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Chapter 1

Answer Sets

Michael Gelfond

1.1 Introduction

This chapter is an introduction to Answer Set Prolog - a language for knowledge repre-
sentation and reasoning based on the answer set/stable model semantics of logic programs
[44, 45]. The language has roots in declarative programing [52, 65], the syntax and seman-
tics of standard Prolog [24, 23], disjunctive databases [66, 67] and nonmonotonic logic
[79, 68, 61]. Unlike “standard” Prolog it allows us to express disjunction and “classical”
or “strong” negation. It differs from many other knowledge representation languages by
its ability to represent defaults, i.e. statements of the form “Elements of a class C nor-
mally satisfy property P ”. A person may learn early in life that parents normally love their
children. So knowing that Mary is John’s mother he may conclude that Mary loves John
and act accordingly. Later he may learn that Mary is an exception to the above default,
conclude that Mary does not really like John, and use this new knowledge to change his
behavior. One can argue that a substantial part of our education consists in learning vari-
ous defaults, exceptions to these defaults, and the ways of using this information to draw
reasonable conclusions about the world and the consequences of our actions. Answer Set
Prolog provides a powerful logical model of this process. Its syntax allows for the sim-
ple representation of defaults and their exceptions, its consequence relation characterizes
the corresponding set of valid conclusions, and its inference mechanisms often allow a
program to find these conclusions in a reasonable amount of time.

There are other important types of statements which can be nicely expressed in Answer
Set Prolog. This includes the causal effects of actions (“ statement F becomes true as a
result of performing an action a”), statements expressing a lack of information (“it is not
known if statement P is true or false”), various completeness assumptions “statements not
entailed by the knowledge base are false”, etc.

There is by now a comparatively large number of inference engines associated with Answer
Set Prolog. SLDNF-resolution based goal-oriented methods of “classical” Prolog and its
variants [22] are sound with respect to the answer set semantics of their programs. The
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same is true for fix-point computations of deductive databases [93]. These systems can be
used for answering various queries to a subset of Answer Set Prolog which does not allow
disjunction, “classical” negation, and rules with empty heads. In the last decade we have
witnessed the coming of age of inference engines aimed at computing the answer sets of
Answer Set Prolog programs [71, 72, 54, 29, 39, 47]. These engines are often referred to
as answer set solvers. Normally they start with grounding the program, i.e. instantiating its
variables by ground terms. The resulting program has the same answer sets as the original
but is essentially propositional. The grounding techniques implemented by answer set
solvers are rather sophisticated. Among other things they utilize algorithms from deductive
databases, and require a good understanding of the relationship between various semantics
of logic programming. The answer sets of the grounded program are often computed using
substantially modified and expanded satisfiability checking algorithms. Another approach
reduces the computation of answer sets to (possibly multiple) calls to satisfiability solvers
[3, 47, 58].

The method of solving various combinatorial problems by reducing them to finding the
answer sets of Answer Set Prolog programs which declaratively describe the problems is
often called the answer set programming paradigm (ASP) [70, 62]. It has been used for
finding solutions to a variety of programming tasks, ranging from building decision support
systems for the Space Shuttle [74] and program configuration [87], to solving problems
arising in bio-informatics [9], zoology and linguistics [20]. On the negative side, Answer
Set Prolog in its current form is not adequate for reasoning with complex logical formulas
- the things that classical logic is good at - and for reasoning with real numbers.

There is a substantial number of natural and mathematically elegant extensions of the orig-
inal Answer Set Prolog. A long standing problem of expanding answer set programming
by aggregates - functions on sets - is approaching its final solution in [33, 32, 88, 76, 35].
The rules of the language are generalized [38] to allow nested logical connectives and var-
ious means to express preferences between answer sets [18, 25, 82]. Weak constraints and
consistency restoring rules are introduced to deal with possible inconsistencies [21, 7]. The
logical reasoning of Answer Set Prolog is combined with probabilistic reasoning in [14]
and with qualitative optimization in [19]. All of these languages have at least experimental
implementations and an emerging theory and methodology of use.

1.2 Syntax and Semantics of Answer Set Prolog

We start with a description of syntax and semantics of Answer Set Prolog - a logic pro-
gramming language based on the answer sets semantics of [45]. In what follows we use a
standard notion of a sorted signature from classical logic. We will assume that our signa-
tures contain sort N of non-negative integers and the standard functions and relations of
arithmetic. (Nothing prevents us from allowing other numerical types but doing that will
lengthen some of our definitions. So N will be the only numerical sort discussed in this
paper.) Terms and atoms are defined as usual. An atom p(t) and its negation ¬p(t) will be
referred to as literals. Literals of the form p(t) and ¬p(t) are called contrary. A rule of
Answer Set Prolog is an expression of the form

l0 or . . . or lk ← lk+1, . . . , lm, not lm+1, . . . , not ln (1.1)
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where li’s are literals. Connectives not and or are called negation as failure or default
negation, and epistemic disjunction respectively. Literals possibly preceded by default
negation are called extended literals.

A rule of Answer Set Prolog which has a non-empty head and contains no occurrences of
¬ and no occurrences of or is called an nlp rule. Programs consisting of such rules will
be referred to as nlp (normal logic program).

If r is a rule of type (1.1) then head(r) = {l0, . . . , lk}, pos(r) = {lk+1, . . . , lm}, neg(r) =
{lm+1, . . . , ln}, and body(r) = {lk+1, . . . , lm, not lm+1, . . . , not ln}. If head(r) = ∅
rule r is called a constraint and is written as

← lk+1, . . . , lm, not lm+1, . . . , not ln (1.2)

If k = 0 then we write

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (1.3)

A rule r such that body(r) = ∅ is called a fact and is written as

l0 or . . . or lk. (1.4)

Rules of Answer Set Prolog will often be referred to as logic programming rules.

Definition 1.2.1 A program of Answer Set Prolog is a pair {σ,Π} where σ is a signature
and Π is a collection of logic programming rules over σ.

In what follows we adhere to the convention used by all the inference engines of Answer
Set Prolog and end every rule by a “.”.
Consider for instance a signature σ with two sorts, τ = {a, b} and τ2 = N . Suppose that σ
contains predicate symbols p(τ1), q(τ1, τ2), r(τ1), and the standard relation < on N . The
signature, together with rules

Π0





q(a, 1).
q(b, 2).
p(X) ← K + 1 < 2,

q(X,K).
r(X) ← not p(X).

constitute a program of Answer Set Prolog. Capital letters X and K denote variables of
the appropriate types.

In this paper we will often refer to programs of Answer Set Prolog as logic programs and
denote them by their second element Π. The corresponding signature will be denoted by
σ(Π). If σ(Π) is not given explicitly we assume that it consists of symbols occurring in
the program.

To give the semantics of Answer Set Prolog we will need the following terminology.
Terms, literals, and rules of program Π with signature σ are called ground if they con-
tain no variables and no symbols for arithmetic functions. A program is called ground if
all its rules are ground. A rule r′ is called a ground instance of a rule r of Π if it is obtained
from r by:
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1. replacing r’s non-integer variables by properly typed ground terms of σ(Π);

2. replacing r’s variables for non-negative integers by numbers from N ;

3. replacing the remaining occurrences of numerical terms by their values.

A program gr(Π) consisting of all ground instances of all rules of Π is called the ground
instantiation of Π. Obviously gr(Π) is a ground program.

