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Abstract

Ambient Computing environments host various agents that collect, process,
change and share the available context information. The imperfect nature of
context, the open and dynamic nature of ambient environments, the different
viewpoints from which the ambient agents face the same context, and their
heterogeneity with respect to the language and inference system that they
use, have introduced new challenges in the study of Distributed AI.

The current paper presents a knowledge representation model based on
the Multi-Context Systems paradigm that handles these requirements by
modeling ambient agents as peers in a P2P system, local context knowledge
as peer rule theories, and mapping rules, through which the ambient agents
exchange context information, as defeasible rules. To resolve potential incon-
sistencies that may arise from the interaction of local theories through the
mappings (global conflicts), the proposed method uses a preference relation
on the system peers, which may express the trust that an agent has in the
knowledge imported by other agents. On top of this model, we have devel-
oped four alternative strategies for global conflicts resolution, which differ in
the type and extent of context knowledge that the ambient agents exchange
in order to evaluate the quality of the imported context information. The
four strategies have been respectively implemented in four versions of a dis-
tributed reasoning algorithm for query evaluation in Multi-Context Systems.

Key words: Knowledge Representation, Non-monotonic Reasoning,
Contextual Reasoning, Ambient Intelligence, Multi-Context Systems

Email addresses: bikakis@ics.forth.gr (Antonis Bikakis),
antoniou@ics.forth.gr (Grigoris Antoniou), phasap@csd.uoc.gr (P. Hassapis)

Preprint submitted to Data and Knowledge Engineering September 19, 2008



1. Introduction

1.1. Requirements and Challenges of Reasoning in Ambient Intelligence

Ambient Intelligence systems aim at providing the right information to
the right users, at the right time, in the right place, and on the right device.
In order to achieve this, a system must have a thorough knowledge and, as
one may say, ”understanding” of its environment, the people and devices
that exist in it, their interests and capabilities, and the tasks and activities
that are being undertaken. All this information falls under the notions of
context.

The study of ambient computing environments and pervasive computing
systems has introduced new research challenges in the field of Distributed
Artificial Intelligence. These are mainly caused by the imperfect nature of the
available context information and the special characteristics of the ambient
environments and the agents that operate in them. Henricksen and Indulska
in [24] characterize four types of imperfect context information: unknown,
ambiguous, imprecise, and erroneous. Sensor or connectivity failures (which
are inevitable in wireless connections) result in situations, that not all context
data is available at any time. When data about a context property comes
from multiple sources, then context may become ambiguous. Imprecision is
common in sensor-derived information, while erroneous context arises as a
result of human or hardware errors.

The agents that operate in an ambient environment are expected to have
different goals, experiences and perceptive capabilities. They may use dis-
tinct vocabularies; they may even have different levels of sociality. Due to
the highly dynamic and open nature of the environment (various entities join
and leave the environment at random times) and the unreliable and restricted
by the range of the transmitters wireless communications, ambient agents do
not typically know a priori all other entities that are present at a specific
time instance nor can they communicate directly with all of them.

Contextual reasoning has a multiple role in Ambient Intelligence systems.
This role includes:

- detecting possible errors in the available context information;

- handling missing values;

- evaluating the quality and the validity of the sensed data;

- transforming the low level raw context data into higher level meaningful
information so that it can later be used in the application layer;
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- making decisions about the system behavior when certain changes are
detected in the system’s context.

Considering these requirements and the special characteristics of context
and ambient agents, the three main challenges of knowledge management in
Ambient Intelligence are to enable:

- Reasoning with the highly dynamic and imperfect context.

- Managing the potentially huge piece of context data, in a real-time fash-
ion, considering the restricted computational capabilities of some mobile
devices, and the constraints imposed by wireless communications.

- Collective intelligence, by supporting heterogeneous information sharing,
and distributed reasoning with all the available context information.

1.2. Reasoning Limitations of current Ambient Intelligence systems

The reasoning approaches followed so far in Ambient Intelligence systems
either neglect the problems caused by the imperfect nature of context (e.g.
[2, 36, 38, 39, 41, 40]) or handle them by using mechanistic techniques and
by building additional reasoning mechanisms on top of logic models that
cannot not inherently deal with the problems of uncertainty, ambiguity and
inconsistency. Representative examples of the second category include the
context framework of Gaia [33] and the Middleware for Context-Aware Mo-
bile Services (SOCAM [21]). Both of them use first-order predicates for the
representation of context information. In Gaia, in order to resolve conflicts
that occur when multiple rules are activated in the same time, they have
developed a priority base mechanism, allowing only one rule to fire at each
time. In SOCAM, to resolve possible conflicts, they have defined sets of rules
on the classification and quality information of the context data, considering
that different types of context have different levels of confidence, reliabil-
ity and quality. The development of such priority mechanisms indeed offer
some solutions for the problems of uncertainty and ambiguity of context,
adding however additional complexity to the reasoning tasks. Moreover,
these solutions are rather restricted to meet the needs of the specific sys-
tems / applications. For the general needs of Ambient Intelligence systems,
a more general and formal approach that can inherently deal with missing,
uncertain, inaccurate and ambiguous information is certainly required.

Regarding the distribution of the reasoning tasks, most Ambient Intelli-
gence system have been based on fully centralized architectures. The com-
mon approach followed in such systems (e.g. [13, 14, 16, 23, 26, 32, 33, 38])
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dictates the existence of a central entity, which is responsible for collecting
the available context data from all sensors and ambient agents operating
in the same environment, and for all the required reasoning tasks, which
may include transforming the imported context data in a common format,
deducing higher-level context information form the raw context data, and
taking context-dependent decisions for the behavior of the system. The need
for more decentralized approaches has recently led several research teams to
deploy methods and techniques from Distributed Artificial Intelligence, with
the shared memory or blackboard based architectures of [25, 28, 27] being the
most prominent examples. Collecting the reasoning tasks in a central entity
certainly has many advantages; it can achieve better control, and better co-
ordination between the various entities that have access to the central entity.
Blackboard-based and shared-memory models have been thoroughly studied
and used in many different types of distributed systems and have proved to
work well in practice. The requirements are, though, much different in this
setting. Context may not be restricted to a small room, office or apartment;
cases of broader areas must also be considered. The communication with
a central entity is not always guaranteed, and wireless communications are
typically unreliable and restricted by the range of the transmitters. Thus, a
fully distributed scheme seems to be a necessity.

