulting, ex-adiuvantibus treatments, laboratory tests
and so on. Traditional logic programming (we refer here to Answer
Set Programming [8]) does not allow us to express such situations in
a synthetic fashion, since different chances of deriving a conclusion
must be distributed over different rules, and conditions enabling the
switching among chances must be explicitly represented.

In this paper, we define a language extending Answer Set Pro-
gramming (ASP) by including a new modality, allowing us to rep-
resent, in a compact and natural fashion, the multi-chances form of
reasoning described above. Besides ASP, our programs, called MC-
programs, are compared also with Inheritance Logic Programming
[5] and Nested Logic Programming [12], that appear to us as the best
candidates for representing multiple chances. The former is chosen

1 DIMET, Università Mediterranea di Reggio Calabria, Italy, email: {bucca,
gianluca.caminiti, domenico.rosaci}@unirc.it

among languages allowing default reasoning with exceptions and pri-
orized rules [2, 15, 6, 4, 9], the latter is a powerful logic language al-
lowing us to define rules with nested if-then-else constructs. A trans-
lation to plain ASP is finally provided in order to give a practical
tool for computing our programs, since a number of optimized ASP
solvers [10, 14] and optimization techniques [3] are available.

In order to give the flavor of our proposal, we illustrate the fol-
lowing simple MC-program, describing the diagnosis of appendicitis
performed by a doctor:2

app← (fever, pl, pf, nausea)[wbc test]

The structure of the above rule, which we call MC-rule, is the
following. First, it embeds a standard logic rule, i.e., app ←
fever, pl, pf, nausea, whose meaning is the usual one: If the con-
junction fever, pl, pf , nausea holds, where pl (resp. pf) means
pain localization (resp. pain form), then the diagnosis app (appen-
dicitis) is derived. The MC-rule contains also a subordinate condi-
tion, namely wbc test (denoting the result of a laboratory test count-
ing white blood cells), whose truth is required, in order to derive app,
whenever the truth assignment of the elements of the conjunction
fever, pl, pf, nausea is recognized as uncertain. Such a machinery
models the reasoning approach of the doctor, who adopts a subordi-
nate strategy (i.e, the laboratory test) in order to derive the diagnosis,
in case the clinical picture allows him neither to exclude such a diag-
nosis nor to conclude it (i.e., in case of an uncertain clinical picture).

More generally, through an MC-rule of the form head ←
body[sub cond], our purpose is to represent a logic rule like head←
body which is not blocked every time body fails (like in stan-
dard ASP), but enables the evaluation of the subordinate condition
sub cond only in case the value of body reflects an uncertain situa-
tion. In our example, following a standard approach, we could cer-
tainly recognize as uncertain truth assignments just those where at
least one literal among fever, pl, pf, nausea is undefined and the
others are true3. However, the notion of uncertainty we are using
now is strictly related to the intended meaning of the rule. As a con-
sequence, it might happen that other truth assignments are recogniz-
able as uncertain, and thus, the occurrence of such assignments has to
enable the evaluation of the subordinate condition wbc test. In par-
ticular, truth assignments including some false value, might be good
candidates for activating the evaluation of the subordinate condition,
whenever such false values actually contain uncertain knowledge (for
example, false negatives of a test result). Consider for example the
literal fever. The doctor knows that in case of absence of fever (i.e.,

2 The same example is encoded in Section 4 both in Answer Set Programming
and in Nested Logic Programming.

3 Recall that, under ASP semantics, it may happen that an intended model
contains neither a given literal nor its complementary literal. Throughout
this paper the perspective we use in order to capture the above issue is
allowing for literals three truth values: true, false and undefined.

