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Abstract

Decision making is usually based on the comparative evalua-
tion of different alternatives by means of a decision criterion.
The whole decision process is compacted into a criterion for-
mula on the basis of which alternatives are compared. It is
thus, impossible for an end user to understand why an alter-
native is good, or better than another.
Recently, some decision criteria were articulated in terms of
a two-steps argumentation process: i) an inference step in
which arguments in favor/against each option are built and
evaluated, and ii) a comparison step in which pairs of alter-
natives are compared on the basis of “accepted” arguments.
Thus, not only the best alternative is provided to the user but
also the reasons justifying this recommendation. However, a
two steps approach is not in accordance with the principle of
an argumentation system, whose accepted arguments are in-
tended to support the “good” options. Moreover, with such an
approach it is difficult to define proof procedures for testing
directly whether a given option may be the best one without
computing the whole ordering. Finally, it is difficult to ana-
lyze how an ordering is revised in light of a new argument.
This paper proposes a novel approach for argumentation-
based decision making. We propose a Dung style system that
takes as input different arguments and a defeat relation among
them, and returns as outputs a status for each option, and a to-
tal preordering on a set of options. The status is defined on the
basis of different inference mechanisms. The total preorder-
ing privileges the option that is supported by the strongest
argument, provided that this argument survives to the attacks.
The properties of the system are investigated.

Introduction
Decision making relies on thecomparative evaluationof dif-
ferentoptionsor alternatives on the basis of adecision cri-
terion, which can be usually justified by means of a set of
postulates. This is, for example, the Savage view of decision
under uncertainty based on expected utility. Thus, standard
approaches for decision making consist in defining decision
criteria in terms of analytical expressions that summarizethe
whole decision process. It is then hard for a person who is
not familiar with the abstract decision methodology, to un-
derstand why a proposed alternative is good, or better than
another. It is thus important to have an approach in which
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one can better understand the underpinnings of the evalua-
tion. Argumentationis the most appropriate way to advocate
a choice thanks to its explanatory power.

Argumentation has been introduced in decision making
analysis by several researchers only in the last few years
(e.g. (Bonet & Geffner 1996; Fox & Parsons 1997; Gordon
& Karacapilidis 1999; Dimopoulos, Moraitis, & Tsoukias
2004; Amgoud 2005)). Indeed, in everyday life, decision
is often based on arguments and counter-arguments. Argu-
mentation can be also useful for explaining a choice already
made.

Recently, in (Amgoud 2005), a decision model in which
some decision criteria were articulated in terms of a two-
steps argumentation process has been proposed. At the first
step, calledinferencestep, the model uses a Dung style sys-
tem in which arguments in favor/against each option are
built, then evaluated using a given acceptability semantics.
At the second step, calledcomparisonstep, pairs of alter-
natives are compared using a given criterion. This criterion
is generally based on the “accepted” arguments computed
at the inference step. The model returns thus, an ordering
on the set of options, which may be either partial or total
depending on the decision criterion that is encoded. This
approach presents a great advantage since not only the best
alternative is provided to the user but also the reasons justi-
fying this recommendation.

However, a two steps approach is not in accordance with
the principle of an argumentation system, whose accepted
arguments are intended to support the “good” conclusions
(i.e. the best options in a decision making problem). Indeed,
in the above approach, the first step is unfortunately not suf-
ficient to rank-order the options. Consequently, it is diffi-
cult to define proof procedures for testing directly whethera
given option is the best one without having to compute the
whole ordering. The reason is that such a proof procedure
will make use of both steps. Finally, it is difficult to analyze
how an ordering is revised in light of a new argument.

This paper proposes a novel approach for argumentation-
based decision making. We propose a Dung style system
that rank-orders the different options in one step. The
system takes as input a set ofepistemicarguments (sup-
porting beliefs), a set ofpractical arguments (supporting
options), anattack relation among these arguments, and
a preference relationbetween arguments, and returns: i)



a status for each option, and ii) a total preorder on the
set of options. The status of an option is defined using
well-known inference mechanisms. These later are defined
in the literature for inferring conclusions from different
sets of formulas. We show that such mechanisms can be
adapted to the argumentation setting, and provide a good
basis for defining the ordering on options. The properties
of the system are investigated, and the characteristics
of the best “option” are given. Namely, we show that
our model privileges the option that is supported by the
strongest practical argument provided that this argument
is not undermined by epistemic arguments. With such
an approach, it is possible to use the proof procedures
defined in argumentation theory for testing whether a
given option is the “best”. This amounts to test whether
its argument is skeptically accepted under a given semantics.

The paper is organized in the following way. The first
section presents the different types of arguments that are in-
volved in a decision making problem. Then, we detail the
different attack relations that may exist between these ar-
guments. The next section presents the decision system as
well as its extensions. Then, the different status of options
are defined and the total preordering is provided. The model
is then illustrated on a real-world example. Finally, we con-
clude with some remarks and perspectives.

The arguments
Solving a decision problem amounts to defining a pre-
ordering, usually a complete one, on a set of possibleop-
tions, on the basis of the different consequences of each de-
cision. Let us illustrate this problem through a simple exam-
ple borrowed from (Fox & Parsons 1997).

Example 1 (Having or not a surgery) The example is
about having a surgery (sg) or not (¬sg), knowing that the
patient has colonic polyps. The knowledge base is:

• not having surgery avoids having side-effects,
• when having a cancer, having a surgery avoids loss of life,
• the patient has colonic polyps,
• having colonic polyps may lead to cancer.

In addition to the above knowledge, the patient has also
some goals like: “no side effects” and “to not lose his life”.
Obviously it is more important for him to not lose his life
than to not have side effects.

In what follows,L will denote a logical language. From
L, a finite setO = {o1, . . . , on} of n distinctoptionsis iden-
tified. The options are assumed to be mutually exclusive,
and an agent has to choose only one of them. Note that an
option oi may be a conjunction of other options inO. Let
us for instance assume that an agent wants a drink and has
to choose between tea, milk or both. Thus, there are three
options:o1 : tea,o2 : milk ando3 : tea and milk. In Example
1, the setO contains only two options:sg and¬sg.

Types of arguments
As shown in Example 1, decisions are made on the ba-
sis of available knowledge and the preferences of the de-

cision maker. Thus, two categories of arguments are distin-
guished: i)epistemic argumentsjustifying beliefs and are
themselves based only on beliefs, and ii)practical argu-
mentsjustifying options and are built from both beliefs and
preferences/goals.