1.3. Overview of the proposed Approach

In the current study, we present a fully distributed approach for reasoning
in ambient computing environments, which is based on the Multi-Context
Systems paradigm. Our approach models ambient agents as autonomous
logic-based peers in a P2P system and context knowledge possessed by an
ambient agent as a system peer’s local rule theory, while information ex-
change between agents is achieved through mapping rules that associate their
local context knowledge. Even if it is assumed that each context theory is lo-
cally consistent, the same assumption will not necessarily hold for the global
knowledge base. The unification of local theories may result in inconsisten-
cies that are caused by the mappings. For example, a local theory A may
import conflicting context information from two different agents, B and C,
through two competing mapping rules. In this case, even if the three dif-
ferent theories are locally consistent, their unification through the mappings
defined by A may contain inconsistencies. To deal with this type of incon-
sistencies (global conflicts), we model mappings as defeasible rules, and use
context and preference information to resolve the conflicts.
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With this model, we aim to capture the three fundamental dimensions of
contextual reasoning, as these were formulated in [5]:

- Partiality. Each agent may not have immediate access to all available
information, so a local theory can be thought as a partial representation
of the world.

- Approximation. Each local theory differs at the level of detail at which
a portion of the world is represented.

- Perspective. Each local theory encodes a different point of view on the
world.

Furthermore, the P2P paradigm enables us to model:

- Information flow between different ambient agents as message exchange
between the system peers

- context changes using the dynamics of a P2P system

- confidence in the knowledge of other agents as trust between the system
peers

The rest of the paper is structured as follows. The next section describes
three motivating scenarios from the domain of Ambient Intelligence, and
discusses their special characteristics. Section 3 presents background knowl-
edge on Multi-Context Systems and discusses the limitations of prominent
recent studies on contextual reasoning and peer-to-peer reasoning with re-
gard to the special requirements of Ambient Intelligence. Section 4 presents
the proposed representational model, describes four alternative strategies for
using context and trust information for conflict resolution, and analyzes their
properties. Section 5 demonstrates the application of the proposed reasoning
methods in one of the use case scenarios presented in Section 2. Section 6
presents a prototypical implementation of the four strategies in a simulated
peer-to-peer system, and the results of an experimental evaluation that we
conducted. The last section summarizes and presents the next steps of this
work.

2. Motivating Scenarios from the Ambient Intelligence Domain

Below, we describe three use case scenarios from the Ambient Intelligence
domain. The aim of these scenarios is to highlight the special challenging
characteristics of contextual reasoning in Ambient Intelligence.
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2.1. Context-Aware Mobile Phone in an Ambient Classroom
The first scenario involves a context-aware mobile phone that has been

configured by professor Dr. Amber to make decisions about whether it should
ring or not (in case of incoming calls) based on Dr. Amber’s preferences and
context. Dr. Amber has the following preferences: His mobile phone should
ring in case of an incoming call, unless it is in silent mode or Dr. Amber is
busy with some important activity. One such important activity is a lecture
for one of the courses he teaches at the university.

Consider the case that Dr. Amber is located in the ’RA201’ university
classroom reading his emails on his laptop. It is Tuesday, the time is 7.50
p.m., and he has just finished with a lecture for course CS566. The context-
aware mobile phone receives an incoming call, but it not in silent mode.

In this case, the mobile phone cannot decide whether it should ring or
not based only on its local context knowledge, which includes knowledge
about incoming calls and the mode of the mobile phone, as it is not aware
of other important context parameters (e.g. Dr. Amber’s current activity).
Therefore, it will attempt to contact through the wireless network of the
university and import context information from other ambient agents that
are located nearby, and use this information to infer further knowledge about
Dr Amber’s current context.

In order to determine about whether Dr. Amber is currently giving a
lecture, the mobile phone uses two rules. The first rule states that if at
this time there is a scheduled lecture, and Dr. Amber (actually his mobile
phone) is located in a university classroom, then Dr. Amber is possibly giving
a lecture. Information about scheduled events is imported from Dr. Amber’s
laptop, while information about his current location is imported from the
wireless network localization service. The second rule states that if there is
no class activity taking place in the classroom, then Dr. Amber is rather not
giving a lecture. Information about the state of the classroom is imported
from the classroom manager (a stationary computer installed in the ’RA201’
classroom).

Dr. Amber’s personal laptop contains Dr. Amber’s personal calendar.
According to this, there is a scheduled class event for Tuesdays from 7.00
to 8.00 pm. Based on this knowledge, it can infer that at the current time
(Tuesday, 7.50 p.m.), there is a scheduled class event.

The localization service possesses knowledge about Dr. Amber’s current
position (actually about the position of his mobile phone). In this case it
’knows’ that Dr. Amber is currently located in ’RA201’.
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The classroom manager possesses context knowledge about the state of
the classroom. Specifically, it ’knows ’ that the classroom projector is off, and
imports information about the presence of people in the classroom from an
external person detection service; in the specific case the service detects only
one person (Dr. Amber) in the classroom. Based on this information, the
classroom manager infers that there is no class activity in the classroom.

Eventually, the context-aware mobile phone will receive ambiguous con-
text information from the various ambient agents operating in the classroom.
Information imported from Dr. Amber’s laptop and the localization service
leads to the conclusion that Dr. Amber is currently giving a lecture. On the
other hand, information imported from the classroom manager leads to the
contradictory conclusion that Dr. Amber is not currently giving a lecture.
In order to resolve this conflict, the mobile phone must be able to evaluate
the information it receives from the various information sources. For exam-
ple, in case it is aware that the information that derives from the classroom
manager is more accurate than the information imported from Dr. Amber’s
laptop, it will determine that Dr. Amber is not currently giving a lecture,
and therefore it reaches to the ’ring’ decision.

2.2. Ambient Intelligence Home Care System

The second scenario takes place in an apartment hosting an old man, Mr.
Jones. Mr. Jones, a 80 year old widower, is living alone in this apartment,
while his son resides in close proximity. A nurse visits Mr. Jones 8 to 10
hours daily, while his son also visits him for some hours every couple of days.
Mr Jones’ apartment is equipped with an Ambient Intelligence Home Care
System, which consists of:

- A position tracking system, which localizes Mr. Jones in the apartment.

- An activity tracking system, which monitors the activities carried out
by Mr. Jones; activity can take values such as sitting, walking, lying,
etc.

- A data monitoring system, in the form of a bracelet, which collects Mr.
Jones’ basic vital information, such as pulse, skin temperature and skin
humidity.

- A person detection system, which is able to recognize Mr. Jones, his son
and the nurse.

- An emergency monitoring system, identifying emergency situations. This
system has a wired connection with the position tracking system, the
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activity tracking system, the person detection system and the emergency
telephony system, and a wireless connection with the data monitoring
bracelet.

- An emergency telephony system, which makes emergency calls to Mr.
Jones’ son in case of emergency.

Assume that neither the nurse nor Mr. Jones’ son are located in the
apartment, and Mr Jones is walking through a hall of the apartment to
his bedroom. He suddenly stumbles, falls down and loses his consciousness,
while the data monitoring bracelet that he wears in his wrist is damaged,
transmitting erroneous data to the emergency monitoring system.