whenever fever is false) he cannot exclude the diagnosis of appen-
dicitis (if the rest of the clinical picture holds). The same happens
to the symptom nausea. Conversely, whenever the localization of
the pain is not compatible with the diagnosis of appendicitis (i.e.,
pl is false) the diagnosis can be excluded (the same happens to the
pain form). As a consequence, we should include into the set of truth
assignments reflecting uncertain situations (corresponding in our ex-
ample to an uncertain clinical picture), also those in which fever
and nausea are false. This is done, in our formalism, by underlining
such literals in the body of the rule. Observe that in case of absence
of underlined literals, a conjunction of literals is recognized as uncer-
tain exactly when it is undefined according to the standard meaning
(i.e., at least one literal in the conjunction is undefined and the others
are true). For instance, according to the above statements, whenever
the patient has both a normal temperature, a clear localization of the
pain compatible with the diagnosis of appendicitis, an unclear form
of pain and, further, he does not have nausea, then the doctor rec-
ognizes an uncertain situation not allowing him to exclude the diag-
nosis. However, such an unclear clinical condition together with the
positive result of the laboratory test wbc test (which is the subordi-
nate condition activated in case of uncertainty), allows the doctor to
conclude the diagnosis. The language provides the programmer with
another important tool. Some uncertainty configurations, among all
possible ones, could be considered non-admissible on the basis of
possible relationships among the elementary conditions of a conjunc-
tion. In our example, even though the conditions pl and pf may ap-
pear separately in admissible uncertainty configurations, the doctor
thinks that they cannot be missing simultaneously. In other words,
he considers very improbable that neither the localization nor the
form of the pain appear in a definite way. This is modeled in our lan-
guage by defining some admissibility constraints, associated to the
conjunction of literals. In our example we have just one admissibil-
ity constraint {pl, pf} encoding what we have described above. The
set of admissibility constraints is inserted just after the conjunction
on which they operate. The resulting MC-program is the following:

app← (fever, pl, pf, nausea){{pl, pf}}[wbc test] (1)

The plan of the paper is the following. Section 2 describes syntax
and semantics of the language. In Section 3 the features of the lan-
guage are shown by real-life examples. In Section 4 our capability of
representing knowledge is compared with other existing approaches.
Section 5 describes the translation of our language into Answer Set
Programming. Finally, we draw our conclusions in Section 6.

2 SYNTAX AND SEMANTICS

In this section, after a brief recall of basic concepts about Answer
Set Programming (ASP) [8], we introduce the syntax of logic pro-
grams with multiple chances, said MC-programs, and then we give
its semantics, that is an adaptation of the notion of answer sets4.

An atom is an expression p(t1, · · · , tn), where p is a predicate
of arity n and t1, · · · , tn are constants. A literal is either a positive
literal a or a negative literal ¬a, where a is an atom and ¬ is the
classical negation symbol. Given a literal a, ¬a is defined as ¬p, if
a = p and p if a = ¬p. A set L of literals is consistent if ∀l ∈
L,¬l �∈ L. Given a literal a, the formula not a is the negation as
failure (NAF) of a5.

4 For the sake of presentation, we refer to variable-free (also said ground)
programs. The extension to the general case is straightforward.

5 Observe that the NAF of negative literals is allowed.

Definition 1 Given m ≥ 0 and k ≥ 0, an MC-formula β
is a formula (α1[γ1], · · · , αm[γm]){T1, · · · , Tk}, where (1) αj

(1 ≤ j ≤ m) is (possibly the NAF of) a literal and
may appear underlined (2) Ti (1 ≤ i ≤ k) is a subset of
{αj | (αj is either underlined, or is not the NAF of a literal) ∧ 1 ≤
j ≤ m}, and (3) γj (1 ≤ j ≤ m) is a (possibly empty) conjunction
of MC-formulas. Each set Ti (1 ≤ i ≤ k) is called admissibility
constraint and the (possibly empty) set {T1, · · · , Tk} of admissibil-
ity constraints of β is denoted by S(β). γj (1 ≤ j ≤ m) is said the
second-chance of αj .

