
Volume title 1
The editors
c© 2007 Elsevier All rights reserved

Chapter 3

Description Logics

Franz Baader, Ian Horrocks and Ulrike Sattler

Abstract

In this chapter we will introduce description logics, a family of logic-based knowledge repre-
sentation languages that can be used to represent the terminological knowledge of an application
domain in a structured way. We will first review their provenance and history, and show how the
field has developed. We will then introduce the basic description logic ALC in some detail, includ-
ing definitions of syntax, semantics and basic reasoning services, and describe important extensions
such as inverse roles, number restrictions, and concrete domains. Next, we will discuss the rela-
tionship between description logics and other formalisms, in particular first order and modal logics;
the most commonly used reasoning techniques, in particular tableau, resolution and automata based
techniques; and the computational complexity of basic reasoning problems. After reviewing some of
the most prominent applications of description logics, in particular ontology language applications,
we will conclude with an overview of other aspects of description logic research, and with pointers
to the relevant literature.

3.1 Introduction

Description logics (DLs) [14, 25, 50] are a family of knowledge representation languages
that can be used to represent the knowledge of an application domain in a structured and
formally well-understood way. The name description logics is motivated by the fact that,
on the one hand, the important notions of the domain are described by concept descriptions,
i.e., expressions that are built from atomic concepts (unary predicates) and atomic roles
(binary predicates) using the concept and role constructors provided by the particular DL;
on the other hand, DLs differ from their predecessors, such as semantic networks and
frames, in that they are equipped with a formal, logic-based semantics.

We will first illustrate some typical constructors by an example; formal definitions
will be given in Section 3.2. Assume that we want to define the concept of “A man that
is married to a doctor, and all of whose children are either doctors or professors.” This
concept can be described with the following concept description:

Human u ¬Female u (∃married.Doctor) u (∀hasChild.(Doctor t Professor)).

2 3. Description Logics

This description employs the Boolean constructors conjunction (u), which is interpreted
as set intersection, disjunction (t), which is interpreted as set union, and negation (¬),
which is interpreted as set complement, as well as the existential restriction constructor
(∃r.C), and the value restriction constructor (∀r.C). An individual, say Bob, belongs to
∃married.Doctor if there exists an individual that is married to Bob (i.e., is related to Bob
via the married role) and is a doctor (i.e., belongs to the concept Doctor). Similarly, Bob
belongs to ∀hasChild.(DoctortProfessor) if all his children (i.e., all individuals related to
Bob via the hasChild role) are either doctors or professors.

Concept descriptions can be used to build statements in a DL knowledge base, which
typically comes in two parts: a terminological and an assertional one. In the terminological
part, called the TBox, we can describe the relevant notions of an application domain by
stating properties of concepts and roles, and relationships between them—it corresponds
to the schema in a database setting. In its simplest form, a TBox statement can introduce a
name (abbreviation) for a complex description. For example, we could introduce the name
HappyMan as an abbreviation for the concept description from above:

HappyMan ≡ Humanu¬Femaleu(∃married.Doctor)u(∀hasChild.(DoctortProfessor)).

More expressive TBoxes allow the statement of more general axioms such as

∃hasChild.Human v Human,

which says that only humans can have human children. Note that, in contrast to the abbre-
viation statement from above, this statement does not define a concept. It just constrains
the way in which concepts and roles (in this case, Human and hasChild) can be interpreted.

Obviously, all the knowledge we have described in our example could easily be repre-
sented by formulae of first-order predicate logic (see also Section 3.3). The variable-free
syntax of description logics makes TBox statements easier to read than the corresponding
first-order formulae. However, the main reason for using DLs rather than predicate logic is
that DLs are carefully tailored such that they combine interesting means of expressiveness
with decidability of the important reasoning problems (see below).

The assertional part of the knowledge base, called the ABox, is used to describe a con-
crete situation by stating properties of individuals—it corresponds to the data in a database
setting. For example, the assertions

HappyMan(BOB), hasChild(BOB,MARY), ¬Doctor(MARY)

state that Bob belongs to the concept HappyMan, that Mary is one of his children, and
that Mary is not a doctor. Modern DL systems all employ this kind of restricted ABox
formalism, which basically can be used to state ground facts. This differs from the use of
the ABox in the early DL system KRYPTON [38], where ABox statements could be arbi-
trary first-order formulae. The underlying idea was that the ABox could then be used to
represent knowledge that was not expressible in the restricted TBox formalism of KRYP-
TON, but this came with a cost: reasoning about ABox knowledge required the use of a
general theorem prover, which was quite inefficient and could lead to non-termination of
the reasoning procedure.

Modern description logic systems provide their users with reasoning services that can
automatically deduce implicit knowledge from the explicitly represented knowledge, and

Franz Baader, Ian Horrocks and Ulrike Sattler 3

always yield a correct answer in finite time. In contrast to the database setting, such in-
ference capabilities take into consideration both the terminological statements (schema)
and the assertional statements (data). The subsumption algorithm determines subconcept-
superconcept relationships: C is subsumed by D if all instances of C are necessarily
instances of D, i.e., the first description is always interpreted as a subset of the second
description. For example, given the definition of HappyMan from above plus the axiom
Doctor v Human, which says that all doctors are human, HappyMan is subsumed by
∃married.Human—since instances of HappyMan are married to some instance of Doctor,
and all instances of Doctor are also instances of Human. The instance algorithm de-
termines instance relationships: the individual i is an instance of the concept descrip-
tion C if i is always interpreted as an element of the interpretation of C. For example,
given the assertions from above and the definition of HappyMan, MARY is an instance of
Professor (because BOB is an instance of HappyMan, so all his children are either Doctors
or Professors, MARY is a child of BOB, and MARY is not a Doctor). The consistency al-
gorithm determines whether a knowledge base (consisting of a set of assertions and a set of
terminological axioms) is non-contradictory. For example, if we add ¬Professor(MARY)
to the three assertions from above, then the knowledge base containing these assertions
together with the definition of HappyMan from above is inconsistent.

In a typical application, one would start building the TBox, making use of the reasoning
services provided to ensure that all concepts in it are satisfiable, i.e., are not subsumed by
the bottom concept, which is always interpreted as the empty set. Moreover, one would
use the subsumption algorithm to compute the subsumption hierarchy, i.e., to check, for
each pair of concept names, whether one is subsumed by the other. This hierarchy would
then be inspected to make sure that it coincides with the intention of the modeller. Given,
in addition, an ABox, one would first check for its consistency with the TBox and then, for
example, compute the most specific concept(s) that each individual is an instance of (this
is often called realizing the ABox). We could also use a concept description as a query,
i.e., we could ask the DL system to identify all those individuals that are instances of the
given, possibly complex, concept description.

In order to ensure a reasonable and predictable behavior of a DL system, these in-
ference problems should at least be decidable for the DL employed by the system, and
preferably of low complexity. Consequently, the expressive power of the DL in question
must be restricted in an appropriate way. If the imposed restrictions are too severe, how-
ever, then the important notions of the application domain can no longer be expressed.
Investigating this trade-off between the expressivity of DLs and the complexity of their
inference problems has been one of the most important issues in DL research. This investi-
gation has included both theoretical research, e.g., determining the worst case complexities
for various DLs and reasoning problems, and practical research, e.g., developing systems
and optimisation techniques, and empirically evaluating their behaviour when applied to
benchmarks and used in various applications. The emphasis on decidable formalisms of
restricted expressive power is also the reason why a great variety of extension of basic DLs
have been considered. Some of these extensions leave the realm of classical first-order
predicate logic, such as DLs with modal and temporal operators, fuzzy DLs, and proba-
bilistic DLs (see [22] for details), but the goal of this research was still to design decidable
extensions. If an application requires more expressive power than can be supplied by a
decidable DL, then one usually embeds the DL into an application program or another KR
formalism (see Section 3.8) rather than using an undecidable DL.

4 3. Description Logics

In the remainder of this section we will first give a brief overview of the history of
DLs, and then describe the structure of this chapter. Research in Description Logics can
be roughly classified into the following phases.

Phase 0 (1965–1980) is the pre-DL phase, in which semantic networks [139] and frames
[122] were introduced as specialized approaches for representing knowledge in a structured
way, and then criticized because of their lack of a formal semantics [164, 35, 84, 85]. An
approach to overcome these problems were Brachman’s structured inheritance networks
[36], which were realized in the system KL-ONE, the first DL system.

Phase 1 (1980–1990) was mainly concerned with implementation of systems, such as KL-
ONE, K-REP, KRYPTON, BACK, and LOOM [41, 119, 38, 138, 118]. These systems
employed so-called structural subsumption algorithms, which first normalize the concept
descriptions, and then recursively compare the syntactic structure of the normalized de-
scriptions [126]. These algorithms are usually relatively efficient (polynomial), but they
have the disadvantage that they are complete only for very inexpressive DLs, i.e., for
more expressive DLs they cannot detect all subsumption/instance relationships. During
this phase, the first logic-based accounts of the semantics of the underlying representation
formalisms were given [38, 39], which made formal investigations into the complexity of
reasoning in DLs possible. For example, in [39] it was shown that seemingly small addi-
tions to the expressive power of the representation formalism can cause intractability of the
subsumption problem. In [149] it was shown that subsumption in the representation lan-
guage underlying KL-ONE is even undecidable, and in [127] it was shown that the use of
a TBox formalism that allows to introduce abbreviations for complex concept description
makes subsumption intractable if the underlying DL has the constructors conjunction and
value restriction (these constructors were supported by all the DL systems available at that
time). As a reaction to these negative complexity results, the implementors of the CLASSIC
system (the first industrial-strength DL system) carefully restricted the expressive power
of their DL [136, 37].

Phase 2 (1990–1995) started with the introduction of a new algorithmic paradigm into
DLs, so-called tableau based algorithms [150, 63, 89]. They work on propositionally
closed DLs (i.e., DLs with all Boolean operators), and are complete also for expressive
DLs. To decide the consistency of a knowledge base, a tableau based algorithm tries to
construct a model of it by structurally decomposing the concepts in the knowledge base,
thus inferring new constraints on the elements of this model. The algorithm either stops
because all attempts to build a model failed with obvious contradictions, or it stops with
a “canonical” model. Since, in propositionally closed DLs, the subsumption and the in-
stance problem can be reduced to consistency, a consistency algorithm can solve all the
inference problems mentioned above. The first systems employing such algorithms (KRIS
and CRACK) demonstrated that optimized implementations of these algorithm led to an
acceptable behavior of the system, even though the worst-case complexity of the corre-
sponding reasoning problems is no longer in polynomial time [18, 44]. This phase also
saw a thorough analysis of the complexity of reasoning in various DLs [63, 64, 62], and
the important observation that DLs are very closely related to modal logics [145].

Phase 3 (1995–2000) is characterized by the development of inference procedures for
very expressive DLs, either based on the tableau approach [100, 92], or on a translation
into modal logics [57, 58, 56, 59]. Highly optimized systems (FaCT, RACE, and DLP

Franz Baader, Ian Horrocks and Ulrike Sattler 5

[95, 80, 133]) showed that tableau-based algorithms for expressive DLs led to a good
practical behavior of the system even on (some) large knowledge bases. In this phase,
the relationship to modal logics [57, 147] and to decidable fragments of first-order logic
[33, 129, 79, 77, 78] was also studied in more detail, and applications in databases (like
schema reasoning, query optimization, and integration of databases) were investigated
[45, 47, 51].

We are now in Phase 4, where the results from the previous phases are used to develop
industrial strength DL systems employing very expressive DLs, with applications like the
Semantic Web or knowledge representation and integration in medical- and bio-informatics
in mind. On the academic side, the interest in less expressive DLs has been revived, with
the goal of developing tools that can deal with very large terminological and/or assertional
knowledge bases [6, 23, 53, 1].

The structure of the remainder of the chapter is as follows. In Section 3.2 we introduce
syntax and semantics of the prototypical DLALC, and some important extensions ofALC.
In Section 3.3 we discuss the relationship between DLs and other logical formalisms. In
Section 3.4 we describe tableau-based reasoning techniques for ALC, and in Section 3.5
we investigate the computation complexity of reasoning in ALC. In Section 3.6 we intro-
duce other reasoning techniques that can be used for DLs. In Section 3.7 we discuss the
use of DLs in ontology language applications. Finally, in Section 3.8, we sketch impor-
tant areas of DL research that have not been mentioned so far, and provide pointers to the
literature.

Although we have endeavoured to cover the most important areas of DL research, we
have decided to treat some areas in more detail rather than giving a comprehensive survey
of the whole field. Readers seeking such a survey are directed to [14].

3.2 A Basic DL and its Extensions

In this section we will define the syntax and semantics of the basic DL ALC, and the most
widely used DL reasoning services. We will also introduce important extensions to ALC,
including inverse roles, number restrictions, and concrete domains. The name ALC stands
for “Attributive concept Language with Complements.” It was first introduced in [150],
where also a first naming scheme for DLs was proposed: starting from a basic DL AL,
the addition of a constructors is indicated by appending a corresponding letter; e.g., ALC
is obtained from AL by adding the complement operator (¬) and ALE is obtained from
AL by adding existential restrictions (∃r.C) (for more details on such naming schemes for
DLs, see [10]).

3.2.1 Syntax and Semantics of ALC
In following, we give formal definitions of the syntax and semantics of the constructors
that we have described informally in the introduction. The DL that includes just this set
of constructors (i.e., conjunction, disjunction, negation, existential restriction and value
restriction) is called ALC.

Definition 1 (ALC syntax) Let NC be a set of concept names and NR be a set of role
names. The sets of ALC-concept descriptions is the smallest sets such that

6 3. Description Logics

1. >, ⊥, and every concept name A ∈ NC is an ALC-concept,

2. if C and D are ALC-concepts and r ∈ NR, then C u D, C t D, ¬C, ∀r.C, and
∃r.C are ALC-concepts.

In the following, we will often use “ALC-concept” instead of “ALC-concept descrip-
tion”. The semantics of ALC (and of DLs in general) is given in terms of interpretations.

Definition 2 (ALC semantics) An interpretation I = (∆I , ·I) consists of a non-empty
set ∆I , called the domain of I, and a function ·I that maps every ALC-concept to a
subset of ∆I , and every role name to a subset of ∆I×∆I such that, for allALC-concepts
C,D and all role names r,

>I = ∆I , ⊥I = ∅
(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,

(∃r.C)I = {x ∈ ∆I | There is some y ∈ ∆I with 〈x, y〉 ∈ rI and y ∈ CI},
(∀r.C)I = {x ∈ ∆I | For all y ∈ ∆I , if 〈x, y〉 ∈ rI , then y ∈ CI}.

We say that CI (rI) is the extension of the concept C (role name r) in the interpretation
I. If x ∈ CI , then we say that x is an instance of C in I.

As mentioned in the introduction, a DL knowledge base (KB) is made up of two parts,
a terminological part (called the TBox) and an assertional part (called the ABox), each part
consisting of a set of axioms. The most general form of TBox axioms are so-called general
concept inclusions.