The emergency telephony system is configured to determine about whether
it should make an emergency call to his son using the following rule: ’If an
emergency situation is detected, and neither the nurse nor Mr. Jones’ son
are located in the house, then make an emergency call’. The detection of
emergency situations is a responsibility of the emergency monitoring system,
while the person detection system is responsible for detecting Mr. Jones, his
son and the nurse in the house.

The emergency monitoring system uses the following rules for determining
emergency situations: (a) Any abnormal situation is an emergency situation;
(b) If Mr. Jones’ temperature, skin humidity and pulse have normal values
then there is no case of emergency situation; (c) In case Mr. Jones is lying in
a place different than his bed, then this is an abnormal situation. Information
about Mr. Jones’ physical situation is imported from the data monitoring
bracelet. In the specific case described above, the bracelet is damaged and
keeps erroneously transmitting normal values about Mr. Jones’ temperature,
skin humidity and pulse. Knowledge about Mr. Jones’ current activity (ly-
ing) is possessed by the activity tracking system, while the position tracking
system is aware of Mr. Jones’ current position (hall).

Using information imported from the data monitoring bracelet, and rules
a and b, the emergency monitoring system may conclude that there is not
a case of emergency situation. However, based on the information imported
from the activity and position tracking systems and rules a and c, the emer-
gency monitoring system reaches to the contradictory conclusion that this
is an emergency situation. As the data monitoring bracelet is considered
more prone to damage than the activity and position tracking systems, and
the wired connections between the emergency monitoring system with the
activity and position tracking systems are more reliable than the wireless
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connection with the data monitoring bracelet, the emergency monitoring
system determines that this is an emergency situation, and the telephony
system reaches to the ’emergency call’ decision.

2.2.1. Mushroom Hunting in an Ambient Natural Park

The scenario takes place in an ambient environment of mushroom hunters,
who collect mushrooms in a natural park in North America. The hunters
carry mobile devices, which they use to communicate with each other through
a wireless network, in order to share their knowledge on edible and non-edible
mushrooms.

People interested on picking mushrooms typically do not know every
specie and family of mushrooms in detail. They know that a deadly mush-
room can be very similar to an edible one, e.g., the ”amanita phalloides”
(deadly) and the ”amanita caesarea” (edible and one of the best mushrooms)
that look very much alike. In general, a mushroom hunter has to respect cer-
tain rules imposed by the natural park legislation such as the limited quantity
of mushrooms that can be picked. Since the limitation on the allowed quan-
tity, there is the need of establishing the specie of an unknown mushroom
during the picking itinerary instead of bringing the picked ones to an expert
and discovering, after some days, that the picking has been useless due to
the high number of non-edible picked mushrooms. Furthermore, the picking
has not been simply useless but it has also vainly cheated the ecosystem of
a part. Moreover, even in the case of an irrelevant quantity of non-edible
picked mushrooms, it might happen that a small chunk of a deadly mush-
room (e.g., ”amanita phalloides” also known as The Death Cap) mixes with
edible ones and accidentally eaten. By keeping in mind the above discussed
motivations, let us consider the scenario in which a mushroom hunter, Adam,
finds an interesting mushroom but it is unclear if it is edible.

Suppose that the mushroom in question has the following characteristics:
It has a stem base featuring a fairly prominent sack that encloses the bottom
of the stem (volva), and a pale brownish cap with patches, while the margin
of the cup is prominently lined, and the mushroom does not have a ring
(annulus).

Adam has some knowledge on the description of specific species, such as
the Destroying Angel, the Death Cap and the Caesar’s Mushroom. He also
knows that the first two of them are poisonous, while the third one is not.
However, the description of the mushroom in question does not fit with any
of these species, so Adam cannot determine about whether this mushroom
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is poisonous or not. He decides to exploit the knowledge of other mushroom
hunters in the Ambient Natural Park, and uses the wireless network to con-
tact other hunters that are located nearby. His wireless device establishes
connection with the devices of three other hunters.

The first of the three other hunters, Bob, uses a generic rule, which states
that mushrooms with a volva are non-edible. The second hunter, Chris, has
knowledge of some specific species that are not toxic, including springtime
amanita, but does not know how to describe them. The third hunter, Dan,
on the other hand, also uses a very generic rule, which states that amani-
tas are typically dangerous. Using the wireless network, Chris establishes a
connection with another hunter, Eric, who knows how to describe amanita
velosa (a formal name for springtime amanita), and the description of this
specific specie fits exactly the description of the mushroom in question.

In this scenario Adam has three options: Using the knowledge of Bob, he
will reach to the conclusion that the mushroom is poisonous, and therefore
he should not pick it. Using the knowledge of Dan, he will reach to the same
decision. The third option is to use the combined knowledge of Chris and
Eric. In the latter case, he will reach to a different decision; he will determine
that the mushroom is not dangerous, and therefore he may pick it. Being
aware that Chris and Eric possess more specialized knowledge than Bob and
Dan, he will determine to give priority to the third option determining that
the mushroom in question is not poisonous.

2.2.2. Common Characteristics of the Three Scenarios

The three scenarios that we described above share some common char-
acteristics with regard to the distribution of context knowledge, the nature
of this knowledge, and the relations that exist between the various involved
ambient agents. Specifically, we have implicitly made the following assump-
tions:

- In each case there is a communication mean through which an ambient
agent may communicate and exchange context information with a subset
of the other available ambient agents.

- Each ambient agent is aware of the type of knowledge that each of the
other agents that it can communicate with possesses, and has specified
how part of this knowledge relates to its local knowledge.

- Each ambient agent is aware of the quality of context information that
it imports from other ambient agents.
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- Each ambient agent has some computing and reasoning capabilities that
it may use to reach to certain decisions based on its local and imported
context information.

- Each ambient agent is willing to disclose and share part of its local
knowledge.

The challenges of reasoning with the available context information and
making correct context-dependent decisions in the described scenarios in-
clude:

- Local context knowledge may be incomplete, meaning that none of the
agents involved in the scenarios described above has immediate access
to all the available context information.

- Context knowledge may be ambiguous; in all the three scenarios, there
is one case that an ambient agent receives conflicting information from
two or more other agents.

- Context knowledge may be imprecise; e.g. in the first scenario the knowl-
edge about Dr. Amber’s schedule possessed by his laptop is not accurate.

- Context knowledge may be erroneous; e.g. in the second scenario, the
values for Dr. Jones’ temperature, skin humidity and pulse that are
transmitted by the bracelet are not valid.

- Each agent has its own vocabulary for describing the context; e.g. in
the third scenario two hunters may use a different name for the same
specie of amanita.

- The computational capabilities of most of the devices that are involved
in the three scenarios are restricted, so the overhead imposed by the
reasoning tasks must not be too heavy.

- The communication load must not also be too heavy, so that the sys-
tem can quickly reach to a decision, taking into account all the available
context information that is distributed between the ambient agents. By
communication load, we refer not only to the required number of mes-
sages exchanged between the involved devices, but also to the size of
these messages.