Below is the ground instantiation of program Π0

gr(Π0)





q(a, 1).
q(b, 2).
p(a) ← 1 < 2,

q(a, 0).
p(a) ← 2 < 2,

q(a, 1).
. . .

r(a) ← not p(a).
r(b) ← not p(b).

Consistent sets of ground literals over σ, containing all arithmetic literals which are true
under the standard interpretation of their symbols, are called partial interpretations of σ.
Let l be a ground literal. By l we denote the literal contrary to l. We say that l is true in a
partial interpretation S if l ∈ S; l is false in S if l ∈ S; otherwise l is unknown in S. An
extended literal not l is true in S if l 6∈ S; otherwise it is false in S. A set U of extended
literals is understood as conjunction, and sometimes will be written with symbol ∧. U is
true in S if all elements of U are true in S; U is false in S if at least one element of U is
false in S; otherwise U is unknown. Disjunction D of literals is true in S if at list one of
its members is true in S; D is false in S if all members of D are false in S; otherwise D is
unknown. Let e be an extended literal, a set of extended literals, or a disjunction of literals.
We refer to such expressions as formulas of σ. For simplicity we identify expressions
¬(l1 or . . . or ln) and ¬(l1, . . . , ln) with the conjunction l1 ∧ . . . ∧ ln. and disjunction
l1 or . . . or ln respectively. We say that S satisfies e if e is true in S. S satisfies a logic
programming rule r if S satisfies r’s head or does not satisfy its body.

Our definition of semantics of Answer Set Prolog will be given for ground programs. Rules
with variables will be used only as a shorthand for the sets of their ground instances. This
approach is justified for the so called closed domains, i.e. domains satisfying the domain
closure assumption [78] which asserts that all objects in the domain of discourse have
names in the signature of Π. Even though the assumption is undoubtedly useful for a
broad range of applications, there are cases when it does not properly reflect the properties
of the domain of discourse. Semantics of Answer Set Prolog for open domains can be
found in [11, 84, 49].

The answer set semantics of a logic program Π assigns to Π a collection of answer sets –
partial interpretations of σ(Π) corresponding to possible sets of beliefs which can be built
by a rational reasoner on the basis of rules of Π. In the construction of such a set, S, the
reasoner is assumed to be guided by the following informal principles:
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• S must satisfy the rules of Π;

• the reasoner should adhere to the rationality principle which says that one shall not
believe anything one is not forced to believe.

The precise definition of answer sets will be first given for programs whose rules do not
contain default negation. Let Π be such a program and let S be a partial interpretation of
σ(Π).

Definition 1.2.2 (Answer set – part one)
A partial interpretation S of σ(Π) is an answer set for Π if S is minimal (in the sense of
set-theoretic inclusion) among the partial interpretations satisfying the rules of Π.

The rationality principle is captured in this definition by the minimality requirement.

Example 1.2.1 (Answer sets)
A program

Π1





q(a).
p(a).
r(a) ← p(a),

q(a).
r(b) ← q(b).

has one answer set, {q(a), p(a), r(a)}.
A program

Π2 = {q(a) or q(b).}
has two answer sets, {q(a)} and {q(b)}, while a program

Π3

{
q(a) or q(b).
¬q(a).

has one answer set {¬q(a), q(b)}.

We use the symbol or instead of classical ∨ to stress the difference between the two con-
nectives. A formula A ∨ B of classical logic says that “A is true or B is true” while a
rule, A or B, may be interpreted epistemically and means that every possible set of rea-
soner’s beliefs must satisfy A or satisfy B. To better understand this intuition consider the
following examples.

Example 1.2.2 (More answer sets)
It is easy to see that program

Π4

{
p(a) ← q(a).
p(a) ← ¬q(a).

has unique answer set A = ∅, while program

Π5





p(a) ← q(a).
p(a) ← ¬q(a).
q(a) or ¬q(a).
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has two answer sets, A1 = {q(a), p(a)} and A2 = {¬q(a), p(a)}. The answer sets reflect
the epistemic interpretation of or . The statement q(a) or ¬q(a) is not a tautology.
The reasoner associated with program Π4 has no reason to believe either q(a) nor ¬q(a).
Hence he believes neither which leads to the answer set of Π4 being empty. The last rule of
program Π5 forces the reasoner to only consider sets of beliefs which contain either q(a)
or ¬q(a) which leads to two answer sets of Π5.

Note also it will be wrong to view epistemic disjunction or as exclusive. It is true that,
due to the minimality condition in the definition of answer set, program

Π2 = {q(a) or q(b).}
has two answer sets, A1 = {q(a)} and A2 = {q(b)}. But consider a query Q = q(a) ∧
q(b). Since neither Q nor ¬Q are satisfied by answer sets A1 and A2 the Π5’s answer to
query Q will be unknown. The exclusive interpretation of or requires the definite negative
answer. It is instructive to contrast Π5 with a program

Π6 = Π2 ∪ {¬q(a) or ¬q(b)}
which has answer sets A1 = {q(a),¬q(b)} and A2 = {q(b),¬q(a)} and clearly contains
¬Q among its consequences.

The next two programs show that the connective ← shall not be confused with classical
implication. Consider a program

Π7

{ ¬p(a) ← q(a).
q(a).

Obviously it has unique answer set {q(q),¬p(a)}. But the program

Π8

{ ¬q(a) ← p(a).
q(a).

obtained from Π7 by replacing its first rule by the rule’s “contrapositive” has a different
answer set, {q(a)}.

To extend the definition of answer sets to arbitrary programs, take any program Π, and let
S be a partial interpretation of σ(Π). The reduct, ΠS , of Π relative to S is the set of rules

l0 or . . . or lk ← lk+1, . . . , lm

for all rules (1.1) in Π such that {lm+1, . . . , ln} ∩ S = ∅. Thus ΠS is a program without
default negation.

Definition 1.2.3 (Answer set – part two)
A partial interpretation S of σ(Π) is an answer set for Π if S is an answer set for ΠS .

The relationship between this fix-point definition and the informal principles which form
the basis for the notion of answer set is given by the following proposition.

Proposition 1.2.1 Baral and Gelfond, [11]
Let S be an answer set of logic program Π.
(a) S is closed under the rules of the ground instantiation of Π.
(b) If literal l ∈ S then there is a rule r from the ground instantiation of Π such that the
body of r is satisfied by S and l is the only literal in the head of r satisfied by S.
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The rule r from (b) “forces” the reasoner to believe l.

Definition 1.2.4 (Entailment)
A program Π entails a ground literal l (Π |= l) if l is satisfied by every answer set of Π.

(Sometimes the above entailment is referred to as cautious). Program Π representing
knowledge about some domain can be queried by a user with a query q. For simplicity
we assume that q is a ground formula of σ(Π).

Definition 1.2.5 (Answer to a query)
We say that the program Π’s answer to a query q is yes if Π |= q, no if Π |= ¬q, and
unknown otherwise.

Example 1.2.3 Consider for instance a logic program

Π9





p(a) ← not q(a).
p(b) ← not q(b).
q(a).

Let us first use the informal principles stated above to find an answer set, A, of Π9. Since
A must be closed under the rules of Π it must contain q(a). There is no rule forcing the
reasoner to believe q(b). This implies that q(b) 6∈ A. Finally, the second rule forces the
reasoner to believe p(b). The first rule is already satisfied and hence the construction is
completed.

