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Chapter 1

Constraint Programming

Francesca Rossi, Peter van Beek, Toby Walsh

1.1 Introduction

Constraint programming is a powerful paradigm for solving combinatorial search problems
that draws on a wide range of techniques from artificial intelligence, operations research,
algorithms, graph theory and elsewhere. The basic idea in constraint programming is that
the user states the constraints and a general purpose constraint solver is used to solve them.
Constraints are just relations, and a constraint satisfaction problem (CSP) states which
relations should hold among the given decision variables. More formally, a constraint
satisfaction problem consists of a set of variables, each with some domain of values, and
a set of relations on subsets of these variables. For example, in scheduling exams at an
university, the decision variables might be the times and locations of the different exams,
and the constraints might be on the capacity of each examination room (e.g. we cannot
schedule more students to sit exams in a given room at any one time than the room’s
capacity) and on the exams scheduled at the same time (e.g. we cannot schedule two exams
at the same time if they share students in common). Constraint solvers take a real-world
problem like this represented in terms of decision variables and constraints, and find an
assignment to all the variables that satisfies the constraints. Extensions of this framework
may involve, for example, finding optimal solutions according to one or more optimization
criterion (e.g. minimizing the number of days over which exams need to be scheduled),
finding all solutions, replacing (some or all) constraints with preferences, and considering
a distributed setting where constraints are distributed among several agents.

Constraint solvers search the solution space systematically, as with backtracking or
branch and bound algorithms, or use forms of local search which may be incomplete. Sys-
tematic method often interleave search (see Section 1.3) and inference, where inference
consists of propagating the information contained in one constraint to the neighboring
constraints (see Section 1.2). Such inference reduces the parts of the search space that
need to be visited. Special propagation procedures can be devised to suit specific con-
straints (called global constraints), which occur often in real life. Such global constraints
are an important component in the success of constraint programming. They provide com-
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mon patterns to help users model real-world problems. They also help make search for a
solution more efficient and more effective.

While constraint problems are in general NP-complete, there are important classes
which can be solved polynomially (see Section 1.4). They are identified by the connec-
tivity structure among the variables sharing constraints, or by the language to define the
constraints. For example, constraint problems where the connectivity graph has the form
of a tree are polynomial to solve.

While defining a set of constraints may seem a simple way to model a real-world prob-
lem, finding a good model that works well with a chosen solver is not easy. A poorly
chosen model may be very hard to solve. Moreover, solvers can be designed to take advan-
tage of the features of the model such as symmetry to save time in finding a solution (see
Section 1.5). Another problem with modeling real-world problems is that many are over-
constrained. We may need to specify preferences rather than constraints. Soft constraints
(see Section 1.6) provide a formalism to do this, as well as techniques to find an optimal
solution according to the specified preferences. Many of the constraint solving methods
like constraint propagation can be adapted to be used with soft constraints.

A constraint solver can be implemented in any language. However, there are languages
especially designed to represent constraint relations and the chosen search strategy. These
languages are logic-based, imperative, object-oriented, or rule-based. Languages based on
logic programming (see Section 1.7) are well suited for a tight integration between the lan-
guage and constraints since they are based on similar notions: relations and (backtracking)
search.

Constraint solvers can also be extended to deal with relations over more than just finite
(or enumerated) domains. For example, relations over the reals are useful to model many
real-world problems (see Section 1.8). Another extension is to multi-agent systems. We
may have several agents, each of which has their own constraints. Since agents may want
to keep their knowledge private, or their knowledge is so large and dynamic that it does not
make sense to collect it in a centralized site, distributed constraint programming has been
developed (see Section 1.9).

This chapter necessarily covers some of the issues that are central to constraint pro-
gramming somewhat superficially. A deeper treatment of these and many other issues
can be found in the various books on constraint programming that have been written
[5, 35, 53, 98, 70, 135, 136, 137].

1.2 Constraint Propagation

One of the most important concepts in the theory and practice of constraint programming
is that of local consistency. A local inconsistency is an instantiation of some of the vari-
ables that satisfies the relevant constraints but cannot be extended to one or more additional
variables and so cannot be part of any solution. If we are using a backtracking search to
find a solution, such an inconsistency can be the reason for many deadends in the search
and cause much futile search effort. This insight has led to: (a) the definition of condi-
tions that characterize the level of local consistency of a CSP (e.g., [49, 95, 104]), (b) the
development of constraint propagation algorithms—algorithms which enforce these lev-
els of local consistency by removing inconsistencies from a CSP (e.g., [95, 104]), and (c)
effective backtracking algorithms for finding solutions to CSPs that maintain a level of
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local consistency during the search (e.g., [30, 54, 68]). In this section, we survey defini-
tions of local consistency and constraint propagation algorithms. Backtracking algorithms
integrated with constraint propagation are the topic of a subsequent section.

1.2.1 Local consistency

Currently, arc consistency [95, 96] is the most important local consistency in practice and
has received the most attention. Given a constraint, a value for a variable in the constraint
is said to have a support if there exists values for the other variables in the constraint such
that the constraint is satisfied. A constraint is arc consistent if every value in the domains
of the variables of the constraint has a support. A constraint can be made arc consistent
by repeatedly removing unsupported values from the domains of its variables. Removing
unsupported values is often referred to as pruning the domains. For constraints involving
more than two variables, arc consistency is often referred to as hyper arc consistency or
generalized arc consistency. For example, let the domains of variables x and y be {0, 1, 2}
and consider the constraint x + y = 1. Enforcing arc consistency on this constraint would
prune the domains of both variables to just {0, 1}. The values pruned from the domains
of the variables are locally inconsistent—they do not belong to any set of assignments that
satisfies the constraint—and so cannot be part of any solution to the entire CSP. Enforcing
arc consistency on a CSP requires us to iterate over the domain value removal step until
we reach a fixed point. Algorithms for enforcing arc consistency have been extensively
studied and refined (see, e.g., [95, 11] and references therein). An optimal algorithm for
an arbitrary constraint has O(rdr) worst case time complexity, where r is the arity of the
constraint and d is the size of the domains of the variables [103].

In general, there is a tradeoff between the cost of the constraint propagation performed
at each node in the search tree, and the amount of pruning. One way to reduce the cost of
constraint propagation, is to consider more restricted local consistencies. One important
example is bounds consistency. Suppose that the domains of the variables are large and
ordered and that the domains of the variables are represented by intervals (the minimum
and the maximum value in the domain). With bounds consistency, instead of asking that
each value in the domain has a support in the constraint, we only ask that the minimum
value and the maximum value each have a support in the constraint. Although bounds
consistency is weaker than arc consistency, it has been shown to be useful for arithmetic
constraints and global constraints as it can sometimes be enforced more efficiently (see
below).

For some types of problems, like temporal constraints, it may be worth enforcing even
stronger levels of local consistency than path consistency [95]. A problem involving binary
constraints (that is, relations over just two variables) is path consistent if every consistent
pair of values for two variables can be extended to any third variables. To make a problem
path consistent, we may have to add additional binary constraints to rule out consistent
pairs of values which cannot be extended.