Definition 3 A general concept inclusion (GCI) is of the form C v D, where C,D are
ALC-concepts. A finite set of GCIs is called a TBox. An interpretation I is a model of a
GCI C v D if CI ⊆ DI; I is a model of a TBox T if it is a model of every GCI in T .

We use C ≡ D as an abbreviation for the symmetrical pair of GCIs C v D and D v C.
An axiom of the form A ≡ C, where A is a concept name, is called a definition.

A TBox T is called definitorialif it contains only definitions, with the additional restric-
tion that (i) T contains at most one definition for any given concept name, and (ii) T is
acyclic, i.e., the definitions of any concept A in T does not refer (directly or indirectly)
to A itself. Definitorial TBoxes are also called acyclic TBoxes in the literature. Given a
definitorial TBox T , concept names occurring on the left-hand side of such a definition
are called defined concepts, whereas the others are called primitive concepts. The name
“definitorial” is motivated by the fact that, in such a TBox, the extensions of the defined
concepts are uniquely determined by the extensions of the primitive concepts and the role
names. From a computational point of view, definitorial TBox are interesting since they
may allow for the use of simplified reasoning techniques (see Section 3.4), and reasoning
w.r.t. such TBoxes is often of a lower complexity than reasoning w.r.t. a general TBox (see
Section 3.5).

The ABox can contain two kinds of axiom, one for asserting that an individual is an
instance of a given concept, and the other for asserting that a pair of individuals is an
instance of a given role.

Franz Baader, Ian Horrocks and Ulrike Sattler 7

Definition 4 An assertional axiom is of the form x : C or (x, y) : r, where C is an ALC-
concept, r is an ALC-role, and x and y are individual names. A finite set of assertional
axioms is called an ABox. An interpretation I is a model of an assertional axiom x : C
if xI ∈ CI , and I is a model of an assertional axiom (x, y) : r if 〈xI , yI〉 ∈ rI; I is a
model of an ABox A if it is a model of every axiom in A.

Several other notations for writing ABox axioms can be found in the literature, e.g., C(x),
r(x, y) and 〈x, y〉 : r.

Definition 5 A knowledge base (KB) is a pair (T ,A), where T is a TBox and A is an
ABox. An interpretation I is a model of a KB K = (T ,A) if I is a model of T and I is a
model of A.

We will write I |= K (resp. I |= T , I |= A, I |= a) to denote that I is a model of a KB
K (resp. TBox T , ABox A, axiom a).

3.2.2 Important Inference Problems

We define inference problems w.r.t. a KB consisting of a TBox and an ABox. Later on, we
will also consider special cases where the TBox or/and ABox is empty, or where the TBox
satisfies additional restrictions, such as being definitorial.

Definition 6 Given a KB K = (T ,A), where T is a TBox and A is an ABox, K is called
consistent if it has a model. A concept C is called satisfiable with respect to K if there is
a model I of K with CI 6= ∅. Such an interpretation is called a model of C w.r.t. K. The
concept D subsumes the concept C w.r.t. K (written K |= C v D) if CI ⊆ DI holds for
all models I of K. Two concepts C,D are equivalent w.r.t. K (written K |= C ≡ D) if they
subsume each other w.r.t. K. An individual a is an instance of a concept C with respect to
K (written K |= a : C) if aI ∈ CI holds for all models I of K. A pair of individuals (a, b)
is an instance of a role r with respect to K (written K |= (a, b) : r) if 〈aI , bI〉 ∈ rI holds
for all models I of K.

For a DL providing all the Boolean operators, like ALC, all of the above reasoning prob-
lems can be reduced to KB consistency. For example, (T ,A) |= a : C iff (T ,A ∪ {a :
¬C}) is inconsistent. We will talk about satisfiability (resp. subsumption and equivalence)
with respect to a TBox T , meaning satisfiability (resp. subsumption and equivalence) with
respect to the KB (T , ∅). This is often referred to as terminological reasoning. In many
cases (e.g. in the case of ALC), the ABox has no influence on terminological reasoning,
i.e., satisfiability (resp. subsumption and equivalence) with respect to (T ,A) coincides
with satisfiability (resp. subsumption and equivalence) with respect to T , as long as the
ABox A is consistent (i.e., has a model).

3.2.3 Important Extensions to ALC

One prominent application of DLs is as the formal foundation for ontology languages.
Examples of DL based ontology languages include OIL [69], DAML+OIL [97, 98], and

8 3. Description Logics

OWL [134], a recently emerged ontology language standard developed by the W3C Web-
Ontology Working Group.1

High quality ontologies are crucial for many applications, and their construction, inte-
gration, and evolution greatly depends on the availability of a well-defined semantics and
powerful reasoning tools. Since DLs provide for both, they should be ideal candidates for
ontology languages. That much was already clear ten years ago, but at that time there was
a fundamental mismatch between the expressive power and the efficiency of reasoning that
DL systems provided, and the expressivity and the large knowledge bases that users needed
[67]. Through basic research in DLs over the last 10–15 years, as summarized in the in-
troduction, this gap between the needs of ontologist and the systems that DL researchers
provide has finally become narrow enough to build stable bridges. In particular, ALC has
been extended with several features that are important in an ontology language, including
(qualified) number restrictions, inverse roles, transitive roles, subroles, concrete domains,
and nominals.

With number restrictions, it is possible to describe the number of relationships of a
particular type that individuals can participate in. For example, we may want to say that a
person can be married to at most one other individual:

Person v 61married,

and we may want to extend our definition of HappyMan to include the fact that instances
of HappyMan have between two and four children:

HappyMan ≡ Human u ¬Female u (∃married.Doctor) u
(∀hasChild.(Doctor t Professor)) u
>2hasChild u64hasChild.

With qualified number restrictions, we can additionally describe the type of individuals
that are counted by a given number restriction. For example, using qualified number re-
strictions, we could further extend our definition of HappyMan to include the fact that
instances of HappyMan have at least two children who are doctors:

HappyMan ≡ Human u ¬Female u (∃married.Doctor) u
(∀hasChild.(Doctor t Professor)) u
>2hasChild.Doctor u64hasChild.

With inverse roles, transitive roles, and subroles [100] we can, in addition to hasChild,
also use its inverse hasParent, specify that hasAncestor is transitive, and specify that
hasParent is a subrole of hasAncestor.

Concrete domains [16, 115] integrate DLs with concrete sets such as the real numbers,
integers, or strings, as well as concrete predicates defined on these sets, such as numerical
comparisons (e.g.,≤), string comparisons (e.g., isPrefixOf), or comparisons with constants
(e.g., ≤17). This supports the modelling of concrete properties of abstract objects such
as the age, the weight, or the name of a person, and the comparison of these concrete
properties. Unfortunately, in their unrestricted form, concrete domains can have dramatic
effects on the decidability and computational complexity of the underlying DL [17, 115].

1http://www.w3.org/2001/sw/WebOnt/

Franz Baader, Ian Horrocks and Ulrike Sattler 9

For this reason, a more restricted form of concrete domain, known as datatypes [101], is
often used in practice.

The nominal constructor allows us to use individual names also within concept descrip-
tions: if a is an individual name, then {a} is a concept, called nominal, which is interpreted
by a singleton set. Using the individual Turing, we can describe all those computer sci-
entists that have met Turing by CScientist u ∃hasMet.{Turing}. The so-called “one-of”
constructor extends the nominal constructor to a finite set of individual. In the presence of
disjunction, it can, however, be expressed using nominals: {a1, . . . , an} is equivalent to
{a1} t . . . t {an}. The presence of nominals can have dramatic effects on the complexity
of reasoning [160].

An additional comment on the naming of DLs is in order. Recall that the name given
to a particular DL usually reflects its expressive power, with letters expressing the con-
structors provided. For expressive DLs, starting with the basic DL AL would lead to quite
long names. For this reason, the letter S is often used as an abbreviation for the “basic”
DL consisting of ALC extended with transitive roles (which in the AL naming scheme
would be called ALCR+).2 The letter H represents subroles (role Hierarchies), O rep-
resents nominals (nOminals), I represents inverse roles (Iinverse), N represent number
restrictions (Number), and Q represent qualified number restrictions (Qualified). The in-
tegration of a concrete domain/datatype is indicated by appending its name in parenthesis,
but sometimes a “generic” D is used to express that some concrete domain/datatype has
been integrated. The DL corresponding to the OWL DL ontology language includes all of
these constructors and is therefore called SHOIN (D).

3.3 Relationships with Other Formalisms

In this section, we discuss the relationships between DLs and predicate logic, and between
DLs and Modal Logic. This is intended for readers who are familiar with these logics;
those not familiar with these logics might want to skip the following subsection(s), since
we do not introduce modal or predicate logic here—we simply use standard terminology.
Here, we only describe the relationship of the basic DL ALC and some of its extensions to
these other logics (for a more detailed analysis, see [33] and Chapter 4 of [14]).

3.3.1 DLs and Predicate Logic

Most DLs can be seen as fragments of first-order predicate logic, although some provide
operators such as transitive closure of roles or fixpoints that require second-order logic
[33]. The main reason for using Description Logics rather than general first-order predicate
logic when representing knowledge is that most DLs are actually decidable fragments of
first-order predicate logic, i.e., there are effecitive procedures for deciding the inference
problems introduced above.

Viewing role names as binary relations and concept names as unary relations, we define
two translation functions, πx and πy , that inductively map ALC-concepts into first order

2The use of S is motivated by the close connection between this DL and the modal logic S4.

10 3. Description Logics

formulae with one free variable, x or y:

πx(A) = A(x), πy(A) = A(y),
πx(C uD) = πx(C) ∧ πx(D), πy(C uD) = πy(C) ∧ πy(D),
πx(C tD) = πx(C) ∨ πx(D), πy(C tD) = πy(C) ∨ πy(D),
πx(∃r.C) = ∃y.r(x, y) ∧ πy(C), πy(∃r.C) = ∃x.r(y, x) ∧ πx(C),
πx(∀r.C) = ∀y.r(x, y) ⇒ πy(C), πy(∀r.C) = ∀x.r(y, x) ⇒ πx(C).

Given this, we can translate a TBox T and an ABox A as follows, where ψ[x/a] denotes
the formula obtained from ψ by replacing all free occurrences of x with a:

π(T) =
∧

CvD∈T

∀x.(πx(C) ⇒ πx(D))

π(A) =
∧

a:C∈A
πx(C)[x/a] ∧

∧
(a,b):r∈A

r(a, b).

This translation preserves the semantics: we can obviuosly view DL interpretations as first-
order interpretations and vice versa, and it is easy to show that the translation preserves
models. As an easy consequence, we have that reasoning in DLs corresponds to first-order
inference:

Theorem 1 Let (T ,A) be anALC-knowledge base,C,D possibly complexALC-concepts,
and a an individual name. Then
1. (T ,A) is consistent iff π(T) ∧ π(A) is consistent,
2. (T ,A) |= C v D iff (π(T) ∧ π(A)) ⇒ (π({C v D})) is valid,
3. (T ,A) |= a : C iff (π(T) ∧ π(A)) ⇒ (π({a : C})) is valid.

This translation not only provides an alternative way of defining the semantics of ALC,
but also tells us that all the introduced reasoning problems for ALC knowledge bases are
decidable. In fact, the translation of a knowledge base uses only variables x and y, and
thus yields a formula in the two variable fragment of first-order logic, which is known
to be decidable in non-deterministic exponential time [79]. Alternatively, we can use the
fact that this translation uses quantification only in a restricted way, and therefore yields
a formula in the guarded fragment [2], which is known to be decidable in deterministic
exponential time [78]. Thus, the exploration of the relationship between DLs and first-
order logics even gives us upper complexity bounds “for free”. However, for ALC and
also many other DLs, the upper bounds obtained this way are not necessarily optimal,
which justifies the development of dedicated reasoning procedures for DLs.

The translation of more expressive DLs may be straightforward, or more difficult, de-
pending on the additional constructs. Inverse roles can be captured easily in both the
guarded and the two variable fragment by simply swapping the variable places; e.g.,
πx(∃R−.C) = ∃y.R(y, x)∧πy(C). Number restrictions can be captured using (in)equality
or so-called counting quantifiers. It is known that the two-variable fragment with counting
quantifiers is still decidable in non-deterministic exponential time [130]. Transitive roles,
however, cannot be expressed with two variables only, and the three variable fragment is
known to be undecidable. The guarded fragment, when restricted carefully to the so-called
action guarded fragment [75], can still capture a variety of features such as number restric-
tions, inverse roles, and fixpoints, while remaining decidable in deterministic exponential
time.

Franz Baader, Ian Horrocks and Ulrike Sattler 11

3.3.2 DLs and Modal Logic

Description Logics are closely related to Modal Logics, yet they have been developed
independently. This close relationship was discovered relatively late [145], but has since
then been exploited quite successfully to transfer complexity and decidability results as
well as reasoning techniques [146, 57, 90, 3]. It is not hard to see that ALC-concepts can
be viewed as syntactic variants of formulae of the (multi) modal logic K: Kripke structures
can easily be viewed as DL interpretations and, vice versa, DL interpretations as Kripke
structures; we can then view concept names as propositional variables, and role names
as modal parameters, and realize this correspondence through the rewriting !, which
allows to translate ALC-concepts into modal formulae and vice versa modal formulae into
ALC-concepts, as follows:

ALC-concepts Modal K formulae
A ! a, for concepts names A and propositional variables a

C uD ! C ∧D,
C tD ! C ∨D,
¬C ! ¬C,
∀r.C ! [r]C,
∃r.C ! 〈r〉C.

Let us use Ċ for the modal formula obtained by rewriting the ALC-concept C. The trans-
lation of DL knowledge bases is slightly more tricky: a TBox T is satisfied only in those
structures where, for eachC v D, ¬Ċ∨Ḋ holds globally, i.e., in each world of our Kripke
structure (or equivalently, in each element of our interpretation domain). We can express
this using the universal modality, that is, a special modal parameter U that is interpreted as
the total relation in all Kripke structures. Before we discuss ABoxes, let us first state the
properties of our correspondence so far.

Theorem 2 Let T be an ALC-TBox and E, F possibly complex ALC-concepts. Then
1. F is satisfiable w.r.t. T iff Ḟ ∧

∧
CvD∈T [U]¬Ċ ∨ Ḋ is satisfiable,

2. T |= E v F iff (
∧

CvD∈T [U](¬Ċ ∨ Ḋ)) ∧ Ė u ¬Ḟ is unsatisfiable.