Using the definition of answer sets one can easily show that A = {q(a), p(b)} is an answer
set of this program. In the next section we will introduce simple techniques which will allow
us to show that it is the only answer set of Π9. Thus Π9 |= q(a), Π9 6|= q(b), Π9 6|= ¬q(b)
and Π9’s answers to queries q(a) and q(b) will be yes and unknown respectively. If we
expand Π0 by a rule

¬q(X)← not q(X) (1.5)

the resulting program
Π10 = Π9 ∪ (1.5)

would have the answer set S = {q(a),¬q(b), p(b)} and hence the answer to query q(b)
will become no.

The notion of answer set is an extension of an earlier notion of stable model defined in
[44] for normal logic programs. But, even though stable models of an nlp Π are identical
to its answer sets, the meaning of Π under the stable model semantics is different from
that under answer set semantics. The difference is caused by the closed world assumption
(CWA), [78] ‘hard-wired’ in the definition of stable entailment |=s: an nlp Π |=s ¬p(a)
iff for every stable model S of Π, p(a) 6∈ S. In other words the absence of a reason for
believing in p(a) is sufficient to conclude its falsity. To match stable model semantics of
Π in terms of answer sets, we need to expand Π by an explicit closed world assumption,

CWA(Π) = Π ∪ {¬p(X1, . . . , Xn)← not p(X1, . . . , Xn)}
for every predicate symbol p of Π. Now it can be shown that for any ground literal l, Π |=s l
iff Π |= l. Of course the closed world assumption does not have to be used for all of the
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relations of the program. If complete information is available about a particular relation p
we call such relation closed and write ¬p(X1, . . . , Xn)← not p(X1, . . . , Xn). Relations
which are not closed are referred to as open. Examples of open and closed relations will
be given in Section 1.4.

1.3 Properties of Logic Programs

There is a large body of knowledge about mathematical properties of logic programs under
the answer set semantics. The results presented in this section are aimed at providing a
reader with a small sample of this knowledge. Due to the space limitations the presentation
will be a mix of precise statements and informal explanations. For a much more complete
coverage one may look at [8, 37].

1.3.1 Consistency of Logic Programs

Programs of Answer Set Prolog may have one, many, or zero answer sets. One can use the
definition of answer sets to show that programs

Π11 = {p(a)← not p(a).}

Π12 = {p(a). ¬p(a).}
and

Π13 = {p(a). ← p(a).}
have no answer sets while program

Π14





e(0).
e(X + 2) ← not e(X).
p(X + 1) ← e(X), not p(X).
p(X) ← e(X), not p(X + 1).

has an infinite collection of them. Each answer set of Π14 consists of atoms {e(0), e(3), e(4), e(7), e(8), . . .}
and a choice of p(n) or p(n + 1) for each integer n satisfying e.

Definition 1.3.1 A logic program is called consistent if it has an answer set.

Inconsistency of a program can reflect an absence of a solution to the problem it models.
It can also be caused by the improper use of the connective ¬ and/or constraints as in pro-
grams Π12 and Π13 or by the more subtly incorrect use of default negation as in Π11. The
simple transformation described below [42, 11] reduces programs of Answer Set Prolog to
programs without ¬.

For any predicate symbol p occurring in Π, let p′ be a new predicate symbol of the same
arity. The atom p′(t) will be called the positive form of the negative literal ¬p(t). Every
positive literal is, by definition, its own positive form. The positive form of a literal l will
be denoted by l+. Program Π+, called positive form of Π, is obtained from Π by replacing
each rule (1.1) by

{l+0 , . . . , l+k } ← l+k+1, . . . , l
+
m, not l+m+1, . . . , not l+n
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and adding the rules
← p(t), p′(t)

for every atom p(t) of σ(Π). For any set S of literals, S+ stands for the set of the positive
forms of the elements of S.

Proposition 1.3.1 A set S of literals of σ(Π) is an answer set of Π if and only if S+ is an
answer set of Π+.

This leaves the responsibility for inconsistency to the use of constraints and default nega-
tion. It is of course important to be able to check consistency of a logic program. Un-
fortunately in general this problem is undecidable Of course consistency can be decided
for programs with finite Herbrand universes but the problem is complex. Checking con-
sistency of such a program is ΣP

2 [27]. For programs without epistemic disjunction and
default negation checking consistency belongs to class P ; if no epistemic disjunction is
allowed the problem is in NP [85]. It is therefore important to find conditions guaran-
teeing consistency of logic programs. In what follows we will give an example of such a
condition.

Definition 1.3.2 (Level Mapping)
Functions || || from ground atoms of σ(Π) to natural numbers1 are called level mappings
of Π.

The level ||D|| where D is a disjunction or a conjunction of literals is defined as the mini-
mum level of atoms occurring in literals from D’. (Note that this implies that ||l|| = ||¬l||).

Definition 1.3.3 (Stratification)
A logic program Π is called locally stratified if gr(Π) does not contain occurrences of ¬
and there is a level mapping || || of Π such that for every rule r of gr(Π)

1. For any l ∈ pos(r), ||l|| ≤ ||head(r)||;

2. For any l ∈ neg(r), ||l|| < ||head(r)||;

If, in addition, for any predicate symbol p, ||p(t1)|| = ||p(t2)|| for any t1 and t2 the
program is called stratified [1, 77].

It is easy to see that among programs Π0 − Π14 only program Π0, Π1, Π2, and Π9 are
(locally) stratified.

Theorem 1.3.1 (Properties of Locally Stratified Programs)

• A locally stratified program is consistent.

• A locally stratified program without disjunction has exactly one answer set.

1For simplicity we consider a special case of the more general original definition which allows arbitrary
countable ordinals
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• The above conditions hold for a union of locally stratified program and a collection
of closed world assumptions, i.e. rules of the form

¬p(X)← not p(X)

for some predicate symbols p.

The theorem immediately implies existence of answer sets of programs Π9 and Π10 from
the previous section.

We now use the notion of level mapping to define another syntactic condition on programs
known as order-consistency [83].

Definition 1.3.4 For any nlp Π and ground atom a, Π+
a and Π−a are the smallest sets of

ground atoms such that a ∈ Π+
a and, for every rule r ∈ gr(Π),

• if head(r) ∈ Π+
a then pos(r) ⊆ Π+

a and neg(r) ⊆ Π−a ,

• if head(r) ∈ Π−a then pos(r) ⊆ Π−a and neg(r) ⊆ Π+
a ,

Intuitively, Π+
a is the set of atoms on which atom a depends positively in Π, and Π−a is the

set of atoms on which atom a depends negatively on Π. A program Π is order-consistent
if there is a level mapping || || such that ||b|| < ||a|| whenever b ∈ Π+

a ∩ Π−a . That is, if a
depends both positively and negatively on b, then b is mapped to a lower stratum.

Obviously, every locally stratified nlp is order-consistent. The program

Π14





p(X) ← not q(X).
q(X) ← not p(X).
r(X) ← p(X).
r(X) ← q(X).

with signature containing two object constants, c1 and c2 is order-consistent but not strati-
fied, while the program

Π15





a ← not b.
b ← c,

not a.
c ← a.

is not order-consistent.

Theorem 1.3.2 (First Fages’ Theorem, [34])
Order-consistent programs are consistent.

