
Return of the JTMS: Preferences Orchestrate Conflict
Learning and Solution Synthesis

Ulrich Junker and Olivier Lhomme1

Abstract. We use a lexicographical preference order on the problem
space to combine solution synthesis with conflict learning. Given two
preferred solutions of two subproblems, we can either combine them
to a solution of the whole problem or learn a ‘fat’ conflict which cuts
off a whole subtree. The approach makes conflict learning more per-
vasive for Constraint Programming as it well exploits efficient sup-
port finding and compact representations of Craig interpolants.

1 Introduction

A justification-based truth maintenance system (JTMS) [6] allows a
problem solver to record logical dependencies between deductions.
A JTMS supports the retraction of constraints and provides explana-
tions for the recorded deductions. The JTMS also introduced a tech-
nique which is now called conflict learning [10, 20]. Conflicts per-
mit a search procedure to backtrack to the causes of a failure, while
keeping choices in independent subproblems unchanged. As a con-
sequence, we obtain an additive complexity instead of a multiplica-
tive complexity for independent subproblems [9]. Although indepen-
dent subproblems are frequent in configuration and design problems,
they are rare in popular applications of Constraint Programming (CP)
such as scheduling and resource allocation. Hence, conflict learning
was seldom used in CP, although recent efforts are promising [14].

However, conflict learning proved to be essential for the recent
success of SAT solvers [10, 20]. It can be observed that conflict learn-
ing reduces the complexity of a problem even if subproblems are not
independent, but have some variables in common. Suppose a prob-
lem solver first determines a solution S1 of subproblem A(x, y) and
then solves the subproblem B(y, z) under the restrictions that S1

imposes on the common variables y. If this restricted version of B
has no solution, the problem solver backtracks and seeks a new solu-
tion S2 of the subproblem A. It then solves subproblem B under the
restrictions S2 imposes on y. Hence, the subproblem B is solved sev-
eral times and this for different solutions Si of the subproblem A. Al-
though these solutions are all different, their projection on the com-
mon variables y can be the same, meaning that the same restricted
version of the subproblem B is solved again and again. This thrash-
ing behaviour will in particular be very cumbersome if the whole
problem has no solution and the whole solution space of A needs to
be traversed. Conflict learning permits the problem solver to avoid
this thrashing behaviour. If a subproblem B fails for a restriction C
on the common variables y, the conflict ¬C is incorporated into the
problem A and avoids that solutions with restriction C on variables
y are generated again. If the whole problem is inconsistent, then the
set of learned conflicts is a Craig interpolant [4, 16]. Conflict learn-
ing thus permits a factorization of the problem solving. We can also
1 ILOG S.A., France, email: {ujunker, olhomme}@ilog.fr

show that conflict learning behaves like a lazy version of bucket elim-
ination [5] if the buckets are chosen as subproblems. Hence, conflict
learning is exponential in the induced width [5, 8] in the worst-case.

JTMS thus well supports factorization of problems provided it
uses a static preference ordering between variables as proposed in
[17] when choosing the culprits to be retracted. Moreover, JTMS can
be used to maintain a lexicographically preferred solution. As de-
scribed in [6], non-monotonic justifications can be used to encode
preferences between the different values of a variable, which leads to
an ordered disjunction [3]. This mechanism always activates the best
assignment for a variable that is not defeated by a recorded conflict.
If this best assignment occurs in a new conflict, JTMS can retract this
assignment and activate the next one. This procedure will finally re-
sult in a lexicographically preferred solution, which will be updated
if new constraints are added (e.g. new conflicts learned from interac-
tions with other problems). However, if variable domains are large,
then this procedure may try out many value assignments. An acti-
vated value assignment y = w will only be abandoned if it occurs
in a conflict. When seeking a support for an assignment x = v on
the constraint C(x, y), d such assignments y = wi may be tried out,
meaning that d conflicts have to be learned.