Example 2 (Example 1 cont.)In this example,α = [“the
patient has colonic polyps”, and “having colonic polyps
may lead to cancer”] is considered as an argument for be-
lieving that the patient may have cancer. This epistemic
argument involves only beliefs. Whileδ1 = [“the patient
may have a cancer”, “when having a cancer, having a
surgery avoids loss of life”] is an argument for having a
surgery. This is a practical argument since it supports the
option “having a surgery”. Note that such argument in-
volves both beliefs and preferences. Similarly,δ2 = [“not
having surgery avoids having side-effects”] is a practical
argument in favor of “not having a surgery”.

In what follows,Ae denotes a set of epistemic arguments,
and Ap denotes a set of practical arguments such that
Ae ∩ Ap = ∅. Let A = Ae ∪ Ap (i.e. A will contain all
those arguments). The structure and origin of the arguments
are assumed to be unknown. Throughout the paper, we
assume that arguments inAp highlight positivefeatures of
their conclusions, i.e. they are in favor of their conclusions.

Epistemic arguments will be denoted by variables
α1, α2, . . ., while practical arguments will be referred to
by variablesδ1, δ2, . . . When no distinction is necessary be-
tween arguments, we will use the variablesa, b, c, . . .

Example 3 (Example 1 cont.)Ae = {α} while Ap =
{δ1, δ2}.

Let F be a function that returns for a given option, the
arguments in favor of it. Thus, foro ∈ O, F(o) ⊆ Ap.
Each practical argument supports only one option. That is,
∀o, o′ ∈ O with o 6= o′, it holds thatF(o) ∩ F(o′) = ∅.
Whenδ ∈ F(o), we say thato is theconclusionof δ, and we
write Conc(δ) = o. We assume thatAp =

⋃
F(oi) meaning

that the available practical arguments concern options inO.

Comparing arguments
In argumentation literature, it has been acknowledged that
arguments may not have equal strength. Some arguments
may be stronger than others for different reasons. For in-
stance, because they are built from more certain informa-
tion. In our particular application, three preference relations
between arguments are defined. The first one, denoted by
≥e, is apartial preorder (i.e. a reflexiveand transitivebi-
nary relation) on the setAe. The second relation, denoted
by ≥p, is a partial preorder on the setAp. Finally, a third
relation, denoted by≥m (m stands for mixed relation), cap-
tures the idea that any epistemic argument is stronger than
any practical argument. The role of epistemic arguments in
a decision problem is to validate or to undermine the be-
liefs on which practical arguments are built. Indeed, deci-
sions should be made under “certain” information. Thus,
∀α ∈ Ae, ∀δ ∈ Ap, (α, δ) ∈≥m and(δ, α) /∈≥m.
Note that(a, b) ∈≥x, with x ∈ {e, p,m}, means thata is



at least as good asb. At some places, we will also write
a ≥x b. In what follows,>x denotes the strict relation as-
sociated with≥x. It is defined as follows:(a, b) ∈>x iff
(a, b) ∈≥x and (b, a) /∈≥x. Moreover, when(a, b) ∈≥x

and(b, a) ∈≥x, we say thata andb are indifferent. When
(a, b) /∈≥x and(b, a) /∈≥x, the two arguments are saidin-
comparable.

Example 4 (Example 1 cont.)≥e = {(α, α)} and ≥m =
{(α, δ1), (α, δ2)}. Now, regarding≥p, one may assume
that δ1 is stronger thanδ2 since the goal satisfied byδ1

(namely, not loss of life) is more important than the one
satisfied byδ2 (not having side effects). Thus,≥p =
{(δ1, δ1), (δ2, δ2), (δ1, δ2)}.

Attacks among arguments
Generally arguments may be conflicting. These conflicts are
captured by abinary relationon the set of arguments. In
what follows, three such relations are distinguished:

• The first relation, denoted byRe, captures the different
conflicts that may exist between epistemic arguments. It
is assumed abstract and its origin is not specified.

• Practical arguments may also be conflicting. These con-
flicts are captured by the binary relationRp ⊆ Ap ×Ap.
Indeed, since options are distinct and competitive (i.e.
only one option will be chosen), arguments in favor of
different options are assumed to be conflicting. However,
arguments supporting the same offer are not since they
are defending the same option. Finally, self-conflicting
arguments are not allowed.

Rp = {(δ, δ′) s.t. δ, δ′ ∈ Ap, δ 6= δ
′ andConc(δ) 6= Conc(δ′)}

This relation behaves in some sense in the same way as
the “rebut” relation defined in (Elvang-Gøransson, Fox,
& Krause 1993), and which says that two arguments are
conflicting with each other if they support different con-
clusions.

• Finally, practical arguments may be attacked by epistemic
ones. The idea is that an epistemic argument may under-
mine the beliefs part of a practical argument. However,
practical arguments are not allowed to attack epistemic
ones. This avoids wishful thinking.
This relation, denoted byRm, contains pairs(α, δ) where
α ∈ Ae andδ ∈ Ap.

Property 1 The relationRp is symmetric andRm is asym-
metric.

Example 5 (Example 1 cont.)Recall thatAe = {α} and
Ap = {δ1, δ2}. Re = ∅, Rm = ∅, while Rp

={(δ1, δ2), (δ2, δ1)}.

Each preference relation≥x (with x ∈ {e, p,m}) is com-
bined with the conflict relationRx into a unique relation
between arguments, denoted byDefx and calleddefeatre-
lation, in the same way as in ((Amgoud & Cayrol 2002),
Definition 3.3, page 204).

Definition 1 (Defeat relation) LetA be a set of arguments,
anda, b ∈ A. (a, b) ∈ Defx iff:

• (a, b) ∈ Rx, and

• (b, a) /∈>x

Let Defe, Defp andDefm denote the three defeat relations
corresponding to the three attack relations. In case ofDefm,
the second bullet of Definition 1 is always true since epis-
temic arguments are strictly preferred (in the sense of≥m)
to any practical arguments. Thus,Defm = Rm (i.e. the de-
feat relation is exactly the attack relationRm). Regarding
the two other relations (Defe andDefp) they coincide with
their corresponding attack relations in case all the arguments
are incomparable. A straightforward consequence is the fol-
lowing simple property.

Property 2 The relationDefp is symmetric iff∀δ, δ′ ∈ Ap,
δ andδ′ are incomparable.Defm is asymmetric.

Example 6 (Example 1 cont.)Defe = ∅, Defm = ∅, while
Defp ={(δ1, δ2)}.