3. Background

3.1. Multi-Context Systems and Contextual Reasoning

A Multi-Context System consists of a set of contexts and a set of infer-
ence rules (known as mapping or bridge rules) that enable information flow

11



between different contexts. A context can be thought of as a logical theory
- a set of axioms and inference rules - that models local context knowledge.
Different contexts are expected to use different languages and inference sys-
tems, and although each context may be locally consistent, global consis-
tency cannot be required or guaranteed. Reasoning with multiple contexts
requires performing two types of reasoning; (a) local reasoning, based on the
individual context theories; and (b) distributed reasoning, which combines
the consequences of local theories using the mappings. The most critical
issues of contextual reasoning are the heterogeneity of local context theories,
and the potential conflicts that may arise from the interaction of different
contexts through the mappings.

The notions of context and contextual reasoning were first introduced in
AI by McCarthy in [30], as an approach for the problem of generality. In the
same paper, he argued that the combination of non-monotonic reasoning and
contextual reasoning would constitute an adequate solution to this problem.
Since then, two main formalizations have been proposed to formalize context:
the propositional logic of context (PLC [9, 31]), and the Multi-Context Sys-
tems introduced in [18], which later became associated with the Local Model
Semantics proposed in [17]. Multi-Context Systems has been argued to be
most adequate with respect to the three properties of contextual reasoning
(partiality, approximation, proximity) and has been shown to be technically
more general than PLC [35]. This formalism was also the basis of two recent
studies that were the first to deploy non-monotonic features in contextual
reasoning:

- the non-monotonic rule-based MCS framework [34], which supports de-
fault negation in the mapping rules allowing to reason based on the
absence of context information

- the multi-context variant of Default Logic (ConDL [8]), which models
bridge relations between different contexts as default rules.

Both approaches support many of the characteristics of contextual rea-
soning in ambient environments that we discuss in Section 2. Specifically,
additionally to the three fundamental dimensions of contextual reasoning
(partiality, approximation and perspective) that the generic MCS model in-
herently supports, both approaches support reasoning with incomplete local
information using default negation in the body of the mapping rules. Fur-
thermore, Contextual Default Logic handles ambiguous context using default
mapping rules. The case that context A imports conflicting context informa-
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tion from contexts B and C through A’s mapping rules, is modeled using the
different extensions of the theory that includes A’s local theory, A’s mapping
(default) rules, the local theories and (possibly) the mappings of contexts B
and C, and (possibly) other context theories that B and C are connected
to through their mapping rules. Finally, comparing to [34], the ConDL ap-
proach has the additional advantage that is closer to implementation due to
the well-studied relation between Default Logic and Logic Programming.

However, there are still some problems that Contextual Default Logic
cannot efficiently handle. Specifically, it does not provide ways to model
the quality of the imported context information, or preference between two
different information sources. In other words, it does not include any notion
of priority, not allowing to resolve the potential inconsistencies that may arise
while importing conflicting context information from two or more different
sources. Furthermore, computing extensions or checking if a formula is in
one or in all extensions of a Default theory has been showed to be a complex
computational problem [19, 37], and would add a too heavy computational
overhead to the devices operating in ambient environments, which should be
expected to have limited computational capabilities.

3.2. Reasoning in Peer Data Management Systems

Our study also relates to several recent studies focused on the develop-
ment of formal models and methods for reasoning in peer data management
systems. A key issue in formalizing data-oriented peer-to-peer systems is
the semantic characterization of mappings (bridge rules). One approach (fol-
lowed in [6, 22]) is the first-order logic interpretation of peer-to-peer systems.
[11] identified several drawbacks with this approach, regarding modularity,
generality and decidability, and proposed new semantics based on epistemic
logic. A common problem of both approaches is that they do not model and
thus cannot handle inconsistency. Franconi et al. in [15] extended the au-
toepistemic semantics to formalize local inconsistency. The latter approach
guarantees that a locally inconsistent database base will not render the entire
knowledge base inconsistent. A broader extension, proposed by Calvanese
et al. in [10], is based on non-monotonic epistemic logic, and enables isolat-
ing local inconsistency, while also handling peers that may provide mutually
inconsistent data. It guarantees that in case of importing knowledge that
would render the local knowledge inconsistent, the local peer knowledge base
remains consistent by discarding a minimal amount of the data retrieved from
the other peers. The propositional Peer-to-Peer Inference System proposed
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by Chatalic et al. in [12] extends the distributed reasoning methods of [1] to
deal with conflicts caused by mutually inconsistent information sources, by
detecting them and reasoning without them. The main problem is the same,
once again: To perform reasoning, the conflicts are not actually resolved us-
ing some external preference or priority information; they are rather isolated.
Based on the latter study, [7] proposes algorithms for inconsistency resolution
in Peer-to-Peer Query Answering by exploiting a preference relation on the
peers. The main drawback of this approach is that the preference ordering of
the peers is essentially common for all the peers in the system, not allowing
a peer to define and use a different ordering based on its own viewpoint.

The three latter approaches ([10], [12] and [7]), have some common char-
acteristics that meet many of the requirements of ambient environments dis-
cussed in Section 2. Specifically, they support information flow between
different agents through mapping rules, enable reasoning with incomplete
local information, and handle (each one in its own way) agents that provide
mutually inconsistent information. However, regarding their deployment in
Ambient Intelligence, they have the following limitations:

- The approach of [10] assumes that all peers share a common alphabet
of constants, which is not always realistic in ambient environments.

- The approaches of [10] and [12] do not include the notion of preference
between system peers, which could be used to resolve potential conflicts
caused by mutually inconsistent information sources.

- The method followed by [7] assumes a global preference relation for the
systems peers, which is shared and used by all peers; this feature is in
contrast with the dimension of perspective, which allows each agent to
use its own preference relation based on its own viewpoint.

- The distributed algorithms used in [12] and [7] assume that the inconsis-
tencies caused by the mappings of a newly joined peer must be computed
at the time the mappings are created, and not at reasoning time. This
has two implications: (a) It may produce an additional possibly unnec-
essary computational overhead to a peer, considering that it may never
have to use this information; (b) This information may become stale, in
the sense that some of the mappings that cause the inconsistencies may
have been defined by a peer which has left the system at the time of
query evaluation.

- None of the approaches include the notion of privacy. All peers are
expected to cooperate and disclose the same type of information dur-

14



ing distributed query evaluation, and use the same strategy for conflict
resolution.

