An Introduction to Formal Argumentation

Martin Caminada

University of Luxembourg

An Example (1/2) [Prakken]

- Paul: My car is very safe.
- Olga: Why?
- Paul: Since it has an airbag.
- Olga: It is true that your car has an airbag, but I do not think that this makes your car safe, because airbags are unreliable: the newspapers had several reports on cases where airbags did not work.
- Paul: I also read that report but a recent scientific study showed that cars with airbags are safer than cars without airbags, and scientific studies are more important than newspaper reports.
- Olga: OK, I admit that your argument is stronger than mine. However, your car is not very safe, since its maximum speed is much too high.

Arguments and attacks

- Argument: expresses one or more reasons that lead to a proposition
 a, b, c ⇒ d or a, b ⇒ c; c ⇒ d
- An argument can attack another argument
 rebutting attack: attack one of the conclusions of the other argument: e, f, g ⇒ ¬d against a, b, c ⇒ d
 undercutting attack: attack the reasons of the other argument
 e, f, g, ⇒ [a, b, c ⇒ d] against a, b, c ⇒ d

Example (2/2)

A: My car is very safe, since it has an airbag: has_airbag \Rightarrow safe

B: The newspapers say that airbags are not reliable, so having an airbag is not a good reason why your car is safe say(npr, ¬rel(airbag)) ⇒ ¬rel(airbag) ¬rel(airbag) ⇒ [has_airbag ≯ safe]

C: Scientific reports say that airbags are reliable. say(sr, rel(airbag)) \Rightarrow rel(airbag)

How Arguments Interact (1/2)

A: my car is very safe since it has an airbag

B: newspapers say that airbags are unreliable

C: scientific reports say that airbags are reliable, and these are more important than newspapers

How Arguments Interact (2/2)

Argumentation: what is it good for?

- Legal reasoning: CATO/HYPO use argumentation tools for supporting lawyers
- Medical reasoning: CRUK/CARREL helping doctors to suggest the best treatment for their patients
- Business applications: ZEUS standardizing business procedures

Nonmonotonic Logic

$\Phi \cup \Psi \vdash \phi$

The Argumentation Approach

1.generate arguments based on a knowledge base 2.see how these arguments defeat each other **3.** determine which arguments can be seen as justified 4. take the conclusions of the justified arguments

Argumentation in Agent Systems

For internal reasoning of single agents reasoning about beliefs, goals, intentions etc is often defeasible

- For interaction between multiple agents
 - information exchange involves explanation
 - collaboration and negotiation involve conflict of opinion and persuasion

What Arguments Look Like (1/2) Arguments as Sets of Assumptions

Given a knowledge base (K, Ass) Argument: (A, c) with $A \subseteq Ass s.t.$: $A \cup K \vDash c$ $A \cup K \nvDash \bot$ $\nexists a \in A$: $A \setminus \{a\} \cup K \vDash c$

(Besnard & Hunter, 2001)

What Attacks Look Like (1/2) Arguments as Sets of Assumptions

Assumption attack:

 (A_2, c_2) attacks (A_1, c_1) iff $\neg c_2 \in A_1$

What Arguments Look Like (1/2) Arguments as Trees Constructed with Rules

$((a) \rightarrow c), ((b) \rightarrow d) \Rightarrow e$

strict rule (\rightarrow): "from ... it always follows that..." defeasible rule (\Rightarrow): "from ... it usually follows that..."

How Arguments Interact (2/2)

Argument Evaluation Postulate

argument labels: in, out, undec

An argument is in iff all its defeaters are out

An argument is out iff it has a defeater that is in

Argument Evaluation in the Literature (1/2)

- Args is <u>conflict-free</u> iff
 Args does not contain A,B such that A defeats B
- Args <u>defends</u> an argument A iff for each argument B that defeats A, Args contains an argument (C) that defeats B
- F(Args) = all arguments defended by Args

Argument Evaluation in the Literature (2/2)

A conflict-free set of arguments Args is called:

- <u>admissible</u> iff Args \subseteq F(Args)
- a <u>complete extension</u> iff Args = F(Args)
- a <u>grounded extension</u> iff
 Args is the minimal complete extension
- a <u>preferred extension</u> iff
 Args is a maximal complete extension
- a <u>stable extension</u> iff Args is a preferred extension that defeats everything not in it

Literature and Labellings

restriction on reinst. labeling no restrictions empty undec maximal in maximal out maximal undec minimal in minimal out minimal undec

Dung-style semantics complete semantics stable semantics preferred semantics preferred semantics grounded semantics grounded semantics grounded semantics semi-stable semantics

Some properties of argument semantics

- grounded extension = ∩ complete extensions
 [Dung 1995 AIJ]
- an argument is in at least one preferred extension iff it is in at least one complete extension iff it is in at least one admissible set.