1.2.2 Global constraints

Although global constraints are an important aspect of constraint programming, there is no
clear definition of what is and isn’t a global constraint. A global constraint is a constraint
over some sequence of variables. Global constraints also usually come with a constraint
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propagation algorithm that does more pruning or performs pruning cheaper than if we try
to express the global constraint using smaller relations. The canonical example of a global
constraint is the all-different constraint. An all-different constraint over a
set of variables states that the variables must be pairwise different. The all-different
constraint is widely used in practice and because of its importance is offered as a builtin
constraint in most, if not all, major commercial and research-based constraint programming
systems. Starting with the first global constraints in the CHIP constraint programming
system [2], hundreds of global constraints have been proposed and implemented (see, e.g.,
[7]).

The power of global constraints is two-fold. First, global constraints ease the task of
modeling an application as a CSP. Second, special purpose constraint propagation algo-
rithms can be designed which take advantage of the semantics of the constraint and are
therefore much more efficient. As an example, recall that enforcing arc consistency on an
arbitrary has O(rdr) worst case time complexity, where r is the arity of the constraint and
d is the size of the domains of the variables. In contrast, the all-different constraint
can be made arc consistent in O(r2d) time in the worst case [116], and can be made bounds
consistent in O(r) time [100].

Other examples of widely applicable global constraints are the global cardinality con-
straint (gcc) [117] and the cumulative constraint [2]. A gcc over a set of variables and
values states that the number of variables instantiating to a value must be between a given
upper and lower bound, where the bounds can be different for each value. A cumulative
constraint over a set of variables representing the time where different tasks are performed
ensures that the tasks are ordered such that the capacity of some resource used at any
one time is not exceeded. Both of these types of constraint commonly occur in rostering,
timetabling, sequencing, and scheduling applications.

1.3 Search

The main algorithmic technique for solving constraint satisfaction problems is search. A
search algorithm for solving a CSP can be either complete or incomplete. Complete, or
systematic algorithms, come with a guarantee that a solution will be found if one exists,
and can be used to show that a CSP does not have a solution and to find a provably op-
timal solution. Incomplete, or non-systematic algorithms, cannot be used to show a CSP
does not have a solution or to find a provably optimal solution. However, such algorithms
are often effective at finding a solution if one exists and can be used to find an approx-
imation to an optimal solution. In this section, we survey backtracking and local search
algorithms for solving CSPs, as well as hybrid methods that draw upon ideas from both
artificial intelligence (AI) and operations research (OR). Backtracking search algorithms
are, in general, examples of systematic complete algorithms. Local search algorithms are
examples of incomplete algorithms.

1.3.1 Backtracking search

A backtracking search for a solution to a CSP can be seen as performing a depth-first
traversal of a search tree. This search tree is generated as the search progresses. At a node
in the search tree, an uninstantiated variable is selected and the node is extended where
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the branches out of the node represent alternative choices that may have to be examined in
order to find a solution. The method of extending a node in the search tree is often called
a branching strategy. Let x be the variable selected at a node. The two most common
branching strategies are to instantiate x in turn to each value in its domain or to generate
two branches, x = a and x �= a, for some value a in the domain of x. The constraints
are used to check whether a node may possibly lead to a solution of the CSP and to prune
subtrees containing no solutions.

Since the first uses of backtracking algorithms in computing [29, 65], many techniques
for improving the efficiency of a backtracking search algorithm have been suggested and
evaluated. Some of the most important techniques include constraint propagation, nogood
recording, backjumping, heuristics for variable and value ordering, and randomization and
restart strategies. The best combinations of these techniques result in robust backtracking
algorithms that can now routinely solve large, and combinatorially challenging instances
that are of practical importance.

Constraint propagation during search

An important technique for improving efficiency is to maintain a level of local consistency
during the backtracking search by performing constraint propagation at each node in the
search tree. This has two important benefits. First, removing inconsistencies during search
can dramatically prune the search tree by removing many dead ends and by simplifying
the remaining subproblem. In some cases, a variable will have an empty domain after
constraint propagation; i.e., no value satisfies the unary constraints over that variable. In
this case, backtracking can be initiated as there is no solution along this branch of the
search tree. In other cases, the variables will have their domains reduced. If a domain is
reduced to a single value, the value of the variable is forced and it does not need to be
branched on in the future. Thus, it can be much easier to find a solution to a CSP after
constraint propagation or to show that the CSP does not have a solution. Second, some
of the most important variable ordering heuristics make use of the information gathered
by constraint propagation to make effective variable ordering decisions. As a result of
these benefits, it is now standard for a backtracking algorithm to incorporate some form of
constraint propagation.

The idea of incorporating some form of constraint propagation into a backtracking
algorithm arose from several directions. Davis and Putnam [30] propose unit propagation, a
form of constraint propagation specialized to SAT. McGregor [99] and Haralick and Elliott
proposed the forward checking backtracking algorithm [68] which makes the constraints
involving the most recently instantiated variable arc consistent. Gaschnig [54] suggests
maintaining arc consistency on all constraints during backtracking search and gives the first
explicit algorithm containing this idea. Mackworth [95] generalizes Gaschnig’s proposal
to backtracking algorithms that interleave case-analysis with constraint propagation.

Nogood recording

One of the most effective techniques known for improving the performance of backtrack-
ing search on a CSP is to add implied constraints or nogoods. A constraint is implied if
the set of solutions to the CSP is the same with and without the constraint. A nogood is a
special type of implied constraint, a set of assignments for some subset of variables which
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do not lead to a solution. Adding the “right” implied constraints to a CSP can mean that
many deadends are removed from the search tree and other deadends are discovered after
much less search effort. Three main techniques for adding implied constraints have been
investigated. One technique is to add implied constraints by hand during the modeling
phase. A second technique is to automatically add implied constraints by applying a con-
straint propagation algorithm. Both of the above techniques rule out local inconsistencies
or deadends before they are encountered during the search. A third technique is to auto-
matically add implied constraints after a local inconsistency or deadend is encountered in
the search. The basis of this technique is the concept of a nogood—a set of assignments
that is not consistent with any solution.

Once a nogood for a deadend is discovered, it can be ruled out by adding a constraint.
The technique, first informally described by Stallman and Sussman [130], is often referred
to as nogood or constraint recording. The hope is that the added constraints will prune the
search space in the future. Dechter [31] provides the first formal account of discovering
and recording nogoods. Ginsberg’s [61] dynamic backtracking algorithm performs nogood
recording coupled with a strategy for deleting nogoods in order to use only a polynomial
amount of space. Schiex and Verfaillie [125] provide the first formal account of nogood
recording within an algorithm that performs constraint propagation.

Backjumping

Upon discovering a deadend in the search, a backtracking algorithm must uninstanti-
ate some previously instantiated variable. In the standard form of backtracking—called
chronological backtracking—the most recently instantiated variable becomes uninstanti-
ated. However, backtracking chronologically may not address the reason for the deadend.
In backjumping, the algorithm backtracks to and retracts the decision which bears some
responsibility for the deadend. The idea is to (sometimes implicitly) record nogoods or
explanations for failures in the search. The algorithms then reason about these nogoods
to determine the highest point in the search tree that can safely be jumped to without
missing any solutions. Stallman and Sussman [130] were the first to informally propose
a non-chronological backtracking algorithm—called dependency-directed backtracking—
that discovered and maintained nogoods in order to backjump. The first explicit back-
jumping algorithm was given by Gaschnig [55]. Subsequent generalizations of Gaschnig’s
algorithm include Dechter’s [32] graph-based backjumping algorithm and Prosser’s [113]
conflict-directed backjumping algorithm.