1.3.2 Reasoning Methods for Answer Set Prolog

There are different algorithms which can be used for reasoning with programs of Answer
Set Prolog. The choice of the algorithm normally depends on the form of the program and
the type of queries one wants to be answered. Let us start with a simple example.
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Definition 1.3.5 (Acyclic Programs)
An nlp Π is called acyclic [2] if there is a level mapping || || of Π such that for every rule
r of gr(Π) and every literal l which occurs in pos(r) or neg(r), ||l|| < ||head(r)||.
Obviously an acyclic logic program Π is stratified and therefore has unique answer set. It
can be shown that queries to an acyclic program Π can be answered by the SLDNF reso-
lution based interpreter of Prolog. To justify this statement we will introduce the notion of
Clark’s completion [23]. The notion provided the original declarative semantics of nega-
tion as finite failure of the programming language Prolog. (Recall that in our terminology
programs of Prolog are referred to as nlp).

Let us consider the following three step transformation of a nlp Π into a collection of
first-order formulae.

Step 1: Let r ∈ Π, head(r) = p(t1, . . . , tk), and Y1, . . . , Ys be the list of variables
appearing in r. By α1(r) we denote a formula:

∃Y1 . . . Ys : X1 = t1∧ . . .∧Xk = tk∧ l1∧ . . .∧ lm∧¬lm+1∧ . . .∧¬ln ⊃ p(X1, . . . , Xk)

where X1 . . . Xk are variables not appearing in r.

α1(Π) = {α1(r) : r ∈ Π}

Step 2: For each predicate symbol p if

E1 ⊃ p(X1, . . . , Xk)
...
Ej ⊃ p(X1, . . . , Xk)

are all the implications in α1(Π) with p in their conclusions then replace these formulas by

∀X1 . . . Xk : p(X1, . . . , Xk) ≡ E1 ∨ . . . ∨ Ej

if j ≥ 1 and by
∀X1 . . . Xk : ¬p(X1, . . . , Xk)

if j = 0.

Step 3: Expand the resulting set of formulas by free equality axioms:

f(X1, . . . , Xn) = f(Y1, . . . , Yn) ⊃ X1 = Y1 ∧ . . . ∧Xn = Yn

f(X1, . . . , Xn) = g(Y1, . . . , Yn) for all f and g such that f 6= g

X 6= t for each variable X and term t such that X is different from t and X occurs in t.

All the variables in free equality axioms are universally quantified; binary relation = does
not appear in Π; it is interpreted as identity in all models.

Definition 1.3.6 (Clark’s completion, [23])
The resulting first-order theory is called Clark’s completion of Π and is denoted by Comp(Π).
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Consider a program

Π16





p(X) ← not q(X),
not r(X).

p(a).
q(b).

with the signature containing two object constants, a and b. It is easy to see that, after some
simplification, Comp(Π16) will be equivalent to the theory consisting of axioms

∀X : p(X) ≡ (¬q(X) ∨X = a)
∀X : q(X) ≡ X = b
∀X : ¬r(X)

and the free equality axioms. One may also notice that the answer set {p(a), p(b), q(b)} of
Π16 coincides with the unique Herbrand model of Comp(Π16).

The following theorem [1] generalizes this observation.

Theorem 1.3.3 If Π is acyclic then the unique answer set of Π is the unique Herbrand
model of Clark’s completion of Π.

The theorem is important since it allows us to use a large number of results about sound-
ness and completeness of SLDNF resolution of Prolog with respect to Clark’s semantics to
guarantee these properties for acyclic programs with respect to the answer set semantics.
Together with some results on termination this often guarantees that the SLDNF resolu-
tion based interpreter of Prolog will always terminate on atomic queries and produce the
intended answers. Similar approximation of the Answer Set Prolog entailment for a larger
classes of programs with unique answer sets can be obtained by the system called XSB [22]
implementing the well-founded semantics of [40].

In many cases instead of checking if l is a consequence of nlp Π we will be interested
in finding answer sets of Π. This of course can be done only if Π has a finite Herbrand
universe. There are various bottom up algorithms which can do such a computation rather
efficiently for acyclic and stratified programs. As Theorem 1.3.3 shows, the answer set of
an acyclic program can be also found by computing a classical model of propositional the-
ory, Comp(Π). The following generalization of the notion of acyclicity ensures one-to-one
correspondence between the answer sets of an nlp Π and the models of its Clark’s comple-
tion, and hence allows the use of efficient propositional solvers for computing answer sets
of Π.

Definition 1.3.7 (Tight programs)
A nlp Π is called tight if there is a level mapping || || of Π such that for every rule r of
gr(Π) and every l ∈ pos(r), ||head(r)|| > ||l||.
It is easy to check that a program

Π17





a ← b,
not a,

b.

is tight while program
a← a

is not.
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Theorem 1.3.4 (Second Fages’ Theorem)
If nlp Π is tight then S is a model of Comp(Π) iff S is an answer set of Π.

The above theorem is due to F. Fages [34]. In the last ten years a substantial amount of
work was done to expand second Fages’ theorem. One of the most important results in
this direction is due to Fangzhen Lin and Yuting Zhao [58]. If the program Π is tight then
the corresponding propositional formula is simply the Clark’s completion of Π; otherwise
the corresponding formula is the conjunction of the completion of Π with the additional
formulas that Lin and Zhao called the loop formulas of Π. The number of loop formulas is
exponential in the size of Π in the worst case, and there are reasons for this in complexity
theory [56]. But in many cases the Lin-Zhao translation of Π into propositional logic is
not much bigger than Π. The reduction of the problem of computing answer sets to the
satisfiability problem for propositional formulas given by the Lin-Zhao theorem has led to
the development of the answer set solvers such as ASET [58], CMODELS [3], etc. which
are based on (possibly multiple) calls to propositional solvers.

Earlier solvers such as SMODELS and DLV compute answer sets of a program using a
substantially modified versions of Davis-Putnam algorithm, adopted for logic programs
[55, 73, 72, 54]. All of these approaches are based on sophisticated methods for ground-
ing logic programs. Even though the solvers are capable of working with hundreds of
thousands and even millions of ground rules the size of the grounding remains a major bot-
tleneck of answer set solvers. There are new promising approaches to computing answer
sets which combine Davis-Putnam like procedure with constraint satisfaction algorithms
and resolution and only require partial grounding [31, 15]. We hope that this work will
lead to substantial improvements in the efficiency of answer set solvers.

1.3.3 Properties of Entailment

Let us consider a program Π15 from Section 1.3. Its answer set is {a, c} and hence both,
a and c, are the consequences of Π15. When augmented with the fact c the program gains
a second answer set {b, c}, and loses consequence a. The example demonstrates that the
answer set entailment relation does not satisfy the following condition

Π |= a, Π |= b

Π ∪ {a} |= b
(1.6)

called cautious monotonicity. The absence of cautious monotonicity is an unpleasant prop-
erty of the answer set entailment. Among other things it prohibits the development of
general inference algorithms for Answer Set Prolog in which already proven lemmas are
simply added to the program. There are, however, large classes of programs for which this
problem does not exist.

Definition 1.3.8 (Cautious monotonicity)
We will say that a class of programs is cautiously monotonic if programs from this class
satisfy condition 1.6.

The following important theorem is due to H. Turner [92]

Theorem 1.3.5 (First Turner’s Theorem)
If Π is an order-consistent program and atom a belongs to every answer set of Π, then
every answer set of Π ∪ {a} is an answer set of Π.
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This immediately implies condition 1.6 for order-consistent programs.