Another straightforward property says that arguments in fa-
vor of the same option are not defeating each others.

Property 3 Leto ∈ O. ∄δ1, δ2 ∈ F(o) such that(δ1, δ2) ∈
Defp.

Extensions of arguments
Now that the sets of arguments and the defeat relations are
identified, we can define the decision system.

Definition 2 (Argument-based decision system)LetO be
a set of options. Adecision system1 for orderingO is a pair
AF = (A, Def) whereA = Ae ∪ Ap and Def = Defe ∪
Defp ∪ Defm.

The decision systemAF = (A, Def) can be seen
as the union of two distinct argumentation systems:
AFe = (Ae, Defe), called epistemic system, and
AFp = (Ap, Defp), called practical system. The two
systems are related to each other by the defeat relation
Defm. It is important to notice that the epistemic system
AFe is very general and does not necessarily present
particular properties like for instance the existence of
stable/preferred extensions.

Due to Dung’s acceptability semantics defined in (Dung
1995), it is possible to identify among all the conflicting ar-
guments, which ones will be kept for ordering the options.
An acceptability semantics amounts to define sets of argu-
ments that satisfy a consistency requirement and must de-
fend all their elements.

Definition 3 (Conflict-free, Defence)Let (A, Def) be a
decision system,B ⊆ A, anda ∈ A.

• B is conflict-freeiff ∄ a, b ∈ B s.t. (a, b) ∈ Def.
• B defendsa iff ∀ b ∈ A, if (b, a) ∈ Def, then∃ c ∈ B s.t.

(c, b) ∈ Def.

The main semantics introduced by Dung are recalled in the
following definition.

Definition 4 (Acceptability semantics) Let (A, Def) be a
decision system, andB be a conflict-free set of arguments.

1At some places, it is also calledargumentation system.



• B is admissible extensioniff it defends any element inB.

• B is a preferred extensioniff B is a maximal (w.r.t set⊆)
admissible set.

• B is a stable extensioniff it is a preferred extension that
defeats any argument inA\B.

Using these acceptability semantics, the status of each argu-
ment can be defined as follows.

Definition 5 (Argument status) Let (A, Def) be an argu-
mentation system, andE1, . . . , Ex its extensions under a
given semantics. Leta ∈ A.

• a is skeptically acceptediff a ∈ Ei, ∀Ei=1,...,x, Ei 6= ∅.

• a is credulously acceptediff ∃Ei such thata ∈ Ei and∃Ej

such thata /∈ Ej .

• a is rejectediff ∄Ei such thata ∈ Ei.

Example 7 (Example 1 cont.)Recall thatDefe = ∅, Defm

= ∅, andDefp = {(δ1, δ2)}. Thus, the argumentation sys-
tem(A, Def) has exactly one extension{α, δ1} that is both
stable and preferred.

It is worth noticing that an extension may contain both epis-
temic and practical arguments. Moreover, it can be shown
that any extension does not containRp or Rm conflicts,
i.e. it does not contain a pair(a, b) of arguments such that
(a, b) ∈ Rp or (a, b) ∈ Rm. In this case, we say that the
extension isRx-conflict-free withx ∈ {p,m}.

Theorem 1 Any admissible extension of(A, Def) is Rx-
conflict-free withx ∈ {p,m}.

A consequence of this result is that any admissible extension
supports at most one option.

Corollary 1 LetE be an admissible extension ofAF. If E ∩
Ap 6= ∅ then∃o ∈ O s.t.∀δ ∈ E ∩ Ap, Conc(δ) = o.

In what follows, we will show that the result of the decision
system depends broadly on the outcome of its epistemic sys-
tem. The first result states that the epistemic arguments of
each admissible extension ofAF constitute an admissible ex-
tension of the epistemic systemAFe.

Theorem 2 Let AF = (Ae ∪ Ap, Defe ∪ Defp ∪ Defm) be
a decision system,E1, . . . , En its admissible extensions, and
AFe = (Ae, Defe) its associated epistemic system.

• ∀Ei, the setEi ∩ Ae is an admissible extension ofAFe.

• ∀E ′ such thatE ′ is an admissible extension ofAFe, ∃Ei

such thatE ′ ⊆ Ei ∩ Ae.

Finally, it is easy to show that whenDefm is empty, i.e. no
epistemic argument defeats a practical one, then the pre-
ferred extensions ofAF are exactly the different combina-
tions of the preferred extensions ofAFe andAFp.

Theorem 3 LetAF = (Ae ∪Ap, Defe ∪ Defp ∪ Defm) be a
decision system. LetE1, . . . , En be the preferred extensions
of AFe, andS1, . . . ,Sk be the preferred extensions ofAFp.
If Defm = ∅ then∀Ei, i = 1, . . . , n and∀Sj , j = 1, . . . , k
the setEi ∪ Sj is a preferred extension ofAF.

Note that in a decision system, when the defeat relation
Defm is empty, the epistemic arguments become useless for
the decision problem, i.e. for ordering options. Thus, only
the practical systemAFp is needed. It is then important to
analyze the properties of this system. We investigate three
kinds of issues:

1. The structure of the directed graph associated to the cor-
responding argumentation system.

2. The existence of extensions under different acceptability
semantics, and the characterization of those extensions.

3. The characterization of the accepted arguments of such
systems.

In what follows, we will show that the graph associated to
AFp has noelementary odd-length cycles. Before presenting
formally the result, let us first define what is an elementary
cycle.

Definition 6 (Elementary cycle) Let X = {a1, . . ., an} be
a set of arguments ofAp. X is anelementary cycleiff:

1. ∀i ≤ n − 1, (ai, ai+1) ∈ Defp and(an, a1) ∈ Defp

2. ∄X ′ ⊆ X such thatX ′ satisfies condition 1.

Let us illustrate this notion of elementary cycles through the
following simple example.

a b

c d

a b

c d

Example 8 In graph (1) of the above figure, the set
{a, b, c, d} forms an elementary cycle. However, in graph
(2), the set{a, b, c, d} is not an elementary cycle since its
subset{c, d} already satisfies the first condition of Defini-
tion 6.