The recursive definition above is a generalization of the standard
definition of the conjunction of (possibly the NAF of) literals oc-
curring in the body of an ASP logic rule, where both (1) a second-
chance is (possibly) associated to each literal, (2) literals may appear
underlined and (3) a set of admissibility constraints is associated to
the conjunction. As we will explain in the following, the second-
chance may be viewed like a substitution of the αj to which is ap-
plied. Such a substitution is executed only when αj is uncertain (the
notion of uncertainty will be introduced in the following – the un-
derlining is relating with this notion). Due to the recursive structure
of the above definition, a second-chance is, in turn, a conjunction
of MC-formulas, and thus may contain further subordinate chances
(i.e., the nesting of chances is allowed). Intuitively, second-chances
are subordinate conditions that are required, in order to satisfy the
MC-formula, whenever the basic conditions αis are uncertain. Actu-
ally, not all the possible configurations of values making αis uncer-
tain are allowed, in order to activate the substitution of the second-
chance, but only those satisfying the admissibility constraints.

Given a conjunction of MC-formulas Δ, in favor of simplic-
ity, we often write (α1[γ1], · · · , αm[γm]){T1, · · · , Tk}[Δ] to denote
(α1[γ1[Δ]], · · · , αm[γm[Δ]]){T1, · · · , Tk}. In particular, if γ1 =
· · · = γm = Δ, we write (α1, · · · , αm){T1, · · · , Tk}[Δ] to de-
note (α1[Δ], · · · , αm[Δ]){T1, · · · , Tk}. Clearly, square brackets of
empty second-chances are omitted. Examples of MC-formulas are
β1 = (a, not b)[c] (denoted also by (a[c], not b[c])), where S(β1) =
∅ and β2 = (a, b){{a, b}}[c], (denoted also by (a[c], b[c]){{a, b}}),
where S(β2) = {{a, b}}.
Definition 2 An MC-rule r is a formula a ← β1, · · · , βn (n ≥ 0),
where a is a positive literal and βi is an MC-formula, for each 1 ≤
i ≤ n. The set {a}, denoted by head(r), is called the head of r, and
the set {β1, · · · , βn}, denoted by body(r), is called the body of r.
An MC-program is a finite set of MC-rules.

Note that since an MC-formula is a generalization of a standard
conjunction of (the NAF of) literals, a standard ASP rule is a special
case of an MC-rule r. Informally, an MC-rule is a logic rule allowing
in the body the substitution of some literal with its second-chance
(under uncertainty conditions). An example of MC-rule is the ex-
pression (1) reported in Section 1. Another example of MC-rule is:
a← b[c[d]], f [not g].

We introduce now the intended models of our semantics. First we
need some preliminary definitions. Given an (MC-)program P , LitP

is the set of literals occurring in P . An interpretation I of an (MC-
)program P is a consistent subset of LitP . A literal a is true w.r.t. I
if a ∈ I , it is false w.r.t. I if ¬a ∈ I . A literal a is undefined w.r.t. I
if it is neither true nor false w.r.t. I . Given a literal a, a formula not a
is true w.r.t. I if a �∈ I , it is false w.r.t. I otherwise (observe that
the NAF of a literal cannot be undefined w.r.t. a given interpretation).
From now on in this section, consider given an (MC-)program P and
an interpretation I of P .

We introduce now a basic notion of our framework, that is the
notion of uncertainty of an element of an MC-formula. Indeed the
mechanism of substitution of an element of an MC-formula with its
second-chance is founded on this property (this will be explained in
detail in the following).

Given an MC-formula β = (α1[γ1], · · · , αm[γm]){T1, · · · , Tk},
we say that αj (1 ≤ j ≤ m) is uncertain w.r.t. the interpretation I
if either (i) αj = a | a ∈ LitP ∧ {a,¬a} ∩ I = ∅, (ii) αj = a |
a ∈ LitP ∧ a �∈ I , or (iii) αj = not a | a ∈ LitP ∧ a ∈ I .

The definition of uncertainty introduced above arises from the fol-
lowing reasoning. We expect that an element αj is uncertain if it is
undefined. This is captured by the item (i) of the definition. Note
that, correctly, this item does not include the case of the NAF of a lit-
eral, since such a formula cannot be undefined. Now, when we want
to interpret as uncertain also the false value of αj , we require that
αj is underlined (items (ii) and (iii)). Thanks to this mechanism,
also the NAF of a literal can be uncertain, whenever it appears in an
underlined element αj = not a, and a is true.