Variable and value ordering heuristics

When solving a CSP using backtracking search, a sequence of decisions must be made as
to which variable to branch on or instantiate next and which value to give to the variable.
These decisions are referred to as the variable and the value ordering. It has been shown
that for many problems, the choice of variable and value ordering can be crucial to effec-
tively solving the problem (e.g., [58, 62, 68]). When solving a CSP using backtracking
search interleaved with constraint propagation, the domains of the unassigned variables
are pruned using the constraints and the current set of branching constraints. Many of the
most important variable ordering heuristics are based on choosing the variable with the
smallest number of values remaining in its domain (e.g., [65, 15, 10]). The principle being
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followed in the design of many value ordering heuristics is to choose next the value that is
most likely to succeed or be a part of a solution (e.g., [37, 56]).

Randomization and restart strategies

It has been widely observed that backtracking algorithms can be brittle on some instances.
Seemingly small changes to a variable or value ordering heuristic, such as a change in
the ordering of tie-breaking schemes, can lead to great differences in running time. An
explanation for this phenomenon is that ordering heuristics make mistakes. Depending
on the number of mistakes and how early in the search the mistakes are made (and there-
fore how costly they may be to correct), there can be a large variability in performance
between different heuristics. A technique called randomization and restarts has been pro-
posed for taking advantage of this variability (see, e.g., [69, 66, 144]). A restart strategy
S = (t1, t2, t3, ...) is an infinite sequence where each ti is either a positive integer or infin-
ity. The idea is that a randomized backtracking algorithm is run for t 1 steps. If no solution
is found within that cutoff, the algorithm is restarted and run for t 2 steps, and so on until a
solution is found.

1.3.2 Local search

In backtracking search, the nodes in the search tree represent partial sets of assignments
to the variables in the CSP. In contrast, a local search for a solution to a CSP can be seen
as performing a walk in a directed graph where the nodes represent complete assignments;
i.e., every variable has been assigned a value from its domain. Each node is labeled with a
cost value given by a cost function and the edges out of a node are given by a neighborhood
function. The search graph is generated as the search progresses. At a node in the search
graph, a neighbor or adjacent node is selected and the algorithm “moves” to that node,
searching for a node of lowest cost. The basic framework applies to both satisfaction and
optimization problems and can handle both hard (must be satisfied) and soft (desirable if
satisfied) constraints (see, e.g., [73]). For satisfaction problems, a standard cost function
is the number of constraints that are not satisfied. For optimization problems, the cost
function is the measure of solution quality given by the problem. For example, in the
Traveling Salesperson Problem (TSP), the cost of a node is the cost of the tour given by
the set of assignments associated with the node.

Four important choices must be made when designing an effective local search algo-
rithm. First is the choice of how to start search by selecting a starting node in the graph.
One can randomly pick a complete set of assignments or attempt to construct a “good”
starting point. Second is the choice of neighborhood. Example neighborhoods include
picking a single variable/value assignment and assigning the variable a new value from its
domain and picking a pair of variables/value assignments and swapping the values of the
variables. The former neighborhood has been shown to work well in SAT and n-queens
problems and the latter in TSP problems. Third is the choice of “move” or selection of
adjacent node. In the popular min-conflicts heuristic [102], a variable x is chosen that ap-
pears in a constraint that is not satisfied. A new value is then chosen for x that minimizes
the number of constraints that are not satisfied. In the successful GSAT algorithm for SAT
problems [127], a best-improvement move is performed. A variable x is chosen and its
value is flipped (true to false or vice versa) that leads to the largest reduction in the cost



8 1. Constraint Programming

function—the number of clauses that are not satisfied. Fourth is the choice of stopping
criteria for the algorithm. The stopping criteria is usually some combination of an upper
bound on the maximum number of moves or iterations, a test whether a solution of low
enough cost has been found, and a test whether the number of iterations since the last (big
enough) improvement is too large.

The simplest local search algorithms continually make moves in the graph until all
moves to neighbors would result in an increase in the cost function. The final node then
represents the solution to the CSP. However, note that the solution may only be a local
minima (relative to its neighbors) but not globally optimal. As well, if we are solving a
satisfaction problem, the final node may not actually satisfy all of the constraints. Sev-
eral techniques have been developed for improving the efficiency and the quality of the
solutions found by local search. The most important of these include: multi-starts where
the algorithm is restarted with different starting solutions and the best solution found from
all runs is reported and threshold accepting algorithms that sometimes move to worse cost
neighbors to escape local minima such as simulated annealing [83] and tabu search [63]. In
simulated annealing, worse cost neighbors are moved to with a probability that is gradually
decreased over time. In tabu search, a move is made to a neighbor with the best cost, even
if it is worse than the cost of the current node. However, to prevent cycling, a history of the
recently visited nodes called a tabu list is kept and a move to a node is blocked if it appears
on the tabu list.

1.3.3 Hybrid methods

Hybrid methods combine together two or more solution techniques. Whilst there exist
interesting hybrids of systematic and local search methods, some of the most promising
hybrid methods combine together AI and OR techniques like backtracking and linear pro-
gramming. Linear programming (LP) is one of the most powerful techniques to have
emerged out of OR. In fact, if a problem can be modeled by linear inequalities over con-
tinuous variables, then LP is almost certainly a better method to solve it than CP.

One of the most popular approaches to bring linear programming into CP is to create
a relaxation of (some parts of) the CP problem that is linear. Relaxation may be both
dropping the integrality requirement on some of the decision variables or on the tightness
of the constraints. Linear relaxations have been proposed for a number of global constraints
including the all different, circuit and cumulative constraints [72]. Such
relaxations can then be given to a LP solver. The LP solution can be used in a number
of ways to prune domains and guide search. For example, it can tighten bounds on a
variable (e.g. the variable representing the optimization cost). We may also be able to
prune domains by using reduced costs or Lagrange multipliers. In addition, the continuous
LP solution may by chance be integral (and thus be a solution to the original CP model).
Even if the LP solution is not integral, we can use it to guide search (e.g. branching on the
most non-integral variable). One of the advantages of using a linear relaxation is that the
LP solver takes a more global view than a CP solver which just makes “local” inferences.

Two other well-known OR techniques that have been combined with CP are branch and
price and Bender’s decomposition. With branch and price, CP can be used to perform the
column generation, identifying variables to add dynamically to the search. With Bender’s
decomposition, CP can be used to perform the row generation, generating new constraints
(nogoods) to add to the model. Hybrid methods like these have permitted us to solve
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problems beyond the reach of either CP or OR alone. For example, a CP based branch and
price hybrid was the first to solve the 8-team traveling tournament problem to optimality
[43].

1.4 Tractability

Constraint satisfaction is NP-complete and thus intractable in general. It is easy to see how
to reduce a problem like graph 3-coloring or propositional satisfiability to a CSP. Con-
siderable effort has therefore been invested in identifying restricted classes of constraint
satisfaction problems which are tractable. For Boolean problems where the decision vari-
ables have just one of two possible values, Schaefer’s dichotomy theorem gives an elegant
characterization of the six tractable classes of relations [121]: those that are satisfied by
only true assignments; those that are satisfied by only false assignments; Horn clauses;
co-Horn clauses (i.e. at most one negated variable); 2-CNF clauses; and affine relations.
It appears considerably more difficult to characterize tractable classes for non-Booleans
domains. Research has typically broken the problem into two parts: tractable languages
(where the relations are fixed but they can be combined in any way), and tractable con-
straint graphs (where the constraint graph is restricted but any sort of relation can be used).