Modern algorithms that maintain arc consistency (MAC) [19] di-
rectly seek supports (i.e. solutions of a single constraint) without
needing to learn so many conflicts. Moreover, the preferences be-
tween values can be used to activate preferred supports [2]. Provided
with an assignment x = v, the constraint C(xy) can thus determine
the preferred support (v, w) for x = v and activate the assignment
y = w without trying out all better value for y. An even further idea
is to synthesize the preferred supports from different constraints into
a lexicographically preferred solution. PrefAC [2] has this behaviour
for tree-like CSPs if parent variables are preferred to child variables.
However, the activation of preferred supports gets blocked for cyclic
constraint networks when different preferred supports activate differ-
ent values for the same variable.

It is possible to learn a conflict in those situations. In this paper,
we show how to combine solution synthesis and conflict learning.
Consider again the two subproblems A(xy) and B(yz). We first de-
termine a preferred solution S1 for A. We then determine a preferred
solution S2 for B under the restriction that it must not be better than
S1 on the common variables y. If both solutions assign the same val-
ues to the common variables y, then we can synthesize them to a so-
lution of the whole problem. Otherwise, we learn a ‘fat’ conflict that
cuts off a whole subtree in the search space of y. All assignments
between S1 (projected to y) and S2 (projected to y) are infeasible.
Hence, less solutions of A need to be generated in turn and conflict
learning becomes effective for CSPs even if domains are large. By
introducing fat conflicts, we enable a return of the JTMS to CP.

The paper is organized as follows: Firstly, we introduce solution
synthesis and conflict learning based on a lexicographical order and
show how they can be used to decompose a problem into two sub-
problems. Secondly, we apply this decomposition recursively until
we obtain buckets, i.e. constraints having a variable in common. We
show how to solve the buckets by reducing lexicographical bounds.

2 Preference-based Interpolation

2.1 Constraints and Preferences

Throughout this paper, we consider combinatorial problems that are
modelled by a set of constraints C formulated over a set of variables
X having the domain D. A variable x from X can be interpreted
by any value v from the domain D and we describe such a variable-
value assignment by the constraint x = v. An assignment to X is
a set that contains exactly one value assignment for each variable in
X . The set of all assignments to X is called the problem space of X .
and we denote it by S(X). We project an assignment σ to a set Y
by defining σ[Y] := {(x = v) ∈ σ | x ∈ Y }. If the assignment σ
contains x = v, we denote the value v of x by σ(x). Furthermore,
we define σ(x1, . . . , xn) as the vector (σ(x1), . . . , σ(xn)).

A constraint c is specified by an n-ary set of variables Xc, called
scope, and an n-ary ‘relation’ Rc, which is described by a subset
of S(Xc). The relation can be specified by a predicate, a numerical
or logical expression, a set of allowed tuples, or a set of forbidden
tuples. An assignment σ to X is a solution of the constraint c iff
σ[Xc] ∈ Rc holds.

The set of variables of a set of constraints C is denoted by
XC :=

⋃
c∈C

Xc. An assignment σ (to X) is a solution of the con-
straints C iff it is a solution of all constraints c ∈ C. It is often
convenient to replace a constraint set C by the conjunction

∧
c∈C

c.
Similarly, we can replace a conjunction

∧k

i=1
ci be the set of its con-

juncts {c1, . . . , ck}. All statements about the constraints C1, C2 can
thus be applied to CSPs and vice versa. Two constraints C1 and C2

with same scope are equivalent iff they have the same solutions.
Throughout this paper, we assume that the user can express pref-

erences between the possible values of a variable xi and we con-
sider some linearization >i of those preferences as indicated in
[13]. Furthermore, we suppose that the user can express an impor-
tance ordering between the variables and we consider a lineariza-
tion > of this importance ordering (cf. [13]). The ordering > can
be used to sort a set of variables. Let X> denote the sorted vec-
tor (xπ1

, . . . , xπn) where X is equal to {x1, . . . , xn} and π is the
permutation of 1, . . . , n that satisfies xπ1

> . . . > xπn . We de-
fine the lexicographical ordering >lex between two vectors of val-
ues v := (vπ1

, . . . , vπn) and w := (wπ1
, . . . , wπn): v >lex w

holds iff there exists an i among 1, . . . , n such that vπj
= wπj

for j = 1, . . . , i − 1 and vπi
>πi

wπi
. A solution σ of C is

called preferred solution of C iff there is no other solution σ∗ s.t.
σ∗(X>) >lex σ(X>). As in [13], we use an optimization opera-
tor Lex(X>) to describe the set of preferred solutions. The operator
maps the constraint C to a new constraint Lex(X>)(C) that is sat-
isfied by exactly the preferred solution of C. This notation allows us
to reason about optimization results inside the constraint language.