A first result states that when the preference relation≥p is
a partial pre-order, the graph associated to the correspond-
ing argumentation systemAFp has no elementary odd-length
cycles. This result is important since the existence of odd-
length cycles prevents the existence of stable extensions.
Consequently, no option among elements ofO is suggested.
This is not suitable since in most practical cases, an agent
wants to choose in anyway one solution. Let us for instance
consider the case of a researcher who went to Chicago to
attend a conference. Once arrived at the airport, this person
had three options to attend the conference site: i) to take a
taxi, ii) to take the metro or iii) to take a bus. If we assume
that each option is supported by an argument, and the three
arguments form a cycle of length 3, it is clear that according
to the different acceptability semantics presented in Defini-
tion 4, there is no stable extension and there is oneempty
preferred extension. In such a case, there is no option to
suggest to this person, which means that he would have to
stay at the airport. This is of course not the case since he
will choose one solution.

Theorem 4 Let AFp be an argumentation system built on a
partial pre-order≥p. The graphG has no elementary odd-
length cycles.



The previous result lets us not only characterizing the struc-
ture of graphs associated with the systemAFp, but also prov-
ing other interesting results concerning the extensions under
the well-known acceptability semantics, in particular stable
one. Indeed, we will show that the practical systemAFp is
coherent (i.e. its stable semantics and preferred ones coin-
cide). Formally:

Theorem 5 The systemAFp is coherent (i.e. each preferred
extension is a stable one).

In addition to the above result, we will show that there are
non-emptyextensions. This result is of great importance
since it ensures that among all the different options ofO,
one of them will be for sure proposed as a candidate.

Theorem 6 The systemAFp has at least onenon-emptypre-
ferred extension.

Regarding the link between the different stable extensions,
we show that they are all pairwise disjoint, i.e. they don’t
have any common argument. Moreover, each extension con-
tains only arguments of the same option, and arguments of a
given option may not appear in different extensions.

Theorem 7 LetAFp be a practical system.

• Arguments of an extension are all in favor of the same
option.

• Arguments of an option belong to at most one extension.

Note that the second bullet of this theorem is not true in
the general decision systemAF. Indeed, it may be the case
that two arguments supporting the same option appear in dis-
tinct extensions.

From Theorem 7 we immediately obtain the following
corollary which says that a skeptically accepted argument
exists only when the system has a unique extension.

Corollary 2 The systemAFp has a skeptically accepted ar-
gument iff it has exactly one stable extension.

Comparing options
Recall that the main objective in a decision problem consists
of ordering a setO of options. In what follows, we will
show that such an ordering is defined on the basis of astatus
assigned to each option. The status is itself defined on the
basis of a givenmechanism. In what follows, we will adapt
the mechanisms that have been developed in the literature
for inferring conclusions from different maximal consistent
bases to the argumentation case.

With the first mechanism, an option is good if it is sup-
ported by a skeptically accepted argument.

Definition 7 (Skeptical option) An optiono is skepticaliff
∃δ ∈ F(o) such thatδ is skeptically accepted under a given
semantics. LetOs denote the set of skeptical options.

Let us illustrate this mechanism with the following example.
For the sake of simplicity we will consider only one option
in the setO. Of course, this is not the case in real world
decision making applications.

Example 9 Let O = {o}, F(o) = {δ1, δ2}, and Ae =
{α1, α2, α3}. The graph of defeats among arguments is de-
picted below.

α1 α2 α3

δ2 δ1

This decision system has two stable extensions:E1 =
{α1, α3, δ1} and E2 = {α2, δ1, δ2}. The optiono is thus
skeptical since its argumentδ1 is in both extensions.

This mechanism is, however, very strong as it can be seen
on the following example.

Example 10 Let O = {o}, F(o) = {δ1, δ2}, andAe =
{α1, α2}. The graph of defeats is depicted below.

α1 α2

δ1 δ2

This decision system has two stable extensions:E1 =
{α1, δ2} and E2 = {α2, δ1}. The optiono is not skeptical
even if it is supported by an argument in both extensions.

In order to palliate the limits of the above mechanism, we
introduce the universal one that accepts an option as soon as
it is supported by at least one argument in each extension.

Definition 8 (Universal option) An optiono is universaliff
∀E whereE is an extension (under a given semantics),∃δ ∈
F(o) such thatδ ∈ E . LetOu denote the set of universal
options.

Example 11 (Example 10 cont.)The optiono is not skep-
tical but it is a universal one.

This mechanism is not suitable in some cases as we can see
in the following example.

Example 12 Let O = {o1, o2}, F(o1) = {δ1}, F(o2) =
{δ2}, andAe = {α1, α2}. The graph of defeats is depicted
below.

α1 α2

δ1 δ2

This decision system has two stable extensions:E1 = {α1}
and E2 = {α2, δ1}. The optionso1 and o2 are not univer-
sal. However, compared too2, the argument ofo1 is in at
least one extension. Thus, one would prefero1 to o2. The
reason is that in the current state of the world, the argument
δ2 cannot hold, thus one cannot rely on its conclusiono2.
However, there is a possibility thato1 reaches the desired
state, i.e. the goal satisfied byo1.



In order to handle correctly the previous example, a new
mechanism is introduced. The idea is to accept an offer if
it is supported at least by an argument in an extension, pro-
vided that there is no other option supported in another ex-
tension.

Definition 9 (Argued option) Let o ∈ O. The optiono is
arguediff ∃E such thatE is an extension (under a given
semantics), and∃δ ∈ F(o) and δ ∈ E , and ∄E ′ such
that E ′ is an extension that contains an argumentδ′ with
Conc(δ′) 6= o. LetOa denote the set of argued options.

Example 13 (Example 12 cont.)The optiono is argued in
the sense of Definition 9.

Let us now consider the following example.

Example 14 Let O = {o1, o2, o3}, F(o1) = {δ1},
F(o2) = {δ2}, F(o3) = {δ3}, andAe = {α1, α2}. The
graph of defeats is depicted below.

α1 α2

δ3

δ1 δ2

This decision system has two stable extensions:E1 =
{α1, δ2} andE2 = {α2, δ1}. The optionso1 ando2 are not
argued. However, compared too3 whose argument is com-
pletely rejected,o1 and o2 have their argument in at least
one extension. Thus, one would prefer these options too3.

In order to prefero1, o2 to optiono3, a credulous mechanism
is applied. The idea is to consider an option as good as soon
as it is supported by at least one argument in at least one
extension.

Definition 10 (Credulous option) Leto ∈ O. The optiono
is credulousiff ∃E such thatE is an extension (under a given
semantics), and∃δ ∈ F(o) and δ ∈ E . LetOc denote the
set of credulous options.

