
Evaluating ASP and commercial solvers on the CSPLib
Marco Cadoli, Toni Mancini, Davide Micaletto and Fabio Patrizi1

Abstract. This paper deals with three solvers for combinatorial
problems: the commercial state-of-the-art solver Ilog OPL, and the
research ASP systems DLV and SMODELS. The first goal of this re-
search is to evaluate the relative performance of such systems, using
a reproducible and extensible experimental methodology. In particu-
lar, we consider a third-party problem library, i.e., the CSPLib, and
uniform rules for modelling and selecting instances. The second goal
is to analyze the effects of a popular reformulation technique, i.e.,
symmetry breaking, and the impact of other modelling aspects, like
global constraints and auxiliary predicates. Results show that there is
not a single solver winning on all problems, and that reformulation is
almost always beneficial: symmetry-breaking may be a good choice,
but its complexity has to be carefully chosen, by taking into account
also the particular solver used. Global constraints often, but not al-
ways, help OPL, and the addition of auxiliary predicates is usually
worth, especially when dealing with ASP solvers. Moreover, inter-
esting synergies among the various modelling techniques exist.

1 Introduction

The last decade has witnessed a large effort in the development of
solvers for combinatorial problems. The traditional approach based
on writing ad hoc algorithms, complete or incomplete, or translat-
ing in a format suitable for Integer Programming solvers2, has been
challenged by the use of libraries for Constraint Programming (CP),
such as Ilog SOLVER3, interfaced through classical programming
languages, e.g. C++ or Prolog. At the same time, the need for a higher
level of abstraction led to the design and development of 1) Gen-
eral purpose languages for constraint modelling/programming –e.g.
OPL [16], XPRESSMP4 or GAMS [1]– and 2) Languages based on spe-
cific solvers, such as AMPL [7], DLV [8], SMODELS [11] or AS-
SAT [9].

This paper focuses on the last class of solvers, which are highly
declarative, and characterized by the possibility of decoupling the
specification of a problem from the instance, and by having op-
tional procedural information. In particular, we consider one com-
mercial state-of-the-art solver, i.e., Ilog OPL and some ASP solvers,
namely DLV and SMODELS. The latter has the interesting property of
sharing the specification language with several other solvers through
the common parser LPARSE5. As a matter of fact, such systems ex-
hibit interesting differences, including availability (OPL and ASP
are, respectively, payware and freeware systems, the latter often be-
ing open source), algorithm used by the solver (resp. backtracking-
and fixpoint-based), expressiveness of the modelling language (e.g.,

1 Dipartimento di Informatica e Sistemistica, Università di Roma “La
Sapienza”. E-mail: cadoli|tmancini|micaletto|patrizi@dis.uniroma1.it

2 e.g. Ilog CPLEX, cf. http://www.ilog.com/products/cplex.
3 cf. http://www.ilog.com/products/solver.
4 cf. http://www.dashoptimization.com.
5 cf. http://www.tcs.hut.fi/Software/smodels.

availability of arrays of finite domain variables vs. boolean matrices),
compactness of constraint representation (e.g., availability of global
constraints), possibility of specifying a separate search procedure.

The first goal of this research is to evaluate the relative perfor-
mance of such systems, using a reproducible and extensible exper-
imental methodology. In particular, we consider a third-party prob-
lem library, i.e. the CSPLib6, and uniform rules for modelling and
instance selection. The second goal is to analyze the effects of a pop-
ular reformulation technique, i.e. symmetry breaking, and the impact
of other modelling aspects, like the use of global constraints and
auxiliary predicates.

As for symmetry-breaking, given the high abstraction level of the
languages, an immediately usable form of reformulation is through
the addition of new constraints (cf., e.g., [3, 6]). Since previous stud-
ies [13] showed that this technique is effective when simple formulae
are added, it is interesting to know –for each class of solvers– what
is the amount of symmetry breaking that can be added to the model,
and still improving performances. As a side-effect, we also aim to
advance the state of knowledge on the good practices in modelling
for some important classes of solvers.