The lexicographical ordering can be used to formulate a constraint
in the constraint language. Let x be a sorted vector of variables and
v be a sorted vector of values. The constraint x >lex v is equivalent
to

n∨

i=1

(
i−1∧

j=1

xπj
= vπj

∧ xπi
>πi

vπi
) (1)

We obtain similar constraints for ≥lex, <lex, and ≤lex. The lexi-
cographical constraint allows us to express a property which is fun-
damental for this paper. If σ∗ is a solution of Lex(X>)(C) then C
implies X> ≤lex σ∗(X>).

2.2 Solution Synthesis and Fat Conflicts

We now consider two sets of constraints C1 and C2. Each set repre-
sents a subproblem. We will show how the whole problem C1 ∪ C2

can be solved by solving the two subproblems independently. The
only information that we exchange between the two subproblems are
supplementary constraints that are formulated on the common vari-
ables of C1 and C2, i.e. XC1

∩ XC2
. If the whole problem C1 ∪ C2

is inconsistent, then it is well-known that there is a constraint C ′ that
contains only the common variables, that is implied by C2, and that is
inconsistent w.r.t. C1. The constraint C ′ is called a Craig interpolant
[4, 16]. In this section, we will show that we can either synthesize two
solutions of the subproblems into a solution of the whole problem or
compute a Craig interpolant by generating a sequence of conflicts.
We use the lexicographical preference ordering to determine which
solutions and conflicts may be generated in each step.

We can only synthesize two solutions of the subproblems if the
importance ordering > on the variables ensures that the variables
added by C2 are less important than the variables in C1. We first lift
the ordering on variables to sets of variables: X1 Â X2 iff xi > xj

for all xi ∈ X1, xj ∈ X2. We then extend it to constraints:

Definition 1 A constraint C1 is more important than a constraint C2

in the ordering >, written C1 Â C2, iff XC1
Â XC2

− XC1
.

An example is given be the two constraints in table 1. The domain is
D := {1, 2, 3}. Greater values are preferred for all variables and the
variables are ordered as follows: x1 > x2 > x3 > x4.

From now on, we suppose that C1 is more important than C2. In
section 3.1, we will show that we can always find subproblems that
meet this condition. In the sequel, we write X1 for the ordered tuple
of variables X>

C1
of C1, X2 for the ordered tuple of variables X>

C2
of

C2, ∆ for the ordered tuple of variables (XC1
∩XC2

)> occurring in
both subproblems, and Ω for the ordered tuple of variables (XC1

∪
XC2

)> occurring in the whole problem.
We start the whole solving process by seeking a preferred solution

for the first subproblem C1. If this problem is inconsistent, then C1∪
C2 is inconsistent as well. Hence, the failure of the first subproblem
leads to a global failure and we can stop in this case.

If the first subproblem has the preferred solution σ1, then we
project it on the common variables by taking σ1(∆). If we want to
find a solution σ2 of the second subproblem that is compatible with
σ1, then this other solution cannot be lexicographically better than
σ1 on the common variables ∆. Indeed, if σ2(∆) >lex σ1(∆) holds,
then the two solutions cannot be synthesized. We therefore temporar-
ily add a lexicographical constraint ∆ ≤lex σ1(∆) to C2 when de-
termining a preferred solution of the second subproblem. Please note
that this constraint involves only variables that are shared by both
subproblems. If the enforced version of the second subproblem has
no solution, then the added constraint cannot be true and we can add
its negation to the first subproblem. We thus obtain a first part of an
interpolant:

Proposition 1 Let C1, C2 be two constraint sets and X1, ∆ as de-
fined above. Let σ1 be a solution of Lex(X1)(C1). If C2 ∪ {∆ ≤lex

σ1(∆)} is inconsistent, then

C∗
1 := C1 ∪ {∆ >lex σ1(∆)}

Table 1. Two constraints C1(x1, x2, x3) and C2(x2, x3, x4)

x1 x2 x3
3 2 2 (1. σ1)
3 1 3
1 3 2 (3. σ′

1)
1 2 2
1 2 1
1 1 3

x2 x3 x4
3 3 2
3 1 3 (4. σ′

2)
2 3 3
2 3 1
1 2 3 (2. σ2)
1 1 2

is a constraint that is not satisfied by σ1 and C∗
1 ∪ C2 is equivalent

to C1 ∪ C2. Furthermore, C∗
1 Â C2 if C1 Â C2.