A much simpler observation guarantees that all nlp’s under the answer set semantics have
so called cut property: If an atom a belongs to an answer set X of Π, then X is an answer
set of Π ∪ {a}.
Both results used together imply another nice property, called cumulativity: augmenting a
program with one of its consequences does not alter its consequences. More precisely,

Theorem 1.3.6 (Second Turner’s Theorem)
If an atom a belongs to every answer set of an order-consistent program Π, then Π and
Π ∪ {a} have the same answer sets.

Semantic properties such as cumulativity, cut, and cautious monotonicity were originally
formulated for analysis of nonmonotonic consequence relations. Makinson’s [59] hand-
book article includes a survey of such properties for nonmonotonic logics used in AI.

1.3.4 Relations between Programs

In this section we discuss several important relations between logic programs. We start
with the notion of equivalence.

Definition 1.3.9 (Equivalence)
Logic programs are called equivalent if they have the same answer sets.

It is easy to see, for instance, that programs

Π18 = {p(a) or p(b)}
Π19 = {p(a)← not p(b). p(b)← not p(a).}

have the same answer sets, {p(a)} and {p(b)}, and therefore are equivalent. Now consider
programs Π20 and Π21 obtained by adding rules

p(a)← p(b).

p(b)← p(a).

to each of the programs Π18 and Π19. It is easy to see that the Π20 has one answer set,
{p(a), p(b)} while Π21 has no answer sets. The programs Π20 and Π21 are not equivalent.
It is not of course surprising that in general epistemic disjunction cannot be eliminated from
logic programs. As was mentioned before programs with and without or have different
expressive powers. It can be shown, however, that for a large class of logic programs,
called cycle-free [16], the disjunction can be eliminated by the generalization of the method
applied above to Π18. Program Π20 which does not belong to this class has a cycle (a
mutual dependency) between elements p(a) and p(b) in the head of its rule. The above
example suggests another important question: under what conditions we can be sure that
replacing a part Π1 of a knowledge base K by Π2 will not change the answer sets of K?
Obviously simple equivalence of Π1 and Π2 is not enough for this purpose. We need a
stronger notion of equivalence [57].
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Definition 1.3.10 (Strong Equivalence)
Logic programs Π1 and Π1 with signature σ are called strongly equivalent if for every
program Π with signature σ programs Π ∪Π1 and Π ∪Π2 have the same answer sets.

The programs Π18 and
Π22 = Π18 ∪ {p(a)← not p(b)}

are strongly equivalent, while programs Π18 and Π19 are not. The notion of strong equiv-
alence has deep and non-trivial connections with intuitionistic logics. One can show that
if two programs in which not , or , and ← are understood as intuitionistic negation,
implication and disjunction respectively, are intuitionistically equivalent then they are also
strongly equivalent. Furthermore in this statement intuitionistic logic can be replaced with
a stronger subsystem of classical logic, called “the logic of here-and-there”. Its role in
logic programming was first recognized in [75], where it was used to define a nonmono-
tonic “equilibrium logic” which syntactically extends an original notion of a logic program.
As shown in [57] two programs are equivalent iff they are equivalent in the logic of here-
and-there.

There are other important forms of equivalence which were extensively studied in the last
decade. Some of them weaken the notion of strong equivalence by limiting the class of
equivalence preserving updates. For instance, programs Π1 and Π2 over signature σ are
called uniformly equivalent if for any set of ground facts, F , of σ programs Π1 ∪ F and
Π2 ∪ F have the same answer sets. Here the equivalence preserving updates are those
which consist of collections of ground facts. It can be checked that programs Π18 and Π19,
while not strongly equivalent, are uniformly equivalent. Another way to weaken the orig-
inal definition is to limit the signature of the updates. Programs Π1 and Π2 over signature
σ are called strongly equivalent relative to a given set A of ground atoms of σ if for any
program Π in the language of A, programs Π1 ∪Π and Π2 ∪Π have the same answer sets.
Definition of the uniform equivalence can be relativized in a similar way. There is a sub-
stantial literature on the subject. As an illustration let us mention a few results established
in [30]. We already mentioned that for head-cycle-free programs eliminating disjunction
by shifting atoms from rule heads to the respective rule bodies preserves regular equiva-
lence. In this paper the authors show that this transformation also preserves (relativized)
uniform equivalence while it affects (relativized) strong equivalence. The systems for test-
ing various forms of equivalence are described in [51].

1.4 A Simple Knowledge Base

To illustrate the basic methodology of representing knowledge in Answer Set Prolog let us
first consider a simple example from [43].

Example 1.4.1 Let cs be a small computer science department located in the college of
science, cos, of university, u. The department, described by the list of its members and
the catalog of its courses, is in the last stages of creating its summer teaching schedule.
In this example we outline a construction of a simple Answer Set Prolog knowledge base
K containing information about the department. For simplicity we assume an open-ended
signature containing names, courses, departments, etc.
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The list and the catalog naturally correspond to collections of atoms, say:

member(sam, cs). member(bob, cs). member(tom, cs).
course(java, cs). course(c, cs).
course(ai, cs). course(logic, cs).

(1.7)

together with the closed world assumptions expressed by the rules:

¬member(P, cs) ← not member(P, cs).
¬course(C, cs) ← not course(C, cs) (1.8)

The assumptions are justified by completeness of the corresponding information. The
preliminary schedule can be described by the list, say:

teaches(sam, java). teaches(bob, ai). (1.9)

Since the schedule is incomplete, the relation teaches is open and the use of CWA for
this relation is not appropriate. The corresponding program correctly answers no to query
’member(mary, cs) ?’ and unknown to query ’teaches(mary, c) ?’.

Let us now expand our knowledge base, K, by the statement: “Normally, computer
science courses are taught only by computer science professors. The logic course is an
exception to this rule. It may be taught by faculty from the math department.” This is a
typical default with a weak exception2 which can be represented in Answer Set Prolog by
the rules:

¬teaches(P,C) ← ¬member(P, cs),
course(C, cs),
not ab(d1(P, C)),
not teaches(P, C).

ab(d1(P, logic)) ← not ¬member(P, math).

(1.10)

Here d1(P,C) is the name of the default rule and ab(d1(P, C)) says that default d1(P, C)
is not applicable to the pair 〈P,C〉. The second rule above stops the application of the
default to any P who may be a math professor. Assuming that

member(mary, math). (1.11)

is in K we have that K’s answer to query ‘teaches(mary, c) ?’ will become no while
the answer to query ‘teaches(mary, logic) ?’ will remain unknown. It may be worth
noting that, since our information about persons membership in departments is complete,
the second rule of 1.10 can be replaced by a simpler rule

ab(d1(P, logic)) ← member(P, math). (1.12)

It is not difficult to show that the resulting programs have the same answer sets. To com-
plete our definition of relation “teaches” let us expand K by the rule which says that
“Normally a class is taught by one person”. This can be easily done by the rule:

¬teaches(P1, C) ← teaches(P2, C),
P1 6= P2,
not ab(d2(P1, C)),
not teaches(P1, C).

(1.13)

2 An exception to a default is called weak if it stops application of the default without defeating its conclusion.
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Now if we learn that logic is taught by Bob we will be able to conclude that it is not taught
by Mary.