Comparison among different solvers for CP has already been ad-
dressed in the literature: in particular, we recall [5] and [17] where
SOLVER is compared to other CP languages such as, e.g., OZ [15],
CLAIRE7, and various Prolog-based systems. Moreover, some bench-
mark suites have been proposed, cf., e.g., the COCONUT one [14].
Also on the ASP side, which has been the subject of much research
in the recent years, benchmark suites have been built in order to fa-
cilitate the task of evaluating improvements of their latest implemen-
tations, the most well-known being ASPARAGUS8 and ASPLib9.
However, less research has been done in comparing solvers based on
different formalisms and technologies, and in evaluating the relative
impact of different features and modelling techniques. In particular,
very few papers compare ASP solvers to state-of-the-art systems for
CP. To this end, we cite [4], where two ASP solvers are compared to a
CLP(FD) Prolog library on six problems: Graph coloring, Hamilto-
nian path, Protein folding, Schur numbers, Blocks world, and Knap-
sack, and [12], where ASP and Abductive Logic Programming sys-
tems, as well as a first-order finite model finder, are compared in
terms of modelling languages and relative performances on three
problems: Graph coloring, N-queens, and a scheduling problem.

In this research we consider the CSPLib problem library for our
experiments. CSPLib is a collection of 45 problems, classified into
7 areas, and is widely known in the CP community. Since many of
them are described only in natural language, this work also provides,
as a side-effect, formal specifications of such problems in the mod-
elling languages adopted by some solvers.

6 cf. http://www.csplib.org.
7 cf. http://claire3.free.fr.
8 cf. http://asparagus.cs.uni-potsdam.de.
9 cf. http://dit.unitn.it/∼wasp.

2 Methodology
In this section we present the methodology adopted in order to
achieve the two goals mentioned in Section 1. For each problem, we
define a number of different formulations, a base specification, ob-
tained by a straightforward and intuitive “translation” of the CSPLib
problem description into the target language, and several reformu-
lated ones, obtained by using different techniques proposed in the
literature: (i) symmetry-breaking, (ii) addition of global constraints
and (iii) addition of auxiliary predicates. Moreover, in order to es-
tablish whether merging different reformulations, which are proven
to improve performances when used alone, speeds-up even more the
computation, we considered additional specifications for the same
problems, obtained by combining the aforementioned techniques,
and exploring the existence of synergies among them. Finally, a pre-
liminary evaluation of the impact of numbers and arithmetic con-
straints in all the languages involved in the experimentation has been
performed on one problem.

We tried to do the modelling task in a way as systematic as possi-
ble, by requiring the specifications of the various solvers to be similar
to each other. The criteria followed during the modelling task are dis-
cussed in Section 3.2. As for the instances, in this paper we opted for
problems which input data is made of few integer parameters (with
two exceptions, which are discussed in Section 3.1). In order to have
a synthetic qualitative measure of the various solvers performance,
for each problem we fix all the input parameters but one. Hence in
our results we report for each problem and solver the largest instance
(denoted by the value given to the selected parameter) that is solvable
in a given time limit (one hour).

3 The experimental framework
3.1 Selecting the problems
So far we have formulated and solved 7 problems, which are listed
along with their identification number in CSPLib and the parameter
that defines problem instances. Such problems cover the 7 areas of
the collection. For space reasons, we omit their descriptions, which
can be found at www.csplib.org.