If the enforced version of the second subproblem has the preferred
solution σ2, then we need to check whether σ1 and σ2 coincide on the
common variables ∆. If they do, then we can synthesize the two so-
lutions. Moreover, we also know that the result is a preferred solution
as C2 only adds less important variables. This property is important
if we use the whole procedure recursively. However, if the solutions
do not coincide on the common variables, then we can remove all
assignments to ∆ which are between σ1(∆) and σ2(∆) with respect
to the lexicographical ordering. Whereas standard conflict learning
only removes a branch in a subproblem, we remove a whole subtree.
Hence, we learn ‘fat’ conflicts:

Proposition 2 Let C1, C2 be two constraint sets and X1, X2, ∆, Ω
as defined above. Let σ1 be a solution of Lex(X1)(C1) and σ2 be a
solution of Lex(X2)(C2 ∪ {∆ ≤lex σ1(∆)}).

1. If σ1(∆) = σ2(∆) and C1 Â C2 then σ1 ∪ σ2 is a solution of
Lex(Ω)(C1 ∪ C2).

2. If σ1(∆) 6= σ2(∆) then

C∗
1 := C1 ∪ {∆ ≤lex σ2(∆) ∨ ∆ >lex σ1(∆)}

is a constraint that is not satisfied by σ1 and C∗
1 ∪C2 is equivalent

to C1 ∪ C2. Furthermore, C∗
1 Â C2 if C1 Â C2.

This proposition summarizes the approach of this paper. The first
case corresponds to solution synthesis. The second case corresponds
to conflict learning. Both are coordinated by the global preference
ordering.

Compared to MAC [19], the constraints do not communicate con-
junctions of domain constraints (such as xi 6= vi) to each other,
but lexicographical constraints between a subset of variables and a
vector of values. The result of this communication is either solution
synthesis or a ‘fat’ conflict. As an effect, the number of iterations
for eliminating inconsistent values can be reduced. In the example
of table 1, the inconsistency of the problem is proved in the third
iteration.

2.3 Lex-based Interpolation

We now develop an interpolation algorithm based on the principles
developed in the last section. It basically iterates those principles un-
til a preferred solution of the whole problem has been found or a
Craig interpolant has been added to the first subproblem, thus mak-
ing it inconsistent.

The algorithm LEXINTERPOLATE is shown in figure 2. In each
loop iteration, it first solves the first subproblem which consists of
C1 and of an initially empty set I containing the learned conflicts. If
the first subproblem has no solution, then the whole problem is in-
consistent and the algorithm stops. Otherwise, it takes the preferred

learned conflict
kills solutions of

C1

x1

x2

x3

x4

3
2

1

σ1 σ2 σ′

2
σ′

1

Figure 1. Effect of conflict learning on the search tree of C1.

solution σ1 of the first subproblem and formulates a lexicographi-
cal upper bound constraint on the common variables ∆ and adds it
temporarily to the second subproblem. If the second subproblem pro-
duces a preferred solution σ2 that matches σ1 then both solutions are
combined into a preferred solution of the whole problem and the al-
gorithm stops. In all other cases, a new conflict is learned and added
to the interpolant. This conflict invalidates the previous solution σ1

of the first subproblem, meaning that this solution will be revised
in the next iteration. Hence, each iteration eliminates at least one
assignment in the problem space of ∆ meaning that the algorithm
terminates for finite domains.

Theorem 1 Suppose that C1 Â C2. The algorithm
LEXINTERPOLATE(C1, C2) terminates after at most O(d|∆|)
steps. If C1 ∪ C2 is consistent, then it returns a solution of
Lex(Ω)(C1 ∪C2). Otherwise, it returns an inconsistency and the set
I of the learned conflicts is a Craig interpolant for C2, C1.