The knowledge baseK we constructed so far is elaboration tolerant with respect to sim-
ple updates. We can easily modify the departments membership lists and course catalogs.
Our representation also allows strong exceptions to defaults, e.g. statements like

teaches(john, ai). (1.14)

which defeats the corresponding conclusion of default (1.10). As expected, strong excep-
tions can be inserted in K without causing a contradiction.

Let us now switch our attention to defining the place of the department in the university.
This can be done by expanding K by the rules

part(cs, cos).
part(cos, u).
part(E1, E2) ← part(E1, E),

part(E, E2).
¬part(E1, E2) ← not part(E1, E2).

(1.15)

member(P, E1) ← part(E2, E1),
member(P, E2). (1.16)

The first two facts form a part of the hierarchy from the university organizational chart. The
next rule expresses the transitivity of the part relation. The last rule of (1.15) is the closed
world assumption for part; it is justified only ifK contains a complete organizational chart
of the university. If this is the case then the closed world assumption for member can be
also expanded by, say, the rule:

¬member(P, Y ) ← not member(P, Y ). (1.17)

The answer set of K can be computed by the DLV system directly; some minor modi-
fications are needed to run K on Smodels to enforce “domain restrictedness” (see [72]).

To check that sam is a member of the university we form a query

member(sam, u)? (1.18)

Asking DLV to answer member(sam, u)? on program K we get precisely the response to
our query under cautious entailment,3. The answer set solvers also provide simple means
of displaying all the terms satisfying relations defined by a program and so we can use it
to list, say, all members of the CS faculty, etc.

Let us now expand K by a new relation, offered(C, D), defined by the following, self-
explanatory, rules:

offered(C,D) ← course(C,D),
teaches(P, C).

¬offered(C,D) ← course(C,D),
not offered(C, D).

(1.19)

3In practice, this is done by adding member(sam, u)? to the file containing the program K, and running it
on DLV with option -FC to specify that cautious entailment is required.
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Suppose also that either Tom or Bob are scheduled to teach the class in logic. A natural
representation of this fact requires disjunction and can be expressed as

teaches(tom, logic) or teaches(bob, logic). (1.20)

It is easy to see that the resulting program has two answer sets and that each answer set
contains offered(logic, cs). The example shows that Answer Set Prolog with disjunction
allows a natural form of reasoning by cases - a mode of reasoning not easily modeled by
Reiter’s default logic. The answer sets of the new program can be computed by DLV and
and SMODELS based disjunctive answer set solver GnT [50]. It is worth noting that this
program is head-cycle free and therefore, the disjunctive rule (1.20) can be replaced by two
non-disjunctive rules,

teaches(tom, logic) ← not teaches(bob, logic).
teaches(bob, logic) ← not teaches(tom, logic). (1.21)

and the resulting program will be equivalent to the original one. Now both, Smodels and
DLV can be used to reason about the resulting knowledge base.

1.5 Reasoning in Dynamic Domains

In this section we discuss the Answer Set Prolog representation of knowledge about dy-
namic domains. We assume that such a domain is modeled by a transition diagram with
nodes corresponding to possible states of the domain, and arcs labeled by actions. An
arc (σ1, a, σ2) indicates that execution of an action a in state σ1 may result in the domain
moving to the state σ2. If for every state σ1 and action a the diagram contains at most
one arc (σ1, a, σ2) then the domain is called deterministic. The transition diagram con-
tains all possible trajectories of the domain. Its particular history is given by a record of
observations and actions. Due to the size of the diagram, the problem of finding its concise
specification is not trivial and has been a subject of research for a comparatively long time.
Its solution requires the good understanding of the nature of causal effects of actions in
the presence of complex interrelations between fluents – propositions whose truth value
may depend on the state of the domain. An additional level of complexity is added by the
need to specify what is not changed by actions. The latter, known as the frame problem
[48], is often reduced to the problem of finding a concise and accurate representation of the
inertia axiom – a default which says that things normally stay as they are. The search for
such a representation substantially influenced AI research during the last twenty years. An
interesting account of history of this research together with some possible solutions can be
found in [86].

To better understand the Answer Set Prolog way of specifying dynamic domains one may
first look at a specification of such domains in the formalism of action languages (see for
instance [46]). In this paper we limit our attention to an action description language AL
from [12]. A theory of AL consists of a signature, Σ, and a collection of causal laws and
executability conditions. The signature contains two disjoint, non-empty sets of symbols:
the set F of fluents and the set A of elementary actions. A set {a1, . . . , an} of elementary
actions is called a compound action. It is interpreted as a collection of elementary actions
performed simultaneously. By actions we mean both elementary and compound actions.



Michael Gelfond 19

By fluent literals we mean fluents and their negations. By l we denote the fluent literal
complementary to l. A set S of fluent literals is called complete if, for any f ∈ F, f ∈ S
or ¬f ∈ S. AL contains the following causal laws and executability conditions of the form

1. ae causes l if p;

2. l if p;

3. impossible a if p

where ae and a are elementary and arbitrary actions respectively, and p is a collection of
fluent literals from Σ, often referred to as the precondition of the corresponding law. If p is
empty the if part of the propositions will be omitted. The first proposition, called dynamic
causal laws, says that, if the elementary action ae were to be executed in a state which
satisfy p, the system will move to a state satisfying l. The second proposition, called a
static causal law, says that every state satisfying p must satisfy l. The last proposition says
that action a cannot happen in a state satisfying p. Notice that here a can be compound;
impossible ({a1, a2}) means that elementary actions a1 and a2 cannot occur concurrently.

Let A be an action description of AL over signature Σ. To define the transition diagram,
TA, described by A we need the following terminology and notation. Let S be a set
of fluent literals of Σ. The set CnA(S) is the smallest set of fluent literals of Σ that
contains S and satisfies static causal laws of A. E(ae, σ) stands for the set of all fluent
literals l for which there is a dynamic causal law “ae causes l if p” in A such that p ⊆ σ.
E(a, σ) =

⋃
ae∈a E(ae, σ). The transition system T = 〈S,R〉 described by an action

description A is defined as follows:

1. S is the collection of all complete and consistent sets of fluent literals of Σ which
satisfy static causal laws of A;

2. R is the set of all triples (σ, a, σ′) such that A does not contain a proposition of the
form “impossible a if p” such that p ⊆ σ and

σ′ = CnA(E(a, σ) ∪ (σ ∩ σ′)) (1.22)

The argument of CnA in (1.22) is the union of the set E(a, σ) of the “direct effects”
of action a with the set σ∩σ′ of facts that are “preserved by inertia”. The application
of CnA adds the “indirect effects” to this union.

The above definition is from [63] and is the product of a long investigation of the nature of
causality. (An action language based on this definition appeared in [91].) Theorem 1.5.1
[6] (a version of the result from [91]) shows the remarkable relationship between causality
expressible in AL and beliefs of rational agents as captured by the notion of answer sets of
logic programs.

To formulate the theorem we will need some terminology. We start by describing an en-
coding τ of causal laws of AL into a program of Answer Set Prolog suitable for execution
by answer set solvers:
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1. τ(ae causes l0 if l1 . . . ln) is the collection of atoms
dynamic law(d), head(d, l0), action(d, ae),
prec(d, i, li) for 1 ≤ i ≤ n,
prec(d, n + 1, nil)
Here d is a new term used to name the corresponding law, and nil is a special flu-
ent constant. The last statement, prec(d, n + 1, nil), is used to specify the end
of the list of preconditions. (This arrangement simplifies the definition of relation
prec h(D,T ) which holds when all the preconditions of default D hold at time step
T ).