4. Proposed Approach

4.1. Representational Model

Our approach models a Multi-Context System P as a collection of dis-
tributed local rule theories Pi in a peer-to-peer system:

P = {Pi}, i = 1, 2, ..., n

Each system peer (context) has a proper distinct vocabulary Vi and a unique
identifier i. Each local theory is a set of rules that contain only local propo-
sitional literals (literals from the local vocabulary). These are of the form:

rl
i : a1

i , a
2
i , ...a

n−1
i → an

i

where i denotes the peer identifier. These rules express local context knowl-
edge and are interpreted in the classical sense: whenever the literals in the
body of a local rule (a1

i , a
2
i , ...a

n−1
i ) are consequences of the local theory, then

so is the conclusion of the rule (an
i ). Local rules with empty body are used

to express local factual knowledge.
Each peer also defines mappings that associate literals from its own vocab-

ulary (local literals) with literals from the vocabulary of other peers (foreign
literals). The acquaintances of peer Pi, denoted as ACQ(Pi), are the set of
peers that at least one of Pi’s mappings involves at least one of their local
literals. Mappings are modeled as defeasible rules (rules that can be defeated
in the existence of adequate contrary evidence) of the form:

rm
i : a1

i , a
2
j , ...a

n−1
k ⇒ an

i

The above mapping rule is defined by Pi, and associates some of its own local
literals with some of the local literals of Pj, Pk and other system peers. an

i

is a local literal of the theory that has defined rm
i (Pi).

Finally, each peer Pi defines a trust level order Ti, which includes a subset
of the system peers, and expresses the trust that Pi has in the other system
peers. This is of the form:

Ti = [Pk, Pl, ..., Pn]

A peer Pk is considered more trusted by Pi than peer Pl if Pk precedes Pl in
this list. The peers that are not included in Ti are equally trusted by Pi, but
less trusted than those that are part of the list.
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P1 P2 P3

rl
11 : a1 → x1 rl

21 : c2 → a2 rl
31 :→ a3

rm
12 : a2 ⇒ a1 rl

22 : b2 → a2

rm
13 : a3, a4 ⇒ ¬a1 rm

23 : b5 ⇒ b2

rm
24 : b6 ⇒ b2

P4 P5 P6

rl
41 :→ a4 rl

51 :→ b5 rl
61 :→ b6

Figure 1: A MCS of Six Context Theories

4.2. Alternative Strategies for Conflict Resolution

In this section, we describe four versions of a distributed algorithm,
P2P DR, for query evaluation in MCS. Each version implements a different
strategy for conflict resolution and deals with the following reasoning prob-
lem: ”Given a MCS P , and a query about literal xi issued to peer Pi, find
the truth value of xi considering Pi’s local theory, its mappings and the local
and mapping rules of the other system peers”.

A common characteristic of the four strategies is that they all use con-
text knowledge and trust information from the system peers to resolve the
potential conflicts. Their main difference is in the type and extent of infor-
mation that the system peers exchange to evaluate the quality of imported
context information, and to handle potential inconsistencies that may arise
when importing information from two or more different sources. To demon-
strate their differences, we will describe how each version of the algorithm is
applied to a common scenario; the one depicted in Figure 1.

In this system there are six context theories and a query about literal x1

is issued to peer P1. To compute the truth value of x1, according to the MCS
model described in the previous section, P1 has to import knowledge from
P2, P3 and P4. In case the three system peers return positive truth values
for a2, a3 and a4 respectively, there will be a conflict about the truth value
of a1 caused by the two conflicting mapping rules, r12 and r13.

4.2.1. Single Answers

The Single Answers strategy requires each peer to return only the truth
value of the literal it is queried about. When a peer receives two conflicting
answers from two different peers, it resolves the conflict by comparing the
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trust it has in the two peers. The algorithm that implements this strategy,
P2P DRSA is called by a system peer Pi when it receives a query about one
of its local literals (say xi) and proceeds as follows:

- In the first step, the algorithm determines if the queried literal, xi, or its
negation ¬xi are consequences of Pi’s local theory. If xi derives from the
local rules, the algorithm returns a positive truth value and terminates.
If its negation, ¬xi, derives from the local rules, it returns a negative
truth value and terminates. In any other case, it proceeds with the
second step.

- In the second step, the algorithm collects the local and mapping rules
that support xi. To check which of these rules can be applied, it checks
the truth value of the literals in their body by issuing similar queries
(recursive calls of the algorithm) to Pi or to the appropriate neighboring
peers Pj ∈ ACQPi

. To avoid cycles, before each new query, it checks if
the same query has been issued before, during the same algorithm call.
For each applicable supportive rule ri, the algorithm builds its Support-
ive Set SSri

. The Supportive Set of a rule derives from the union of the
set of the foreign literals (literals that are defined by peers that belong
in ACQ(Pi)) that are contained in the body of ri, with the Supportive
Sets of the local literals that belong in the body of the same rule. In the
end, in case there is no applicable supportive rule, the algorithm termi-
nates by returning a negative answer for xi. Otherwise, it computes the
Supportive Set of xi, SSxi

, as the strongest of the Supportive Sets of
the applicable rules that support xi, and proceeds to the next step. The
strongest between two Supportive Sets is computed by comparing the
weakest elements in each set. A literal ak is considered stronger than
literal bl from Pi’s viewpoint if Pk precedes Pl in Ti.

- In the third step, in the same way with the previous step, the algorithm
collects the rules that contradict xi and builds the Conflicting Set of xi

(CSxi
= SS¬xi

). In case there is no applicable rule that contradicts xi,
the algorithm terminates by returning a positive answer for xi. If the
query was not posed by a foreign peer (Pj 6= Pi), the algorithm also
returns the Supportive Set of xi, SSxi

. Otherwise, it proceeds with the
last step.

- In the last step, the algorithm compares SSxi
and CSxi

to determine the
truth value of xi. If SSxi

is stronger, the algorithm returns a positive
answer for xi. In case the query was not posed by a foreign peer (Pj 6=
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Pi), the algorithm also returns the Supportive Set of xi, SSxi
. In any

other case (including the case that there is not enough trust information
available to give priority to one of the competing answers), it returns a
negative answer.

In the system depicted in Figure 1, the algorithm called by P1 fails to
produce a local answer for x1. In the second step, it attempts to use P1’s
mapping rules. The algorithm eventually receives positive answers for a2,
a3 and a4 (from the instances of the algorithm called by P2, P3 and P4

respectively), and resolves the conflict that arises for literal a1 by comparing
its Supportive Set, SSa1 = SSr12 = {a2}, with its Conflicting Set, CSa1 =
SSr13 = {a3, a4}. Assuming that the trust level order defined by P1 is T1 =
[P4, P2, P6, P3, P5], P2P DRSA determines that SSa1 is stronger than CSa1

(as P2 precedes P3 in T1) and returns a positive answer for a1 and eventually
for x1 as well.