It is worth mentioning that this mechanism is not recom-
mended when handling inconsistency in knowledge bases
since it may lead to inconsistent conclusions. However, in a
practical reasoning problem, this mechanism may be useful
for two reasons. First, it may reduce the space of choice.
In example 14, the choice has been reduced from 3 options
to only 2 options. Second, in a decision problem, one has
to choose one solution. Indeed, depending on the decision
problem at hand, one may have in the setO the different
possibilities and the agent should make a choice. In some
other cases, when all the options are not satisfactory for the
agent, this later may choose to do nothing instead of making
a bad choice. In this case,o = ”do nothing” is considered as
an alternative in the setO.
The following property shows the links between the differ-
ent mechanisms.

Property 4 The following inclusions hold:Os ⊆ Ou ⊆
Oa ⊆ Oc.

In addition to the above four classes of options, it is possible
to characterize two other case types of options: the ones that
are not supported at all by arguments, and the ones whose
arguments are all rejected in the argumentation system.

Definition 11 (Rejected option/Non-supported option)
An optiono is rejectediff ∀ δ ∈ F(o), δ is rejected. It is
non-supportediff F(o) = ∅.

Example 15 (Example 1 cont.)The argumentation system
(A, Def) has one extension{α, δ1}. Thus, the two argu-
mentsα and δ1 are skeptically accepted whereasδ2 is re-
jected. Consequently, the optionsg (having a surgery) is
skeptical while¬sg is rejected.

We can show that the setO of options can be partitioned
into three classes: the credulous ones, the rejected and the
non-supported options.

Property 5 The following equality holds:O = Oc ∪ Or ∪
Ons.

It can also be shown that there is at most one skeptical op-
tion. Similarly, there is at most one universal option and at
most one argued option. Moreover, when such an option
exists, then no credulous option is found.

Theorem 8 LetO be a set of options.

• |Os|
2 ≤ 1, |Ou| ≤ 1 and|Oa| ≤ 1.

• If Os 6= ∅ thenOs = Ou = Oa = Oc.
• If Ou 6= ∅ thenOu = Oa = Oc.
• If Oa 6= ∅ thenOa = Oc.

In addition to the best option which is an output of the ar-
gumentation system, a preference relation� on O (� ⊆
O × O) is also provided. For two optionso, o′, (o, o′) ∈ O
(or o � o′) means thato is at least as good aso′. Let≻ de-
note the strict version of� (i.e. (o, o′) ∈≻ iff (o, o′) ∈� and
(o′, o) /∈�). The idea is that credulous options are strictly
preferred to any non-supported option. A non-supported
option is better than a rejected option. For simplicity rea-
sons, we will writeOx ≻ Oy to denote that any option in
Ox is strictly preferred to any option inOy. Options of the
same setOx with x ∈ {c, r, ns} are equally preferred (i.e.
∀o, o′ ∈ Ox, both(o, o′) and(o′, o) are in�).

Definition 12 LetO be a set of options.Oc ≻ Ons ≻ Or.

It is easy to show that the relation� is a total preorder.

Property 6 The relation� is a total preorder.

The above preordering privileges the option that is supported
by the strongest argument in the sense of≥p.

Theorem 9 If Rm = ∅, then an optiono is skeptical iff
∃δ ∈ F(o) s.t.∀δ′ ∈ F(o′) with o 6= o′, then(δ, δ′) ∈ >p.

In (Amgoud & Prade 2006), it has been shown that such
a criterion captures the qualitative pessimistic criterion de-
fined and axiomatized in (Dubois & Prade 1995). This
shows that the argumentation model for decision making un-
der uncertainty is in accordance with classical models.

2|| denotes thecardinal of a given set.



Illustrative example
Let us study in this section the Omelette example intro-
duced by Savage ((Savage ), pages 13-15) and which
is very much used in most works on decision making
under uncertainty. In this example, an agent prepares an
omelette and should decide whether or not to add an egg
to a 5 eggs omelette knowing that the available egg may
be rotten. Thus, the uncertainty is on the state of the 6th egg.

The agent has to choose one among the three following
actions: i) to break the egg directly on the omelette (bo), ii)
to break the egg in a cup (bc), and iii) to throw away this
egg (ta). Thus,O = {bo, bc, ta}.

This agent has the following goals, presented in the order of
their importance: i) to not waste the omelette (¬wo), ii) to
not waste the 6th egg (¬we), iii) to have a 6 eggs omelette
(6e), and iv) to avoid having a cup to wash (cw).

The possible consequences of the actions are as follows:
1. If the egg is good and the agent chooses to break it directly

to the omelette (bo), then he will get a 6 eggs omelette
(6e), he will neither waste an egg nor have to wash a cup.
More importantly, he will not waste the omelette. This
constitutes an argument, sayδ1, in favor ofbo.

2. If the egg is rotten and the agent decides to break it on the
omelette, then he will for sure waste the omelette. This
constitutes an argumentδ2 whose conclusion isbo.

3. If the egg is good and the agent chooses to break the egg
apart in a cup, then he will get a 6 eggs omelette, he will
not waste neither the egg nor the omelette. However, he
will have to wash the cup. This constitutes an argument
δ3 for bc.

4. If the egg is rotten and the agent breaks it in a cup, then
he will have a 5 eggs omelette and he will not thus waste
his omelette. However, he will have to wash the cup. This
gives birth to an argumentδ4 for bc.

5. If the egg is good and the agent decides to throw it away
then he wastes the egg but not the omelette. He will not
have to wash a cup. This forms an argumentδ5 for ta.

6. If the egg is rotten and the agent throws it away then all
his preferences will be satisfied except the one of having
6 eggs omelette. Letδ6 denote this argument forta.

It is worth noticing that in this example the knowledge is
consistent, thus epistemic arguments are not necessary. In-
deed, in classical decision making, the knowledge is always
assumed consistent. In our decision model, only its practi-
cal part, i.e.AFp = (Ap, Defp) is then needed. Let us de-
fine this system. It is clear thatAp = {δ1, δ2, δ3, δ4, δ5, δ6}.
The relationDefp is a combination of an attack relationRp

and a preference relation between arguments≥p. From the
definition ofRp, arguments supporting different options are
conflicting. For instance, the pairs(δ1, δ3), (δ3, δ1), (δ1, δ4)
and (δ4, δ1) are inRp. However, arguments referring to
the same option are not conflicting. Thus,(δ1, δ2) /∈ Rp,
(δ2, δ1) /∈ Rp. Similar thing holds forδ3 andδ4, and also
for δ5 andδ6.