Like TBoxes, ABoxes do not have a direct correspondence in modal logic, but they can be
seen as a special case of a modal logic constructor, namely nominals. These are special
propositional variables that hold in exactly one world; they are the basic ingredient of
hybrid logics [4], and usually come with a special modality, the @-operator, that allows
one to refer to the (only) world in which the nominal a holds. For example, @aψ holds if,
in the world where a holds, ψ holds as well. Hence an ABox assertion of the form a : C
corresponds to the modal formula @aĊ, and an ABox assertion (a, b) : r corresponds to
@a〈r〉b. In this latter formula, we see that nominals can act both as a parameter to the
@ operator, like a, and as a propositional variables, like b. Please note that the usage of
individual names in ABoxes corresponds to formulae where nominals are used in a rather
restricted form only—some DLs, such as SHOIN or SHOIQ, allow for a more general
use of nominals, which is normally indicated by the letter O in a DL’s name.

As in the case of first-order logic, some DL constructors have close relatives in modal
logics and some do not. Number restrictions correspond to so-called graded modalities

12 3. Description Logics

[70], which in modal logic have found only limited attention until the connection with DLs
was found. In some variants of propositional dynamic logic [71], a modal logic for rea-
soning about programs, we find deterministic programs, which correspond to (unqualified)
number restrictions of the form 61R.> [29]. Similarly, we find there converse programs,
which correspond to inverse roles, and regular expressions of programs, which correspond
to roles built using transitive-reflexive closure, union, and composition.

3.4 Tableau Based Reasoning Techniques

A variety of reasoning techniques can be used to solve the reasoning problems introduced
in Section 3.2. These include resolution based approaches [102, 104], automata based
approaches [49, 162], and structural approaches (for sub-Boolean DLs) [6]. The most
widely used technique, however, is the tableau based approach first introduced by Schmidt-
Schauß and Smolka [150]. In this section, we described this technique for the case of our
basic DL ALC.

3.4.1 A Tableau Algorithm for ALC

We will concentrate on knowledge base consistency because, as we have seen in Sec-
tion 3.2, this is a very general problem to which many others can be reduced. For example,
given a knowledge base K = (T ,A), a concept C is subsumed by a concept D with re-
spect to K (K |= C v D) iff (T ,A∪ {x : (C u ¬D)}) is not consistent, where x is a new
individual name (i.e., one that does not occur in K). For ALC with a general TBox, i.e.,
one where the TBox is not restricted to contain only definitorial axioms (see Section 3.2),
this problem is known to be EXPTIME-complete [145].

The tableau based decision procedure for the consistency of general ALC knowledge
bases sketched below (and described in more detail in [12, 14]), runs in worst-case non-
deterministic double exponential time.3 However, according to the current state of the
art, procedures such as this work well in practice, and are the basis for highly optimised
implementations of DL systems such as FaCT [95], FaCT++ [161], RACER [81] and Pellet
[152].

Given a knowledge base (T ,A), we can assume without loss of generality that all of
the concepts occurring in T and A are in negation normal form (NNF), i.e., that negation
is applied only to concept names. An arbitrary ALC concept can be transformed to an
equivalent one in NNF by pushing negations inwards using a combination of de Morgan’s
laws and the duality between existential and universal restrictions (¬∃r.C ≡ ∀r.¬C and
¬∀r.C ≡ ∃r.¬C). For example, the concept ¬(∃r.A u ∀s.B), where A,B are concept
names, can be transformed to the equivalent NNF concept (∀r.¬A) t (∃s.¬B). For a
concept C, we will use ¬̇C to denote the NNF of ¬C.

The idea behind the algorithm is that it tries to prove the consistency of a knowledge
base K = (T ,A) by constructing (a representation of) a model of K. It does this by
starting from the concrete situation described in A, and explicating additional constraints
on the model that are implied by the concepts in A and the axioms in T . Since ALC has

3This is due to the algorithm searching a tree of worst-case exponential depth. By re-using previously
computed search results, a similar algorithm can be made to run in exponential time [66], but this introduces a
considerable overhead which turns out to be not always useful in practice.

Franz Baader, Ian Horrocks and Ulrike Sattler 13

a so-called forest model property, we can assume that this model has the form of a set of
(potentially infinite) trees, the root nodes of which can be arbitrarily interconnected. If
we want to obtain a decision procedure, we can only construct finite trees representing the
(potentially) infinite ones (assuming that a model exists at all); this can be done such that
the finite representation can be unraveled into an infinite forest model I of (T ,A).

In order to construct such a finite representation, the algorithm works on a data structure
called a completion forest. This consists of a labelled directed graph, each node of which is
the root of a completion tree. Each node x in the completion forest (which is either a root
node or a node in a completion tree) is labelled with a set of concepts L(x), and each edge
〈x, y〉 (which is either one between root nodes or one inside a completion tree) is labelled
with a set of role names L(〈x, y〉). If 〈x, y〉 is an edge in the completion forest, then we
say that x is a predecessor of y (and that y is a successor of x); in case 〈x, y〉 is labelled
with a set containing the role name r, then we say that x is an r-predecessor of y (and that
y is an r-successor of x).

When started with a knowledge base (T ,A), the completion forest FA is initialised
such that it contains a root node xa, with L(xa) = {C | a : C ∈ A}, for each individual
name a occurring in A, and an edge 〈xa, xb〉, with L(〈xa, xb〉) = {r | (a, b) : r ∈ A}, for
each pair (a, b) of individual names for which the set {r | (a, b) : r ∈ A} is non-empty.

The algorithm then applies so-called expansion rules, which syntactically decompose
the concepts in node labels, either inferring new constraints for a given node, or extending
the tree according to these constraints (see Figure 3.1). For example, if C1 u C2 ∈ L(x),
and either C1 6∈ L(x) or C2 6∈ L(x), then the u-rule adds both C1 and C2 to L(x); if
∃r.C ∈ L(x), and x does not yet have an r-successor with C in its label, then the ∃-
rule generates a new r-successor node y of x with L(y) = {C}. Note that the t-rule is
different from the other rules in that it is non-deterministic: if C1 tC2 ∈ L(x) and neither
C1 ∈ L(x) nor C2 ∈ L(x), then it adds either C1 or C2 to L(x). In practice this is the
main source of complexity in tableau algorithms, because it may be necessary to explore
all possible choices of rule applications.

The algorithm stops if it encounters a clash: a completion forest in which {A,¬A} ⊆
L(x) for some node x and some concept name A. In this case, the completion forest
contains an obvious inconsistency, and thus does not represent a model. If the algorithm
stops without having encountered a clash, then the obtained completion forest yields a
finite representation of a forest model, and the algorithm answers “(T ,A) is consistent”; if
none of the possible non-deterministic choices of the t-rule leads to such a representation
of a forest model, i.e., all of them lead to a clash, then the algorithm answers “(T ,A) is
inconsistent”.

Please note that we have two different kinds of non-determinism in this algorithm. The
non-deterministic choice between the two disjuncts in the t-rule is “don’t know” non-
deterministic, i.e., if the first choice leads to a clash, then the second one must be explored.
In contrast, the choice of which rule to apply next to a given completion forest is “don’t
care” non-deterministic, i.e., one can choose an arbitrary applicable rule without the need
to backtrack and explore alternative choices.

It remains to explain the meaning of “blocked” in the formulation of the expansion
rules. Without the v-rule (i.e., in case the TBox is empty), the tableau algorithm for
ALC would always terminate, even without blocking. In order to guarantee termination
of the expansion process even in the presence of GCIs, the algorithm uses a technique

14 3. Description Logics

u-rule: if 1. C1 u C2 ∈ L(x), x is not blocked, and
2. {C1, C2} 6⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}
t-rule: if 1. C1 t C2 ∈ L(x), x is not blocked, and

2. {C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃r.C ∈ L(x), x is not blocked, and
2. x has no r-successor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {r} and L(y) = {C}
∀-rule: if 1. ∀r.C ∈ L(x), x is not blocked, and

2. there is an r-successor y of x with C /∈ L(y)
then set L(y) = L(y) ∪ {C}

v-rule: if 1. C1 v C2 ∈ T , x is not blocked, and
2. C2 t ¬̇C1 /∈ L(x)

then set L(x) = L(x) ∪ {C2 t ¬̇C1}

Figure 3.1: The tableau expansion rules for ALC

called blocking.4 Blocking prevents application of expansion rules when the construction
becomes repetitive; i.e., when it is obvious that the sub-tree rooted in some node x will be
“similar” to the sub-tree rooted in some predecessor y of x. To be more precise, we say
that a node y is an ancestor of a node x if they both belong to the same completion tree and
either y is a predecessor of x, or there exists a predecessor z of x such that y is an ancestor
of z. A node x is blocked if there is an ancestor y of x such that L(x) ⊆ L(y) (in this case
we say that y blocks x), or if there is an ancestor z of x such that z is blocked; if a node x is
blocked and none of its ancestors is blocked, then we say that x is directly blocked. When
the algorithm stops with a clash free completion forest, a branch that contains a directly
blocked node x represents an infinite branch in the corresponding model having a regular
structure that corresponds to an infinite repetition (or “unraveling”) of the section of the
graph between x and the node that blocks it (see Section 3.6.1).

Theorem 3 The above algorithm is a decision procedure for the consistency of ALC
knowledge bases.

A complete proof of this theorem is beyond the scope of this chapter, and we will only
sketch the idea behind the proof: the interested reader can refer to [12, 14] for more details.
Firstly, it is easy to see that the algorithm terminates: expansion rule applications always
extend node labels or add new nodes, and we can fix an upper bound on the size of node
labels (they can only contain concepts that are derivable from the syntactic decomposition
of concepts occurring in the input KB), on the fan-out of trees in the completion forest (a
node can have at most one successor for each existential restriction occurring in its label),

4In description logics, blocking was first employed in [8] in the context of an algorithm that can handle the
transitive closure of roles, and was improved on in [13, 46, 12, 92].

Franz Baader, Ian Horrocks and Ulrike Sattler 15

and on the length of their branches (due to blocking). Secondly, soundness follows from the
fact that we can transform a fully expanded and clash free completion forest into a model of
the input KB by “throwing away” all blocked nodes and “bending” each edge from a non-
blocked into a blocked node to the node it is blocked by.5 Finally, completeness follows
from the fact that, given a model of the input KB, we could use it to guide applications of
the t-rule so as to produce a fully expanded and clash free completion forest.

The procedure described above can be simplified if the TBox is definitorial, i.e., if
it contains only unique and acyclic definitions (see Section 3.2). In this case, reasoning
with a knowledge base can be reduced to the problem of reasoning with an ABox only
(equivalently, a knowledge base with an empty TBox) by unfolding the concepts used in
ABox axioms [126]: given a KB (T ,A), where the definition A ≡ C occurs in T , all
occurrences of A in A can be replaced with C. Repeated application of this procedure
can be used to eliminate from A all those concept names for which there is a definition
in T . As mentioned above, when the TBox is empty the v-rule is no longer required and
blocking can be dispensed with. This is because the other rules only introduce concepts
that are smaller than the concept triggering the rule application; we will come back to this
in Section 3.5.1.

It is easy to see that the above static unfolding procedure can lead to an exponential
increase in the size of the ABox [126]. In general, this cannot be avoided since there
are DLs where reasoning w.r.t. definitorial TBoxes is harder than without TBoxes [127,
114]. For ALC, however, we can avoid an increase in the complexity of the algorithm by
unfolding definitions not a priori, but only as required by the progress of the algorithm.
This so called lazy unfolding [15, 95, 114] is achieved by substituting the v-rule by the
following two ≡i-rules:

≡1-rule: if 1. A ≡ C ∈ T , A ∈ L(x), ≡2-rule: if 1. A ≡ C ∈ T , ¬A ∈ L(x),
2. and C /∈ L(x), 2. and ¬̇C /∈ L(x),

then set L(x) = L(x) ∪ {C} then set L(x) = L(x) ∪ {¬̇C}
As in the case of static unfolding, blocking is not required: the acyclicity condition on the
TBox means that if a concept C is added to L(x) as a result of an application of one of the
≡i-rules to the concept A or ¬A and axiom A ≡ C, then further unfolding of C cannot
lead to the introduction of another occurrence of A in the sub-tree below x.

The tableau algorithm can also be extended to deal with a wide range of other DLs,
including those supporting, e.g., (qualified) number restrictions, inverse roles, transitive
roles, subroles, concrete domains and nominals. Extending the algorithm to deal with such
features is mainly a matter of adding expansion rules to deal with the new constructors
(e.g., number restrictions), adding new clash conditions (e.g., to deal with obviously unsat-
isfiable number restrictions), and using a more sophisticated blocking condition in order to
guarantee both termination and soundness when using the extended rule set.

3.4.2 Implementation and Optimisation Techniques

Although reasoning in ALC (w.r.t. an arbitrary KB) is of a relatively high complexity
(EXPTIME-complete), the pathological cases that lead to such high worst case complex-

5For ALC, we can always construct a finite cyclical model in this way; for more expressive DLs, we may
need different blocking conditions, and we may need to unravel such cycles in order to construct an infinite model.

16 3. Description Logics

ity are rather artificial, and rarely occur in practice [127, 86, 155, 95]. Even in realistic
applications, however, problems can occur that are much too hard to be solved by naive
implementations of theoretical algorithms such as the one sketched in Section 3.4.1. Mod-
ern DL systems, therefore, include a wide range of optimisation techniques, the use of
which has been shown to improve typical case performance by several orders of magni-
tude [96]. These systems exhibit good typical case performance, and work well in realistic
applications [15, 44, 95, 81, 133].

A detailed description of optimisation techniques is beyond the scope of this chapter,
and the interested reader is referred to Chapter 8 of [14] for further information. It will,
however, be interesting to sketch a couple of the key techniques: absorption and depen-
dency directed backtracking.

Absorption

Whereas definitorial TBoxes can be dealt with efficiently by using lazy unfolding (see
Section 3.4.1 above), more general axioms are not amenable to this optimization technique.
In particular, GCIsC v D, where C is non-atomic, must be dealt with by explicitly making
every individual in the model an instance of D t ¬̇C (see Figure 3.1). Large numbers of
such GCIs result in a very high degree of non-determinism due to the introduction of these
disjunctions, and thus to catastrophic performance degradation [95].

Absorption is a rewriting technique that tries to reduce the number of GCIs in the TBox
by absorbing them into axioms of the form A v C, where A is a concept name. The basic
idea is that an axiom of the form A u D v D′ can be rewritten as A v D′ t ¬D and
absorbed into an existing A v C axiom to give A v C u (D′ t ¬D) [93]. Although the
disjunction is still present, lazy unfolding applied to this axiom (where only the ≡1 rule
needs to be applied) ensures that the disjunction is only introduced for individuals that are
already known to be instances of A.

Dependency Directed Backtracking

Inherent unsatisfiability concealed in sub-descriptions can lead to large amounts of unpro-
ductive backtracking search known as thrashing. For example, expanding the description
(C1tD1)u . . .u(CntDn)u∃R.(AuB)u∀R.¬A could lead to the fruitless exploration
of 2n possible expansions of (C1tD1)u . . .u(CntDn) before the inherent unsatisfiabil-
ity of ∃R.(A uB) u ∀R.¬A is discovered. This problem is addressed by adapting a form
of dependency directed backtracking called backjumping, which has been used in solving
constraint satisfiability problems [27].