Computing the Grounded Extension

Idea: start with the undefeated arguments, then iteratively add the defended arguments

$$F^{0} = \emptyset$$

$$F^{i+1} = \{A \mid A \text{ is defended by } F^{i} \}$$

$$F^{\infty} = \bigcup_{i=0...\infty} F^{i}$$

If each argument has a finite set of defeaters, then F[∞] is the grounded extension.

Exercise 2

A Dialectical Game for Grounded Semantics

Is argument A element of the grounded extension?

- proponent states A
- opponent and proponent then take turns, in which they state an argument thats defeat the previous argument
- proponent is not allowed to repeat any previous argument
- a player wins iff the other player cannot move
 Argument A is in the grounded extension iff
 proponent has winning strategy for A

A Dialectical Game for Admissibility

Is argument A element of an admissible set?

- proponent states A
- opponent and proponent then take turns; the opponent each time states an argument that defeats one of the previous arguments of the proponent; the proponent each time states an argument that defeats the immediately preceding argument of the opponent
- the proponent may repeat its own moves, but not the moves of the opponent; the opponent may repeat the proponent's moves but not its own moves

 proponent wins iff opponent cannot move; opponent wins iff proponent cannot move or if opponent is able to repeat proponent's move
 A is in admissible set iff proponent has winning strat.

Default Logic as Argumentation

- default: pre(d): jus(d) / cons(d)
- arguments of the form: (d₁, ..., d_n) where for each d_i (1 ≤ i ≤ n) it holds that {cons(d₁), ..., cons(d_{i-1})} ∪ W ⊢ pre(d_i)
- $(d_1, ..., d_n)$ defeats $(d'_1, ..., d'_m)$ iff there is some d'_i $(1 \le i \le m)$ such that $\{cons(d_1), ..., cons(d_n)\} \cup W \vdash \neg jus(d'_i)$
- stable semantics

Pollock

- Arguments of the form (pfrule₁, ..., pfrule_n) where $\{cons(pfrule_1), ..., cons(pfrule_{i-1})\} \cup W \vdash ant(pfrule_i)\}$
- defeat: rebutting + undercutting
- preferred semantics (before: grounded semantics)

Logic Programming

Arguments: trees constructed with rules. The children of a rule
 c ← a₁, ..., a_n, not b₁, ..., not b_m

are rules with heads $a_1, ..., a_n$

- An argument A defeats an argument B iff
 A contains a rule with c as its head and
 B contains a rule with not c in its body
- stable semantics ("stable model semantics") grounded semantics ("well-founded semantics")

How Things Go Wrong (1/5)

- rr \Rightarrow mm \rightarrow hspp \Rightarrow bb \rightarrow \neg hs
- $A1 = (r) \Rightarrow m$ $A2 = (p) \Rightarrow b$ $A3 = A1 \rightarrow hs$ $A4 = A2 \rightarrow \neg hs$

Conclusions m and b are justified under any semantics but what about hs and ¬hs?

How Things Go Wrong (2/5)

r $r \Rightarrow m$ $m \supset hs$ p $p \Rightarrow b$ $b \supset \neg hs$


```
A1: (r) \Rightarrow m
A2: (p) \Rightarrow b
A3: (A1, m \supset hs) \rightarrow hs
A4: (A2, b \supset \neg hs) \rightarrow \neg hs
A5: (A3, b \supset \neg hs) \rightarrow \neg b
A6: (A4, m \supset hs) \rightarrow \neg m
```

So far, so good...

How Things Go Wrong (3/5)

How Things Go Wrong (4/5)

- Grounded semantics: no justified arguments
- Why not use preferred or stable semantics?
- Reiter and Pollock also do this...

How Things Go Wrong (5/5)

John: "Cup of coffee contains sugar." Mary: "Cup of coffee doesn't contain sugar." John: "I'm unreliable." Mary: "I'm unreliable." Weather Forecaster: "Tomorrow rain."

Quality Postulates

Let J be the justified conclusions and $Cl_s(J)$ be the closure of J under the rules in S.