Id Problem name Instances defined by
017 Ramsey # of graph nodes
010 Social golfer (decisional version) Schedule length

(32 players, 8 groups of 4)
006 Golomb rulers # of marks
001 Car sequencing Benchmark instances
018 Water buckets Benchmark instances
032 Maximum density still life Board size
033 Word design (decisional version) # of words

Some comments are in order. First of all, we considered the de-
cisional versions of two problems, Social golfer and Word design,
since our solvers were unable to achieve the optimal solutions. Sec-
ondly, for two problems, Car sequencing and Water buckets, in-
stances could not be naturally encoded by a single parameter. Hence,
they have been derived from benchmarks taken from the CSPLib.
In particular, as for Car sequencing, we considered benchmarks
“4/72”, “6/76” and “10/93”. Unfortunately, they were too hard for
our solvers. Hence, from any of them, we generated a set of instances
by reducing the number of car classes (cf. the CSPLib problem de-
scription) to all possible smaller values, and consequently resizing
station capacities in order to avoid an undesirable overconstraining
that would make instances unfeasible. Thus, instances derived from
the same benchmark could be ordered according to the value for the

(reduced) number of classes, which can be regarded as a measure for
their size. As for Water buckets instead, we observe that the CSPLib
formulation actually fixes the capacities of the three buckets and both
the start and goal states. Hence, we built a specification parametric
wrt the start and goal states, and designed 11 instances from that con-
sidered in the original problem description, which have been proved
to be non-trivial by preliminary experiments. Since such instances
could not be denoted by a single parameter, solvers’ performance for
this problem and the different specifications have been compared by
considering the overall time needed to solve them.

The Water buckets problem has been used also to evaluate the im-
pact of numbers and arithmetic constraints in problem models. In
fact, it is well known that such issues may greatly degrade solvers’
performance, and that this behavior strongly depends on the underly-
ing solving algorithm. In order to understand how negatively num-
bers and arithmetic constraints affect the behavior of the various
solvers, we built a new set of instances, obtained by the original one
by duplicating the capacities of the buckets (originally 3, 5, and 8),
and the amount of water in each of them both in the start and goal
states. Of course, the new instances are equivalent to the original
ones, having the same set of solutions, but force all solvers to deal
with larger domains for numbers.

3.2 Selecting the problem models
As claimed in Section 2, in order to build an extensible experi-
mental framework, we followed the approach of being as uniform
and systematic as possible during the modelling phase, by requiring
the specifications of the various solvers to be similar to each other.
Hence, even if not always identical because of the intrinsic differ-
ences among the languages that could not be overcome, all of the
models share the same ideas behind the search space and constraints
definitions, independently of the language. Below, we discuss the
general criteria followed during the modelling phase, and the dif-
ferent formulations considered for each problem10.

General modelling criteria. The first obvious difference between
OPL and the ASP solvers concerns the search space declaration. The
former relies on the notion of function from a finite domain to a fi-
nite domain, while the latter ones have just relations, which must
be restricted to functions through specific constraints. Domains of
relations can be implicit in DLV, since the system infers them by
contextual information. For each language, we used the most natural
declaration construct, i.e, functions for OPL, and untyped relations
for DLV. Secondly, since the domain itself can play a major role in
efficiency, sometimes it has been inferred through some a posteriori
consideration. As an example, in Golomb rulers the maximum po-
sition for marks is upper-bounded by 2m (m being the number of
marks), but choosing such a large number can advantage OPL, which
has powerful arc-consistency algorithms for domain reduction. As a
consequence, we used the upper bound 3L/2 for all solvers, L being
the maximum mark value for the optimum of the specific instance.

Finally, since the performance typically depends on the instances
being positive or negative, we considered the optimization versions
of Ramsey, Golomb rulers, Water buckets, and Maximum density
still life problems. As a matter of fact, for proving that a solution is
optimal, solvers have to solve both positive and negative instances.