Backjumping works by labelling concepts with a dependency set indicating the non-
deterministic expansion choices on which they depend. When a clash is discovered, the
dependency sets of the clashing concepts can be used to identify the most recent non-
deterministic expansion where an alternative choice might alleviate the cause of the clash.
The algorithm can then jump back over intervening non-deterministic expansions without
exploring any alternative choices. Similar techniques have been used in first-order the-
orem provers, e.g., the “proof condensation” technique employed in the HARP theorem
prover [128].

Franz Baader, Ian Horrocks and Ulrike Sattler 17

3.5 Complexity

In this section, we discuss the computational complexity of some of the reasoning prob-
lems we have specified. Since introducing complexity classes and other notions of compu-
tational complexity would go beyond the scope of this chapter, we expect the reader to be
familiar with the complexity classes PSpace and ExpTime, the notions of membership in
and hardness for such a class, and what it means for a problem to be undecidable. Those
readers who want to learn more about computational complexity are referred to [131], or
any other textbook covering computational complexity.

3.5.1 ALC ABox Consistency is PSpace-complete

In Section 3.4.1, we have seen a tableau based algorithm that decides the consistency of
ALC ABoxes w.r.t. TBoxes. Here, we will first consider ABoxes only and explain how
this algorithm can be implemented to use polynomial space only; that is, we will show that
consistency of ALC ABoxes is in PSpace. Then we will show that we cannot do better;
that is, that consistency of ALC ABoxes is PSpace-hard.

For these considerations, we need to agree how to measure the size of the input. For
A an ABox A, intuitively its size |A| is the length required to write A down, where we
assume that the length required to write concept and role names is 1. Formally, we define
the size of ABoxes as follows:

|A| =
∑

a:C∈A
(|C|+ 1) +

∑
(a,b):r∈A

3

|A| = 1 for a concept name A (including >,⊥)
|¬D| = |D|+ 1

|D1 uD2| = |D1 tD2| = |D1|+ |D2|+ 1
|∃R.D| = |∀R.D| = |D|+ 2

Next, let us look again at the tableau algorithm. First, note that, in the absence of a TBox,
neither the v-rule not the ≡i-rules is applicable. Second, observe that the tableau algo-
rithm builds a completion forest in a monotonic way; that is, all expansion rules either add
concepts to node labels or new nodes to the forest, but never remove anything. The forest
it constructs consists of two parts: for each individual name in A, the forest contains a root
node, which we will call an old node in the following. The edges between old nodes all
stem from role assertions in A, and thus may occur without restrictions. Other nodes (i.e.,
the notes in the completion tress that are not root nodes) are generated by the ∃-rule, and
we call them new nodes; we call the other rules augmenting rules, because they only aug-
ment the labels of existing nodes. In contrast to edges between old nodes, edges between
new nodes are of a particular shape: each new node is found in a completion tree with an
old node at its root.

Let us consider the node labels. Initially, for an old node xa, L(xa) contains the con-
cepts C from the assertions a : C ∈ A. Other concepts are added by the expansion rules,
and we observe that these expansion rules only add subconcepts of the concepts occurring
in A. Since there are at most |A| such subconcepts, each node label can be stored in space
polynomial in |A|. Moreover, for each conceptD in the label of a new node x, the (unique)
predecessor of x contains a larger concept. Hence the maximum size of concepts in node

18 3. Description Logics

labels strictly decreases along a path of new nodes, and thus the depth of each completion
tree in our completion graph is bounded by max{|C| | a : C ∈ A}.

Finally, we note that the expansion rules can be applied in an arbitrary order: the cor-
rectness proof for the algorithm does not rely on a specific application order. Hence we can
use the following order: first, all augmenting rules are exhaustively applied to old nodes.
Next, we treat each old node in turn, and build the tree rooted at it in a depth first manner.
That is, for an old node xa, we deal in turn with each existential restriction ∃r.C ∈ L(xa):
we apply the ∃-rule in order to generate an r-successor x0 with L(x0) = {C}, apply the ∀-
rule exhaustively to this r-successor of xa (which may add further concepts to L(x0)), and
recursively apply the same procedure to x0, i.e., exhaustively apply the augmenting rules,
and then deal with the existential restrictions one at a time. As usual, the algorithm stops if
a clash occurs; otherwise, when all of a new node’s existential restrictions have been dealt
with, we can delete it, including its label, and re-use the space. Using this technique, we
can investigate the whole tree rooted at our old node xa while only keeping a single branch
in memory at any time. This branch is of length linear in |A|, and can thus be stored with
all its labels in size polynomial in |A|. Continuing the investigation of all trees in the same
manner, our algorithm only requires space polynomial in |A|. This technique is called the
trace technique since it only “traces” the tree-shaped part of a completion tree [150].

To show that we cannot do better, we will prove that consistency of ALC ABoxes is
PSpace-hard, even for ABoxes that consist of a single assertion {a : C}. This proof is by
a reduction of the validity problem for quantified Boolean formulae, which is known to be
PSpace-hard [156]. A quantified Boolean formula (QBF for short) Φ is of the form

Q1p1.Q2p2. . . . Qnpn.ϕ

for Qi ∈ {∀,∃} and ϕ a Boolean formula over p1, . . . , pn. The validity of QBFs is defined
inductively:

∃p.Φ is valid if Φ[p/t] or Φ[p/f] is valid
∀p.Φ is valid if Φ[p/t] and Φ[p/f] are valid

For example, ∀p.∃q.(p ∨ q) is valid, whereas ∀p.∀q.∃r.((p ∨ r) ⇒ q) is not valid.
Since validity of QBFs is PSpace-hard, it remains to show that, for a given QBF Φ, we

can construct in polynomial time an ALC-concept CΦ such that Φ is valid iff {a : CΦ} is
consistent. As an immediate consequence, consistency of ALC ABoxes and satisfiability
of ALC concepts are PSpace-hard.

The idea underlying our reduction is to build, for a QBF as above, a concept CΦ such
that each instance x0 of CΦ is the root of a tree of depth n such that, for each 1 ≤ i ≤ n,
we have the following:

1. if Qi = ∃, each r . . . r︸ ︷︷ ︸
i−1 times

-successor of x0 has one r-successor, which can be in pi or

in ¬pi, and

2. if Qi = ∀, each r . . . r︸ ︷︷ ︸
i−1 times

-successor of x0 has two r-successors one in pi, one in ¬pi.

Franz Baader, Ian Horrocks and Ulrike Sattler 19

To this end, for a QBF Φ = Q1p1.Q2p2. . . . Qnpn.ϕ, we define CΦ as follows, where ϕ̂ is
the DL counterpart of ϕ obtained by replacing ∧ with u and ∨ with t in ϕ:

CΦ := L1 u ∀r.(L2 u ∀r.(L3 u . . .∀r.(Ln u ϕ̂)) . . .)), where

Li := Di u

{
∃r.> if Qi = ∃
∃r.pi u ∃r.¬pi if Qi = ∀

Di := u
j<i

(pj ⇒ ∀r.pj) u (¬pj ⇒ ∀r.¬pj)

Through this definition we ensure that, if x0 ∈ CI
Φ and there is a path (x0, x1) ∈

rI , . . . , (xi−1, xi) ∈ rI , then xi ∈ LIi , and Li is responsible for the branching pattern
described above. The concepts Di ensure that, if some xj is (is not) an instance of pj for
j < i, then so is (neither is) xj+1. These observations, together with the fact that xn must
be an instance of ϕ̂, ensure that Φ is valid iff {a : CΦ} is consistent.

Theorem 4 Satisfiability and subsumption of ALC concepts and consistency of ALC
ABoxes are PSpace-complete problems.

3.5.2 Adding General TBoxes Results in ExpTime-hardness

We will see in Section 3.6.1 that satisfiability of ALC concepts w.r.t. (general) TBoxes
can be decided in exponential time, i.e., that this problem is in ExpTime. Again, one
can show that we cannot do better, i.e., that this problem is also ExpTime-hard. Unfortu-
nately, this proof goes beyond the scope of this chapter since, to the best of our knowledge,
all proofs require the introduction of some “complexity theory machinery”: one possi-
ble proof is by adapting the proof of ExpTime-hardness of propositional dynamic logic
(PDL) in [71]. This proof uses a polynomial reduction of the word problem for polyno-
mially space-bounded, alternating Turing machines to the satisfiability of PDL formulae.
When translated into its DL counterpart, the reduction formula of this proof is of the form
C u ∀r∗.D, where C and D are ALC concepts and r∗ is the transitive-reflexive closure
of r, i.e., this concept involves a constructor not available in ALC. It is not hard to see,
however, that C u∀r∗.D is satisfiable iff C is satisfiable w.r.t. the TBox {> v D}. This is
the case since r is the only role name occurring in C and D. For more information on the
relationship between TBoxes and PDL see, e.g., [145, 57] or Chapter 4 of [14].

It is worth noting that, for definitorial TBoxes andALC, this blow-up of the complexity
from PSpace to ExpTime does not occur [114]. Yet, we will see in Section 3.6.2 that
there are DLs where even the presence of definitorial TBoxes can lead to an increased
complexity.

3.5.3 The Effect of Other Constructors

In Section 3.2.3 we have seen various extensions ofALC, and we will now briefly describe
the influence they have on the computational complexity.

In general, number restrictions are “harmless”: with only one exception, which we
will come back to later, even qualified number restrictions can be added to a DL without

20 3. Description Logics

increasing its complexity. For example, concept satisfiability in ALCQ is still in PSpace
[160], and consistency of of general ALCQ knowledge bases is still in ExpTime [56, 160].

Transitive roles are mostly harmless: all DLs between ALC and ALCQIO can be ex-
tended with transitive roles without increasing their computational complexity [143, 160].
One “dangerous” interaction we are aware of is with role hierarchies: concept satisfiability
of ALC with transitive roles and role hierarchies is ExpTime-hard, whereas concept sat-
isfiability in ALC with either transitive roles or role hierarchies is in PSpace [143]. The
increase in complexity is due to the fact that transitive roles and role hierarchies can be
used to internalise TBoxes [145]: given a TBox T and an ALC concept E that use role
names r1, . . . , rn, we have that E is satisfiable w.r.t. T if and only if the concept

∃r.E u ∀r. u
CvD∈T

(¬C tD)

is satisfiable w.r.t. {r1 v r, . . . , rn v r}, where r is a new, transitive role. The first con-
junct ensures that the extention of E is indeed non-empty, and the second conjunct ensures
that every element in a (connected) model satisfies each GCI in T . Thus, in ALC with
transitive roles and role hierarchies, we can polynomially reduce reasoning w.r.t. a TBox
to pure concept reasoning, and hence pure concept reasoning is already ExpTime-hard.
In the additional presence of number restrictions, we need to take special care not to use
super-roles of transitive roles inside number restrictions since this leads to undecidability
[92]. As a consequence, expressive DLs such as SHIQ allow only so-called simple roles
to be used in number restrictions.

Nominals and inverse roles are also mostly harmless: concept satisfiability inALCQO
and ALCI with transitive roles is still in PSpace [92, 7], but concept satisfiability of
ALCIO is ExpTime-hard [4]. This increase in complexity is again due to the fact that,
with inverse roles and nominals, we can internalise TBoxes. Intuitively, we use a nominal
as a “spy point”, i.e., an individual that has all other elements of a (connected) model as
t-successors, and we use inverse roles to ensure this spy-point behaviour. More precisely,
a concept E is satisfiable w.r.t. a TBox T if and only if the following concept is satisfiable,
where o is a nominal, R is the set of roles r occurring in T or E and their inverses r−, and
t is a role that is not in R:

o u (∃t.E) u (∀t. u
r∈R

∀r.∃t−.o) u ∀t. u
CvD∈T

(¬C tD).

The third conjunct ensures that o indeed “sees” all elements in a connected model, i.e.,
if xo is an instance of the above concept in a connected model I and there is an element
y ∈ ∆I , then (xo, y) ∈ tI

Finally, we would like to point out that nominals, inverse roles, and number restrictions
together have a dramatic influence on complexity: satisfiability of ALCQIO concepts
is NExpTime-hard [160], even though satisfiability of ALCQI, ALCIO, and ALCOQ
concepts w.r.t. TBoxes is in ExpTime [56, 144, 7].

3.6 Other Reasoning Techniques

Although the tableau based approach is currently the most widely used technique for rea-
soning in DLs, other approaches have been developed as well. In general, a reasoning
algorithm can be used in an implementation, or to prove a decidability or computational

Franz Baader, Ian Horrocks and Ulrike Sattler 21

complexity result. Certain approaches may (for a given logic) be better suited for the
former task, whereas others may be better suited for the latter—and it is sometimes hard
to find one that is well-suited for both. Examples of other approaches are the automata
based approach, the structural subsumption approach, the resolution based approach, and
translation based approaches. For certain logics and tasks, other approaches turn out to be
superior to the tableau based approach. For example, it is not clear how the polynomiality
result for subsumption in EL with GCIs [42, 6], which uses a structural subsumption algo-
rithm, could be obtained with the help of a tableau based algorithm. Similarly, the automata
based approach can be used to show that satisfiability and subsumption of ALC concepts
w.r.t. TBoxes can be decided within exponential time [49, 117, 116, 160],6 whereas this
is very hard to prove using a tableau based approach [66]. Resolution based approaches
[103, 5, 104, 107], which use the translation of DLs into first-order predicate logic, may
have the advantage that they simultaneously yield a decision procedure for a certain de-
cidable DL, and a semidecision procedure for a more expressive logic (such as OWL Full
or first-order predicate logic). Moreover, some of them are worst-case optimal [104], and
others can be implemented through appropriate parameterization of existing first-order the-
orem provers [103]. Finally, the translation of very expressive DLs into propositional dy-
namic logic or the propositional mu-calculus [57, 58, 56, 59] allows one to transfer known
decidability and complexity results for these logics to very expressive DLs. It is not clear
how these results could be obtained with the help of the tableau based approach.

In this section, we restrict our attention to the automata based approach for ALC with
GCIs, and to structural subsumption algorithms for the sub-Boolean DLs7 EL and FL0.

3.6.1 The Automata Based Approach

In this subsection, we restrict our attention to concept satisfiability, possibly w.r.t. (general)
TBoxes. This is not a severe restriction since most of the other interesting inference prob-
lem can be reduced to satisfiability.8 There are various instances of the automata based
approach, which differ not only w.r.t. the DL under consideration, but also w.r.t. the em-
ployed automaton model. However, in principle all these instances have the following
general ideas in common:

• First, one shows that the DL in question has the tree model property.

• Second, one devises a translation from pairs C, T , where C is a concept and T is a
TBox, into an appropriate tree automata AC,T such that AC,T accepts exactly the
tree models of C w.r.t. T .

• Third, one applies the emptiness test for the employed automaton model to AC,T to
test whether C has a (tree) model w.r.t. T .