Consider again the MC-formula β introduced above. S(β) is true
w.r.t. I if for each Ti ∈ S(β) (1 ≤ i ≤ k), there exists α ∈ Ti such
that α is not uncertain w.r.t. I . In words, an admissibility constraint
Ti states that literals occurring in it cannot appear simultaneously
in uncertainty configurations. Now we define the intended models of
our semantics. First, we introduce a transformation for MC-programs
which produces an ASP program.

Definition 3 We define the MC-transformation of the program P
w.r.t the interpretation I as the ASP program P̄ I , obtained from P
by executing Algorithm 1.

Algorithm 1 (The MC-transformation algorithm)
repeat

for each MC-rule r ∈ P do
if ∃β ∈ body(r) | S(β) is false w.r.t. I then delete r
else for each β = (α1[γ1], · · · , αm[γm]){T1, · · · , Tk} ∈ body(r) do
delete S(β)
for each 1 ≤ j ≤ m do
if αj is uncertain w.r.t. I then remove from αj the underlining (if any)
if γj is not empty then replace αj [γj] by γj
end if

else remove from αj the underlining (if any); replace αj [γj] by αj
end if

end for
end for
end if

end for
until ∀r ∈ P,∀β ∈ body(r) ∃a ∈ LitP | β = a ∨ β = not a

The MC-transformation of P consists of both (i) deleting all MC-
rules of P whose body includes some MC-formula with false ad-
missibility constraint, (ii) deleting all admissibility constraints from
the remaining MC-formulas, (iii) for each uncertain element αj in
the body of every MC-rule, removing the underlining (if any), and
replacing αj by its second-chance (if any); (iv) for each remain-
ing element αj , removing the underlining (if any) and discarding
its second-chance. The loop ends when only (possibly the NAF of)
literals occur in P .

Definition 4 An interpretation J of the program P is an answer set
of P if J is an answer set6 of P̄ J .

For instance, consider the following MC-program P :

6 The definition of answer sets of an ASP program can be found in [8]. We do
not report it here for space limitations. Note that, according to the definition
of interpretation, we want to limit our focus only on consistent answer sets.

r1 : a← (b, c, e){{c, e}, {b, c}}[not d]
r2 : d← not a r3 : ¬b← a
r4 : c← not d r5 : e←

The intended answer sets of P are: {a,¬b, c, e}, {d, e}. Indeed,
given I1 = {a,¬b, c, e}, the MC-transformation of P w.r.t. I1

is P̄ I1 = {r′1, r2, r3, r4, r5}, where r′1 is a ← not d, c, e. Ob-
serve that I1 is an answer set of P̄ I1 thought as an ASP program.
Likewise, it is easy to see that I2 = {d, e} is an answer set of
P̄ I2 = {r2, r3, r4, r5} (r1 is deleted due to the constraint {b, c}).
Remark. Our formalism can be viewed as an extension of the ASP
negation by failure. Indeed, the rule h ← not b can be rewritten
in our setting as h ← ¬b[true]. According to our semantics, h is
derived if either b is false (i.e., ¬b is true) or b is undefined (since, in
this case the subordinate condition is activated and it corresponds to
the constant true), exactly as the ASP rule h← not b.

3 KNOWLEDGE REPRESENTATION BY
MC-PROGRAMS

In this section, we show how our language can be used for natu-
rally representing real-life situations. We show two examples, where
we do not make explicit the answer sets of the programs, because
they depend on the value of a number of literals, which we assume
as “external variables”. However, the purpose of this section is to
make evident the merits of the multi-chance constructs. Therefore in
the following description we just stress the aspect of the meaning of
MC-rules, instead of considering the issues typically occuring in the
context of answer sets (like their multiplicity), which our language
completely preserves.
A Medical Example. We consider here a fragment of a diagnostic
reasoning process in a medical setting. We model, by means of the
following MC-program, the reasoning steps leading to both the di-
agnosis of ischemic cardiopathy (rules r1 − r4) and the consequent
therapy (rules r5 − r8).

r1 : clin pict ← complete set of symptoms
r2 : ¬clin pict ← absent symptoms
r3 : ECG test ← ST segment anomaly
r4 : isch cardio ← (clin pict ,N test ,ECG test [PPI test])