2. τ(l0 if l1 . . . ln) is the collection of atoms
static law(d), head(d, l0),
prec(d, i, li) for 1 ≤ i ≤ n,
prec(d, n + 1, nil).

3. τ(impossible {a1, . . . , ak} if l1 . . . ln) is a constraint

← h(l1, T ), . . . , h(ln, T ), occurs(a1, T ), . . . , occurs(ak, T ).

Here T ranges over non-negative integers, occurs(a, t) says that action a occurred at mo-
ment t, and h(l, t) means that fluent literal l holds at t. (More precisely, h(p(t), T ) stands
for holds(p(t), T ), while h(¬p(t), T ) is a shorthand for ¬holds(p(t), T ). If σ is a col-
lection of literals then h(σ, T ) = {h(l, T ) : l ∈ σ}. Finally, for any action description
A

τ(A) = {τ(law) : law ∈ A} (1.23)

φ(A) = τ(A) ∪Π(1) (1.24)

φn(A) = τ(A) ∪Π(n) (1.25)

where Π(1) is an instance of the following program

Π(n)





1. h(L, T ′) ← dynamic law(D),
head(D, L),
action(D,A),
occurs(A, T ),
prec h(D, T ).

2. h(L, T ) ← static law(D),
head(D, L),
prec h(D, T ).

3. all h(D,K, T ) ← prec(D,K, nil).
4. all h(D,K, T ) ← prec(D,K, P ),

h(P, T ),
all h(D, K ′, T ).

5. prec h(D, T ) ← all h(D, 1, T ).
6. h(L, T ′) ← h(L, T ),

not h(L, T ′).
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Here D, A, L are variables for the names of laws, actions, and fluent literals respectively,
T, T ′ are consecutive time points from interval [0, n] and K, K ′ stand for consecutive
integers used to enumerate preconditions of causal laws of A. The first two rules describe
the meaning of dynamic and static causal laws, rules (3), (4), (5) define what it means for
all the preconditions of law D to succeed, and rule (6) represents the inertia axiom.

Theorem 1.5.1 For any action descriptionA of AL the transition diagram TA contains a
link (σ, a, σ′) iff there is an answer set S of logic program

φ(A) ∪ h(σ, 0) ∪ {occurs(ai, 0) : ai ∈ a}

such that, σ′ = {l : h(l, 1) ∈ S}.
The theorem establishes a close relationship between the notion of causality and the notion
of rational beliefs of an agent.

This and similar results are used as a basis for the answer set planning, diagnostics, learn-
ing, etc. Consider for instance an action description A which contains a collection of
elementary actions e0, . . . , en which can be performed by an intelligent agent associated
with the domain. Let us assume that the transition system TA is deterministic, i.e. any
state σ and action a have at most one successor state. The agent, who is currently in a state
σ, needs to find a sequential plan of length k to achieve a goal g = {l1, . . . , lm}. In other
words the agent is looking for a trajectory 〈σ, e0, . . . ek1 , σ

′〉 of TA where g ⊆ σ′. Using
Theorem 1.5.1 it is not difficult to show that there is one to one correspondence between
such trajectories and answer sets of the program

pl(A, k) = φ(n) ∪ h(σ, 0) ∪ PM

where

PM





occurs(e, T ) or ¬occurs(e, T )← T < k.
¬occurs(e2, T )← occurs(e1, T ), e1 6= e2

goal← h(g, k).
← not goal.

The first two rules guarantee the occurrence of exactly one agent’s action at each time step
of the trajectory. The next two ensure that every answer set of the program satisfies the goal
at step k. The correspondence allows to reduce the problem of classical planning to the
problem of finding answer sets of logic programs. A simple loop calls an answer set solver
with the program pl(A, i) as an input for i ranging from 0 to k. A plan is easily extracted
from the first answer set returned by the solver. If no answer set is found then the planning
problem has no solution of the length less than or equal to k. The method, first suggested in
[90, 26], has a number of practical applications [74] and in some cases may be preferable
to other approaches. Typical classical planners for instance do not allow the input language
with static causal laws, which can be essential for modeling some domains, as well as for
efficiency of planning. Moreover such planners may require special languages describing
properties of the plans, etc. To illustrate this point let us consider a complex hydraulic
module from the reaction control system of the space shuttle. In a very simplified view the
system can be viewed as a graph whose nodes are labeled by tanks containing propellant,
jets, junctions of pipes, etc. Arcs of the graph are labeled by valves which can be open or
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closed by a collection of switches. The goal is to open or close valves to deliver propellant
from tanks to a proper combination of jets. The graph can be described by a collection
of atoms of the form connected(n1, v, n2) - valve v labels the ark from n1 to n2 - and
controls(s, v) - switch s controls the valve v. The description of the system may also
contain a collection of faults, e.g. stuck(V ), which indicates that valve V is stuck. We
assume that our information about malfunctioning of valves is complete, i.e.,

¬stuck(V )← not stuck(V ).

The domain contains actions flip(S). The dynamic causal laws for this action are given
by the rules

h(state(S, open), T + 1) ← occurs(flip(S), T ),
h(state(S, closed), T ).

h(state(S, closed), T + 1) ← occurs(flip(S), T ),
h(state(S, open), T ).

The next rule is a static causal law describing the connections between positions of switches
and valves.

h(state(V, P ), T ) ← controls(S, V ),
h(state(S, P ), T ),
¬stuck(V ).

The next static causal law describes the relationship between the values of fluent pressurized(N)
for neighboring nodes.

h(pressurized(N2), T ) ← connected(N1, V, N2),
h(pressurized(N1), T ),
h(state(V, open), T ).

We also assume that tanks are always pressurized which will be encoded by the rule

h(pressurized(N), T )← tank(N).

The laws describe a comparatively complex effect of a simple flip operation which prop-
agates the pressure through the system. It seems that without static causal laws the sub-
stantially longer description will be needed to achieve this goal. Suppose now that some of
the valves may be leaking. It is natural to look for plans which do not open leaking valves.
This can be achieved by expanding the standard planning module by the rule

¬occurs(flip(S), T ) ← controls(S, V ),
h(state(S, closed), T ),
is leaking(V ).

Adding the rule
¬occurs(flip(S), T ) ← controls(S, V ),

stuck(V ).

will help to avoid generation of unnecessary actions, etc. These and similar rules can be
used to improve quality of plans and efficiency of the planner. It is also worth noticing that
simple modification of the planner will allow search for parallel plans, that similar tech-
niques can be used to search for conformant and conditional plans [10, 89], for diagnostics
[6] and even for learning [5, 81].
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1.6 Extensions of Answer Set Prolog

In this section we briefly discuss extensions of Answer Set Prolog by aggregates [32] and
by consistency restoring rules [7]. To see the need for the first extension let us consider the
following example.

Example 1.6.1 Suppose that we are given a complete collection of records

registered(john, cs1). registered(mary, cs2).
registered(bob, cs1). registered(sam, cs2).
registered(mike, cs1).

and that our goal is to define the

notion of a large class - a class with at least three registered students. In the language
DLPA from [32] this can be done by the rule

large class(C)← #count({S : registered(S, C)}) >= 3.

Here #count(X) is the cardinality of the set X . Clearly #count({S : registered(S, cs1)}) =
3 and hence cs1 is a large class.