Base specifications. The first formulation considered for each prob-
lem is the so called base specification. This has been obtained by a
straightforward translation of the CSPLib problem description into

10 cf. http://www.dis.uniroma1.it/∼patrizi/ecai06/
encodings.html for their encodings.

the target language, by taking into account the general criteria dis-
cussed above, and, arguably, is the most natural and declarative.
Reformulation by symmetry-breaking. The first kind of refor-
mulation considered aims at evaluating the impact of performing
symmetry-breaking. Since we deal with highly declarative languages
that exhibit a neat separation of the problem specification from the
instances, we adopted the approach of adding further constraints to
the base specification that break the structural symmetries of the
problems. Symmetry-breaking is dealt with in a systematic way, by
considering the general and uniform schemes for symmetry-breaking
constraints presented in [10]. These are briefly recalled in what fol-
lows (examples below are given in the simple case where all permu-
tations of values are symmetries; generalizations exist):

• Selective assignment (SA): A subset of the variables are as-
signed to precise domain values: a good example is in the Social
golfer problem, where, in order to break the permutation symme-
tries among groups, we can fix the group assignment for the first
and partially for the second week.

• Selective ordering (SO): Values assigned to a subset of the vari-
ables are forced to be ordered: an example is given by the Golomb
rulers problem, where, in order to break the symmetry that “re-
verses” the ruler, we can force the distance between the first two
marks to be less than the difference between the last two.

• Lowest-index ordering (LI): Linear orders are fixed among
domain values and variables, and assignments of variables
(x1, . . . , xn) are required to be such that, for any pair of values
(d, d′), if d < d′ then min{i|xi = d} < min{i|xi = d′}. An
example is given by the Ramsey problem: once orders are fixed
over colors, e.g. red < green < blue, and over edges, we can
force the assignments to be such that the least index of red col-
ored edges is lower than the least index of green colored ones, and
analogously for green and blue edges.

• Size-based ordering (SB): After fixing a linear order on values,
we force assignments to be such that |{x ∈ V |x = d}| ≤ |{x ∈
V |x = d′}|, for any pair of values d ≤ d′, V being the set of
variables. For example, in the Ramsey problem we could require
the number of blue colored edges to be greater than or equal to that
of green ones, in turn forcing the latter to be greater than or equal
to the number of red colored edges. Generalizations of this schema
do exist, depending on the way the partition of the variables set
into size-ordered sets is defined.

• Lexicographic ordering (LX): This schema is widely applied
in case of search spaces defined by matrices, where all permuta-
tions of rows (or columns) are symmetries. It consists in forcing
the assignments to be such that all rows (resp. columns) are lexi-
cographically ordered.

• Double-lex (lex2) ordering (L2): A generalization of the pre-
vious schema, applicable where the matrix has both rows and
columns symmetries. It consists in forcing assignments to be such
that both rows and columns are lexicographically ordered (cf.,
e.g., [6]). A good example is Social golfer, in which the search
space can be defined as a 2D matrix that assigns a group to every
combination player/week. Such a matrix has all rows and columns
symmetries (we can swap the schedules of any two players, and
the group assignments of any two weeks).

Above schemes for symmetry-breaking can be qualitatively classi-
fied in terms of “how much” they reduce the search space (i.e., their
effectiveness), and in terms of “how complex” is their evaluation. In
particular they can be partially ordered as follows: SA < SO < LI
< LX < L2, and LI < SB, where s1 < s2 means that schema s2

better reduces the search space. However, s2 typically requires more
complex constraints than s1.

In many cases, more than a single schema is applicable for break-
ing the symmetries of a given specification and the problem of choos-
ing what is the “right” amount of symmetry-breaking that is worth
adding for a given solver arises. In what follows, we give a partial
answer to this question.

Reformulation by adding global constraints. Global constraints
(GC) encapsulate, and are logically equivalent to, a set of other
constraints. Despite this equivalence, global constraints come with
more powerful filtering algorithms, and a specification exhibiting
them is likely to be much more efficiently evaluable. One of the
most well-known global constraints supported by constraint solvers
is alldifferent(x1,...,xn) that forces the labeling algo-
rithm to assign different values to all its input variables. Of course,
such a constraint can be replaced by a set of binary inequalities xi
6= xj (for all i 6= j), but such a substitution will result in poorer
propagation, hence in less efficiency. Several global constraints are
supported by OPL, e.g., alldifferent and distribute. Ac-
cording to the problems structure, the former has been applied to
Golomb Rulers and the latter to Social golfer, Car sequencing and
Word design. As for Ramsey, Water bucket and Maximum density
still life none of such reformulations applies.