{{clin pict ,N test}}[enz test [echo]]
r5 : active ulcer ← recent symptoms, pos case history
r6 : ¬active ulcer ← ¬pos case history
r7 : risk patient ← smoker , diabetic, hypertensive
r8 : aspirin ← isch cardio,

¬active ulcer [risk patient]

In particular, rules r1 and r2 specify that the patient’s clinical
picture (clin pict) is either (i) true, if there exists a complete set
of symptoms, or (ii) false, if all symptoms are absent. Otherwise
clin pict is considered uncertain. Rule r3 describes that the electro-
cardiogram (ECG) test (ECG test) is positive if it reveals a typical
anomaly of its ST-segment. Thus, by means of rule r4, the doctor
concludes the diagnosis of ischemic cardiopathy (isch cardio) in
case of both a complete clinical picture, the patient’s positive re-
action to a nitrate treatment (N test), and a positive result of the
ECG. In this case, rule r4 behaves as the following standard ASP
rule: isch cardio← clin pict, N test, ECG test.

However, a possible uncertainty situation might arise from a neg-
ative ECG: The doctor knows that there are cases of ischemic car-
diopathy not altering the ST-segment of the ECG (i.e. ECG test is
false). In such cases he applies a second-chance approach, by sub-
stituting the information given by the ECG test with that given by

another ex-adiuvantibus treatment, i.e. the administration of a pro-
tonic pump inhibitor (PPI test). The patient’s positive reaction to
such a test, reveals a different kind of pathology. Thus, PPI test
is assumed true whenever symptoms persists after the administra-
tion of the inhibitor. After such a substitution, rule r4 behaves as:
isch cardio← clin pict, N test, PPI test.

Unfortunately, there are other situations that may appear still un-
clear: (i) The clinical picture might be not complete (clin pict may
be undefined)7. (ii) The nitrate treatment might give either an un-
clear result (i.e., symptoms may weakly persist) or false negatives
(N test may be either undefined or false, respectively). (iii) Symp-
toms might weakly persist after the protonic-pump-inhibitor-based
treatment (i.e., PPI test may be undefined).

Observe that the admissibility constraint {{clin pict ,N test}}
in rule r4 means that the simultaneous occurrence of both case (i)
and (ii) is not compatible with the diagnosis of ischemic cardiopathy.

In either case (i), (ii) or (iii), the doctor decides to perform a lab-
oratory test, which is aimed to detect specific enzymes in the blood.
The result of such a test is represented by enz test. Accordingly,
rule r4 behaves as: isch cardio← enz test.

However, since this test might give false negatives, the doctor eval-
uates the nested second-chance (echo), corresponding to the result of
a echocardiogram. Thus, rule r4 behaves as: isch cardio← echo.

In order to apply the therapy, the doctor reasons about the patient’s
history. In particular, he is interested in the possible presence of an
active ulcer (rules r5 and r6). Rule r5 states that the patient is affected
by an active ulcer (active ulcer), if both the doctor recognizes the
occurrence of recent symptoms and the patient’s history clearly re-
veals previous cases of ulcer. Rule r6 excludes the occurrence of an
active ulcer in case of a clearly negative patient’s history. However, it
may happen that the history reported by the patient is unclear, so that
the information about such a pathology remains undefined. More-
over, rule r7 specifies under which conditions the patient has to be
considered a patient with a high cardiovascular risk (risk patient).