The complexity of the satisfiability algorithm obtained this way depends on the complexity
of the translation and the complexity of the emptiness tests. The latter complexity in turn
depends on which automaton model is employed.

6The cited papers actually use automata based approaches to show EXPTIME results for extensions of ALC.
7Sub-Boolean DLs are DLs that are not equipped with all Boolean operators.
8Using the so-called pre-completion technique [88], this is also the case for inference problems involving

ABoxes.

22 3. Description Logics

I

r
r s

s
b c

a

{A}

{B} ∅

{B}

b

a1

b1

c ∅

c1 ∅

c2 ∅

s

a

{A}bI
r

r

r

{A}

{B}

r s

s

s

Figure 3.2: Unraveling of a model into a tree-shaped model.

Below, we will use a simple form of non-deterministic automata working on infinite
trees of fixed arity, so-called looping automata [163]. In this case, the translation is expo-
nential, but the emptiness test is polynomial (in the size of the already exponentially large
automaton obtained through the translation). Thus, the whole algorithm runs in determin-
istic exponential time. Alternatively, one could use alternating tree automata [125], where
a polynomial translation is possible, but the emptiness test is exponential.

Instead of considering automata working on trees of fixed arity, one could also consider
so-called amorphous tree automata [31, 105], which can deal with arbitrary branching.
This simplifies defining the translation, but uses a slightly more complicated automaton
model. For some very expressive description logics (e.g., ones that allow for transitive clo-
sure of roles [8]), the simple looping automata introduced below are not sufficient since one
needs additional acceptance conditions such as the Büchi condition [159] (which requires
the occurrence of infinitely many final states in every path).

The Tree Model Property

The first step towards showing that satisfiability in ALC w.r.t. general TBoxes can be de-
cided with the automata based approach is to establish the tree model property, i.e., to show
that any ALC-concept C satisfiable w.r.t. an ALC-TBox T has a tree-shaped model. Note
that this model may, in general, be infinite. One way of seeing this is to consider the tableau
algorithm introduced in Section 3.4.1, applied to the knowledge base (T , {a : C}), and
just dispose of blocking. Possibly infinite runs of the algorithm then generate tree-shaped
models. However, one can also show the tree model property of ALC by using the well-
known unraveling technique [32], in which an arbitrary model of C w.r.t. T is unraveled
into a bisimilar tree-shaped interpretation. Invariance of ALC under bisimulation [110]
(which it inherits from its syntactic variant multi modal K(m)) then implies that the tree
shaped interpretation obtained by unraveling is also a model of C w.r.t. T .

Instead of defining unraveling in detail, we just give an example in Fig. 3.2, and refer

Franz Baader, Ian Horrocks and Ulrike Sattler 23

a

b b
a a

a

b

q1

q0

q1
q2

q2 q2q1

Figure 3.3: A tree and a run on it.

the reader to [32] for formal definitions and proofs. The graph on the left-hand side of
Fig. 3.2 describes an interpretation I: the nodes of the graph are the elements of ∆I , the
node labels express to which concept names the corresponding element belongs, and the
labelled edges of the graph express the role relationships. For example, a ∈ ∆I belongs to
AI , but not to BI , and it has r-successor b and s-successor c. It is easy to check that I is
a model of the concept A w.r.t. the TBox

T := {A v ∃r.B, B v ∃r.A, A tB v ∃s.>}.

The graph on the right-hand side of Fig. 3.2 describes (a finite part of) the corresponding
unraveled model, where a was used as the start node for the unraveling. Basically, one
considers all paths starting with a in the original model, but whenever one would re-enter
a node one makes a copy of it. Like I, the corresponding unraveled interpretation Î is a
model of T and it satisfies a ∈ AbI .

Looping Tree Automata

As mentioned above, we consider automata working on infinite trees of some fixed arity
k. To be more precise, the nodes of the trees are labelled by elements from some finite
alphabet Σ, whereas the edges are unlabelled, but ordered, i.e., there is a first, second,
to kth successor for each node. Such trees, which we call k-ary Σ-trees, can formally
be represented as mappings T : {0, . . . , k − 1}∗ → Σ. Thus, nodes are represented as
words over {0, . . . , k − 1}, the root is the word ε, and a node u has exactly k successor
nodes u0, . . . , u(k − 1), and its label is T (u). For example, the binary tree that has root
label a, whose left subtree contains only nodes labelled by b, and whose right subtree has
only nodes labelled by a (see the left-hand side of Fig. 3.3) is formally represented as the
mapping

T : {0, 1}∗ → {a, b} with T (u) =
{
b if u starts with 0
a otherwise

A looping automaton working on k-ary Σ-trees is of the formA = (Q,Σ, I,∆), where

• Q is a finite set of states and I ⊆ Q is the set of initial states;

24 3. Description Logics

• Σ is a finite alphabet;

• ∆ ⊆ Q× Σ×Qk is the transition relation.

We will usually write tuples (q, a, q1, . . . , qk) ∈ ∆ in the form (q, a) → (q1, . . . , qk).
A run of A = (Q,Σ, I,∆) on the tree T : {0, . . . , k − 1}∗ → Σ is a k-ary Q-tree

R : {0, . . . , k − 1}∗ → Q such that (R(u), T (u)) → (R(u0), . . . , R(u(k − 1))) ∈ ∆ for
all u ∈ {0, . . . , k − 1}∗. This run is called accepting if R(ε) ∈ I .

For example, consider the automaton A = (Q,Σ, I,∆), where

• Q = {q0, q1, q2} and I = {q0};

• Σ = {a, b};

• ∆ consists of the transitions
(q0, a) → (q1, q2), (q0, a) → (q2, q1), (q1, b) → (q1, q1), (q2, a) → (q2, q2).

The k-ary Q-tree R from the right-hand side of Fig. 3.3 maps ε to q0, nodes starting with
0 to q1, and nodes starting with 1 to q2. This tree R is an accepting run of A on the tree T
on the left hand side of Figure 3.3.

The tree language accepted by a given looping automaton A = (Q,Σ, I,∆) is

L(A) := {T : {0, . . . , k − 1}∗ → Σ | there is an accepting run of A on T}.

In our example, the language accepted by the automaton consists of two trees, the tree T
defined above and the symmetric tree where the left subtree contains only nodes labelled
with a and the right subtree contains only nodes labelled with b.

The Emptiness Test

Given a looping tree automaton A, the emptiness test decides whether L(A) = ∅ or not.
Based on the definition of the accepted language, one might be tempted to try to solve
the problem in a top-down manner, by first choosing an initial state to label the root, then
choose a transition starting with this state to label its successors, etc. However, the algo-
rithm obtained this way is non-deterministic since one may have several initial states, and
also several possible transitions for each state.

To obtain a deterministic polynomial time emptiness test, it helps to work bottom-up.
The main idea is that one wants to compute the set of bad states, i.e., states that do not
occur in any run of the automaton. Obviously, any state q that does not occur on the left-
hand side of a transition (q, ·) → (· · ·) is bad. Starting with this set, one can then extend
the set of states known to be bad using the fact that a state q is bad if all transitions (q, ·) →
(q1, . . . , qk) starting with q contain a bad state qj in their right-hand side. Obviously,
this process of extending the set of known bad states terminates after a linear number of
additions of states to the set of known bad states, and it is easy to show that the final set
obtained this way is indeed the set of all bad states. The accepted language is then empty
iff all initial states are bad. By using appropriate data structures, one can ensure that the
overall complexity of the algorithm is linear in the size of the automaton. A more detailed
description of this emptiness test for looping tree automata can be found in [26].

Franz Baader, Ian Horrocks and Ulrike Sattler 25

The Reduction

Recall that we want to reduce the satisfiability problem for ALC-concepts w.r.t. general
TBoxes to the emptiness problem for looping tree automata by constructing, for a given
input C, T , an automaton AC,T that accepts exactly the tree-shaped models of C w.r.t. T .

Before this is possible, however, we need to overcome the mismatch between the un-
derlying kinds of trees. The tree-shaped models of C w.r.t. T are trees with labelled edges,
but without a fixed arity. In order to express such trees as k-ary Σ-trees for an appropriate
k, where Σ consists of all sets of concept names, we consider all the existential restriction
occurring in C and T . The number of these restrictions determines k. Using the bisim-
ulation invariance of ALC [110], it is easy to show that the existence of a tree-shaped
model of C w.r.t. T also implies the existence of a tree-shaped model where every node
has at most k successor nodes. To get exactly k successors, we can do some padding with
dummy nodes if needed. The edge label is simply pushed into the label of the successor
node, i.e., each node label contains, in addition to concept names, exactly one role name,
which expresses with which role the node is reached from its unique predecessor. For the
root, an arbitrary role can be chosen.

The states of AC,T are sets of subexpressions of the concepts occurring in C and T .
Intuitively, a run of the automaton on a tree-shaped model of C w.r.t. T labels a node not
only with the concept names to which this element of the model belongs, but also with
all the subexpressions to which it belongs. For technical reasons, we need to normalize
the input concept and TBox before we build these subexpressions. First, we ensure that
all GCIs in T are of the form > v D by using the fact that the GCIs C1 v C2 and
> v ¬C1 t C2 are equivalent. Second, we transform the input concept C and every
concept D in a GCI > v D into negation normal form as described in Section 3.4.1. In
our example, the normalized TBox consists of the GCIs

> v ¬A t ∃r.B, > v ¬B t ∃r.A, > v (¬A u ¬B) t ∃s.>,

whose subexpressions are >,¬A t ∃r.B,¬A,A,∃r.B,B,¬B t ∃r.A,¬B,∃r.A, (¬A u
¬B) t ∃s.>,¬A u ¬B,∃s.>. Of these, the node a in the tree-shaped model depicted on
the right-hand side of Fig. 3.2 belongs to >,¬At ∃r.B,A,∃r.B,¬B t ∃r.A,¬B, (¬Au
¬B) t ∃s.>,∃s.>.

We are now ready to give a formal definition of the automaton AC,T = (Q,Σ, I,∆).
Let SC,T denote the set of all subexpressions of C and T , RC,T denote the set of all role
names occurring inC and T , and k the number of existential restrictions contained in SC,T .
The alphabet Σ basically consists of all subsets of the set of concept names occurring in C
and T . As mentioned above, in order to encode the edge labels (i.e., express for which role
r the node is a successor node), each “letter” contains, additionally, exactly one role name.
Finally, the alphabet contains the empty set (not even containing a role name), which is
used to label nodes that are introduced for padding purposes.

The set of states Q of AC,T consists of the Hintikka sets for C, T , i.e., subsets q of
SC,T ∪RC,T such that q = ∅ or

• q contains exactly one role name;

• if > v D ∈ T then D ∈ q;

• if C1 u C2 ∈ q then {C1, C2} ⊆ q;

26 3. Description Logics

• if C1 t C2 ∈ q then {C1, C2} ∩ q 6= ∅; and

• {A,¬A} 6⊆ q for all concept names A.

The set of initial states I consists of those states containing C.
Finally, the transition relation ∆ consists of those transitions (q, σ) → (q1, . . . , qk)

satisfying the following properties:

• q and σ coincide w.r.t. the concept and role names contained in them;

• if q = ∅, then q1 = . . . = qk = ∅;

• if ∃r.D ∈ q, then there is an i such that {D, r} ⊆ qi; and

• if ∀r.D ∈ q and r ∈ qi, then D ∈ qi.

It is not hard to show that the construction of AC,T indeed yields a polynomial reduction
of satisfiability w.r.t. general TBoxes in ALC to the emptiness problem for looping tree
automata.

Proposition 5 An ALC-concept C is satisfiable w.r.t. a general ALC-TBox T iff
L(AC,T) 6= ∅.

Obviously, the number of states of AC,T is exponential in the size of C and T . Since
the emptiness problem for looping tree automata can be decided in polynomial time, we
obtain an deterministic exponential upper-bound for the time complexity of the satisfiabil-
ity problem. Together with the EXPTIME-hardness result sketched in Section 3.5 we thus
know the exact worst-case complexity of the problem.

Theorem 6 Satisfiability in ALC w.r.t. general TBoxes is EXPTIME-complete.

3.6.2 Structural Approaches

As mentioned in the introduction, early DL systems were based on so-called structural
subsumption algorithms, which first normalize the concepts to be tested for subsumption,
and then compare the syntactic structure of the normalized concepts. The claim was that
these algorithms can decide subsumption in polynomial time. However, the first complex-
ity results for DLs, also mentioned in the introduction, showed that these algorithms were
neither polynomial nor decision procedures for subsumption. For example, all early sys-
tems used unfolding of concept definitions, which can cause an exponential blow-up of
the size of concepts. Nebel’s coNP-hardness result [127] for subsumption w.r.t. definitorial
TBoxes showed that this blow-up cannot be avoided whenever the constructors conjunction
and value restriction are available. In addition, the early structural subsumption algorithms
were not complete, i.e., they were not able to detect all valid subsumption relationships.
These negative results for structural subsumption algorithms together with the advent of
tableau based algorithms for expressive DLs, which behaved well in practice, was prob-
ably the main reason why structural approaches—and with them the quest for DLs with
a polynomial subsumption problem—were largely abandoned during the 1990s. More re-
cent results [11, 42, 6] on the complexity of reasoning in DLs with existential restrictions,
rather than value restrictions, have led to a partial rehabilitation of structural approaches.

Franz Baader, Ian Horrocks and Ulrike Sattler 27

When trying to find a DL with a polynomial subsumption problem, it is clear that one
cannot allow for all Boolean operations, since then one would inherit NP-hardness from
propositional logic. It should also be clear that conjunction cannot be dispensed with since
one must be able to state that more than one property should hold when defining a concept.
Finally, if one wants to call the logic a DL, one needs a constructor using roles. This leads
to the following two minimal candidate DLs:

• the DL FL0, which offers the concept constructors conjunction, value restriction
(∀r.C), and the top concept;

• the DL EL, which offers the concept constructors conjunction, existential restriction
(∃r.C), and the top concept.

In the following, we will look at the subsumption problem9 in these two DLs in some detail.
Whereas subsumption without a TBox turns out to be polynomial in both cases, we will
also see that EL exhibits a more robust behaviour w.r.t. the complexity of the subsumption
problem in the presence of TBoxes.