On the other hand, ASP solvers do not offer such a feature, hence
no comparison can be made on this issue.

Reformulation by adding auxiliary predicates. A predicate in the
search space is called auxiliary if its extensions functionally depend
on those of the other ones. The use of auxiliary guessed predicates
is very common in declarative programming, especially when the
user needs to store partial results, to maintain intermediate states. Al-
though the use of auxiliary predicates increases the size of the search
space, in some cases this results in a simplification of complex con-
straints and in a reduction of the number of their variables, and hence
may lead to appreciable time savings.

We consider equivalent specifications, obtained by using auxiliary
predicates, for all of the selected problems. However, the bottom-up
evaluation algorithms of DLV and SMODELS may significantly ad-
vantage ASP solvers over OPL on such specifications, since auxil-
iary predicates are usually defined in rule-heads. To this end, when
adding auxiliary predicates to OPL specifications, we also added
simple search procedures instructing the labelling algorithm to not
branch on auxiliary variables, while maintaining the default behav-
ior on the others.

Reformulation by combining different techniques. In many cases,
more than one single reformulation strategy improves performances
on a given problem. Hence, the question arises whether synergies ex-
ist among them, and what techniques are likely to work well together,
for each solver. To this end, for each problem we consider two addi-
tional formulations: the first one has been obtained, according to the
aforementioned uniformity criteria, by merging the two reformula-
tions (among symmetry-breaking, addition of global constraints and
of auxiliary predicates) that, for each solver, resulted to be the most
performant. Finally, in order to understand whether there exist better,
undiscovered synergies, we relaxed the uniformity hypothesis, and
considered some of the other possible combinations of reformulation
strategies, with the goal to further boost performances.

4 Experimental results

Our experiments have been performed by using the following
solvers: i) Ilog SOLVER v. 5.3, invoked through OPLSTUDIO 3.61,

ii) SMODELS v. 2.28, by using LPARSE 1.0.17 for grounding, iii) DLV
v. 2005-02-23, on a 2 CPU Intel Xeon 2.4 Ghz computer, with a 2.5
GB RAM and Linux v. 2.4.18-64GB-SMP.

For every problem, we wrote the specifications described in Sec-
tions 2 and 3 in the different languages. We then ran the different
specifications for each solver on the same set of instances, with a
timeout of 1 hour. Table 1 shows a summary of the results concern-
ing base specifications and their various reformulations. In particu-
lar, for each problem and solver, we report the largest instance the
various systems were able to solve (in the given time-limit) for the
base specifications, and the improvements obtained by the different
reformulations. A 0+ (resp. 0−) means that the size of the largest
instance solved within the time limit was unchanged, but absolute
solving times were significantly lower (resp. higher). As for Car se-
quencing, we report, for each set of instances generated from CSPLib
benchmarks “4/72”, “6/76” and “10/93”, the largest one solved, i.e.,
the one with the largest number of classes (cf. the discussion about
instance selection for this problems in Section 3.1), and, as for Water
buckets, the overall time needed to solve the whole set of instances
(instances that could not be solved contributed with 3,600 seconds to
the overall time).

Impact of symmetry-breaking. From the experiments, it can be ob-
served that symmetry-breaking may be beneficial, although the com-
plexity of the adopted symmetry-breaking constraints needs to be
carefully chosen. As an example, DLV performs much better on the
Ramsey problem with LI symmetry-breaking constraints, but it is
slowed down when the more complex SB schema is adopted. A sim-
ilar behavior can be observed on SMODELS.