Finally, rule r8 describes the therapy (aspirin) to be adminis-
tered in case of both ischemic cardiopathy and in absence of an
active ulcer (¬active ulcer). However, if the latter information is
undefined, then the doctor replaces the condition ¬active ulcer by
risk patient, i.e. he decides to administer the aspirin to the pa-
tient only if both the diagnosis is certain and the patient has a high
cardiovascular risk. Accordingly, rule r8 behaves as: aspirin ←
isch cardio, risk patient. Observe that, in this case, the doctor
judges the risk of a both non-adequate and non-immediate therapy
for the ischemic cardiopathy to be more relevant than the probability
of side effects due to the interaction of aspirin and a (possible, but
not evident) active ulcer.
The Driving Licence. A guy must go to a far town for renewing
his driving license. The renewal takes a few minutes, but in order to
apply for it, two documents A and B are required by the administra-
tion office. Moreover, A and B are issued by two different offices,
say OA and OB , that are placed in that town. He is told that A and
B will be available in about 15 days. Meanwhile, he can check by
phone for both A and B to be ready. However, it is possible that ei-
ther both OA and OB phone lines are busy, or the officers cannot
answer. The guy wants to go to the administration office only if he
knows that both offices OA and OB have issued the respective doc-
uments. However, if after 20 days he is sure about the availability of
at least one document, and he was not informed of the contrary about
the other document, then he goes. This example may be represented

7 Observe that if ¬clin pict holds, then such a case is not considered as a
font of uncertainty. That is, if no symptom is present, then the doctor is able
to exclude the diagnosis of ischemic cardiopathy.

by the following MC-program:

go← (rdy A, rdy B){{rdy A, rdy B}}[waiting(20)]

where we assume that rdy A (resp. rdy B) is derived as a fact if the
guy has been told by phone that A (resp. B) is ready, ¬rdy A (resp.
¬rdy B) is derived as a fact if the guy has been told by phone that
A (resp. B) is not ready and waiting(20) is derived as a fact if the
guy has waited for 20 days.

4 COMPARISON WITH OTHER APPROACHES

In this section first we compare by examples our language with plain
ASP, in order to show that the introduction of the new modality in
ASP gives real benefits. Then, we compare our programs also with
Inheritance Logic Programming [5] and Nested Logic Programming
[12], that appear, to our knowledge, as the best candidates among
logic programming languages for representing multiple chances.
Plain ASP. Consider now the MC-program (1) presented at the end
of Section 1 and encode the same real-life situation using Answer Set
Programming. Since we need to make explicit all the possible com-
binations of uncertain elements of the conjunction (which number
grows exponentially with the number of uncertain cases), the result-
ing ASP program is the following:

app← fever, pl, pf, nausea
app← not fever, pl, pf, nausea, wbc test
app← not fever, pl, pf, not nausea, wbc test
app← not fever, pl, not pf, not ¬pf, nausea, wbc test
app← not fever, not pl, not ¬pl, pf, nausea, wbc test
app← not fever, not pl, not ¬pl, pf, not nausea, wbc test
app← not fever, pl, not pf, not ¬pf, not nausea, wbc test
app← fever, pl, pf, not nausea, wbc test
app← fever, pl, not pf, not ¬pf, nausea, wbc test
app← fever, not pl, not ¬pl, pf, nausea, wbc test
app← fever, not pl, not ¬pl, pf, not nausea, wbc test
app← fever, pl, not pf, not ¬pf, not nausea, wbc test

This example shows that even though our formalism does not ex-
tend the expressive power of ASP (and does not introduce asymp-
totic computational cost), it has evident merits as far as its capability
of representing multi-chance reasoning is concerned. Concerning the
complexity and the expressiveness of logic programming, see [7].
Nested Logic Programming. Nested Logic Programming [12]
(NLP) is a class of logic programs, where arbitrarily nested expres-
sions – formed from literals by using negation as failure, conjunc-
tion and disjunction (;) – are allowed in both the bodies and heads
of rules. Given an MC-program P , a suitable translation P ′ into the
non-disjunctive fragment of NLP (with no NAF in heads of rules) ex-
ists, but we show that P ′ is extremely tedious to write and difficult to
read. For instance, if we translate the MC-program (1) of Section 1,
we obtain the following NLP program:

app← (fever; not fever, wbc test),
(pl; not pl, not ¬pl, (pf ;¬pf), wbc test),
(pf ; not pf, not ¬pf, (pl;¬pl), wbc test),
(nausea; not nausea, wbc test)

Disjunctive Logic Programs with Inheritance. Disjunctive Logic
Programs with Inheritance [5] (DLP<) is a knowledge representa-
tion language extending disjunctive logic programming (with strong
negation) by inheritance. The addition of inheritance allows us a nat-
ural representation of default reasoning with exceptions. Thus, one
could argue that DLP< may be used to represent default conditions
being evaluated whenever previously required conditions are uncer-
tain. We have compared by examples our language with DLP<. For
space limitations we do not report details of such a comparison here.