Subsumption in FL0

First, we consider the case of subsumption of FL0-concepts without a TBox. There are
basically two approaches for obtaining a structural subsumption algorithm in this case,
which are based on two different normal forms. One can either use the equivalence ∀r.(Cu
D) ≡ ∀r.C u ∀r.D as a rewrite rule from left-to-right or from right-to-left. Here we will
consider the approach based on the left-to-right direction, whereas all of the early structural
subsumption algorithms were based on a normal form obtained by rewriting in the other
direction.10

By using the rewrite rule ∀r.(C u D) → ∀r.C u ∀r.D together with associativity,
commutativity and idempotence11 of u, any FL0-concept can be transformed into an
equivalent one that is a conjunction of concepts of the form ∀r1. · · · ∀rm.A for m ≥ 0
(not necessarily distinct) role names r1, . . . , rm and a concept name A. We abbreviate
∀r1. · · · ∀rm.A by ∀r1 . . . rm.A, where r1 . . . rm is viewed as a word over the alphabet
of all role names. In addition, instead of ∀w1.A u . . . u ∀w`.A we write ∀L.A where
L := {w1, . . . , w`} is a finite set of words over Σ. The term ∀∅.A is considered to be
equivalent to the top concept >, which means that it can be added to a conjunction without
changing the meaning of the concept. Using these abbreviations, any pair ofFL0-concepts
C,D containing the concept names A1, . . . , Ak can be rewritten as

C ≡ ∀U1.A1 u . . . u ∀Uk.Ak and D ≡ ∀V1.A1 u . . . u ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role names. This normal form
provides us with the following characterization of subsumption of FL0-concepts [24]:

C v D iff Ui ⊇ Vi for all i, 1 ≤ i ≤ k.

9Note that the satisfiability problem is trivial inFL0 and EL, since any concept expressed in these languages
is satisfiable. The reduction of subsumption to satisfiability is not possible due to the absence of negation.

10A comparison between the two approaches can be found in [21].
11I.e., (A uB) u C ≡ A u (B u C), A uB ≡ B uA, and A uA ≡ A.

28 3. Description Logics

A ≡ C u ∀r.B u ∀s.∀r.P
B ≡ ∀s.C
C ≡ ∀r.P

r

A P

CB s

sr

r ε

Figure 3.4: A definitorial FL0-TBox and the corresponding acyclic automaton.

Since the size of the normal forms is polynomial in the size of the original concepts, and
since the inclusion tests Ui ⊇ Vi can also be realized in polynomial time, this yields a
polynomial-time decision procedure for subsumption in FL0.

This characterization of subsumption via inclusion of finite sets of words can be ex-
tended to definitorial TBoxes as follows. A given TBox T can be translated into a finite
(word) automaton12 AT , whose states are the concept names occurring in T , and whose
transitions are induced by the value restrictions occurring in T (see Fig. 3.4 for an exam-
ple). A formal definition of this translation can be found in [9], where the more general
case of cyclic TBoxes is treated. In the case of definitorial TBoxes, which are by definition
acyclic, the resulting automata are also acyclic.

Let us call a concept name a defined concept in a definitorial TBox if it occurs on the
left-hand side of a concept definition, and a primitive concept otherwise. For a defined
concept A and a primitive concept P in T , the language LAT (A,P) is the set of all words
labeling paths in AT from A to P . The languages LAT (A,P) represent all the value
restrictions that must be satisfied by instances of the concept A. With this intuition in
mind, it should not be surprising that subsumption w.r.t. definitorial FL0-TBoxes can be
characterized in terms of inclusion of languages accepted by acyclic automata. Indeed, the
following is a characterization of subsumption in FL0 w.r.t. definitorial TBoxes:

A vT B iff LAT (A,P) ⊇ LT (B,P) for all primitive concepts P .

In the example of Fig. 3.4, we have LAT (A,P) = {r, sr, rsr} ⊃ {sr} = LAT (B,P),
and thus A vT B, but B 6vT A.

Since the inclusion problem for languages accepted by acyclic finite automata is coNP-
complete [73], this reduction shows that the subsumption problem inFL0 w.r.t. definitorial
TBoxes is in coNP. As shown by Nebel [127], the reduction also works in the opposite
direction, which yields the matching lower bound. In the presence of general TBoxes, the
subsumption problem inFL0 actually becomes as hard as forALC, namely ExpTime-hard
[6, 87].

Theorem 7 Subsumption in FL0 is polynomial without TBox, coNP-complete w.r.t. defin-
itorial TBoxes, and EXPTIME-complete w.r.t. general TBoxes.

12Strictly speaking, we obtain a finite automaton with word transitions, i.e., transitions that may be labelled
with a word over Σ rather than a letter of Σ.

Franz Baader, Ian Horrocks and Ulrike Sattler 29

Subsumption in EL

In contrast to the negative complexity results for subsumption w.r.t. TBoxes in FL0, sub-
sumption in EL remains polynomial even in the presence of general TBoxes [42]. The
polynomial-time subsumption algorithm for EL that will be sketched below actually clas-
sifies a given TBox T , i.e., it simultaneously computes all subsumption relationships be-
tween the concept names occurring in T . This algorithm proceeds in four steps:

1. Normalize the TBox.

2. Translate the normalized TBox into a graph.

3. Complete the graph using completion rules.

4. Read off the subsumption relationships from the normalized graph.

A general EL-TBox is normalized if it only contains GCIs of the following form:

A1 uA2 v B, A v ∃r.B, or ∃r.A v B,

where A,A1, A2, B are concept names or the top-concept >. One can transform a given
TBox into a normalized one by applying normalization rules. Instead of describing these
rules in the general case, we just illustrate them by an example, where we underline GCIs
that need further rewriting:

∃r.A u ∃r.∃s.A v A uB ∃r.A v B1, B1 u ∃r.∃s.A v A uB
B1 u ∃r.∃s.A v A uB ∃r.∃s.A v B2, B1 uB2 v A uB

∃r.∃s.A v B2 ∃s.A v B3, ∃r.B3 v B2,
B1 uB2 v A uB B1 uB2 v A, B1 uB2 v B

For example, in the first normalization step we introduce the abbreviation B1 for the de-
scription ∃r.A. One might think that one must make B1 equivalent to ∃r.A, i.e., also add
the GCI B1 v ∃r.A. However, it can be shown that adding just ∃r.A v B1 is sufficient
to obtain a subsumption-equivalent TBox, i.e., a TBox that induces the same subsumption
relationships between the concept names occurring in the original TBox. All normaliza-
tion rules preserve equivalence in this sense, and if one uses an appropriate strategy (which
basically defers the applications of the rule applied in the last step of our example to the
end), then the normal form can be computed in linear time.

In the next step, we build the classification graph GT = (V, V × V, S,R) where

• V is the set of concept names (including >) occurring in the normalized TBox T ;

• S labels nodes with sets of concept names (again including >);

• R labels edges with sets of role names.

It can be shown that the label sets satisfy the following invariants:

• B ∈ S(A) implies A vT B, i.e., S(A) contains only subsumers of A w.r.t. T .

• r ∈ R(A,B) implies A vT ∃r.B, i.e., R(A,B) contains only roles r such that
∃r.B subsumes A w.r.t. T .

30 3. Description Logics

(R1) A1 uA2 v B ∈ T and A1, A2 ∈ S(A) then add B to S(A)
(R2) A1 v ∃r.B ∈ T and A1 ∈ S(A) then add r to R(A,B)
(R3) ∃r.B1 v A1 ∈ T and B1 ∈ S(B), r ∈ R(A,B) then add A1 to S(A)

Figure 3.5: The completion rules for subsumption in EL w.r.t. general TBoxes.

Initially, we set S(A) := {A,>} for all nodes A ∈ V , and R(A,B) := ∅ for all edges
(A,B) ∈ V × V . Obviously, the above invariants are satisfied by these initial label sets.

The labels of nodes and edges are then extended by applying the rules of Fig. 3.5, where
we assume that a rule is only applied if it really extends a label set. It is easy to see that
these rules preserve the above invariants. For example, consider the (most complicated)
rule (R3). Obviously, ∃r.B1 v A1 ∈ T implies ∃r.B1 vT A1, and the assumption that
the invariants are satisfied before applying the rule yields B vT B1 and A vT ∃r.B.
The subsumption relationship B vT B1 obviously implies ∃r.B vT ∃r.B1. By applying
transitivity of the subsumption relation vT , we thus obtain A vT A1.

The fact that subsumption in EL w.r.t. general TBoxes can be decided in polynomial
time is an immediate consequence of the following statements:

1. Rule application terminates after a polynomial number of steps.

2. If no more rules are applicable, then A vT B iff B ∈ S(A).

Regarding the first statement, note that the number of nodes is linear and the number of
edges is quadratic in the size of T . In addition, the size of the label sets is bounded by
the number of concept names and role names, and each rule application extends at least
one label. Regarding the equivalence in the second statement, the “if” direction follows
from the fact that the above invariants are preserved under rule application. To show the
“only-if” direction, assume that B 6∈ S(A). Then the following interpretation I is a model
of T in which A ∈ AI , but A 6∈ BI :

• ∆I := V ;

• rI := {(A′, B′) | r ∈ R(A′, B′)} for all role names r;

• B′I := {A′ | B′ ∈ S(A′)} for all concept names A′.

More details can be found in [42, 6].

Theorem 8 Subsumption in EL is polynomial w.r.t. general TBoxes.

In [6] this result is extended to the DL EL++, which extends EL with the bottom concept,
nominals, a restricted form of concrete domains, and a restricted form of so-called role-
value maps. In addition, it is shown in [6] that basically all other additions of typical DL
constructors to EL make subsumption w.r.t. general TBoxes EXPTIME-complete.

It should be noted that these results are not only of theoretical interest. In fact, large bio-
medical ontologies such as the Gene Ontology [55] and SNOMED [154] can be expressed
in EL, and a first implementation of the subsumption algorithm for EL sketched above
behaves very well on these very large knowledge bases [23].

Franz Baader, Ian Horrocks and Ulrike Sattler 31

3.7 DLs in Ontology Language Applications

Description Logics are (or have been) used in a wide range of applications, including
configuration (e.g., of telecommunications equipment) [120], and software information
and documentation systems [61]. DLs have also been extensively applied in the area of
databases [34], where they have been used to support schema design [54, 30], schema and
data integration [51, 52], and query answering [47, 48, 91].

Perhaps the most prominent application of DLs is, however, as the basis for ontology
languages such as OIL, DAML+OIL and OWL [99]. In the following section we will
briefly examine the motivation for and realisation of a DL based ontology language, with
particular reference to OWL; in Section 3.7.2 we will mention some ontology tools and
applications that exploit DL reasoning.

3.7.1 The OWL Ontology Language

OWL is a semantic web ontology language, developed by the W3C Web-Ontology working
group, whose semantics can be defined via a translation into an expressive DL.13 This is not
a coincidence—it was a design goal. The mapping allows OWL to exploit results from DL
research (e.g., regarding the decidability and complexity of key inference problems), and
to use implemented DL reasoners (e.g., FaCT [94] and RACER [81]) in order to provide
reasoning services for OWL applications.

An OWL (Lite or DL) ontology can be seen to correspond to a DL TBox together with
a role hierarchy, describing the domain in terms of classes (corresponding to concepts) and
properties (corresponding to roles). An ontology consists of a set of axioms that assert,
e.g., subsumption relationships between classes or properties.

As in a standard DL, OWL classes may be names or expressions built up from simpler
classes and properties using a variety of constructors. The set of constructors supported by
OWL, along with the equivalent DL syntax, is summarised in Figure 3.6.14 The full XML
serialisation of the RDF syntax is not shown as it is rather verbose, e.g., Human u Male
would be written as

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Human"/>
<owl:Class rdf:about="#Male"/>

</owl:intersectionOf>
</owl:Class>

while (> 2 hasChild.Thing) would be written as

<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:minCardinality
rdf:datatype="&xsd;NonNegativeInteger">2

13In fact there are 3 “species” of OWL: OWL Lite, OWL DL and OWL full, only the first two of which have
DL based semantics. The semantics of OWL full is given by an extension of the RDF model theory [83].

14In fact, there are a few additional constructors provided as “syntactic sugar”, but all are trivially reducible
to the ones described in Figure 3.6.

32 3. Description Logics

Constructor DL Syntax Example
intersectionOf C1 u . . . u Cn Human uMale
unionOf C1 t . . . t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john,mary}
allValuesFrom ∀P.C ∀hasChild.Doctor
someValuesFrom ∃r.C ∃hasChild.Lawyer
hasValue ∃r.{x} ∃citizenOf.{USA}
minCardinality (> n r) (> 2 hasChild)
maxCardinality (6 n r) (6 1 hasChild)
inverseOf r− hasChild−

Figure 3.6: OWL constructors

</owl:minCardinality>
</owl:Restriction>

Prefixes such as owl: and &xsd; specify XML namespaces for resources, while
rdf:parseType="Collection" is an extension to RDF that provides a “short-
hand” notation for lisp style lists defined using triples with the properties first and rest
(it can be eliminated, but with a consequent increase in verbosity). E.g., the first ex-
ample above consists of the triples 〈r1, owl : intersectionOf, r2〉, 〈r2, owl : first,Human〉,
〈r2, rdfs : type,Class〉, 〈r2, owl : rest, r3〉, etc., where ri is an anonymous resource, Human
stands for a URI naming the resource “Human”, and owl : intersectionOf, owl : first,
owl : rest and rdfs : type stand for URIs naming the properties in question.

An important feature of OWL is that, besides “abstract” classes defined by the on-
tology, one can also use XML Schema datatypes (e.g., string, decimal and float) in
someValuesFrom, allValuesFrom, and hasValue restrictions. This can be
seen as a restricted version of concrete domains as mentioned in Section 3.2.3. The
kinds of datatype that can be used in OWL are, however, very limited (see [135]), es-
sentially being limited to built-in XML datatypes, and so only allowing for concepts
such as ∃age.xsd : nonNegativeInteger; this could, e.g., be used in an axiom Person u
∃age.xsd : nonNegativeInteger to assert that all persons have an age that is a non-negative
integer.

As already mentioned, an OWL ontology consists of a set of axioms. Figure 3.7 sum-
marises the axioms supported by OWL. These axioms make it possible to assert subsump-
tion or equivalence with respect to classes or properties, the disjointness of classes, and the
equivalence or non-equivalence of individuals (resources). Moreover, OWL also allows
properties of properties (i.e., DL roles) to be asserted. In particular, it is possible to assert
that a property is transitive, functional, inverse functional or symmetric.

It is easy to see that, except for individuals and datatypes, the constructors and axioms
of OWL can be translated into SHIQ; in fact, OWL Lite is equivalent to SHIN (D) and
OWL DL is equivalent to SHOIN (D) (see Section 3.2.3).

Franz Baader, Ian Horrocks and Ulrike Sattler 33

Axiom DL Syntax Example
subClassOf C1 v C2 Human v Animal u Biped
equivalentClass C1 ≡ C2 Man ≡ Human uMale
subPropertyOf P1 v P2 hasDaughter v hasChild
equivalentProperty P1 ≡ P2 cost ≡ price
disjointWith C1 v ¬C2 Male v ¬Female
sameAs {x1} ≡ {x2} {Pres Bush} ≡ {G W Bush}
differentFrom {x1} v ¬{x2} {john} v ¬{peter}
TransitiveProperty P transitive role hasAncestor is a transitive role
FunctionalProperty > v (6 1 P) > v (6 1 hasMother)
InverseFunctionalProperty > v (6 1 P−) > v (6 1 isMotherOf−)
SymmetricProperty P ≡ P− isSiblingOf ≡ isSiblingOf−

Figure 3.7: OWL axioms

3.7.2 OWL Tools and Applications

As mentioned in Section 3.7.1, the ability to use DL reasoners to provide reasoning ser-
vices for OWL applications was one of the motivations for basing the design of OWL on
a DL. Several ontology design tools, both “academic” and commercial, now exploit the
correspondence between OWL and SHOIN (D) in order to support ontology design and
maintenance by, for example, highlighting inconsistent classes and implicit subsumption
relationships. Examples of such tools include Protégé [109], Swoop [106], OilEd [28] and
TopBraid Composer.15 Reasoning support for such tools is typically provided by a DL
reasoner such as FaCT++ [161], RACER [81] or Pellet [152].