- direct consistency: $\neg \exists p$: ($p \in J \land \neg p \in J$)
- closedness: J = Cl_s(J)
- indirect consistency: Cl_s(J) is consistent
- crash-resistency: "Local problems should not have global effects"

Transposition

Let *s* be a strict rule of the form $a_1, ..., a_n \rightarrow c$ A rule *s*' is a *transposition* of *s* iff *s*' is of the form $a_1, ..., a_{i-1}, \neg c, a_{i+1}, ..., a_n \rightarrow \neg a_i$ (for some $1 \le i \le n$)

A set of strict rules S is closed under transposition iff for each $s \in S$, if s' is a transposition of s then $s' \in S$.

$((a) \Rightarrow b) \Rightarrow c$ $((d) \Rightarrow e) \Rightarrow \neg c$

$((a) \rightarrow b) \rightarrow c$ $((d) \Rightarrow e) \Rightarrow \neg c$

$((a) \Rightarrow b) \rightarrow c$ $((d) \rightarrow e) \Rightarrow \neg c$

$$((a) \Rightarrow b) \rightarrow c$$
$$((d) \rightarrow e) \Rightarrow \neg c$$

unrestricted rebut: an argument can be rebutted on a conclusion derived by at least one defeasible rule

restricted rebut:

an argument can be rebutted only on the direct consequent of a defeasible rule

Satisfying the quality postulates

Two possibilities:

- strict rules closed under transposition
 + unrestricted rebut
 - + grounded semantics
- strict rules closed under transposition
 + restricted rebut
 + any "well behaved" semantics

With "well behaved" semantics we mean a semantics that yields a non-empty subset of the complete extensions (e.g. preferred, grounded, complete, ideal, semi-stable, ...)

Floating conclusions (1/2)

"Lars has a Dutch mother, so he's probably Dutch, so he probably likes ice-skating" "Lars has a Norwegian father, so he's probably Norwegian, so he probably likes ice-skating" A: ((dutch mom) \Rightarrow dutch) \Rightarrow likes skating B: ((norw dad) \Rightarrow norw) \Rightarrow likes skating C: ((dutch mom) \Rightarrow dutch) $\rightarrow \neg$ norw D: ((norw dad) \Rightarrow norw) $\rightarrow \neg$ dutch Here, C defeats A and D, and D defeats C and B. Grounded extension: \emptyset Wanted: *floating conclusions*

Floating conclusions (2/2)

"Witness X says the suspect killed the victim with an axe on Monday morning" "Witness Y says the suspect killed the victim with a rifle on Monday afternoon" A: ((decl X) \Rightarrow story X) \Rightarrow guilty B: ((decl Y) \Rightarrow story Y) \Rightarrow guilty C: ((decl X) \Rightarrow story X) $\rightarrow \neg$ story Y D: ((decl Y) \Rightarrow story Y) $\rightarrow \neg$ story X Here, C defeats A and D, and D defeats C and B. Grounded extension: \emptyset Now, do we still want floating conclusions?

Non-admissibility based semantics (1/2)

- Why not weaken the requirement of admissibility to, for instance, just conflict-freeness?
- For example, why not define an extension as a set Args with maximal range (Args ∪ Args⁺)
- Advantage: it treats even and odd loops in the same way.
Non-admissibility based semantics (2/2)

Suppose we have the following non-defeasible information: { a, b, $\neg(c \land d)$ } as well as two defeasible rules: $a \Rightarrow c$ and $b \Rightarrow d$ Let the strict rules be based on classical entailment A: (a) \Rightarrow c B: (b) \Rightarrow d C: ((a) \Rightarrow c), \neg (c \land d) \rightarrow \neg d D: ((b) \Rightarrow d), \neg (c \land d) \rightarrow \neg c E: \neg (c \land d) {A, B, E} is conflict-free, even though it yields inconsistent conclusions! Want consistency? Stick to admissibility!

References

- Argumentation in general: Prakken & Vreeswijk Handbook of Philosophical Logic, 2nd edition "Logics for Defeasible Argumentation"
- Reinstatement landmark paper: Dung, AIJ 1995
- Quality Postulates
 Caminada & Amgoud, AIJ 2007
- Argument game for Grounded Semantics
 Prakken & Sartor 1997, Caminada Ph.D. thesis
- Argument game for Preferred Semantics Prakken & Vreeswijk, JELIA 2000