If the egg is good, it is clear that we have the following
preferences among the arguments:δ1 ≥p δ3 ≥p δ5. The
reason is thatδ1 refers to the most important goals of the
agent. Similarly,δ3 violates the less important goal of the
agent, namelywc, whereasδ5 violates a more important one,
¬we. In case the egg is rotten, it is also natural to consider
the following preferences:δ6 ≥p δ4 ≥p δ2.

It is clear from argumentδ1 that if the egg is good, then
the four goals of the agent will be satisfied. So the question
is then why does not he choose the actionbo? The answer
is that there is an uncertainty on the state of the egg. Le us
consider three possibilities:

1) the agent is quite sure that the egg is good. In this case,
it is clear thatδ1 ≥ δ6. The argumentation system is then
depicted in figure below:

δ1

δ3 δ5

δ4 δ6

δ2

In this case, the system has one stable/preferred extension,
{δ1, δ2}, thus one skeptical optionbo. The two othersbc
andta are both rejected.

2) Assume now that the agent is quite sure that the egg is
rotten. Thus,δ6 ≥p δ1. In this case, it can be checked
that the system will have one stable/preferred extension
{δ5, δ6}, concluding thus that the best action would be to
throw the egg away.

3) Let us now assume that the probability that the egg is rot-
ten is equal to the probability that it is good. In this case, it
is natural to consider the following preferences:δ1 ≥p δ4,
δ4 ≥p δ1. Moreover,δ4 ≥p δ6 ≥p δ3 ≥p δ5 ≥p δ2.
The corresponding argumentation systemAFp has two sta-
ble/preferred extensions:{δ1, δ2} and{δ3, δ4}. This means
that there are two credulous options:bo andbc, whereasta
is a rejected option.

Related work
As said in the introduction, some works have been done on
arguing for decision. Quite early, in (Gordon & Brewka
1994) Brewka and Gordon have outlined a logical approach
to decision (for negotiation purposes), which suggests
the use of defeasible consequence relation for handling
prioritized rules, and which also exhibits arguments for
each choice. However, arguments are not formally defined.



In the framework proposed by Fox and Parsons in (Fox
& Parsons 1997), no explicit distinction is made between
knowledge and goals. However, in their examples, values
(belonging to a linearly ordered scale) are assigned to
formulas which represent goals. These values provide an
empirical basis for comparing arguments using a symbolic
combination of strengths of beliefs and goals values. This
symbolic combination is performed through dictionaries
corresponding to different kinds of scales that may be used.
In this work, only one type of arguments is considered in
the style of arguments in favor of beliefs.

In (Bonet & Geffner 1996), Bonet and Geffner have also
proposed an approach to qualitative decision, inspired from
Tan and Pearl (Tan & Pearl 1994), based on “action rules”
that link a situation and an action with the satisfaction of
a positiveor anegativegoal. However in contrast with the
previous two works and the work presented in this paper,
this approach does not refer to any model in argumentative
inference.

In (Amgoud 2005), an abstract and general decision sys-
tem has been proposed. That system is defined in two steps.
At the first step, arguments in favor each option are built. Ar-
guments in favor of beliefs are also allowed. In that setting,
practical arguments are not conflicting at all. The idea was to
keep all the practical arguments that survive to epistemic at-
tacks. Then, at the second step, options are compared on the
basis of a decision principle. This principle is based on the
accepted practical arguments. While this approach is gen-
eral and flexible, it has some drawbacks. These are related
to the separation of the two steps.

Conclusion
The work reported here concerns a novel approach for de-
cision making. We have proposed an argumentation-based
model that returns the best option(s) among different alter-
natives in one step. The model is fully fledged Dung’s style
and computes in one step different outputs: skeptical, uni-
versal, argued, credulous, rejected and non-supported op-
tions. These outputs and the links between them make it
possible to define a total preordering on the set of options.
We have shown that such an ordering privileges the option
that is supported by the strongest argument among the ones
that successfully passed the threats of epistemic arguments.
This criterion has been studied in (Amgoud & Prade 2006).
Recall that in this later paper, the authors have shown that
this criterion captures the result of classical qualitative deci-
sion making proposed in (Dubois & Prade 1995).

The properties of our system are investigated, and can be
partitioned into three parts: the first part concerns the role of
epistemic arguments in a decision system. We have shown
that they validate the beliefs part of practical arguments.The
second part concerns the properties of the of practical system
embodied in the decision system. Finally, the characteristics
of the options have been investigated.

An extension of this work would be to study proof pro-
cedures and to propose algorithms that check the status of
an option. Another work to be done consists of extending

the proposed model for capturing more decision criteria. In
(Amgoud & Prade 2006), different criteria for comparing
pairs of options have been proposed. Some of them are
based on the number of arguments supporting each offer,
and others consist of aggregating arguments. Capturing the
results of these criteria in a Dung style system is important
since the number of steps is reduced into one.
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Appendix
Property3 Let o ∈ O. ∄δ1, δ2 ∈ F(o) such that(δ1, δ2) ∈
Defp.

Proof Let o ∈ O. Assume that∃δ1, δ2 ∈ F(o) such that
(δ1, δ2) ∈ Defp. This means that(δ1, δ2) ∈ Rp. This is not
allowed according to the definition ofRp.

Theorem 1 Any admissible extension of(A, Def) is Rx-
conflict-free withx ∈ {p,m}.

Proof Let E be an admissible extension of the system
(A, Def). SinceRm = Defm, then ifE contains aRm con-
flict, then it contains aDefm conflict, which contradicts the
fact thatE is conflict-free.

Let us assume thatE contains aRp conflict between two
argumentsδ1 andδ2 of Ap, i.e. (δ1, δ2) ∈ Rp. SinceRp is
symmetric, it holds that(δ2, δ1) ∈ Rp.

• Case 1: δ1 and δ2 are incomparable, this means that
(δ1, δ2) /∈ �p and (δ2, δ1) /∈ �p. Consequently,(δ1, δ2)
∈ Defp. This contradicts the fact thatE is an admissible
extension.

• Case 2:δ1 andδ2 are indifferent, this means that(δ1, δ2)
∈ �p and (δ2, δ1) ∈ �p. Consequently,(δ1, δ2) ∈ Defp.
This contradicts the fact thatE is an admissible extension.

• Case 3: δ2 >x δ1. Since(δ1, δ2) ∈ Rp, it holds that
(δ2, δ1) ∈ Defp. Thus,δ1 andδ2 should not appear in the
same extensionE .

• Case 4:δ1 >x δ2. Similar to case 3 sinceRp is symmet-
ric.