The availability of such tools has contributed to the increasingly widespread use of
OWL, not only in the Semantic Web per se, but as a popular language for ontology de-
velopment in fields as diverse as biology [151], medicine [74], geography [76], geology
[157], astronomy [60], agriculture [153] and defence [112]. Applications of OWL are par-
ticularly prevalent in the life sciences where it has been used by the developers of several
large biomedical ontologies, including the Biological Pathways Exchange (BioPAX) on-
tology [142], the GALEN ontology [140], the Foundational Model of Anatomy (FMA)
[74], and the National Cancer Institute thesaurus [82].

The importance of reasoning support in such applications was highlighted in [108],
which describes a project in which the Medical Entities Dictionary (MED), a large ontol-
ogy (100,210 classes and 261 properties) that is used at the Columbia Presbyterian Med-
ical Center, was converted into OWL, and checked using an OWL reasoner. This check
revealed “systematic modelling errors”, and a significant number of missed subClass re-
lationships which, if not corrected, “could have cost the hospital many missing results in
various decision support and infection control systems that routinely use MED to screen
patients”.

15http://www.topbraidcomposer.com/

34 3. Description Logics

3.8 Further Reading

As mentioned in Section 3.1, we have endeavoured to cover the most important areas of
DL research, but the subject is a very large one, and many interesting topics have not been
covered. We will briefly list a few of these here, and provide pointers into the literature.

Besides the ones discussed in Section 3.2, a great many other operators and exten-
sions have been investigated. These include feature chain agreements, role value maps,
fixpoint constructors, n-ary predicates, various role constructors (including intersection,
union, complement, composition, (reflexive-) transitive closure and identity), probabilistic
extensions and defaults. Details of all of these (and more) can be found in [14].

There is currently a great deal of interest in the idea of combining DLs with other KR
formalisms such as rules and Answer Set Programming (ASP). With an appropriate inte-
gration, the advantages of the different paradigms might be combined, e.g., by extending
the powerful schema language provided by DLs with the ability to describe more complex
relationships between named individuals, or by adding support for non-monotonic features
such as negation as failure. Important contributions in this area include work on rule sup-
port in the Classic system [40], the integration of Datalog with DLs inAL-log and CARIN
[65, 113], the integration of answer set programming with DLs [68], and the extension of
DLs with so-called DL-safe rules [124, 141].

As well as studying the formal properties of DLs, considerable energy has been devoted
to investigating the implementation and optimisation of DL systems. Modern systems in-
clude CEL [6], FaCT++ [161], KAON2 [123], Pellet [137] and RACER [81]; for informa-
tion on older systems, and on optimisation techniques, the reader is referred to [14]. A
number of tools are now available that use the above mentioned reasoners to support, e.g.,
ontology design or schema integration. These include Swoop [106], Protégé [109], OilEd
[28], and ICom [72].

Finally, in Section 3.2 we focused on standard reasoning problems such as satisfiabil-
ity and subsumption testing. These are not, however, the only reasoning problems that
might be of interest in applications, and several other “non-standard” inference problems
have also been investigated. These include matching [20, 19], least common subsumer
(lcs) [111], approximation and difference [43], axiom pinpointing [148, 132, 121], and
conjunctive query answering [47, 158].

Bibliography

[1] Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Mau-
rizio Lenzerini, Mattia Palmieri, and Riccardo Rosati. Quonto: Querying ontolo-
gies. In Manuela M. Veloso and Subbarao Kambhampati, editors, Proc. of the 20th
Nat. Conf. on Artificial Intelligence (AAAI-05), pages 1670–1671. AAAI Press/The
MIT Press, 2005.

[2] Hajnal Andréka, Johan van Benthem, and Istvaán Németi. Modal languages and
bounded fragments of predicate logic. Technical Report ML-96-03, ILLC, Univer-
sity of Amsterdam, 1996.

[3] Carlos Areces. Logic Engineering. The Case of Description and Hybrid Logics. PhD
thesis, ILLC, University of Amsterdam, 2000. ILLC Dissertation Series 2000–5.

Franz Baader, Ian Horrocks and Ulrike Sattler 35

[4] Carlos Areces, Patrick Blackburn, and Maarten Marx. A road-map on complexity
for hybrid logics. In Proc. of the Annual Conf. of the Eur. Assoc. for Computer
Science Logic (CSL’99), volume 1683 of Lecture Notes in Computer Science, pages
307–321. Springer, 1999.

[5] Carlos Areces, Maarten de Rijke, and Hans de Nivelle. Resolution in modal, de-
scription and hybrid logic. J. of Logic and Computation, 11(5):717–736, 2001.

[6] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), 2005.

[7] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description
logics and action formalisms: First results. In AAAI Press/The MIT Press, editor,
Proc. of the 20th National Conference on Artificial Intelligence (AAAI-05), 2005.

[8] Franz Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI’91), pages 446–451, 1991.

[9] Franz Baader. Using automata theory for characterizing the semantics of termino-
logical cycles. Ann. of Mathematics and Artificial Intelligence, 18:175–219, 1996.

[10] Franz Baader. Description logic terminology. In [14], pages 485–495. 2003.
[11] Franz Baader. Terminological cycles in a description logic with existential restric-

tions. In Georg Gottlob and Toby Walsh, editors, Proc. of the 18th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2003), pages 325–330, Acapulco, Mexico, 2003.
Morgan Kaufmann, Los Altos.

[12] Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restrictions on
concepts. Artificial Intelligence, 88(1–2):195–213, 1996.

[13] Franz Baader, Hans-Jürgen Bürckert, Bernhard Hollunder, Werner Nutt, and Jörg H.
Siekmann. Concept logics. In John W. Lloyd, editor, Computational Logics, Sym-
posium Proceedings, pages 177–201. Springer, 1990.

[14] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2003.

[15] Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard Nebel, and Hans-
Jürgen Profitlich. An empirical analysis of optimization techniques for termino-
logical representation systems or: Making KRIS get a move on. Applied Artificial
Intelligence. Special Issue on Knowledge Base Management, 4:109–132, 1994.

[16] Franz Baader and Philipp Hanschke. A schema for integrating concrete domains
into concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91), pages 452–457, 1991.

[17] Franz Baader and Philipp Hanschke. Extensions of concept languages for a mechan-
ical engineering application. In Proc. of the 16th German Workshop on Artificial
Intelligence (GWAI’92), volume 671 of Lecture Notes in Computer Science, pages
132–143. Springer, 1992.

[18] Franz Baader and Bernhard Hollunder. A terminological knowledge representation
system with complete inference algorithm. In Proc. of the Workshop on Process-
ing Declarative Knowledge (PDK’91), volume 567 of Lecture Notes in Artificial
Intelligence, pages 67–86. Springer, 1991.

[19] Franz Baader and Ralf Küsters. Matching in description logics with existential
restrictions. In Proc. of the 7th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2000), pages 261–272, 2000.

36 3. Description Logics

[20] Franz Baader, Ralf Küsters, Alex Borgida, and Deborah L. McGuinness. Matching
in description logics. J. of Logic and Computation, 9(3):411–447, 1999.

[21] Franz Baader, Ralf Küsters, and Ralf Molitor. Structural subsumption considered
from an automata theoretic point of view. In Proc. of the 1998 Description Logic
Workshop (DL’98), volume 11 of CEUR (http://ceur-ws.org/), 1998.

[22] Franz Baader, Ralf Küsters, and Frank Wolter. Extensions to description logics. In
[14], pages 219–261. 2003.

[23] Franz Baader, Carsten Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time
reasoner for life science ontologies. In U. Furbach and N. Shankar, editors, Proc. of
the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture
Notes in Artificial Intelligence, pages 287–291. SV, 2006.

[24] Franz Baader and Paliath Narendran. Unification of concepts terms in description
logics. J. of Symbolic Computation, 31(3):277–305, 2001.

[25] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69(1):5–40, October 2001.

[26] Franz Baader and Stephan Tobies. The inverse method implements the automata
approach for modal satisfiability. In Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Artificial Intelligence,
pages 92–106. Springer, 2001.

[27] A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Experi-
mental and Theoretical Results. PhD thesis, University of Oregon, 1995.

[28] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd: A
Reason-able ontology editor for the semantic web. In Proc. of the Joint Ger-
man/Austrian Conf. on Artificial Intelligence (KI 2001), number 2174 in Lecture
Notes in Artificial Intelligence, pages 396–408. Springer, 2001.

[29] Mordechai Ben-Ari, Joseph Y. Halpern, and Amir Pnueli. Deterministic proposi-
tional dynamic logic: Finite models, complexity, and completeness. J. of Computer
and System Sciences, 25:402–417, 1982.

[30] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on UML
class diagrams using description logic based systems. In Proc. of the KI’2001 Work-
shop on Applications of Description Logics. CEUR Electronic Workshop Proceed-
ings, http://ceur-ws.org/Vol-44/, 2001.

[31] Orna Bernholtz and Orna Grumberg. Branching time temporal logic and amorphous
tree automata. In Eike Best, editor, Proc. of the Int. Conf. on Concurrency Theory
(CONCUR’93), volume 715 of Lecture Notes in Computer Science, pages 262–277,
1993.

[32] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2001.

[33] Alexander Borgida. On the relative expressiveness of description logics and predi-
cate logics. Artificial Intelligence, 82(1–2):353–367, 1996.

[34] Alexander Borgida, Maurizio Lenzerini, and Riccardo Rosati. Description logics
for data bases. In Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors, The Description Logic Handbook: The-
ory, Implementation and Applications, chapter 16. Cambridge University Press,
2003.

[35] Ronald J. Brachman. What’s in a concept: Structural foundations for semantic

Franz Baader, Ian Horrocks and Ulrike Sattler 37

networks. Int. Journal of Man-Machine Studies, 9(2):127–152, 1977.
[36] Ronald J. Brachman. Structured inheritance networks. In W. A. Woods and

R. J. Brachman, editors, Research in Natural Language Understanding, Quarterly
Progress Report No. 1, BBN Report No. 3742, pages 36–78. Bolt, Beranek and
Newman Inc., Cambridge, Mass., 1978.

[37] Ronald J. Brachman. “Reducing” CLASSIC to practice: Knowledge representation
meets reality. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge Repre-
sentation and Reasoning (KR’92), pages 247–258. Morgan Kaufmann, Los Altos,
1992.

[38] Ronald J. Brachman, Richard E. Fikes, and Hector J. Levesque. KRYPTON: A
functional approach to knowledge representation. IEEE Computer, October:67–73,
1983.

[39] Ronald J. Brachman and Hector J. Levesque, editors. Readings in Knowledge Rep-
resentation. Morgan Kaufmann, Los Altos, 1985.

[40] Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider,
Lori Alperin Resnick, and Alexander Borgida. Living with CLASSIC: When and
how to use a KL-ONE-like language. In John F. Sowa, editor, Principles of Semantic
Networks, pages 401–456. Morgan Kaufmann, Los Altos, 1991.

[41] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowl-
edge representation system. Cognitive Science, 9(2):171–216, 1985.

[42] Sebastian Brandt. Polynomial time reasoning in a description logic with existen-
tial restrictions, GCI axioms, and—what else? In Ramon López de Mántaras
and Lorenza Saitta, editors, Proc. of the 16th Eur. Conf. on Artificial Intelligence
(ECAI 2004), pages 298–302, 2004.

[43] Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan. Approximation and dif-
ference in description logics. In Proc. of the 8th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR 2002), pages 203–214, 2002.

[44] P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive de-
scription logics: Preliminary report. In Proc. of the 1995 Description Logic Work-
shop (DL’95), pages 131–139, 1995.

[45] Martin Buchheit, Francesco M. Donini, Werner Nutt, and Andrea Schaerf. A refined
architecture for terminological systems: Terminology = schema + views. Artificial
Intelligence, 99(2):209–260, 1998.

[46] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning
in terminological knowledge representation systems. J. of Artificial Intelligence
Research, 1:109–138, 1993.

[47] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidabil-
ity of query containment under constraints. In Proc. of the 17th ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–
158, 1998.

[48] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Modeling and
querying semi-structured data. Network and Information Systems, 2(2), 1999.

[49] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Reasoning in
expressive description logics with fixpoints based on automata on infinite trees. In
Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99), pages 84–89,
1999.

[50] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele Nardi.

38 3. Description Logics

Reasoning in expressive description logics. In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, chapter 23, pages 1581–1634. Elsevier
Science Publishers (North-Holland), Amsterdam, 2001.

[51] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Description logic framework for information integration. In Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 2–13, 1998.

[52] Diego Calvanese, Giuseppe De Giacomo, and Riccardo Rosati. Data integration and
reconciliation in data warehousing: Conceptual modeling and reasoning support.
Network and Information Systems, 2(4), 1999.

[53] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. DL-Lite: Tractable description logics for ontologies. In
Manuela M. Veloso and Subbarao Kambhampati, editors, Proc. of the 20th Nat.
Conf. on Artificial Intelligence (AAAI-05), pages 602–607. AAAI Press/The MIT
Press, 2005.

[54] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for
conceptual data modeling. In Jan Chomicki and Günter Saake, editors, Logics for
Databases and Information Systems, pages 229–264. Kluwer Academic Publisher,
1998.

[55] The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biol-
ogy. Nature Genetics, 25:25–29, 2000.

[56] Giuseppe De Giacomo. Decidability of Class-Based Knowledge Representation
Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienza”, 1995.

[57] Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the correspondence be-
tween description logics and propositional dynamic logics. In Proc. of the 12th Nat.
Conf. on Artificial Intelligence (AAAI’94), pages 205–212, 1994.

[58] Giuseppe De Giacomo and Maurizio Lenzerini. Concept language with number
restrictions and fixpoints, and its relationship with µ-calculus. In Proc. of the 11th
Eur. Conf. on Artificial Intelligence (ECAI’94), pages 411–415, 1994.

[59] Giuseppe De Giacomo and Maurizio Lenzerini. TBox and ABox reasoning in ex-
pressive description logics. In Proc. of the 5th Int. Conf. on the Principles of Knowl-
edge Representation and Reasoning (KR’96), pages 316–327, 1996.

[60] S. Derriere, A. Richard, and A. Preite-Martinez. An ontology of astronomical object
types for the virtual observatory. Proc. of Special Session 3 of the 26th meeting of
the IAU: Virtual Observatory in Action: New Science, New Technology, and Next
Generation Facilities, 2006.