As for Social golfer, Table 1 does not show significant perfor-
mance improvements when symmetry-breaking is applied, with the
ASP solvers (especially SMODELS) being significantly slowed down
when adopting the most complex schemas (LX and L2). However, it
is worth noting that, on smaller negative (non-benchmark) instances,
impressive speed-ups have been obtained for all systems, especially
when using SA. As for LX, we also observe that it can be applied in
two different ways, i.e., forcing either players’ schedulings or weekly
groupings to be lexicographically ordered. Values reported in Table 1
are obtained by lexicographically ordering weekly groupings: as a
matter of fact, ordering players’ schedulings is even less performant
on SMODELS, being comparable for the other solvers. General rules
for determining the right “amount” of symmetry breaking for any
given solver on different problems are currently still unknown, but
it seems that the simplest ones, e.g., SA, have to be preferred when
using ASP solvers.

Impact of global constraints. Experiments confirm that OPL may
benefit from the use of global constraints. As an example, the base
specification of the Golomb rulers problem encodes the constraint
that forces the differences between pairs of marks to be all dif-
ferent by a set of binary inequalities. By replacing them with an
alldifferent constraint, OPL was able to solve the instance
with 11 marks in the time-limit, and time required to solve smaller
instances significantly decreases. Also the Social golfer specifica-
tion can be restated by using global constraints, in particular the
distribute constraint. However, in this case our results show
that OPL does not benefit from such a reformulation, in that it was
not able to solve even the 4-weeks instance (solved in about 11 sec-
onds with the base specification). Global constraints help OPL also
on other problems, i.e., Car sequencing, where distribute can
be used, even if the performance improvements don’t make it able to
solve larger instances. Finally, Word Design seems not to be affected
by the introduction of distribute.

Impact of auxiliary predicates. ASP solvers seem to benefit from
the use of auxiliary predicates (often not really needed by OPL, which
allows to express more elaborate constraints), especially when they
are defined relying on the minimal model semantics of ASP (hence,
in rule heads). As an example, SMODELS solves the 6-weeks in-
stance of the Social golfer problem in 6 seconds, when the auxil-
iary meet/3 predicate is used, while solving the base specification
requires 41 minutes. Even if not as much remarkable, a similar be-
havior is observed in DLV. Similar results have been obtained for
Ramsey, where the auxiliary predicate color used/1 is added.

Using the meet auxiliary predicate helps also OPL (but only after
a simple search procedure that excludes branches on its variables has
been added, cf. Section 3.2). In particular, the 5-weeks instance has
been solved in just 8 seconds (with respect to the 80 seconds of the
base specification). It is interesting to note that, by adding a smarter
search procedure, solving time dropped down to less than a second.
This is a good evidence that exploiting the peculiarities of the solver
at hand may significantly increase the performance.

Synergic reformulations. Specifications obtained by combining, for
each problem and solver, the most two performant techniques, in
many cases further boost performances, or at least do not affect them
negatively. This is the case, e.g., of Social Golfer, Golomb Rulers,
and Word design problems when solved by OPL, that proved to be
able to deal with larger instances, and Car sequencing, where solv-
ing times significantly decreased. Few exceptions do exist, i.e., Ram-
sey and Maximum density still life, where solving times were a bit
higher, but did not prevent OPL to deal with the largest instances pre-
viously solved. Similar results can be observed for SMODELS and
DLV. This gives evidence that combining “good” reformulations is
in general a promising strategy to further boost performance of all
solvers. Table 1 also shows some of the results obtained by other
possible combinations, without considering any uniformity criteria.
It can be observed that in few cases even better results could be
achieved (cf., e.g., OPL on Social golfer and the specification with
auxiliary predicates and global constraints), but in several others,
only worse performances were obtained.

Impact of numbers and arithmetic constraints. Experiments per-
formed on Water buckets, with the most performant specification
(i.e., that with auxiliary predicates) on instances obtained by dou-
bling both the buckets capacities and the water contents in the start
and goal states, confirm that numbers and arithmetic constraints are
a major obstacle for all solvers. In particular, the time needed by OPL
to solve the whole set of instances is almost 13 times higher, while
for DLV and SMODELS the solving time increases, respectively, of
about 130 and 45 times.