4.2.2. Strength of Answers

The Strength of Answers strategy requires the queried peer to return,
along with the truth value of the queried literal, information about whether
this value derives from its local theory or from the combination of the local
theory with the queried peer’s mappings. To support this feature, the second
version of the algorithm, P2P DRSWA, supports three types of answers: (a)
a strict answer indicates that a positive truth value derives from the local
theory only; (b) a weak answer indicates that a positive truth value derives
from the combination of the local theory and the mapping rules; and (c) a
negative answer indicates a negative truth value. The peer that receives the
answer evaluates its quality based on the trust level of the peer that returns
the answer, but also on the type of the answer. This version follows the four
main steps of P2P DRSA but with the following modifications:

- An element of a Supportive Set is actually a signed literal; the sign of
the literal indicates whether the truth value of the literal derives from
the local theory of the peer that has defined the literal, or from the
combination of the local theory and the peer’s mappings.

- The strength of an element in a Supportive/Conflicting Set is determined
primarily by the type of answer (strict answers are considered stronger
than weak ones), and secondly by the rank of the queried peer in the
trust level order of the querying peer.
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Given these differences, the execution of P2P DRSWA in the system de-
picted in Figure 1, produces the following results: The Supportive Sets of
rules r12 and r13 are respectively: SSr12 = {weaka2}, SSr13 = {stricta3 , stricta4}
(the truth values of a3 and a4 derive from the local theories of P3 and P4

respectively, while P2 has to use its mappings to compute the truth value
of a2) and CSa1 = SSr13 is computed to be stronger than SSa1 = SSr12 .
Eventually, the algorithm computes negative truth values for a1 and x1.

4.2.3. Propagating Supportive Sets

The main feature of the Propagating Supportive Sets strategy is that
along with the truth value of the queried literal, the queried peer returns the
Supportive Set of the literal. The algorithm that implements this strategy,
P2P DRPS, constructs the rule and literal Supportive Sets in a similar way
with P2P DRSA; the only difference is that in the case of P2P DRPS, the
Supportive Set of a rule derives from the unification of the Supportive Sets
of all (local and foreign) literals in its body.

In the MCS depicted in 1, P2P DRPS, when called by P2 to compute the
truth value of a2, assuming that T2 = [P5, P6], returns a positive truth value
and its Supportive Set SSa2 = {b5}. The answers returned for literals a3 and
a4 are both positive truth values with empty Supportive Sets (they are locally
proved), and P2P DRPS called by P1, computes SSa1 = SSr12 = {a2, b5}
and CSa1 = SSr13 = {a3, a4}. Using T1 = [P4, P2, P6, P3, P5], P2P DRPS

determines that CSa1 is stronger than SSa1 (as both P3 and P4 precede P5

in T1), and computes negative truth values for a1 and x1.

4.2.4. Complex Supportive Sets

The Complex Supportive Sets strategy, similarly with Propagating Sup-
portive Sets, requires the queried peer to return the Supportive Set of the
queried literal along with its truth value. In the case of Propagating Sup-
portive Sets, the Supportive Set is a set of literals that describes the most
trustworthy (according to the trust level of the queried peer) course of rea-
soning that concludes in the derived truth value. In the case of Complex
Supportive Sets, the Supportive Set is actually a set of sets of literals; each
set describes a different course of reasoning that results in the same answer.
In this case, it is the querying peer that determines the most trustworthy
course using its own trust level. P2P DRCS, the version of the distributed
algorithm that implements this strategy, differs from P2P DRSA in the fol-
lowings:
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- The Supportive Set of a rule derives from the product of the Supportive
Sets of the literals in the body of the rule.

- The Supportive Set of a literal derives from the unification of the Sup-
portive Sets of the applicable rules that support it.

- Comparing the Supportive Set and the Conflicting Set of a literal re-
quires comparing the strongest sets of literals of the two sets using the
trust level of the peer that resolves the conflict.

In the MCS system of Figure 1, P2P DRCS, when called by P2, com-
putes a positive truth value for a2 and SSa2 = {{b5}, {b6}}. The instances
of the algorithm called by P3 and P4 return positive truth values and empty
Supportive Sets for a3 and a4 respectively, and the instance of P2P DRCS

called by P1 computes SSa1 = SSr12 = {{a2, b5}, {a2, b6}} and CSa1 =
SSr13 = {{a3, a4}}. Using T1 = [P4, P2, P6, P3, P5], P2P DRCS determines
that {a2, b6} is the strongest set in SSa1 , and is also stronger than {a3, a4}.
Consequently, it returns a positive answer for a1 and eventually a positive
answer for x1 as well.

4.3. Properties of the four Strategies

In this section we describe some formal properties of the four strategies
with respect to termination, complexity, and the possibility to create an
equivalent unified defeasible theory from the distributed context theories.
Proposition 1 refers to termination and holds for all versions of P2P DR as
cycles are detected within the algorithm.

Proposition 1. The algorithm is guaranteed to terminate returning either
a positive or a negative answer for the queried literal.

Proposition 2 refers to the number of messages that are exchanged between
the system peers, and is a consequence of two states that we retain for each
peer, which keep track of the incoming and outgoing queries of the peer. It
also holds for all versions of P2P DR.

Proposition 2. The total number of messages that are exchanged between
the system peers for the computation of a single query is O(n2) (in the worst
case that all peers have defined mappings that contain literals from all system
peers and the evaluation of the query involves all mappings defined in the
system), where n stands for the total number of system peers.
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Moving from the Single Answers version to the Complex Supportive Sets,
the context information that is exchanged between the system peers becomes
richer; the first strategy requires each peer to return only a single Boolean
value for a given query, while the latter requires building and returning com-
plex (sets of) sets of literals. The advantage of the latter approach is that
when receiving an answer, a peer is able to evaluate its quality using its
trust ratings of all the peers that are involved in the derivation of the an-
swer, and not only of the peer that returns the answer. This advantage, of
course, does not come without a cost, which is the additional computational
overhead imposed by the Complex Supportive Sets strategy, and the greater
size of the messages carrying the returned answers between the system peer.
The following propositions are about the computational complexity of each
different version of the algorithm.

Proposition 3. The computational complexity of P2P DRSA and P2P DRSWA

on a single peer for the computation of a single query is in the worst case
that all peers have defined mappings that involve literals from all system peers
and the evaluation of the query requires all peers to use all their mappings
O(n2 × n2

l × nr), where n stands for the total number of system peers, nl

stands for the number of literals a peer may define, and nr stands for the
total number of (local and mapping) rules that a peer theory may contain.

Proposition 4. The computational complexity of P2P DRPS on a single
peer for the computation of a single query is in the worst case that the truth
value of the queried literal depends on the truth value of all literals in the
system O(n2×n2

l ×nr), where n stands for the total number of system peers,
nl stands for the number of literals a peer may define, and nr stands for the
total number of (local and mapping) rules that a peer theory may contain.

At first glance, the first three versions seem to have equal computational
complexity. However, the worst cases described in Propositions 3 and 4
are much different. The worst case in Proposition 4 occurs when for the
evaluation of a single query, the algorithm has to evaluate the truth values of
all literals in the system. The worst case in Proposition 3 further requires that
all peers have defined mappings that involve literals from all other system
peers. Obviously, the worst case of Proposition 3 is more restrictive and is a
sub-case of the worst case described in Proposition 4.