1.4.1 Tractable constraint languages

We first restrict ourselves to instances of constraint satisfaction problems which can be
built using some limited language of constraint relations. For example, we might consider
the class of constraint satisfaction problems built from just the not-equals relation. For
k-valued variables, this gives k-coloring problems. Hence, the problem class is tractable
iff k ≤ 2.

Some examples

We consider some examples of tractable constraint languages. Zero/one/all (or ZOA) con-
straints are binary constraints in which each value is supported by zero, one or all values
[25]. Such constraints are useful in scene labeling and other problems. ZOA constraints
are tractable [25] and can, in fact, be solved in O(e(d + n)) where e is the number of
constraints, d is the domain size and n is the number of variables [149]. This results gen-
eralizes the result that 2-SAT is linear since every binary relation on a Boolean domain is
a ZOA constraint. Similarly, this result generalizes the result that functional binary con-
straints are tractable. The ZOA constraint language is maximal in the sense that, if we add
any relation to the language which is not ZOA, the language becomes NP-complete [25].

Another tractable constraint language is that of connected row-convexconstraints [105].
A binary constraint C over the ordered domain D can be represented by a 0/1 matrix M ij

where Mij = 1 iff C(i, j) holds. Such a matrix is row-convex iff the non-zero entries in
each row are consecutive, and connected row-convex iff it is row-convex and, (after remov-
ing empty rows, it is connected (non-zero entries in consecutive rows are adjacent). Finally
a constraint is connected row-convex iff the associated 0/1 matrix and its transpose are con-
nected row-convex. Connected row-convex constraints include monotone relations. They
can be solved without backtracking using a path-consistency algorithm. If a constraint
problem is path-consistent and only contains row-convex constraints (not just connected
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row-convex constraints), then it can be solved in polynomial time [133]. Row-convexity is
not enough on its own to guarantee tractability as enforcing path-consistency may destroy
row-convexity.

A third example is the language of max-closed constraints. Specialized solvers have
been developed for such constraints in a number of industrial scheduling tools. A constraint
is max-closed iff for all pairs of satisfying assignments, if we take the maximum of each
assignment, we obtain a satisfying assignment. Similarly a constraint is min-closed iff for
all pairs of satisfying assignments, if we take the minimum of each assignment, we obtain
a satisfying assignment. All unary constraints are max-closed and min-closed. Arithmetic
constraints like aX = bY +c, and

∑
i aiXi ≥ b are also max-closed and min-closed. Max-

closed constraints can be solved in quadratic time using a pairwise-consistency algorithm
[82].

Constraint tightness

Some of the simplest possible tractability results come from looking at the constraint tight-
ness. For example, Dechter shows that for a problem with domains of size d and constraints
of arity at most k, enforcing strong d(r−1)+1-consistency guarantees global consistency
[33]. We can then construct a solution without backtracking by repeatedly assigning a
variable and making the resulting subproblem globally consistent. Dechter’s result is tight
since certain types of constraints (e.g. binary inequality constraints in graph coloring)
require exactly this level of local consistency.

Stronger results can be obtained by looking more closely at the constraints. For exam-
ple, a k-ary constraint is m-tight iff given any assignment for k − 1 of the variables, there
are at most m consistent values for the remaining variable. Dechter and van Beek prove
that if all relations are m-tight and the network is strongly relational m+1-consistent, then
it is globally consistent [134]. A complementary result holds for constraint looseness. If
constraints are sufficiently loose, we can guarantee that the network must have a certain
level of local consistency.

Algebraic results

Jeavons et al. have given a powerful algebraic treatment of tractability of constraint lan-
guages using relational clones, and polymorphisms on these cones [79, 80, 81]. For exam-
ple, they show how to construct a so-called “indicator” problem that determines whether
a constraint language over finite domains is NP-complete or tractable. They are also able
to show that the search problem (where we want to find a solution) is no harder than the
corresponding decision problem (where we want to just determine if a solution exists or
not).

Dichotomy results

As we explained, for Boolean domains, Schaefer’s result completely characterizes the
tractable constraint languages. For three valued variables, Bulatov has provided a more
complex but nevertheless complete dichotomy result [16]. Bulatov also has given a cubic
time algorithm for identifying these tractable cases. It remains an open question if a similar
dichotomy result holds for constraint languages over any finite domain.
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Infinite domains

Many (but not all) of the tractability results continue to hold if variable domains are infinite.
For example, Allen’s interval algebra introduces binary relations and compositions of such
relations over time intervals [3]. This can be viewed as a binary constraint problem over in-
tervals on the real line. Linear Horn is an important tractable class for temporal reasoning.
It properly includes the point algebra, and ORD-Horn constraints. A constraint over an infi-
nite ordered set is linear Horn when it is equivalent to a finite disjunction of linear disequal-
ities and at most one weak linear inequality. For example, (X−Y ≤ Z)∨(X+Y +Z �= 0)
is linear Horn [88, 84].

1.4.2 Tractable constraint graphs

We now consider tractability results where we permit any sort of relation but restrict the
constraint graph in some way. Most of these results concern tree or tree-like structures. We
need to distinguish between three types of constraint graph: the primal constraint graph
has a node for each variable and edges between variables in the same constraint, the dual
constraint graph has a node for each constraint and edges between constraints sharing
variables, and the constraint hypergraph has a node for each variable and a hyperedge
between all the variables in each constraint.

Mackworth gave one of the first tractability results for constraint satisfaction problems:
a binary constraint networks whose primal graph is a tree can be solved in linear time
[97]. More generally, a constraint problem can be solved in a time that is exponential
in the induced width of the primal graph for a given variable ordering using a join-tree
clustering or (for space efficiency) a variable elimination algorithm. The induced width
is the maximum number of parents to any node in the induced graph (in which we add
edges between any two parents that are both connected to the same child). For non-binary
constraints, we tend to obtain tighter results by considering the constraint hypergraph [67].
For example, an acyclic non-binary constraint problem will have high tree-width, even
though it can be solved in quadratic time. Indeed, results based on hypertree width have
been proven to strongly dominate those based on cycle cutset width, biconnected width,
and hinge width [67].

1.5 Modeling

Constraint programming is, in some respects, one of the purest realizations of the dream
of declarative programming: you state the constraints and the computer solves them using
one of a handful of standard methods like the maintaining arc consistency backtracking
search procedure. In reality, constraint programming falls short of this dream. There are
usually many logically equivalent ways to model a problem. The model we use is often
critical as to whether or not the problem can be solved. Whilst modeling a problem so it
can be successfully solved using constraint programming is an art, a number of key lessons
have started to be identified.
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1.5.1 CP ∨ ¬ CP

We must first decide if constraint programming is a suitable technology in which to model
our problem, or whether we should consider some other approach like mathematical pro-
gramming or simulation. It is often hard to answer this question as the problem we are
trying to solve is often not well defined. The constraints of the problem may not have been
explicitly identified. We may therefore have to extract the problem constraints from the
user in order to build a model. To compound matters, for economic and other reasons,
problems are nearly always over-constrained. We must therefore also identify the often
conflicting objectives (price, speed, weight, . . .) that need to be considered. We must then
decide which constraints to consider as hard, which constraints to compile into the search
strategy and heuristics, and which constraints to ignore.

Real world combinatorial search problems are typically much too large to solve exactly.
Problem decomposition is therefore a vital aspect of modeling. We have to decide how
to divide the problem up and where to make simplifying approximations. For example,
in a production planning problem, we might ignore how the availability of operators but
focus first on scheduling the machines. Having decided on a production schedule for the
machines, we can then attempt to minimize the labor costs.