The Craig interpolant in the example of table 1 is as follows:
{((x2 ≤ 1) ∨ (x2 = 1 ∧ x3 ≤ 2)) ∨ ((x2 > 2) ∨ (x2 = 2 ∧ x3 > 2)),
((x2 ≤ 3) ∨ (x2 = 3 ∧ x3 ≤ 1)) ∨ ((x2 > 3) ∨ (x2 = 3 ∧ x3 > 2))}

Figure 1 shows how these conflicts are learned. The upper three
levels of the figure show the search tree for C1. The lower three levels
show two copies of the search tree of C2 which are superposed with
the one of C1. Solutions of C1 are displayed by dashed branches and
solutions of C2 are displayed by dotted branches (straight lines are
obtained when both overlap). The shadowed areas show the conflicts.
The first conflict is learned in the first copy of C2’s search tree. As a
consequence, it also appears in the right copy. As it has been added
to C1, it now kills several solutions of C1.

There are several ways to improve the algorithm. For example, we
can add a constraint X1 ≤lex σ1(X1) to C1 recording the fact that
there is no better solution than σ1. When the first problem is resolved
again in later iterations, then the search can immediately start from
σ1 and the part of the search space that is lexicographically greater
than σ1 need not be searched again. Furthermore, the first subprob-
lem may consist of several independent parts and the addition of the
conflict may concern only one of those parts. We need to keep a lex-
icographical upper bound constraints on each independent part in or-
der to ensure that solving complexity is additive for the independent
parts and not multiplicative [9].

Another issue are functional constraints such as x1 + x2 = x3,
in particular if this constraint belongs to the second subproblem and
all variables belong to ∆. When we learn a conflict for ∆, the value
of x3 depends on those of x1 and x2, meaning that we can simplify
the conflict by suppressing x3. It is therefore worth to keep track of
functional dependencies between variables and to detect a subset of
∆ by a conflict analysis similar to [6, 10, 20]. The elaboration of this
algorithm is a topic of future work.

3 Solution Synthesis by Support Activation

3.1 The Activation Process

We now apply the algorithm LEXINTERPOLATE to an arbitrary con-
straint network C and to an arbitrary total ordering > of the vari-
ables of C. The idea is to recursively decompose the constraints C
into subproblems. We observe that decomposition only makes sense
if the second subproblem has a variable that is not contained in the
first subproblem. As a consequence, we stop decomposition if all the
constraints in a subproblem share the last variable of the subproblem.
In [5], this is called a bucket. There are different ways to decompose
a problem into buckets. In this paper, we visit the variables of C in
the ordering X> = (xπ1

, . . . , xπn) that is produced by >. For each
variable xπi

, we define the two subproblems C
(i)
1 and C

(i)
2 :

1. C
(i)
1 is the set of all constraints from C that contain only variables

from xπ1
, . . . , xπi−1

2. C
(i)
2 is the set of all constraints from C that contain only variables

from xπ1
, . . . , xπi

and that contain the variable xπi
.

The two sets are disjoint. The first subproblem for the first variable
C

(1)
1 is equal to the empty set. We consider the whole problem of a

variable xπi
, which is the union C

(i)
1 ∪C

(i)
2 of the two subproblems.

This whole problem is equal to C
(i+1)
1 if i < n. The whole problem

of the last variable is equal to C. The second subproblem C
(i)
2 is the

bucket for the variable xπi
as all of its constraints contain xπi

as their
last variable. The first subproblem of a variable is more important
than its second subproblem, i.e. C

(i)
1 Â C

(i)
2 for i = 1, . . . , n.

Each decomposition thus meets the requirements of algorithm
LEXINTERPOLATE and can be solved by it. Hence, we apply LEX-
INTERPOLATE in a sequence, activating one variable after the other.
When we activate a variable xπi

for i > 1, we already have a solu-
tion for its first subproblem as it is equal to the whole problem of the
previous variable. We just need to find a solution for the bucket of
the variable while taking into account the lexicographical constraint
∆ ≤lex σ1(∆) that is formulated on all variables of the bucket ex-
cept for xπi

. If the second subproblem alone (i.e. without lexico-
graphical constraint) is inconsistent, then this inconsistency will only
be detected after the first subproblem is solved. If the second sub-
problem is smaller in size than the first subproblem, we will check
the consistency of the second subproblem before solving the first one.