5 Conclusions

In this paper we reported results about an experimental investiga-
tion which aims at comparing the relative efficiency of a commercial
backtracking-based and two academic ASP solvers. In particular, we
modelled a number of problems from the CSPLib into the languages
used by the different solvers, in a way as systematic as possible, by
also applying symmetry-breaking, using global constraints and aux-
iliary predicates, and evaluating synergies among such techniques.
Results show that there is not a single solver winning on all prob-
lems, with ASP being comparable to OPL for many of them, and
that reformulating the specification almost always improves perfor-
mances. However, even if our experiments suggest some good mod-
elling practices, an exact understanding of which reformulations lead
to the best performances for a given problem and solver remains a

Problems OPL DLV SMODELS

Ramsey Base LI SB Aux Base LI SB Aux Base/Aux∗ LI SB
16 −3 0− 0 9 +5 −1 0+ 9 +7 −1

(# of nodes) Aux-SB Aux-LI Aux-LI Aux-SB
0− 0− +7 −1

Social Golfer Base SA L2 LX Base SA L2 LX Base SA L2 LX
5 0 0 0 6 0 −2 0 6 0+ −6 −6

(# of weeks) Aux GC Aux-SA Aux-GC Aux Aux-SA Aux-LX Aux Aux+SA Aux+LX
0+ −2 0+ +1 0+ 0+ 0 0+ 0+ −6

Golomb Rulers Base SO Aux GC Base SO Aux Base SO Aux
10 0+ +1 +1 9 0 0 6 0 +2

(# of marks) Aux-GC Aux-SO-GC Aux-SO Aux-SO
+1 +2 0 +2

Car Sequencing Base SO Aux Base SO Aux Base SO Aux
bench. 4/72 10 0 0+ 13 0 0 13 0 0

(# of classes) Aux-GC Aux-SO-GC Aux-SO Aux-SO
0+ 0+ 0+ 0 0+

Car Sequencing Base SO Aux Base SO Aux Base SO Aux
bench. 6/76 6 0 0 9 0 0 9 0 0

(# of classes) Aux-GC Aux-SO-GC Aux-SO Aux-SO
0 0 0+ 0+

Car Sequencing Base SO Aux Base SO Aux Base SO Aux
bench. 10/93 12 0 0 12 0 0 12 0 0
(# of classes) Aux-GC Aux-SO-GC Aux-SO Aux-SO

0 0 0+ 0+

Water Bucket Base Aux Base Aux Base Aux
(total time) 54.77 s 18.22 s 1332.62 s 202.00 s 9765.8 s 173.43 s

Maximum Density Still Life Base SO SB Aux Base SO SB Aux Base SO SB Aux
8 0 0 0− 7 0 0 −1 7 +1 0 +1

(board size) Aux-SO Aux-SB Aux-SO Aux-SB Aux-SO Aux-SB
0− 0− 0 0 +1 0

Word Design Base SO SB LX Base SO SB LX Base SO SB LX
DNA 86 0 −30 +1 5 0 0 0 11 0+ −1 +3

(# of words) Aux GC Aux-LX Aux-GC Aux Aux-SO Aux-LX Aux Aux-LX Aux-SO
0 0 +1 0 0 0 0 +10 +1 +35

∗ Since for Ramsey problem the use of auxiliary predicates seems to be unavoidable in SMODELS, the Base and Aux specifications coincide.

Table 1. Sizes of the largest instances solved by OPL, DLV, and SMODELS in 1 hour, using the base specification and their reformulations. Variations are given
wrt the base specifications. Bold numbers denote the best results.

challenge. Finally, we also started an investigation about the impact
of numbers and arithmetic constraints in problem specifications.

Our current efforts are aimed at covering a larger part of the
CSPLib, extending the set of reformulations involved (e.g., using im-
plied constraints) and considering other systems (e.g. ASP or SAT
based).