21



Proposition 5. The computational complexity of P2P DRCS on a single
peer for the computation of a single query is in the worst case that the truth
value of the queried literal depends on the truth value of literals in the system
O((n × nl)

n×nl), where n stands for the total number of system peers, nl

stands for the number of literals a peer may define, and nr stands for the
total number of (local and mapping) rules that a peer theory may contain.

The last proposition shows that the cost of exchanging rich context in-
formation between the system peers in order to better evaluate the imported
answers is actually too heavy, making the fourth version of the algorithm
inapplicable in cases of very dense Multi-Context Systems.

The last property, described in Proposition 6, holds for all versions of
P2P DR, and refers to the soundness and completeness of the algorithm
with respect to Defeasible Logic.

Proposition 6. Using a standard process, it is possible to unify the local
context theories into a global defeasible theory, which produces the same re-
sults with P2P DR, under the proof theory of [3]. In this theory, local rules
are modeled as strict rules, mapping rules are modeled as defeasible rules, and
trust information from the system peers is used to derive priorities between
conflicting rules.

The latter property, which shows the equivalence with a defeasible theory,
enables resorting to centralized reasoning by collecting the distributed con-
text theories in a central entity and creating an equivalent defeasible theory.
In addition, this result is typical of other works in the area of Peer-to-Peer
reasoning, in which the distributed query evaluation algorithm is related to
querying a single knowledge base that can be constructed (see, e.g. [1]). Via
Proposition 6, the four versions of P2P DR have a precise semantic charac-
terization. Defeasible Logic has a proof-theoretic [3], an argumentation-based
[20] and a model-theoretic semantics [29]. The proof of Proposition 6 is par-
ticularly complex, as it has to take into account matters as how provability
in the case of P2P DR is interpreted in defeasible provability of Defeasible
Logic, and how trust information from the distributed system peers is trans-
lated into the priority relation of Defeasible Logic. Details about Proposition
6, as well as the proofs for Propositions 1-5 will be presented elsewhere due
to space limitations.
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5. Application of the proposed Methods in a use case scenario

In this section, we describe how the proposed representational model and
conflict resolution strategies can be applied in one of the Ambient Intelligence
use case scenarios described in Section 2, and specifically to the ”Context-
Aware Mobile Phone in an Ambient Classroom Scenario” described in 2.1.
The aim, here, is to highlight the suitability of our methods to the special
characteristics of Ambient Intelligence, and to demonstrate the practical dif-
ferences of the four conflict resolution strategies.

5.1. Local Context and Information Exchange Modeling

According to the representational model presented in section 3, the fol-
lowing 6 rules are used to express Dr. Amber’s preferences as they are defined
in his mobile phone (rl

11, rl
12), the local context knowledge of Dr. Amber’s

mobile phone (rl
13, rl

14), and the associations of the local knowledge of the
mobile phone with the context knowledge of Dr. Amber’s laptop (P3), the
localization service (P4), and the classroom manager (P4) (rm

15, rm
16).

rl
11 : incoming call,¬silent mode,¬important activity ⇒ ring

rl
12 : lecture → important activity

rl
13 :→ incoming call

rl
14 :→ normal mode

rm
15 : scheduled CS5662, location RA2013 ⇒ lecture

rm
16 : ¬class activity4 ⇒ ¬lecture

In the same way we model the local context knowledge of Dr. Amber’s
laptop using rules rl

21-r
l
23; the knowledge possessed by the localization service

through rule rl
31; the knowledge and the mappings of the classroom manager

with the person detection service (P5) using rules rl
41-r

m
42; and the local con-

text knowledge of the person detection service using rule rl
51:

rl
21 :→ day(tuesday)

rl
22 :→ time(19.50)

rl
23 : day(tuesday), time(X), 19.00 ≤ X ≤ 20.00 → scheduled CS566

rl
31 :→ location RA201

rl
41 :→ projector(off)

rm
42 : persons detected(X)5, X < 2, projector(off) ⇒ ¬class activity

rl
51 :→ persons detected(1)

The trust level of P1 is T1 = [P3, P4, P5, P2], which means that the in-
formation imported from the localization service is considered more trusted
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than that imported from the classroom manager, which is more trusted than
the information that derives from the person detection service and so on.

5.2. Conflict Resolution

Upon receiving an incoming call, P1 will call P2P DR to determine about
whether it should ring or not. In the case of the Single Answers strategy,
the algorithm proceeds as follows:

- Using the local context theory of the mobile phone, it cannot reach to
a decision as it has no knowledge about Dr Amber’s current activity. It
can derive a positive value for incoming call and a negative truth value
for silent mode, but it cannot determine about the applicability of rules
rl
11 and rl

12. To do that, it has to determine the truth value of lecture.

- For lecture, the mobile phone contains two conflicting mapping rules (rm
15

and rm
16). Through rm

15, the algorithm accesses the local knowledge of P2

(the laptop) and P3 (localization service), computes positive truth values
for both scheduled CS566 and location RA201, and determines that rm

15

is applicable.

- Through rule rm
16, the algorithm accesses the local knowledge of P4 (class-

room manager) and through P4’s mapping rule rm
42, it also uses the knowl-

edge of P5 (person detection service) to determine that ¬class activity
is true and rm

16 is applicable.

- The algorithm uses the trust level order of P1 to determine which of the
two conflicting mapping rules (rm

15 and rm
16) is stronger. P4 precedes P2

in T1, so the algorithm determines that rm
16 is stronger, and computes a

negative truth value for lecture and consequently for important activity
as well.

- The algorithm determines that rl
11 is applicable and reaches to the ring

decision.

In the case of the Strength of Answers strategy, the mobile phone receives,
strict positive answers for scheduled CS566 and location RA201 from P2 and
P3 respectively (they derive from the local theories of the laptop and the
localization service ), and a weak positive answer for ¬class activity from
P4 (it derives from the combination of the local theory of the classroom
manager with its mappings). As a result, the Supportive Set of lecture will
only contain strict positive values, while the Conflicting Set will contain a
weak positive one, the algorithm will compute a positive truth value for
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lecture and consequently for important activity as well, and will not reach to
the ring decision.

In the case of the Propagating Supportive Sets and the Complex Supportive
Sets strategies, the algorithm, compared to the Single Answers strategy, will
additionally take into account the rank of the person detection service (P5) in
the trust level order of the mobile phone (T1) for the evaluation of the answer
it receives from the classroom manager (P4). As both P4 and P5 precede P3

in T1, the algorithm will compute a negative truth value for lecture, and
eventually it will reach to the ring decision.