Another key concern in modeling a problem is stability. How much variability is there
between instances of the problem? How stable is the solution method to small changes?
Is the problem very dynamic? What happens if (a small amount of) the data changes? Do
solutions need to be robust to small changes? Many such questions need to be answered
before we can be sure that constraint programming is indeed a suitable technology.

1.5.2 Viewpoints

Having decided to use constraint programming, we then need to decide the variables, their
possible domains and the constraints that apply to these variables. The concept of view-
point [57, 19] is often useful at this point. There are typically several different viewpoints
that we can have of a problem. For example, if we are scheduling the next World Cup,
are we assigning games to time slots, or time slots to games? Different models can be
built corresponding to each of these viewpoints. We might have variables representing the
games with their values being time slots, or we might have variables representing the time
slots with their values being games.

A good rule of thumb is to choose the viewpoint which permits the constraints to be
expressed easily. The hope is that the constraint solver will then be able to reason with the
constraints effectively. In some cases, it is best to use multiple viewpoints and to maintain
consistency between them with channeling constraints [19]. One common viewpoint is a
matrix model in which the decision variables form a matrix or array [48, 47]. For example,
we might need to decide which factory processes which order. This can be modeled with
an 0/1 matrix Oij which is 1 iff order i is processed in factory j. The constraint that every
order is processed then becomes the constraint that every row sums to 1.

To help specify the constraints, we might introduce auxiliary variables. For example,
in the Golomb ruler problem (prob006 in CSPLib.org), we wish to mark ticks on an integer
ruler so that all the distances between ticks are unique. The problem has applications in
radio-astronomy and elsewhere. One viewpoint is to have a variable for each tick, whose
value is the position on the ruler. To specify the constraint that all the distances between
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ticks are unique, we can an introduce auxiliary variable D ij for the distance between the
ith and jth tick [128]. We can then post a global all-different constraint on these
auxiliary variables. It may be helpful to permit the constraint solver to branch on the
auxiliary variables. It can also be useful to add implied (or redundant) constraints to help
the constraint solver prune the search space. For example, in the Golomb ruler problem,
we can add the implied constraint that Dij < Dik for j < k [128]. This will help reduce
search.

1.5.3 Symmetry

A vital aspect of modeling is dealing with symmetry. Symmetry occurs naturally in many
problems (e.g. if we have two identical machines to schedule, or two identical jobs to
process). Symmetry can also be introduced when we model a problem (e.g. if we name
the elements in a set, we introduce the possibility of permuting their order). We must
deal with symmetry or we will waste much time visiting symmetric solutions, as well
as parts of the search tree which are symmetric to already visited parts. One simple but
highly effective mechanism to deal with symmetry is to add constraints which eliminate
symmetric solutions [27]. Alternatively, we can modify the search procedure to avoid
visiting symmetric states [44, 59, 118, 126].

Two common types of symmetry are variable symmetries (which act just on variables),
and value symmetries (which act just on values) [21]. With variable symmetries, there are a
number of well understood symmetry breaking methods. For example, many problems can
be naturally modeled using a matrix model in which the rows and columns of the matrix
are symmetric and can be freely permuted. We can break such symmetry by lexicographi-
cally ordering the rows and columns [47]. Efficient constraint propagation algorithms have
therefore been developed for such ordering constraints [51, 17]. Similarly, with value sym-
metries, there are a number of well understood symmetry breaking methods. For example,
if all values are interchangeable, we can break symmetry by posting some simple prece-
dence constraints [92]. Alternatively, we can turn value symmetry into variable symmetry
[47, 93, 114] and then use one of the standard methods for breaking variable symmetry.

1.6 Soft Constraints and Optimization

It is often the case that, after having listed the desired constraints among the decision vari-
ables, there is no way to satisfy them all. That is, the problem is over-constrained. Even
when all the constraints can be satisfied, and there are several solutions, such solutions ap-
pear equally good, and there is no way to discriminate among them. These scenarios often
occur when constraints are used to formalize desired properties rather than requirements
that cannot be violated. Such desired properties should rather be considered as preferences,
whose violation should be avoided as far as possible. Soft constraints provide one way to
model such preferences.

1.6.1 Modeling soft constraints

There are many classes of soft constraints. The first one that was introduced concerns the
so-called fuzzy constraints and it is based on fuzzy set theory [42, 41]. A fuzzy constraint
is not a set (of allowed tuples of values to variables), but rather a fuzzy set [42], where each
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element has a graded degree of membership. For each assignment of values to its variables,
we do not have to say whether it belongs to the set or not, but how much it does so. This
allows us to represent the fact that a combination of values for the variables of the constraint
is partially permitted. We can also say that the membership degree of an assignment gives
us the preference for that assignment. In fuzzy constraints, preferences are between 0
and 1, with 1 being complete acceptance and 0 being total rejection. The preference of
a solution is then computed by taking the minimal preference over the constraints. This
may seem awkward in some scenarios, but it is instead very natural, for example, when
we are reasoning about critical applications, such as space or medical applications, where
we want to be as cautious as possible. Possibilistic constraints [122] are very similar to
fuzzy constraints and they have the same expressive power: priorities are associated to
constraints and the aim is to find an assignment which minimizes the priority of the most
important violated constraint.

Lack of discrimination among solutions with the same minimal preferences is one of
the main drawbacks of fuzzy constraints (the so-called drowning effect). To avoid this,
one can use fuzzy lexicographic constraints [45]. The idea is to consider not just the least
preference value, but all the preference values when evaluating a complete assignment, and
to sort such values in increasing order. When two complete assignments are compared, the
two sorted preference lists are then compared lexicographically.

There are situations where we are more interested in the damages we get by not sat-
isfying a constraint rather than in the advantages we obtain when we satisfy it. A natural
way to extend the classical constraint formalism to deal with these situations consists of
associating a certain penalty or cost to each constraint, to be paid when the constraint is
violated. A weighted constraint is thus just a classical constraint plus a weight. The cost
of an assignment is the sum of all weights of those constraints which are violated. An op-
timal solution is a complete assignment with minimal cost. In the particular case when all
penalties are equal to 1, this is called the MAX-CSP problem [50]. In fact, in this case the
task consists of finding an assignment where the number of violated constraints is minimal,
which is equivalent to say that the number of satisfied constraints is maximal.

Weighted constraints are among the most expressive soft constraint frameworks, in the
sense that the task of finding an optimal solution for fuzzy, possibilistic, or lexicographic
constraint problems can be efficiently reduced to the task of finding an optimal solution for
a weighted constraint problem [124].

The literature contains also at least two general formalisms to model soft constraints, of
which all the classes above are instances: semiring-based constraints [13, 14] and valued
constraints [124]. Semiring-based constraints rely on a simple algebraic structure which is
very similar to a semiring, and it is used to formalize the notion of preferences (or satisfac-
tion degrees), the way preferences are ordered, and how to combine them. The minimum
preference is used to capture the notion of absolute non-satisfaction, which is typical of
hard constraints. Similarly for the maximal preference, which can model complete satis-
faction. Valued constraints rely on a different algebraic structure, a positive totally ordered
commutative monoid, and use a different syntax than semiring-based constraints. How-
ever, they have the same expressive power, if we assume preferences to be totally ordered
[12]. Partially ordered preferences can be useful for example when we need to reason with
more than one optimization criterion, since in this case there could be situations which are
naturally not comparable.