Corollary 1 Let E be an admissible extension ofAFp. If
E ∩ Ap 6= ∅ then∃o ∈ O s.t.∀δ ∈ E ∩ Ap, Conc(δ) = o.

Proof Let E be an admissible extension. Assume thatE ∩
Ap 6= ∅. There are two cases:

• E ∩ Ap = {δ}. It is clear that Conc(δ) = o ∈ O.
Moreover, each argument supports only one option. Thus,
∄o′ ∈ O such thatConc(δ) = o′.

• ∃δ1, δ2 ∈ E . Let us assume thatδ1 ∈ F(o1) and
δ2 ∈ F(o2), with o1 6= o2. According to the definition of
Rp, it holds that(δ1, δ2) ∈ Rp and(δ2, δ1) ∈ Rp. How-
ever, according to Theorem 1, the setE isRp conflict-free.
Contradiction.

Theorem 2 Let AF = (Ae ∪ Ap, Defe ∪ Defp ∪ Defm) be
a decision system,E1, . . . , En its admissible extensions, and
AFe = (Ae, Defe) its associated epistemic system.

• ∀Ei, the setEi ∩ Ae is an admissible extension ofAFe.

• ∀E ′ such thatE ′ is an admissible extension ofAFe, ∃Ei

such thatE ′ ⊆ Ei ∩ Ae.

Proof
• LetEi be an admissible extension ofAF. LetE = Ei ∩Ae.

Let us assume thatE is not an admissible extension ofAFe.
There are two cases:
Case 1: E is not conflict-free. This means that∃α1, α2 ∈

E such that(α1, α2) ∈ Defe. Thus,∃α1, α2 ∈ Ei such
that (α1, α2) ∈ Def. This is impossible sinceEi is an
admissible extension, thus conflict-free.

Case 2: E does not defend its elements. This means
that ∃α ∈ E , such that∃α′ ∈ Ae, (α′, α) ∈ Defe

and ∄α′′ ∈ E such that(α′′, α′) ∈ Defe. Since
(α′, α) ∈ Defe, this means that(α′, α) ∈ Def with
α ∈ Ei. However,Ei is admissible, then∃a ∈ Ei such
that (a, α′) ∈ Def. Assume thata ∈ Ap. This is im-
possible since practical arguments are not allowed to
defeat epistemic ones. Thus,a ∈ Ae. Hence,a ∈ E .
Contradiction.

• LetE ′ be an admissible extension ofAFe. Let us prove that
E ′ is an admissible extension ofAF. Assume thatE ′ is not
an admissible extension ofAF. There are two possibilities:
i) E ′ is not conflict-free inAF. This is not possible since
E ′ an admissible extension ofAFe, thus conflict-free.
ii) E ′ does not defend all its elements in the systemAF.
This means that∃a ∈ E ′ such thatE ′ does not defenda.
This means also that∃b /∈ E ′ such that(b, a) ∈ Def and
∄c ∈ E ′ such that(c, b) ∈ Def. There are two cases: ei-
ther b ∈ Ae or b ∈ Ap. b cannot be inAe sinceE ′ is an
admissible extension thus defends its arguments against
any attack, consequently it defends alsoa againstb. As-
sume now thatb ∈ Ap, this is also impossible since prac-
tical arguments are not allowed to attack epistemic ones.
Thus,E ′ is an admissible extension of the systemAF.

Theorem 3 LetAF = (Ae ∪ Ap, Defe ∪ Defp ∪ Defm) be a
decision system. LetE1, . . . , En be the preferred extensions
of AFe, andS1, . . . ,Sk be the preferred extensions ofAFp.
If Defm = ∅ then∀Ei, i = 1, . . . , n and∀Sj , j = 1, . . . , k
the setEi ∪ Sj is a preferred extension ofAF.

Proof Let E be a preferred extension ofAFe and S be a
preferred extension ofAFp. Let us assume thatE ∪ S is not
a preferred extension ofAF. There are three cases:

Case 1: E∪S is not conflict-free. SinceE andS are conflict-
free, then∃α ∈ E and∃δ ∈ S such that(α, δ) ∈ Def.
Contradiction with the fact thatDefm = ∅.

Case 2: E ∪ S does not defend its elements. This means
that: i) ∃α ∈ E such that∃α′ ∈ Ae, (α′, α) ∈ Defe and
E ∪S does not defend it. Impossible sinceE is a preferred
extension then it defends its arguments. ii)∃δ ∈ S such
that ∃a ∈ A, and(a, δ) ∈ Def andδ is not defended by
E ∪ S. SinceDefm = ∅, a ∈ Ap. However,S is an
extension and defends its arguments. Contradiction.

Case 3: E ∪ S is not maximal for set inclusion. This means
that ∃a ∈ A such thatE ∪ S ∪ {a} is conflict-free and



defendsa. Assume thata ∈ Ae. This means thatE ∪ {a}
is conflict-free and defendsa. This contradicts the fact
thatE is a preferred extension ofAFe. Similarly, if assume
that a ∈ Ap, this means thatS ∪ {a} is conflict-free and
defendsa. This contradicts the fact thatS is a preferred
extension ofAFp.

Theorem 4 Let AFp be an argumentation system built on a
partial pre-order≥p. The graphG has no elementary odd-
length cycles.

Proof Let δ1, . . . , δ2n+1 be arguments ofAp. Let us as-
sume that there is an elementary odd-length cycle between
these arguments, i.e.∀i ≤ 2n, (δi, δi+1) ∈ Defp, and
(δ2n+1, δ1) ∈ Defp. Since the cycle is elementary, then
∄δi, δi+1 such that(δi, δi+1) ∈ Defp and(δi+1, δi) ∈ Defp.
Thus,δi >p δi+1, ∀i ≤ 2n. Thus,δ1 >p δ2 >p . . . δ2n >p

δ2n+1 >p δ1. Since the relation>p is transitive, then we
have bothδ1 >p δ2n+1 and>p δ2n+1 >p δ1, contradiction.

Theorem 5 The systemAFp is coherent (i.e. each preferred
extension is a stable one).

Proof According to Theorem 4, the graph associated with
(A, Def) has no elementary odd-length cycles. Moreover, it
has been shown by Dunne and Bench Capon in (Dunne &
Capon 2002) that if the graph associated with an argumen-
tation system has no elementary odd-length cycles then it is
coherent.

Theorem 6 The systemAFp has at least onenon-emptypre-
ferred/stable extension.