6. Prototypical Implementation and Experimental Evaluation

6.1. Implementation

In order to evaluate the four strategies, we implemented the respective
versions of the P2P DR algorithm and a P2P system simulating the pro-
posed Multi-Context framework in Java. The main reasons for choosing this
particular programming language are

1. Java contains several data structures that can be used easily and effi-
ciently.

2. It is a ”write-once, use many” language, thus giving us the opportunity
to use the peer-to-peer system virtually anywhere a virtual machine can
be installed, from personal computers to mobile phones. This adds an
extra advantage when creating applications that involve multiple types
of devices.

For the network library as well as the peer-to-peer communication library,
we used a custom-built library based on the java.network packages. Libraries
such as JXTA would be inefficient due to the complexity in configuring such
a simple ad-hoc peer-to-peer network. The message exchanging protocol in
our custom library is also simple and straightforward. However, one can
use any other peer communication libraries, as the system uses an abstract
network manager interface.

The system is composed of 5 packages: agencies, logic, knowledge, net-
work, peerlib. The agencies package contains the classes that implement the
text file parsers as well as those that implement the four algorithms. The
logic package contains the classes the represent (in memory) the literals and
rules. The knowledge package includes the KnowledgeBase class (a Single-
ton class that stores the local and mapping rules, the trust level order and
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Figure 2: System Layered Architecture.

other required information) and some cache classes. The network package
includes the mechanism that associates a new socket connection with a new
thread, whereas the peerlib contains the higher-level classes that operate the
communication between two peers.

Figure 2 depicts the architecture, organized in a protocol stack manner.
The main class that operates the peer instance is called Node. Its function-
ality includes parsing the trust and rule files as well as the initialization of
the network libraries and knowledge base. After that, it waits for pending
queries. Finally, there is another class named Client, which can be used to
connect to a Node specified by IP address, so that one can manually make
specific queries for the rules of that peer instance.

6.2. Experimental Evaluation

The goal of the experiments that we conducted was to compare the four
different strategies in terms of actual computational time spent by a system
peer to evaluate the answer to a single query, and to test their scalability.
Below we present the test theories that we used and the setup of the experi-
ments, and discuss the results of the evaluation for the four strategies using
MCS with various peer populations.

6.2.1. Setup of the Experiments

The experiments that we conducted required test theories that correspond
to the worst cases that we described in Section 4. Using a tool that we built
for the needs of the experiments, we created theories that correspond to the
worst case that the computation of a single query requires computing the
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truth value of all literals from all system nodes. The test theories that we
created have the following form:

rm
1 : a2, a3, ..., an ⇒ a0

rm
2 : a1, a3, ..., an ⇒ a0

...
rm
n/2 : a1, ..., an/2−1, an/2+1, ..., an ⇒ a0

rm
n/2+1 : a1, ..., an/2, an/2+2, ..., an ⇒ ¬a0

...
rm
n : a1, a2, ..., an−1 ⇒ ¬a0

The above mapping rules are defined by P0 and associate the truth value
of its local literal a0 with the truth value of the literals from n other system
peers. Half of them support a0 as their conclusion, while the remaining
rules contradict a0. In case the truth values returned for all foreign literals
a1, a2,...,an are all positive then all mapping rules are applicable and are
involved in the computation of the truth value of a0.

In order to exclude the communication overhead from the total time spent
by P0 to evaluate the truth value of a0, we filled a local cache class with
appropriate answers for all the foreign literals. Specifically, for each version of
P2P DR, this class is filled with answers for all foreign literals (a1, a2, ..., an)
as follows:

- P2P DRSA: Positive truth values for all literals

- P2P DRSWA: Positive strict/weak answers (chosen randomly) for all
literals.

- P2P DRPS: Positive truth values with Supportive Sets that contain all
the other foreign literals:

SSai
= {a1, a2, ..., ai−1, aa+1, ..., an}

- P2P DRPS: Positive truth values with Supportive Sets of the form:

SSai
= {{a2, ..., ai−1, aa+1, ..., an}, {a1, a3, ..., ai−1, aa+1, ..., an},

..., {a1, a2, ..., ai−1, aa+1, ..., an−1}
For each version of the algorithm we made six experiments with a variant

number of system peers (n): 10, 20, 40, 60, 80, and 100. The test machine
was an Intel Celeron M at 1.4 GHz with 512 MB of RAM.
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Table 1: Computation Time for the Four Strategies

] peers (n) SA SWA PSS CSS

10 78 80 1313 2532
20 469 540 1534 4305
40 2422 3102 3466 207828
60 5719 6390 7188 -
80 10437 10302 15484 -
100 16484 15550 27484 -

6.2.2. Results

Table 1 shows in milliseconds the computation time for each version of
P2P DR. For the case of P2P DRCS, we were able to measure the com-
putation time only for the cases n = 10, 20, 40; in the other cases the test
machine ran out of memory.

As it is obvious from Table 1, the results for the first three strategies are
similar; the computation time is proportional to the square of the number of
system peers, verifying our expectations from Propositions 4, 5. The Com-
plex Sets strategy requires much more memory space and computation time
(exponential to the number of peers), which make it inapplicable in cases of
very dense systems. The results also verify the tradeoff between the computa-
tional complexity and the extent of context information that each algorithm
exploits to evaluate the quality of the imported context information.

7. Conclusions and Future Work

This paper proposed a totally distributed approach for reasoning in Ambi-
ent Computing environments based on the Multi-Context Systems paradigm.
To handle inconsistency in the distributed context knowledge, we added non-
monotonic features in Multi-Context Systems. The proposed model uses lo-
cal rule theories to express local context knowledge, defeasible rules for the
definition of mappings, and a preference relation to resolve conflicts that de-
rive from the interaction of distributed theories through the mappings. We
also described four strategies that use context and preference information
for conflict resolution, and analyzed their formal properties with respect to
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termination, complexity and the possibility to create an equivalent global
defeasible theory from the distributed contexts. We demonstrated the use of
the algorithm in a use case scenario from the Ambient Intelligence domain.
Finally, we described the implementation of the four strategies in a simulated
peer-to-peer environment, which we used to evaluate the strategies with re-
spect to their computational overhead. The obtained results highlight the
tradeoff between the extent of context information exchanged between the
ambient agents to evaluate the quality of the imported context and the com-
putational complexity of the algorithms that implement the four strategies.
Part of our ongoing work includes:

- Implementing the algorithm in Logic Programming, using the equiva-
lence with Defeasible Logic, and the well-studied translation of defeasible
knowledge into logic programs under Well-Founded Semantics [4].

- Implementing the described scenarios in a real ambient peer-to-peer en-
vironment with peers lying on a variety of stationary and mobile devices
(such as PDAs or cell phones).

- Adding non-monotonic features in the local context theories to support
uncertainty in the local context knowledge.

- Extending the algorithm to support overlapping vocabularies, enabling
different contexts to use elements of common vocabularies (e.g. URIs).

- Studying more applications in the Ambient Intelligence and Semantic
Web domains, where the theories may represent ontological context
knowledge, policies and regulations.
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