Synthetically, we have tested that DLP<, compared to our language,
is not suitable to represent multi-chance reasoning. Indeed base con-
ditions must be thought as exceptions and (nested) chances as de-
faults and, further, programs are time-wasting to write and difficult
to read, since all the combinations, i.e. those resulting from the pos-
sible uncertainty of the literals enclosed in an MC-formula, must be
individually considered.

5 TRANSLATION TO ASP

In this section we show that for any MC-program P , an ASP program
Γ(P) exists such that there is a one-to-one correspondence between
the answer sets of P and the answer sets of Γ(P). Such a transla-
tion allows us to evaluate any MC-program by exploiting one of the
existing answer set solvers (DLV [10], Smodels [14], etc).

Given an MC-program P , we define Γ(P) as the ASP program
obtained from P by executing Algorithm 2.

Algorithm 2 (The translation algorithm)
for each MC-rule r ∈ P do

for each MC-formula β ∈ body(r) | β is not (the NAF of) a literal do
RESOLVE FORMULA(r, β, β̄)

end for
end for

The core of Algorithm 2 is the recursive procedure de-
scribed by Algorithm 3, where MC-formulas are of the form
(α1[γ1], · · · , αm[γm]){T1, · · · , Tk} (m ≥ 0, k ≥ 0).

Algorithm 3 (The procedure RESOLVE FORMULA)
procedure RESOLVE FORMULA(r, β, β̄)
body(r) = body(r) \ {β} ∪ {β̄}
P = P ∪ {β̄ ← ρ1, · · · , ρm, not τ1, · · · , not τk}∪

∪{τi ← σ1, · · · , σ|Ti| | 1 ≤ i ≤ k}
for 1 ≤ j ≤ k do let c1, · · · , c|Ti| be a permutation of Ti

for 1 ≤ l ≤ |Ti| do
if (cl = b) ∧ (b ∈ LitP) then P = P ∪ {σl ← not b, not ¬b}
else if (cl = b) ∧ (b ∈ LitP) then P = P ∪ {σl ← not b}
else if (cl = not b) ∧ (b ∈ LitP) then P = P ∪ {σl ← b}
end if

end for
end for
for 1 ≤ j ≤ m do

if (αj = b ∨ αj = b) ∧ (b ∈ LitP) then P = P ∪ {ρj ← b}
if γj is not empty then

if (αj = b) ∧ (b ∈ LitP) then let t : ρj ← not b, not ¬b, γj

else if (αj = b) ∧ (b ∈ LitP) then let t : ρj ← not b, γj
end if
P = P ∪ {t}; RESOLVE FORMULA(t, γj , γ̄j)

end if
else if (αj = not b ∨ αj = not b) ∧ b ∈ LitP then

P = P ∪ {ρj ← not b}
if (γj is not empty) ∧ (αj = not b) ∧ (b ∈ LitP) then

let t : ρj ← b, γj ; P = P ∪ {t}; RESOLVE FORMULA(t, γj , γ̄j)
end if

end if
end for

end procedure

Note that for each call of the procedure, ρi, τi, σi, γ̄i(∀i) and β̄ are
fresh literals (not already included in LitP). Observe that the Al-
gorithm 2 is exponential in the maximum number, say c, of nested
chances. However, c is typically bound (informally, the number of
nested chances is small). Therefore it becomes meaningful the com-
plexity analysis w.r.t. n, that is the number of literals occurring in the
program, keeping constant c. It is easy to see that such a complex-
ity is O(n). Moreover, in such a case, the computational complexity
still remains linear w.r.t. both the number of program rules and the
maximum number of elements in the body of an MC-rule.

In the next theorem we state the equivalence between the original
MC-program P and its translation Γ(P). The proof of the theorem
is omitted for space limitations.