Soft constraint problems are as expressive, and as difficult to solve, as constraint opti-
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mization problems, which are just constraint problems plus an objective function. In fact,
given any soft constraint problem, we can always build a constraint optimization problem
with the same solution ordering, and vice versa.

1.6.2 Searching for the best solution

The most natural way to solve a soft constraint problem, or a constraint optimization prob-
lem, is to use Branch and Bound. Depth First Branch and bound (DFBB) performs a
depth-first traversal of the search tree. At each node, it keeps a lower bound lb and an
upper bound ub. The lower bound is an underestimation of the violation degree of any
complete assignment below the current node. The upper bound ub is the maximum vio-
lation degree that we are willing to accept. When ub ≤ lb(t), the subtree can be pruned
because it contains no solution with violation degree lower than ub. The time complexity
of DFBB is exponential, while its space complexity is linear. The efficiency of DFBB de-
pends largely on its pruning capacity, that relies on the quality of its bounds: the higher
lb and the lower ub, the better DFBB performs, since it does more pruning, exploring a
smaller part of the search tree. Thus many efforts have been made to improve (that is, to
increase) the lower bound.

While the simplest lower bound computation takes into account just the past variables
(that is, those already assigned), more sophisticated lower bounds include contributions
of other constraints or variables. For example, a lower bound which considers constraints
among past and future variables has been implemented in the Partial Forward Checking
(PFC) algorithm [50]. Another lower bound, which includes contributions from constraints
among future variables, was first implemented in [143] and then used also in [89, 90],
where the algorithm PFC-MRDAC has been shown to give a substantial improvement in
performance with respect to previous approaches. An alternative lower bound is presented
within the Russian doll search algorithm [140] and in the specialized RDS approach [101],

1.6.3 Inference in soft constraints

Inference in classical constraint problems consists of computing and adding implied con-
straints, producing a problem which is more explicit and hopefully easier to solve. If this
process is always capable of solving the problem, then inference is said to be complete.
Otherwise, inference is incomplete and it has to be complemented with search. For clas-
sical constraints, adaptive consistency enforcing is complete while local consistency (such
as arc or path consistency) enforcing is in general incomplete. Inference in soft constraints
keeps the same basic idea: adding constraints that will make the problem more explicit
without changing the set of solutions nor their preference. However, with soft constraints,
the addition of a new constraint could change the semantics of the constraint problem.
There are cases though where an arbitrary implied constraint can be added to an existing
soft constraint problem while getting an equivalent problem: when preference combination
is idempotent.

Bucket elimination

Bucket elimination (BE) [34, 35] is a complete inference algorithm which is able to com-
pute all optimal solutions of a soft constraint problem (as opposed to one optimal solution,
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as usually done by search strategies). It is basically the extension of the adaptive consis-
tency algorithm [37] to the soft case. BE has both a time and a space complexity which
are exponential in the induced width of the constraint graph, which essentially measures
the graph cyclicity. The high memory cost, that comes from the high arity of intermediate
constraints that have to be stored as tables in memory, is the main drawback of BE to be
used in practice. When the arity of these constraints remains reasonable, BE can perform
very well [91]. It is always possible to limit the arity of intermediate constraints, at the
cost of losing optimality with respect to the returned level and the solution found. This
approach is called mini-bucket elimination and it is an approximation scheme for BE.

Soft constraint propagation

Because complete inference can be extremely time and space intensive, it is often interest-
ing to have simpler processes which are capable of producing just a lower bound on the
violation degree of an optimal solution. Such a lower bound can be immediately useful in
Branch and Bound algorithms. This is what soft constraint propagation does.

Constraint propagation is an essential component of any constraint solver. A local
consistency property is identified (such as arc or path consistency), and an associated en-
forcing algorithm (usually polynomial) is developed to transform a constraint problem into
a unique and equivalent network which satisfies the local consistency property. If this
equivalent network has no solution, then the initial network is obviously inconsistent too.
This allows one to detect some inconsistencies very efficiently. A similar motivation exists
for trying to adapt this approach to soft constraints: the hope that an equivalent locally
consistent problem may provide a better lower bound during the search for an optimal so-
lution. The first results in the area were obtained on fuzzy networks [129, 122]. Then,
[13, 14] generalized them to semiring-based constraints with idempotent combination.

If we take the usual notions of local consistency like arc or path consistency and replace
constraint conjunction by preference combination, and tuple elimination by preference
lowering, we immediately obtain a soft constraint propagation algorithm. If preference
combination is idempotent, then this algorithm terminates and yields a unique equivalent
arc consistent soft constraints problem. Idempotency is only sufficient, and can be slightly
relaxed, for termination. It is however possible to show that it is a necessary condition to
guarantee equivalence.

However, many real problems do not rely on idempotent operators because such opera-
tors provide insufficient discrimination, and rather rely on frameworks such as weighted or
lexicographic constraints, which are not idempotent. For these classes of soft constraints,
equivalence can still be maintained, compensating the addition of new constraints by the
”subtraction” of others. This can be done in all fair classes of soft constraints [24], where
it is possible to define the notion of ”subtraction”. In this way, arc consistency has been
extended to fair valued structures in [123, 26]. While equivalence and termination in poly-
nomial time can be achieved, constraint propagation on non-idempotent classes of soft
constraints does not assure the uniqueness of the resulting problem.

Several global constraints and their associated algorithms have been extended to handle
soft constraints. All these proposals have been made using the approach of [111] where
a soft constraint is represented as a hard constraint with an extra variable representing the
cost of the assignment of the other variables. Examples of global constraints that have been
defined for soft constraints are the soft all-different and soft gcc [112, 138, 139].
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1.7 Constraint Logic Programming

Constraints can, and have been, embedded in many programming environments, but some
are more suitable than others. The fact that constraints can be seen as relations or pred-
icates, that their conjunction can be seen as a logical and, and that backtracking search
is a basic methodology to solve them, makes them very compatible with logic program-
ming [94], which is based on predicates, logical conjunctions, and depth-first search. The
addition of constraints to logic programming has given the constraint logic programming
paradigm [77, 98].

1.7.1 Logic programs

Logic programming (LP) [94] is based on a unique declarative programming idea where
programs are not made of statements (like in imperative programming) nor of functions
(as in functional programming), but of logical implications between collections of predi-
cates. A logic program is thus seen as a logical theory and has the form of a set of rules
(called clauses) which relate the truth value of a literal (the head of the clause) to that of a
collection of other literals (the body of the clause).

Executing a logic program means asking for the truth value of a certain statement,
called the goal. Operationally, this is done by repeatedly transforming the goal via a se-
quence of resolution steps, until we either end up with the empty goal (in this case the
proof is successful), or we cannot continue and we don’t have the empty goal (and in this
case we have a failure), or we continue forever (and in this case we have an infinite com-
putation). Each resolution step involves the unification between a literal which is part of a
goal and the head of a clause.

Finite domain CSPs can always be modeled in LP by using one clause for the definition
of the problem graph and many facts to define the constraints. However, this modeling is
not convenient, since LP’s execution engine corresponds to depth-first search with chrono-
logical backtracking and this may not be the most efficient way to solve the CSP. Also, it
ignores the power of constraint propagation in solving a CSP.

Constraint logic programming languages extend LP by providing many tools to im-
prove the solution efficiency using constraint processing techniques. They also extend
CSPs by accommodating constraints defined via formulas over a specific language of con-
straints (like arithmetic equations and disequations over the reals, or term equations, or
linear disequations over finite domains).