The whole process has some similarities to bucket elimination
(BE). BE processes the variables from the last one to the first one.
It eliminates a variable xπi

from its bucket by deriving a new con-
straint between the remaining variables of the bucket. This constraint
is a Craig interpolant for C

(i)
1 and C

(i)
2 if the problem is inconsistent

and thus corresponds to the set of conflicts learned by LEXINTER-
POLATE. Otherwise, LEXINTERPOLATE learns only a part of those
constraints and thus behaves like a lazy form of bucket elimination.

3.2 Heavy Supports

We now discuss how to determine a solution for the bucket B :=
C

(i)
2 of variable y := xπi

. When searching this solution, we have
already determined a preferred solution σ1 for the problem C

(i)
1 . This

solution assigns a value to each variable of the bucket except for y.
Let ∆ be the ordered vector of all those variables, i.e. ∆ := (XB −
{y})>. As explained in section 2.2, we add a lexicographical upper
bound constraint ∆ ≤lex σ1(∆) when seeking a preferred solution
of the bucket. This constraint can easily be extended to an equivalent

Algorithm LEXINTERPOLATE(C1, C2)
1. I := ∅;
2. while true do
3. σ1 := Lex(X1)(C1 ∪ I);
4. if σ1 is an inconsistency then return ⊥;
5. σ2 := Lex(X2)(C2 ∪ {∆ ≤lex σ1(∆)});
6. if σ2 is an inconsistency then
7. I := I ∪ {∆ >lex σ1(∆)};
8. else if σ1(∆) = σ2(∆) then
9. return σ1 ∪ σ2;
10. else I := I ∪ {∆ ≤lex σ2(∆) ∨ ∆ >lex σ1(∆)};

Figure 2. Algorithm for lexicographic interpolation.

constraint that covers the variable y as well. We simply add to σ
the assignment of the variable y to its best value v∗, thus obtaining
σ := σ1 ∪ {y = v∗}. The best value of y is simply the value in
the domain of y that is maximal w.r.t. the ordering >πi

. Let Y be
the ordered vector of the variables in the bucket, i.e. Y := X>

B . Our
problem then consists in finding a preferred solution of the bucket B
and the lexicographical constraint Y ≤lex σ(Y).

If the bucket contained only a single constraint, then the problem
would reduce to that of finding a support of the constraint that is
worse than or equal to σ(Y). We first test whether σ(Y) satisfies
the constraint. If not, we seek the next best tuple according to the
lexicographical order. If the bucket contains multiple constraints, all
defined on the same variables Y , then we can iterate this approach.
Each time, we invoke a constraint with a given lexicographical upper
bound σ, it will reduce this to a new upper bound. We iterate this ap-
proach until the given upper bound satisfies all the constraints or until
we encounter a constraint that cannot be satisfied under the reduced
bound. The solution obtained in the first case combines the supports
of all the constraints of variable y. We therefore call it a heavy sup-
port. Whereas classic supports indicate that a single variable-value
assignment is consistent w.r.t. a constraint, a heavy support indicates
that a bucket has a solution under a given lexicographical bound.

A bucket can contain multiple constraints which have some vari-
ables in common, but not all. An example is

c1 := (x1 = 2 ∧ x3 = 2 ∧ y = 1) ∨ (x1 = 2 ∧ x3 = 1 ∧ y = 2)
c2 := (x1 = 2 ∧ x2 = 2 ∧ y = 2) ∨ (x1 = 1 ∧ x2 = 1 ∧ y = 1)

Suppose that higher values are preferred for all variables and that the
variables are ordered as follows: x1 > x2 > x3 > y. If the initial
bound is {x1 = 2, x2 = 2, x3 = 2, y = 2}, we first invoke c1,
which reduces this bound to {x1 = 2, x2 = 2, x3 = 2, y = 1}. If
the constraint c2 ignores the variable x3, then it will return {x1 =
1, x2 = 1, y = 1} as best support under {x1 = 2, x2 = 2, y =
1}. However, if x3 is taken into account, then new bound should be
{x1 = 2, x2 = 2, x3 = 1, y = 2}. It is obtained by reducing the
value for x3 and by choosing the tuple {x1 = 2, x2 = 2, y = 2} of
c2. Hence, a constraint can modify the bound on a variable even if it
does not contain it. We capture this by the following definition:

Definition 2 Let σ be an assignment to X and c be a constraint s.t.
Xc ⊆ X . An assignment σ′ to X is a support for c under σ iff (1)
σ′ ≤lex σ and (2) σ′ satisfies c, i.e. σ′[Xc] ∈ Rc. An assignment σ′

is a preferred support for c under σ iff σ′ is a support for c under σ
and there is no other support σ∗ for c under σ s.t. σ′ <lex σ∗.

A preferred support for c under σ can be found by a generic algo-
rithm. Customized algorithms for certain types of constraints (ta-
bles with forbidden tuples; lex constraints; numerical constraints)
can speed up support finding and are a topic of future work.

Algorithm HEAVYSUPPORT(B, σ)
1. Q := {c ∈ B | σ[Xc] /∈ Rc};
2. while Q 6= ∅ do
3. choose best c from Q;
4. if c has a support under σ then
5. let σ′ be the preferred support of c under σ;
6. set σ to σ′;
7. else return ⊥.
8. Q := {c ∈ B | σ[Xc] /∈ Rc};
9. return σ.

Figure 3. Algorithm for finding heavy supports.

An algorithm for finding a heavy support is described in figure
3. In each step, the algorithm determines the set of constraints that
are not satisfied by the lexicographical bound. It selects such a con-
straint c, determines a preferred support for c, and uses it to reduce
the lexicographical bound. Constraints having more important vari-
ables should be processed first as they can result in higher decreases
of the bound. When reducing the bound, some variables are changing
their value and all constraints containing those variables need to be
rechecked. If they are not satisfied by the new bound, they are added
to the queue Q. The process is repeated until the current bound sat-
isfies all the constraints or there is a constraint that has no support
under the given bound.

Theorem 2 The algorithm HEAVYSUPPORT(B, σ) terminates after
at most O(d|Y |) iterations. If B∪{Y ≤lex σ(Y)} is consistent, then
it returns a solution of Lex(Y)(B ∪ {Y ≤lex σ(Y)}). Otherwise, it
returns an inconsistency.

It is important to understand the ‘backtracking’ behaviour of the al-
gorithm. When seeking for a preferred support, the algorithm will
first reduce the bound on the last variable. If this fails, it backtracks
to the previous variable and will reduce its bound. By doing this, it
can hit a ‘hole’, i.e. a variable that does not belong to the constraint.
After reducing the bound on the ‘hole’, the algorithm can choose any
value for the succeeding variables, return a support, and hand over
control to a constraint having a variable covering the hole. However,
it can also happen that there is no support given the values of the
variables preceding the hole. In that case, the algorithm backjumps
over the hole and changes a value of a variable that precedes the hole.

4 Conclusion

In [15], David McAllester has predicted that MAC-based solvers will
outperform constraint engines based on truth maintenance. For more
than one decade, this had been true. The recent success of conflict
analysis and conflict learning in SAT solvers has changed the picture
again. It became an intensive research topic to extend SAT by spe-
cific theories such as linear constraints, uninterpreted functions, and
others, and to make conflict learning work for those problems. In
this paper, we showed that conflict learning can profit from the struc-
ture of general CSPs as well. It reacts to the failure of synthesizing
supports and the learned conflicts cut off whole subtrees and not just
partial assignments. We thus obtain a smooth adaption of JTMS ideas
from [6] to CSPs, while generalizing the form of conflicts and allow-
ing compact representations of Craig interpolants in form of lexi-
cographical constraints. The approach makes conflict learning more
pervasive for CP and permits a return of the JTMS to CP. However,
the approach may also be interesting for other applications of Craig
interpolants [1, 16].