6 Acknowledgements
The authors would like to thank the anonymous reviewers, in partic-
ular for suggesting a better Water Bucket SMODELS encoding.

REFERENCES
[1] E. Castillo, A. J. Conejo, P. Pedregal, R. Garca, and N. Alguacil, Build-

ing and Solving Mathematical Programming Models in Engineering
and Science, John Wiley & Sons, 2001.

[2] P. Codognet and D. Diaz, ‘Compiling constraints in clp(FD)’, J. of
Logic Programming, 27, 185–226, (1996).

[3] J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy, ‘Symmetry-
breaking predicates for search problems’, in Proc. of KR’96, pp. 148–
159, Cambridge, MA, USA, (1996). Morgan Kaufmann, Los Altos.

[4] A. Dovier, A. Formisano, and E. Pontelli, ‘A comparison of CLP(FD)
and ASP solutions to NP-complete problems’, in Proc. of ICLP 2005,
volume 3668 of LNCS, pp. 67–82, Sitges, Spain, (2005). Springer.

[5] A. J. Fernández and P. M. Hill, ‘A comparative study of eight constraint
programming languages over the Boolean and Finite Domains’, Con-
straints, 5(3), 275–301, (2000).

[6] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh, ‘Breaking row and column symmetries in matrix models’, in
Proc. of CP 2002, volume 2470 of LNCS, p. 462 ff., Ithaca, NY, USA,
(2002). Springer.

[7] R. Fourer, D. M. Gay, and B. W. Kernigham, AMPL: A Modeling Lan-
guage for Mathematical Programming, Intl. Thomson Publ., 1993.

[8] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F.
Scarcello, ‘The DLV System for Knowledge Representation and Rea-
soning’, ACM Trans. on Comp. Logic. To appear.

[9] F. Lin and Z. Yuting, ‘ASSAT: Computing answer sets of a logic pro-
gram by SAT solvers’, Artif. Intell., 157(1–2), 115–137, (2004).

[10] T. Mancini and M. Cadoli, ‘Detecting and breaking symmetries by rea-
soning on problem specifications’, in Proc. of SARA 2005, volume 3607
of LNAI, pp. 165–181, Airth Castle, Scotland, UK, (2005). Springer.

[11] I. Niemelä, ‘Logic programs with stable model semantics as a con-
straint programming paradigm’, Annals of Math. and Artif. Intell.,
25(3,4), 241–273, (1999).

[12] N. Pelov, E. De Mot, and M. Denecker, ‘Logic Programming ap-
proaches for representing and solving Constraint Satisfaction Problems:
A comparison’, in Proc. of LPAR 2000, volume 1955 of LNCS, pp. 225–
239, Reunion Island, FR, (2000). Springer.

[13] A. Ramani, F. A. Aloul, I. L. Markov, and K. A. Sakallak, ‘Breaking
instance-independent symmetries in exact graph coloring’, in Proc. of
DATE 2004, pp. 324–331, Paris, France, (2004). IEEE Comp. Society
Press.

[14] O Shcherbina, A. Neumaier, D. Sam-Haroud, X.-H. Vu, and T.-V.
Nguyen, ‘Benchmarking global optimization and constraint satisfaction
codes’, in Proc. of COCOS 2002), volume 2861 of LNCS, pp. 211–222,
Valbonne-Sophia Antipolis, France, (2003). Springer.

[15] G. Smolka, ‘The Oz programming model’, in Computer Science To-
day: Recent Trends and Developments, volume 1000 of LNCS, 324–
343, Springer, (1995).

[16] P. Van Hentenryck, The OPL Optimization Programming Language,
The MIT Press, 1999.

[17] M. Wallace, J. Schimpf, K. Shen, and W. Harvey, ‘On benchmarking
constraint logic programming platforms. response to [5]’, Constraints,
9(1), 5–34, (2004).