Proof According to Theorem 4, the graph associated with
AFp has no elementary odd-length cycles. Besides, Berge
has proved in (Berge 1973) that a graph without elementary
odd-length cycles has a maximalnon-emptykernel. More-
over, Doutre has shown in (Doutre 2002) that a maximal
kernel corresponds exactly to a preferred extension. Thus
AFp has at least one non-empty preferred extension.

Theorem 7 LetAFp be a practical system.

• Arguments of an extension are all in favor of the same
option.

• Arguments of an option belong to at most one extension.

Proof
• LetE be a given extensions ofAFp. Assume that∃δ1, δ2 ∈
E such thatδ1 6= δ2. Assume also thatConc(δ1) = o1

and Conc(δ2) = o2 with o1 6= o2. Sinceo1 6= o2,
(δ1, δ2) ∈ Rp and (δ2, δ1) ∈ Rp (from the definition of
Rp). However, according to Theorem 1, the extensionE
does not containRp conflicts. Contradiction.

• Let o ∈ O. Assume thatδ1, δ2 ∈ F(o). Let E1, E2 be
two stable extensions ofAFp such thatE1 6= E2, δ1 ∈ E1

andδ2 ∈ E2. According to the first bullet of this theorem,
E1 and E2 contain only arguments in favor ofo. Thus,
according to Property 3,∀δ ∈ E1 and∀δ′ ∈ E2, (δ, δ′) /∈
Defp and(δ′, δ) /∈ Defp. This contradicts the fact thatE1

andE2 are stable extensions.

Corollary 2 The systemAFp has a skeptically accepted ar-
gument iff it has exactly one stable extension.

Proof The proof follows directly from Theorem 7, and Def-
inition 5. Indeed, an argument cannot belong to more than
one extension.

Property 4 The following inclusions hold:Os ⊆ Ou ⊆
Oa ⊆ Oc.

Proof Let AF be a decision system for orderingO. Let
E1, . . . , En its extensions under a given semantics.

• Os ⊆ Ou? Let o ∈ Os. Thus,∃δ ∈ F(o) such that
δ ∈

⋂
Ei. Thus,∀Ei, δ ∈ Ei, and consequently,o ∈ Ou.

• Ou ⊆ Oa? Leto ∈ Ou. Thus,∀Ei, ∃δ ∈ F(o) such that
δ ∈ Ei. It is thus clear that each extensionEi supports
the optiono. Moreover, according to Corollary 1, each
extension supports only one option at most. Thus,o ∈ Oa.

• Oa ⊆ Oc? Leto ∈ Oa. Then,∃Ei such that∃δ ∈ F(o)
andδ ∈ Ei. Thus,o ∈ Oc.

Property 5 The following equality holds:O = Oc ∪ Or ∪
Ons.

Proof Let us proceed by case analysis. Leto ∈ O. There
are two situations: i)F(o) = ∅, thuso ∈ Ons, ii) F(o) 6= ∅.
In this case, there are five possibilities:

• ∀δ ∈ F(o), δ is rejected. Thus,o ∈ Or.

• ∀δ ∈ F(o), δ is skeptically accepted. Thus,o ∈ Os.

• ∃δ ∈ F(o), δ is skeptically accepted. Thus,o ∈ Os.

• ∀δ ∈ F(o), δ is credulously accepted. Thus,o ∈ Oc.

• ∃δ ∈ F(o), δ is credulously accepted. Thus,o ∈ Oc.

Theorem 8 LetO be a set of options.

• |Os|
3 ≤ 1, |Ou| ≤ 1 and|Oa| ≤ 1.

• If Os 6= ∅ thenOs = Ou = Oa = Oc.

• If Ou 6= ∅ thenOu = Oa = Oc.

• If Oa 6= ∅ thenOa = Oc.

Proof Let(A, Def) be a decision system, andE1, . . . , En is
extensions under a given semantics.

• Let us assume that∃o1, o2 ∈ Os. This means that
∃δ1, δ2 ∈ Ap such thatConc(δ1) = o1, Conc(δ2) = o2

andδ1, δ2 are skeptically accepted. This means also that
δ1, δ2 ∈

⋂
i=1,...,n Ei.

Let’s take a given extensionEj . It is clear thatδ1, δ2 ∈
Ej . According to Theorem 1,Ej does not contain aRp

conflict. However, according to the definition ofRp, since
δ1 and δ2 support different options, then both(δ1, δ2) ∈
Rp and(δ2, δ1) ∈ Rp hold. Contradiction.

3|| denotes thecardinal of a given set.



• Let us assume thatOs 6= ∅ and thatOc \ Os 6= ∅. Since
Os 6= ∅, this means that∃o ∈ O such that∃δ ∈ F(o)
and δ is skeptically accepted. This means also thatδ ∈⋂

i=1,...,n Ei. (1)
Besides,Oc \ Os 6= ∅ means that∃o′ ∈ Oc \ Os. This
means also that∃δ′ ∈ F(o′) and δ′ is credulously ac-
cepted. It follows that∃Ej (1 ≤ j ≤ n) such thatδ′ ∈ Ej .
(2)
From (1) and (2), it follows thatδ, δ′ ∈ Ej . However,
according to the definition ofRp, both(δ, δ′) ∈ Rp and
(δ′, δ) ∈ Rp hold. This contradicts the fact thatEj is Rp

conflict-free (according to Theorem 1).

Theorem 9 If Rm = ∅, then an optiono is skeptical iff
∃δ ∈ F(o) s.t.∀δ′ ∈ F(o′) with o 6= o′, then(δ, δ′) ∈ >p.

Proof LetRm = ∅, ando ∈ O.

• Assume thato is skeptical, this means that∃δ ∈ F(o)
such thatδ is skeptically accepted. According to Corol-
lary 2, this means that the systemAFp has a unique sta-
ble extension, sayE . Moreover, according to Corol-
lary 1, each extension supports only one option. Thus,
∀δ′ ∈ F(o′), (δ, δ′) ∈ Defp and (δ′, δ) /∈ Defp. Thus,
(δ, δ′) ∈ >p.

• Assume that∃δ ∈ F(o) such that ∀δ′ ∈ F(o′),
(δ, δ′) ∈>p. Moreover, from the definition ofRm, ∀δ′ ∈
F(o′), (δ, δ′) ∈ Defp and(δ′, δ) ∈ Defp. Thus,(δ, δ′) ∈
Defp and (δ′, δ) /∈ Defp. Thus,δ is undefeated. Conse-
quently, it belongs to every preferred extension. Thus,δ is
skeptically accepted. Consequently,o is skeptical.