Our work has the same relation to BE as PrefAC [2] has to AC as it
focuses effort to preferred values. We get the behaviour of PrefAC for
problems with an induced width of 1. As LEXINTERPOLATE keeps
results of subproblems that are solved again and again, it promises a
better behaviour for proving inconsistencies as required by overcon-
strained configuration problems [11] and by certain software verifi-
cation problems (such as the detection of tests that are always false).
It also appears that we exchanged the roles of search and inference.
Each constraint has a customized support finding algorithm, which is
indeed a local backjumping [18] search algorithm. And LEXINTER-
POLATE provides a generic algorithm that infers ‘fat’ conflicts based
on the result of the local searches. It is important to note that this
is only possible if the different subproblems share the same prefer-
ence orders. We thus identified another case where preferences play
an important role for problem solving [7].

Experimental evaluation for specific software verification prob-
lems is in progress. Future work will be devoted to incorporate the
best-fail principle from [12] to deal with infinite domains as they oc-
cur in software verification problems.

REFERENCES
[1] Eyal Amir and Sheila A. McIlraith, ‘Partition-based logical reasoning.’,

in KR 2000, pp. 389–400, (2000).
[2] Christian Bessière, Anaı̈s Fabre, and Ulrich Junker, ‘Propagate the right

thing: how preferences can speed-up constraint solving’, in IJCAI-03,
pp. 191–196, Acapulco, (2003).

[3] Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen, ‘Logic pro-
grams with ordered disjunction’, Computational Intelligence, 20, 335–
357, (2004).

[4] William Craig, ‘Three uses of the Herbrand-Gentzen theorem in relat-
ing model theory and proof theory’, Journal of Symbolic Logic, 22,
269–285, (1957).

[5] Rina Dechter, ‘Bucket elimination: A unifying framework for reason-
ing.’, Artificial Intelligence, 113(1-2), 41–85, (1999).

[6] Jon Doyle, ‘A truth maintenance system’, Artificial Intelligence, 12,
231–272, (1979).

[7] Jon Doyle, ‘Prospects for preferences’, Computational Intelligence, 20,
11–136, (2004).

[8] Eugene C. Freuder, ‘Complexity of k-tree structured constraint satis-
faction problems.’, in AAAI-90, pp. 4–9, (1990).

[9] Matthew L. Ginsberg, ‘Dynamic backtracking’, Journal of Artificial In-
telligence Research, 1, 25–46, (1993).

[10] Roberto J. Bayardo Jr. and Robert Schrag, ‘Using CSP look-back tech-
niques to solve real-world SAT instances.’, in AAAI-97, pp. 203–208,
(1997).

[11] Ulrich Junker, ‘QUICKXPLAIN: Preferred explanations and relaxations
for over-constrained problems’, in AAAI-04, pp. 167–172, (2004).

[12] Ulrich Junker, ‘Preference-based inconsistency proving: When the fail-
ure of the best is sufficient’, in IJCAI-05 Multidisciplinary Workshop
on Advances in Preference Handling, pp. 106–111, (2005).

[13] Ulrich Junker, ‘Preference-based problem solving for constraint pro-
gramming’, in Preferences: Specification, Inference, Applications,
Dagstuhl Seminar Proceedings 04271, (2006).

[14] Narendra Jussien, Romuald Debruyne, and Patrice Boizumault, ‘Main-
taining arc-consistency within dynamic backtracking’, in CP 2000, pp.
249–261, (2000).

[15] David A. McAllester, ‘Truth maintenance.’, in AAAI-90, pp. 1109–
1116, (1990).

[16] Kenneth L. McMillan, ‘Applications of Craig interpolants in model
checking.’, in TACAS 2005, pp. 1–12, (2005).

[17] Charles Petrie, ‘Revised dependency-directed backtracking for default
reasoning’, in AAAI-87, pp. 167–172, (1987).

[18] Patrick Prosser, ‘Hybrid algorithms for the constraint satisfaction prob-
lem’, Computational Intelligence, 9, 268–299, (1993).

[19] Daniel Sabin and Eugene C. Freuder, ‘Contradicting conventional wis-
dom in constraint satisfaction.’, in ECAI-94, pp. 125–129, (1994).

[20] João P. Marques Silva and Karem A. Sakallah, ‘GRASP: A search al-
gorithm for propositional satisfiability.’, IEEE Trans. Computers, 48(5),
506–521, (1999).