The syntax of DLPA4 allows aggregate atoms of the form f({X : p(X)}) rel n where
rel is a standard arithmetic relation and n is a number. The occurrence of variable X
in the above aggregate atom is called bound. Such occurrences remain untouched by the
grounding process. Rules of DLPA are of the form

a1 or . . . or an ← b1, . . . , bk, not bk+1, . . . , not bm

where a’s are standard (non-aggregate) atoms and b’s are atoms. The program, P0, from
Example 1.6.1 is a ground program of DLPA.

Let S be a set of standard ground atoms from the signature of a DLPA program P .

Definition 1.6.1 (Answer Sets of DLPA)
An aggregate atom f({X : p(X)}) rel n is true S if f({X : p(X) ∈ S}) rel n; it is false
otherwise. The DLV A reduct, P [S] of P with respect to S is obtained from gr(P ) by
removing all rules whose bodies contain extended literals which are false in S. S is an
answer set of P if it is a minimal set closed under the rules of gr(P ).

For programs not containing aggregate atoms the definition is equivalent to the original
definition of answer sets. It is easy to check that program P0 from Example 1.6.1 has
unique answer set consisting of the facts of the program and the atom large class(cs1).
The next two programs illustrate the DLV A treatment of recursion through aggregates.
Such a recursion caused various difficulties for a number of other approaches to expending
logic programs with aggregates. Let

Π1 = {p(a)← #count({X : p(X)}) > 0.}

and
Π2 = {p(a)← #count({X : p(X)}) < 1.}

4For simplicity we omit several less important features of the language.
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and consider sets S1 = {p(a)} and S2 = ∅. Since Π[S1]
1 = Π1 and ∅ is closed under Π1,

S1 is not an answer set of Π1. But Π[S2]
1 = ∅ and hence S2 is the only answer set of Π!.

Since Π[S1]
2 = ∅ and Π[S2]

2 = Π2 program Π2 has no answer sets.

Now we give a brief description of CR-Prolog - an extension of Answer Set Prolog ca-
pable of encoding rare events. We start with a description of syntax and semantics of the
language. For simplicity we omit the CR-Prolog treatment of preferences.

A program of CR-Prolog is pair consisting of signature and a collection of regular rules of
Answer Set Prolog and rules of the form

l0 +- l1, . . . , lk, not lk+1, . . . , not ln (1.26)

where l’s are literals. Rules of type 1.26 are called consistency restoring rules (cr-rules).
Intuitively the rule says that if the reasoner associated with the program believes the body
of the rule then it “may possibly” believe one element of the head. This possibility however
may be used only if there is no way to obtain a consistent set of beliefs by using only regular
rules of the program.

The set of regular rules of a CR-Prolog -program Π will be denoted by Πr; the set of
cr-rules of Π will be denoted by Πcr. By α(r) we denote a regular rule obtained from a
consistency restoring rule r by replacing +- by←; α is expended in a standard way to a
set R of cr-rules. As usual, the semantics of CR-Prolog will be given for ground programs,
and a rule with variables is viewed as a shorthand for schema of ground rules.

Definition 1.6.2 (Answer Sets of CR-Prolog)
A minimal (with respect to set theoretic inclusion) collection R of cr-rules of Π such that
Πr ∪ α(R) is consistent (i.e. has an answer set) is called an abductive support of Π.

A set A is called an answer set of Π if it is an answer set of a regular program Πr ∪ α(R)
for some abductive support R of Π.

Example 1.6.2 Consider a program, T , of CR-Prolog consisting of rules

p(X) ← not ab(X).
ab(e1).
ab(e2).
q(e).
r(X) ← p(X), q(X).
ab(X) +- .

The program includes a default with two exceptions, a partial definition of r in terms of
p and q, and consistency restoring rule which acknowledges the possibility of existence of
unknown exceptions to the default. Since normally such a possibility is ignored the answer
set of the program consists of its facts and atoms p(e), r(e).

Suppose now that the program is expanded by a new atom, ¬r(e). The regular part of
the new program has no answer set. The cr-rule solves the problem by assuming that e
is a previously unknown exception to the default. The resulting answer set consists of the
program facts and the atom ab(e).
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The possibility to encode rare events which may serve as unknown exceptions to defaults
proved to be very useful for various knowledge representation tasks, including planning,
diagnostics, and reasoning about the agents intentions [4, 13].

1.7 Conclusion

We hope that material is this chapter is sufficient to introduce the reader to Answer Set
Prolog, its mathematical theory, and its applications. We will conclude by briefly outlin-
ing the relationship between this formalism and other areas of Knowledge Representation
presented in this book. The semantics of the language has its roots in nonmonotonic logics
discussed in Chapter 6. The original intuition of stable model semantics comes from the
mapping of logic programming rules into formulas of Moore’s autoepistemic logic [68].
The mapping, first presented in [41], interprets default negation, not p, of Prolog as ¬Lp
where L is the belief operator of Autoepistemic Logic. This interpretation is responsible
for the epistemic character of the stable model semantics. In [17, 60, 45] logic programs
with classical negation (but without disjunction) were mapped into Reiter’s Default The-
ory [79]. Very close relationship between Answer Set Prolog and Circumscription [64]
was recently established in [36]. There is also a close relationship between Answer Set
Prolog and Causal Logic discussed in Chapter 19. As was discussed in Section 1.3.2
computational methods of ASP are closely related to topics discussed in chapters on satis-
fiability and constraint programming. The designers of ASP solvers commonly use ideas
from these areas. An additional power of ASP, its ability to represent transitive closure,
aggregates, and other features not immediately available in satisfiability solvers, together
with sophisticated grounding methods can undoubtedly be useful for the SAT community.
Planning and diagnostic algorithms based on the ASP can nicely complement more tra-
ditional planning methods discussed in Chapter 23. These methods are especially useful
when successful planning requires a large body of knowledge and when the agent needs
to solve both, planning and diagnostic, problems. It is our hope that an ongoing work
on combining the traditional ASP methods with constraint programming algorithms will
help to overcome the limitations caused by grounding, and lead to the development of ef-
ficient planning and scheduling systems. The methodology of modeling dynamic systems
in Answer Set Prolog discussed in Section 1.5 has much in common with other model-
based problem solving methods of Chapter 10. It will be interesting to investigate the
range of applicability and advantages and disadvantages of various styles of description of
states and possible trajectories of the domain, and of reasoning methods used in model-
based problem solving. There is also a substantial cross-fertilization between answer set
based reasoning about actions and change and other similar formalisms including Situation
Calculus [48, 80], Event Calculus [53, 69], and various temporal logics. There are, for in-
stance, logic programming based counterparts of Situation Calculus, which allow elegant
solutions to the frame and ramification problem. Original versions of Event Calculus were
directly expressed in the language of logic programming. The ability of temporal logic to
reason about properties of paths is modeled by logic programming based specification of
goals in [8]. Chapter 21 gives an example of the use of Answer Set Prolog and its reason-
ing methods for representing and reasoning about commonsense and linguistic knowledge
needed for intelligent question answering from natural language texts. There are several
interesting efforts of combining Answer Sets with Bayesian net based probabilistic rea-
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soning, which substantially increases expressive power of both knowledge representation
languages and promises to lead to efficient algorithms for answering some forms of prob-
abilistic queries. Finally, new results establishing some relationship between Description
Logic and Answer Sets (see for instance [28]) may open the way of interesting applications
of Answer Sets to Semantic Web.
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