1.7.2 Constraint logic programs

Syntactically, constraints are added to logic programming by just considering a specific
constraint type (for example, linear equations over the reals) and then allowing constraints
of this type in the body of the clauses. Besides the usual resolution engine of logic program-
ming, one has a (complete or incomplete) constraint solving system, which is able to check
the consistency of constraints of the considered type. This simple change provides many
improvements over logic programming. First, the concept of unification is generalized to
constraint solving: the relationship between a goal and a clause (to be used in a resolution
step) can be described not just via term equations but via more general statements, that
is, constraints. This allows for a more general and flexible way to control the flow of the
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computation. Second, expressing constraints by some language (for example, linear equa-
tions and disequations) gives more compactness and structure. Finally, the presence of an
underlying constraint solver, usually based on incomplete constraint propagation of some
sort, allows for the combination of backtracking search and constraint propagation, which
can give more efficient complete solvers.

To execute a CLP program, at each step we must find a most general unifier between
the selected subgoal and the head. Moreover, we have to check the consistency of the
current set of constraints with the constraints in the body of the clause. Thus two solvers
are involved: unification, and the specific constraint solver for the constraints in use. The
constraint consistency check can use some form of constraint propagation, thus applying
the principle of combining depth-first backtracking search with constraint propagation, as
usual in complete constraint solvers for CSPs.

Exceptional to CLP (and LP) is the existence of three different but equivalent semantics
for such programs: declarative, fixpoint, and operational [98]. This means that a CLP
program has a declarative meaning in terms of set of first-order formulas but can also be
executed operationally on a machine.

CLP is not a single programming language, but a programming paradigm, which is
parametric with respect to the class of constraints used in the language. Working with a
particular CLP language means choosing a specific class of constraints (for example, finite
domains, linear, or arithmetic) and a suitable constraint solver for that class. For example,
CLP over finite domain constraints uses a constraint solver which is able to perform consis-
tency checks and projection over this kind of constraints. Usually, the consistency check is
based on constraint propagation similar to, but weaker than, arc consistency (called bounds
consistency).

1.7.3 LP and CLP languages

The concept of logic programming [94, 132] was first developed in the ’70s, while the
first constraint logic programming language was Prolog II [23], which was designed by
Colmerauer in the early 80’s. Prolog II could treat term equations like Prolog, but in
addition could also handle term disequations. After this, Jaffar and Lassez observed that
both term equations and disequations were just a special form of constraints, and developed
the concept of a constraint logic programming scheme in 1987 [76]. From then on, several
instances of the CLP scheme were developed: Prolog III [22], with constraints over terms,
strings, booleans, and real linear arithmetic; CLP(R) [75], with constraints over terms and
real arithmetics; and CHIP [39], with constraints over terms, finite domains, and finite
ranges of integers.

Constraint logic programming over finite domains was first implemented in the late
80’s by Pascal Van Hentenryck [70] within the language CHIP [39]. Since then, newer
constraint propagation algorithms have been developed and added to more recent CLP(FD)
languages, like GNU Prolog [38] and ECLiPSe [142].

1.7.4 Other programming paradigms

Whilst constraints have been provided in declarative languages like CLP, constraint-based
tools have also been provided for imperative languages in the form of libraries. The typical
programming languages used to develop such solvers are C++ and Java. ILOG [1] is one
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the most successful companies to produce such constraint-based libraries and tools. ILOG
has C++ and Java based constraint libraries, which uses many of the techniques described
in this chapter, as well as a constraint-based configurator, scheduler and vehicle routing
libraries.

Constraints have also been successfully embedded within concurrent constraint pro-
gramming [120], where concurrent agents interact by posting and reading constraints in a
shared store. Languages which follow this approach to programming are AKL [78] and Oz
[71]. Finally, high level modeling languages exist for modeling constraint problems and
specifying search strategies. For example, OPL [135] is a modeling language similar to
AMPL in which constraint problems can be naturally modeled and the desired search strat-
egy easily specified, while COMET is an OO programming language for constraint-based
local search [136]. CHR (Constraint Handling Rules) is instead a rule-based language
related to CLP where constraint solvers can be easily modeled [52].

1.8 Beyond Finite Domains

Real-world problems often take us beyond finite domain variables. For example, to rea-
son about power consumption, we might want a decision variable to range over the reals.
Constraint programming has therefore been extended to deal with more than just finite (or
enumerated) domains of values. In this section, we consider three of the most important
extensions.

1.8.1 Intervals

The constraint programming approach to deal with continuous decision variables is typi-
cally via intervals [20, 28, 74, 107]. We represent the domain of a continuous variable by a
set of disjoint intervals. In practice, the bounds on an interval are represented by machine
representable numbers such as floats. We usually solve a continuous problem by finding a
covering of the solution space by means of a finite set of multi-dimensional interval boxes
with some required precision. Such a covering can be found by means of a branch-and-
reduce algorithm which branches (by splitting an interval box in some way into several
interval boxes) and reduces (which applies some generalization of local consistency like
box or hull consistency to narrow the size of the interval boxes [8]). If we also have an
optimization criteria, a bounding procedure can compute bounds on the objective within
the interval boxes. Such bounds can be used to eliminate interval boxes which cannot
contain the optimal objective value. Alternatively, direct methods for solving a continu-
ous constraint problem involve replacing the classical algebraic operators in the constraints
by interval operators and using techniques like Newton’s methods to narrow the intervals
[137].

1.8.2 Temporal problems

A special class of continuous constraint problems for which they are specialized and often
more efficient solving methods are temporal constraint problems. Time may be represented
by points (e.g. the point algebra) or by interval of time points (e.g. the interval algebra).
Time points are typically represented by the integers, rationals or reals (or, in practice,
by machine representations of these). For the interval algebra (IA), Allen introduced [3]
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an influential formalism in which constraints on time intervals are expressed in terms of
13 mutually exclusive and exhaustive binary relations (e.g. this interval is before this
other interval, or this interval is during this other interval). Deciding the consistency of
a set of such interval constraints is NP-complete. In fact, there are 18 maximal tractable
(polynomial) subclasses of the interval algebra (e.g. the ORD-Horn subclass introduced by
Nebel and Bürckert) [106]. The point algebra (PA) introduced by Vilain and Kautz [141]
is more tractable. In this algebra, time points can be constrained by ordering, equality,
or a disjunctive combination of ordering and equality constraints. Koubarakis proved that
enforcing strong 5-consistency is a necessary and sufficient condition for achieving global
consistency on the point algebra. Van Beek gave an O(n2) algorithm for consistency
checking and finding a solution. Identical results hold for the pointisable subclass of the
IA (PIA) [141]. This algebra consists of those elements of the IA that can be expressed
as a conjunction of binary constraints using only elements of PA. A number of richer
representations of temporal information have also been considered including disjunctive
binary difference constraints [36] (i.e.

∨
i ai ≤ xj − xk ≤ bi), and simple disjunctive

problems [131] (i.e.
∨

i ai ≤ xi − yi ≤ bi). Naturally, such richer representations tend to
be more intractable.