Theorem 1 Given an MC-program P and an interpretation I of
P , then I is an answer set of P iff I ∈ ASdep(Γ(P)), where
ASdep(Γ(P)) is the set of answer sets of Γ(P) where all working
literals β̄, ρi, τi, σi, γ̄i(∀i) are discarded.

6 CONCLUSIONS

The paper presents a new language relying on Answer Set Program-
ming and including some new constructs useful for naturally repre-
senting some forms of reasoning where multiple chances of deriv-
ing a given conclusion occur. Examples described in the previous
sections as well as comparisons with other languages show that the
above goal is satisfactorily reached. The general KR point of view
adopted in this work could represent a starting point for designing
more specific solutions, once a particular research setting is chosen
(for example, planning [13, 16, 11, 1]). We feel this is a very inter-
esting direction for our future research.

ACKNOWLEDGMENTS

We are grateful to Dr. Umberto Buccafurri for the useful suggestions
given us during the preparation of medical examples.

REFERENCES
[1] M. Balduccini, M. Gelfond, R. Watson, and M. Nogueira, ‘The USA-

Advisor: A Case Study in Answer Set Planning.’, in LPNMR, volume
2173 of LCNS, pp. 439–442. Springer, (2001).

[2] G. Brewka and T. Eiter, ‘Preferred Answer Sets for Extended Logic
Programs’, Artif. Intell., 109(1-2), 297–356, (1999).

[3] G. Brewka, I. Niemelä, and M. Truszczynski, ‘Answer Set Optimiza-
tion.’, in IJCAI, pp. 867–872, (2003).

[4] G. Brewka, I. Niemelä, and M. Truszczynski, ‘Prioritized Component
Systems.’, in AAAI05, pp. 596–601, (2005).

[5] F. Buccafurri, W. Faber, and N. Leone, ‘Disjunctive Logic Programs
with Inheritance.’, Theory and Practice of Log. Program., 2(3), (2002).

[6] F. Buccafurri, N. Leone, and P. Rullo, ‘Disjunctive Ordered Logic: Se-
mantics and Expressiveness.’, in Proc. of KR’98, pp. 418–431, (1998).

[7] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, ‘Complexity and
Expressive Power of Logic Programming.’, ACM Comput. Surv., 33(3),
374–425, (2001).

[8] M. Gelfond and V. Lifschitz, ‘Classical Negation in Logic Programs
and Disjunctive Databases’, New Generation Computing, 9, (1991).

[9] M. Gelfond and T. C. Son, ‘Reasoning with Prioritized Defaults.’, in
LPKR, pp. 164–223, (1997).

[10] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello, ‘The DLV System for Knowledge Representation and Rea-
soning’, ArXiv Computer Science e-prints, 11004–+, (2002).

[11] V. Lifschitz, ‘Answer Set Programming and Plan Generation.’, Artif.
Intell., 138(1-2), 39–54, (2002).

[12] V. Lifschitz, L.R. Tang, and H. Turner, ‘Nested Expressions in Logic
Programs’, Annals of Mathematics and Artif. Intell., 25(3-4), (1999).

[13] A. Nareyek, E. C. Freuder, R. Fourer, E. Giunchiglia, R. P. Goldman,
H. A. Kautz, J. Rintanen, and A. Tate, ‘Constraints and AI Planning.’,
IEEE Intelligent Systems, 20(2), 62–72, (2005).

[14] I. Niemelä and P. Simons, ‘Smodels - an Implementation of the Stable
Model and Well-founded Semantics for Normal Logic Programs’, in
Proc. of the 4th LPNMR, LNCS, pp. 420–429. Springer, (1997).

[15] C. Sakama and K. Inoue, ‘Prioritized Logic Programming and Its Ap-
plication to Commonsense Reasoning.’, Artif. Intell., 123(1-2), (2000).

[16] T. C. Son, P. H. Tu, M. Gelfond, and A. R. Morales, ‘Conformant Plan-
ning for Domains with Constraints-A New Approach.’, in Proc. of The
XXth National Conf. on Artif. Intell. and the 17th Innovative Applica-
tions of Artif. Intell. Conf., pp. 1211–1216, (2005).