1.8.3 Sets and other datatypes

Many combinatorial search problems (e.g. bin packing, set covering, and network design)
can be naturally represented in the language of sets, multisets, strings, graphs and other
structured objects. Constraint programming has therefore been extended to deal with vari-
ables which range over such datatypes. For example, we can represent a decision variable
which ranges over sets of integers by means of an upper and lower bound on the possible
and necessary elements in the set (e.g. [60]). This is more compact both to represent and
reason with than the exponential number of possible sets between these two bounds. Such
a representation necessarily throws away some information. We cannot, for example, rep-
resent a decision variable which takes one of the two element sets: {1, 2} or {3, 4}. To
represent this, we need an empty lower bound and an upper bound of {1, 2, 3, 4}. Two
element sets like {2, 3} and {1, 4} also lie within these bounds. Local consistency tech-
niques have been extended to deal with such set variables. For instance, a set variable is
bound consistent iff all the elements in its lower bound occur in every solution, and all the
elements in its upper bound occur in at least one solution. Global constraints have also
been defined for such set variables [119, 9, 115] (e.g. a sequence of set variables should
be pairwise disjoint). Variables have also been defined over other richer datatypes like
multisets (or bags) [87, 145], graphs [40], strings [64] and lattices [46].

1.9 Distributed Constraint Programming

Constraints are often generated by several different agents. Typical examples are schedul-
ing meetings, where each person has his own constraints and all have to be satisfied to find
a common time to meet. It is natural in such problems to have a decentralized solving algo-
rithm. Of course, even when constraints are produced by several agents, one could always
collect them all in one place and solve them by using a standard centralized algorithm.
This certainly saves the time to exchange messages among agents during the execution
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of a distributed algorithm, which could make the execution slow. However, this is often
not desirable, since agents may want to keep some constraints as private. Moreover, a
centralized solver makes the whole system less robust.

Formally, a distributed CSP is just a CSP plus one agent for each variable. The agent
controls the variable and all its constraints (see, e.g., [147]). Backtracking search, which
is the basic form of systematic search for constraint solving, can be easily extended to
the distributed case by passing a partial instantiation from an agent to another one, which
will add the instantiation for a new variable, or will report the need to backtrack. Forward
checking, backjumping, constraint propagation, and variable and value ordering heuristics
can also be adapted to this form of distributed synchronous backtracking, by sending ap-
propriate messages. However, in synchronous backtracking one agent is active at any given
time, so the only advantage with respect to a centralized approach is that agents keep their
constraints private.

On the contrary, in asynchronous distributed search, all agents are active at the same
time, and they coordinate only to make sure that what they do on their variable is consis-
tent with what other agents do on theirs. Asynchronous backtracking [148] is the main
algorithm which follows this approach. Branch and bound can also be adapted to work in
a distributed asynchronous setting.

Various improvements to these algorithms can be made. For example, variables can
be instantiated with a dynamic rather than a fixed order, and agents can control constraints
rather than variables. The AsynchronousWeak Commitment search algorithm [146] adopts
a dynamic reordering. However, this is achieved via the use of much more space (to store
the nogoods), otherwise completeness is lost.

Other search algorithms can be adapted to a distributed environment. For example, the
DPOP algorithm [109] performs distributed dynamic programming. Also local search is
very well suited for a distributed setting. In fact, local search works by making incremental
modifications to a complete assignment, which are usually local to one or a small number
of variables.

Open constraint problems are a different kind of distributed problems, where variable
domains are incomplete and can be generated by several distributed agents. Domains are
therefore incrementally discovered, and the aim is to solve the problem even if domains
are not completely known. Both solutions and optimal solutions for such problems can be
obtained in a distributed way without the need to know the entire domains. This approach
can be used within several algorithms, such as the DPOP algorithm for distributed dynamic
programming [110].

1.10 Application Areas

Constraint programming has proven useful in important applications from industry, busi-
ness, manufacturing, and science. In this section, we survey three general application
areas—vehicle routine, scheduling, and configuration—with an emphasis on why con-
straint programming has been successful and why constraint programming is now often
the method of choice for solving problems in these domains.

Vehicle Routing is the task of constructing routes for vehicles to visit customers at
minimum cost. A vehicle has a maximum capacity which cannot be exceeded and the
customers may specify time windows in which deliveries are permitted. Much work on
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constraint programming approaches to vehicle routing has focused on alternative constraint
models and additional implied constraints to increase the amount of pruning performed by
constraint propagation. Constraint programming is well-suited for vehicle routing because
of its ability to handle real-world (or side) constraints. Vehicle routing problems that arise
in practice often have unique constraints that are particular to a business entity. In non-
constraint programming approaches, such side constraints often have to be handled in an
ad hoc manner. In constraint programming a wide variety of side constraints can be handled
simply by adding them to the core model (see, e.g., [86, 108])

Scheduling is the task of assigning resources to a set of activities to minimize a cost
function. Scheduling arises in diverse settings including in the allocation of gates to in-
coming planes at an airport, crews to an assembly line, and processes to a CPU. Con-
straint programming approaches to scheduling have aimed at generality, with the ability to
seamlessly handle side constraints. As well, much effort has gone into improved implied
constraints such as global constraints, edge-finding constraints and timetabling constraints,
which lead to powerful constraint propagation. Additional advantages of a constraint prop-
agation approach to scheduling include the ability to form hybrids of backtracking search
and local search and the ease with which scheduling or domain specific heuristics can be
incorporated within the search routines (see, e.g., [6, 18]).

Configuration is the task of assembling or configuring a customized system from a
catalog of components. Configuration arises in diverse settings including in the assembly
of home entertainment systems, cars and trucks, and travel packages. Constraint program-
ming is well-suited to configuration because of (i) its flexibility in modeling and the declar-
ativeness of the constraint model, (ii) the ability to explain a failure to find a customized
system when the configuration task is over-constrained and to subsequently relax the user’s
constraints, (iii) the ability to perform interactive configuration where the user makes a se-
quence of choices and after each choice constraint propagation is used to restrict future
possible choices, and (iv) the ability to incorporate reasoning about the user’s preferences
(see, e.g., [4, 85]).

1.11 Conclusions

Constraint programming is now a relatively mature technology for solving a wide range of
difficult combinatorial search problems. The basic ideas behind constraint programming
are simple: a declarative representation of the problem constraints, combined with generic
solving methods like chronological backtracking or local search. Constraint programming
has a number of strengths including: rich modeling languages in which to represent com-
plex and dynamic real-world problems; fast and general purpose inference methods, like
enforcing arc consistency, for pruning parts of the search space; fast and special purpose
inference methods associated with global constraints; hybrid methods that combine the
strengths of constraint programming and operations research; local search methods that
quickly find near-optimal solutions; a wide range of extensions like soft constraint solving
and distributed constraint solving in which we can represent more closely problems met in
practice. As a result, constraint programming is now used in a wide range of businesses and
industries including manufacturing, transportation, health care, advertising, telecommuni-
cations, financial services, energy and utilities, as well as marketing and sales. Companies
like American Express, BMW, Coors, Danone, eBay, France Telecom, General Electric,
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HP, JB Hunt, LL Bean, Mitsubishi Chemical, Nippon Steel, Orange, Porsche, QAD, Royal
Bank of Scotland, Shell, Travelocity, US Postal Service, Visa, Wal-Mart, Xerox, Yves
Rocher, and Zurich Insurance all use constraint programming to optimize their business
processes. Despite this success, constraint programming is not (and may never be) a push-
button technology that works “out of the box”. It requires sophisticated users who master
a constraint programming system, know how to model problems and how to customize
search methods to these models. Future research needs to find ways to lower this barrier to
using this powerful technology.
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