[61] Premkumar Devambu, Ronald J. Brachman, Peter J. Selfridge, and Bruce W. Bal-
lard. LASSIE: A knowledge-based software information system. Communications
of the ACM, 34(5):36–49, 1991.

[62] Francesco M. Donini, Bernhard Hollunder, Maurizio Lenzerini, Alberto Marchetti
Spaccamela, Daniele Nardi, and Werner Nutt. The complexity of existential quan-
tification in concept languages. Artificial Intelligence, 2–3:309–327, 1992.

[63] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. The
complexity of concept languages. In Proc. of the 2nd Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’91), pages 151–162, 1991.

[64] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.

Franz Baader, Ian Horrocks and Ulrike Sattler 39

Tractable concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI’91), pages 458–463, 1991.

[65] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-
log: Integrating Datalog and description logics. J. of Intelligent Information Sys-
tems, 10(3):227–252, 1998.

[66] Francesco M. Donini and Fabio Massacci. EXPTIME tableaux for ALC. Artificial
Intelligence, 124(1):87–138, 2000.

[67] Jon Doyle and Ramesh S. Patil. Two theses of knowledge representation: Language
restrictions, taxonomic classification, and the utility of representation services. Ar-
tificial Intelligence, 48:261–297, 1991.

[68] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Com-
bining answer set programming with description logics for the semantic web. In
Proc. of the 9th Int. Conf. on Principles of Knowledge Representation and Reason-
ing (KR 2004), pages 141–151. Morgan Kaufmann, Los Altos, 2004.

[69] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider.
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems,
16(2):38–45, 2001.

[70] K. Fine. In so many possible worlds. Notre Dame J. of Formal Logic, 13(4):516–
520, 1972.

[71] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. J. of Computer and System Sciences, 18:194–211, 1979.

[72] Enrico Franconi and Gary Ng. The i.com tool for intelligent conceptual modeling.
In Proc. of the 7th Int. Workshop on Knowledge Representation meets Databases
(KRDB 2000), volume 29 of CEUR (http://ceur-ws.org/), pages 45–53,
2000.

[73] M. R. Garey and D. S. Johnson. Computers and Intractability — A guide to NP-
completeness. W. H. Freeman and Company, San Francisco (CA, USA), 1979.

[74] Christine Golbreich, Songmao Zhang, and Olivier Bodenreider. The foundational
model of anatomy in OWL: Experience and perspectives. J. of Web Semantics, 4(3),
2006.

[75] E. Gonçalvès and E. Grädel. Decidability issues for action guarded logics. In Proc.
of the 2000 Description Logic Workshop (DL 2000), volume 33 of CEUR (http:
//ceur-ws.org/), pages 123–132, 2000.

[76] John Goodwin. Experiences of using OWL at the ordnance survey. In Proc. of the
First OWL Experiences and Directions Workshop, volume 188 of CEUR Workshop
Proceedings. CEUR (http://ceur-ws.org/), 2005.

[77] Erich Grädel. Guarded fragments of first-order logic: A perspective for new descrip-
tion logics? In Proc. of the 1998 Description Logic Workshop (DL’98), volume 11
of CEUR (http://ceur-ws.org/), 1998.

[78] Erich Grädel. On the restraining power of guards. J. of Symbolic Logic, 64:1719–
1742, 1999.

[79] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem
for two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[80] Volker Haarslev and Ralf Möller. RACE system description. In Proc. of the 1999
Description Logic Workshop (DL’99), pages 130–132. CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-22/, 1999.

[81] Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int.

40 3. Description Logics

Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes
in Artificial Intelligence, pages 701–705. Springer, 2001.

[82] Frank W. Hartel, Sherri de Coronado, Robert Dionne, Gilberto Fragoso, and Jennifer
Golbeck. Modeling a description logic vocabulary for cancer research. Journal of
Biomedical Informatics, 38(2):114–129, 2005.

[83] Patrick Hayes. RDF model theory. W3C Recommendation, 10 February 2004.
Available at http://www.w3.org/TR/rdf-mt/.

[84] Patrick J. Hayes. In defense of logic. In Proc. of the 5th Int. Joint Conf. on Artificial
Intelligence (IJCAI’77), pages 559–565, 1977. A longer version appeared in The
Psychology of Computer Vision (1975). Republished in [39].

[85] Patrick J. Hayes. The logic of frames. In D. Metzing, editor, Frame Conceptions and
Text Understanding, pages 46–61. Walter de Gruyter and Co., 1979. Republished in
[39].

[86] Jochen Heinsohn, Daniel Kudenko, Bernhard Nebel, and Hans-Jürgen Profitlich. An
empirical analysis of terminological representation systems. Artificial Intelligence,
68:367–397, 1994.

[87] Martin Hofmann. Proof-theoretic approach to description-logic. In Prakash Panan-
gaden, editor, Proc. of the 20th Annual IEEE Symp. on Logic in Computer Science,
LICS 2005, pages 229–237. IEEE Computer Society Press, June 2005.

[88] Bernhard Hollunder. Consistency checking reduced to satisfiability of concepts
in terminological systems. Ann. of Mathematics and Artificial Intelligence, 18(2–
4):133–157, 1996.

[89] Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schauß. Subsumption al-
gorithms for concept description languages. In Proc. of the 9th Eur. Conf. on Ar-
tificial Intelligence (ECAI’90), pages 348–353, London (United Kingdom), 1990.
Pitman.

[90] I. Horrocks and P. F. Patel-Schneider. Optimising propositional modal satisfiability
for description logic subsumption. In Proc. of the 4th Int. Conf. on Artificial Intelli-
gence and Symbolic Computation (AISC’98), volume 1476 of LNAI, pages 234–246.
SV, 1998.

[91] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide query containment
under constraints using a description logic. In Proc. of the 7th Int. Conf. on Logic for
Programming and Automated Reasoning (LPAR 2000), Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2000.

[92] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of the 6th
Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), number
1705 in Lecture Notes in Artificial Intelligence, pages 161–180. Springer, 1999.

[93] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proc.
of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000), pages 285–296, 2000.

[94] Ian Horrocks. The FaCT system. In Harrie de Swart, editor, Proc. of the 2nd Int.
Conf. on Analytic Tableaux and Related Methods (TABLEAUX’98), volume 1397 of
Lecture Notes in Artificial Intelligence, pages 307–312. Springer, 1998.

[95] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98),
pages 636–647, 1998.

Franz Baader, Ian Horrocks and Ulrike Sattler 41

[96] Ian Horrocks and Peter F. Patel-Schneider. Optimizing description logic subsump-
tion. J. of Logic and Computation, 9(3):267–293, 1999.

[97] Ian Horrocks and Peter F. Patel-Schneider. The generation of DAML+OIL. In
Proc. of the 2001 Description Logic Workshop (DL 2001), volume 49 of CEUR
(http://ceur-ws.org/), pages 30–35, 2001.

[98] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. Reviewing the
design of DAML+OIL: An ontology language for the semantic web. In Proc. of the
18th Nat. Conf. on Artificial Intelligence (AAAI 2002), pages 792–797. AAAI Press,
2002.

[99] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. J. of Web Semantics,
1(1):7–26, 2003.

[100] Ian Horrocks and Ulrike Sattler. A description logic with transitive and inverse roles
and role hierarchies. J. of Logic and Computation, 9(3):385–410, 1999.

[101] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description
logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pages 199–204. Morgan Kaufmann, Los Altos, 2001.

[102] U. Hustadt and R. A. Schmidt. Using resolution for testing modal satisfiability
and building models. In I. P. Gent, H. van Maaren, and T. Walsh, editors, SAT
2000: Highlights of Satisfiability Research in the Year 2000, volume 63 of Frontiers
in Artificial Intelligence and Applications. IOS Press, Amsterdam, 2000. Also to
appear in a special issue of Journal of Automated Reasoning.

[103] U. Hustadt, R. A. Schmidt, and C. Weidenbach. MSPASS: Subsumption testing with
SPASS. In Proc. of the 1999 Description Logic Workshop (DL’99), pages 136–137.
Linköping University, 1999.

[104] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing SHIQ-description logic
to disjunctive datalog programs. In Proc. of the 9th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2004), pages 152–162, 2004.

[105] David Janin and Igor Walukiewicz. Automata for the modal mu-calculus and related
results. In Jirı́ Wiedermann and Petr Hájek, editors, Int. Symp. on the Mathemat-
ical Foundation of Computer Science, volume 969 of Lecture Notes in Computer
Science, pages 552–562. Springer, 1995.

[106] Aditya Kalyanpur, Bijan Parsia, and James Hendler. A tool for working with
web ontologies. International Journal on Semantic Web and Information Systems,
1(1):36–49, 2005.

[107] Yevgeny Kazakov and Boris Motik. A resolution-based decision procedure for
SHOIQ. In Ulrich Furbach and Natarajan Shankar, editors, Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes in
Computer Science, pages 662–677. Springer, 2006.

[108] Aaron Kershenbaum, Achille Fokoue, Chintan Patel, Christopher Welty, Edith
Schonberg, James Cimino, Li Ma, Kavitha Srinivas, Robert Schloss, and J William
Murdock. A view of OWL from the field: Use cases and experiences. In Proc.
of the Second OWL Experiences and Directions Workshop, volume 216 of CEUR
(http://ceur-ws.org/), 2006.

[109] Holger Knublauch, Ray Fergerson, Natalya Noy, and Mark Musen. The Protégé
OWL Plugin: An open development environment for semantic web applications. In
Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors, Proc.

42 3. Description Logics

of the 2004 International Semantic Web Conference (ISWC 2004), number 3298 in
Lecture Notes in Computer Science, pages 229–243. Springer, 2004.

[110] Natasha Kurtonina and Maarten de Rijke. Classifying description logics. In Proc.
of the 1997 Description Logic Workshop (DL’97), pages 49–53, 1997.

[111] Ralf Küsters and Ralf Molitor. Computing least common subsumers in ALEN .
In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages
219–224, 2001.

[112] Lee Lacy, Gabriel Aviles, Karen Fraser, William Gerber, Alice Mulvehill, and
Robert Gaskill. Experiences using OWL in military applications. In Proc. of the
First OWL Experiences and Directions Workshop, volume 188 of CEUR Workshop
Proceedings. CEUR (http://ceur-ws.org/), 2005.

[113] Alon Y. Levy and Marie-Christine Rousset. Combining Horn rules and description
logics in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[114] Carsten Lutz. Complexity of terminological reasoning revisited. In Proc. of the 6th
Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), volume
1705 of Lecture Notes in Artificial Intelligence, pages 181–200. Springer, 1999.

[115] Carsten Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis,
Teaching and Research Area for Theoretical Computer Science, RWTH Aachen,
2001.

[116] Carsten Lutz. Interval-based temporal reasoning with general TBoxes. In Proc. of
the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 89–94, 2001.

[117] Carsten Lutz and Ulrike Sattler. Mary likes all cats. In Proc. of the 2000 Description
Logic Workshop (DL 2000), volume 33 of CEUR (http://ceur-ws.org/),
pages 213–226, 2000.

[118] Robert MacGregor. The evolving technology of classification-based knowledge rep-
resentation systems. In John F. Sowa, editor, Principles of Semantic Networks, pages
385–400. Morgan Kaufmann, Los Altos, 1991.

[119] Eric Mays, Robert Dionne, and Robert Weida. K-Rep system overview. SIGART
Bull., 2(3):93–97, 1991.

[120] Deborah L. McGuinness and Jon Wright. Conceptual modeling for configuration:
A description logic-based approach. Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing, 12(4):333–344, 1998. Special issue on Configuration.

[121] Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z. Pan. Finding maximally
satisfiable terminologies for the description logic ALC. In Proc. of the 21st Nat.
Conf. on Artificial Intelligence (AAAI 2006). AAAI Press/The MIT Press, 2006.

[122] Marvin Minsky. A framework for representing knowledge. In J. Haugeland, editor,
Mind Design. The MIT Press, 1981. A longer version appeared in The Psychology
of Computer Vision (1975). Republished in [39].

[123] Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying
large description logic aboxes. In Proc. of the 13th International Conference on
Logic for Programming, Artificial Intelligence (LPAR06), LNCS. Springer Verlag,
2006.

[124] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with rules.
J. of Web Semantics, 3(1):41–60, 2005.

[125] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

[126] Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems, volume

Franz Baader, Ian Horrocks and Ulrike Sattler 43

422 of Lecture Notes in Artificial Intelligence. Springer, 1990.
[127] Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial Intel-

ligence, 43(2):235–249, 1990.
[128] F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. J. of Automated

Reasoning, 4:69–100, 1988.
[129] Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of two-variable

logic with counting. In Proc. of the 12th IEEE Symp. on Logic in Computer Science
(LICS’97), pages 318–327. IEEE Computer Society Press, 1997.

[130] Leszek Pacholski, Wiesław Szwast, and Lidia Tendera. Complexity results for first-
order two-variable logic with counting. SIAM J. on Computing, 29(4):1083–1117,
2000.

[131] Christos H. Papadimitriou. Computational Complexity. Addison Wesley Publ. Co.,
Reading, Massachussetts, 1994.

[132] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL ontologies. In
Allan Ellis and Tatsuya Hagino, editors, Proc. of the 14th International Conference
on World Wide Web (WWW’05), pages 633–640. ACM, 2005.

[133] Peter F. Patel-Schneider. DLP. In Proc. of the 1999 Description Logic Workshop
(DL’99), volume 22 of CEUR (http://ceur-ws.org/), pages 9–13, 1999.

[134] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontology
Language semantics and abstract syntax. W3C Recommendation, 10 February
2004. Available at http://www.w3.org/TR/owl-semantics/.

[135] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontology
Language semantics and abstract syntax. W3C Recommendation, 10 February
2004. Available at http://www.w3.org/TR/owl-semantics/.

[136] Peter F. Patel-Schneider, Deborah L. McGuiness, Ronald J. Brachman, Lori Alperin
Resnick, and Alexander Borgida. The CLASSIC knowledge representation system:
Guiding principles and implementation rational. SIGART Bull., 2(3):108–113, 1991.

[137] Pellet OWL reasoner. Maryland Information and Network Dynamics Lab, 2003.
http://www.mindswap.org/2003/pellet/index.shtml.

[138] Christof Peltason. The BACK system — an overview. SIGART Bull., 2(3):114–119,
1991.

[139] M. Ross Quillian. Word concepts: A theory and simulation of some basic capabili-
ties. Behavioral Science, 12:410–430, 1967. Republished in [39].

[140] Alan Rector and Jeremy Rogers. Ontological and practical issues in using a de-
scription logic to represent medical concept systems: Experience from GALEN. In
Reasoning Web, Second International Summer School, Tutorial Lectures, volume
4126 of LNCS, pages 197–231. SV, 2006.

[141] Riccardo Rosati. On the decidability and complexity of integrating ontologies and
rules. J. of Web Semantics, 3(1):61–73, 2005.

[142] Alan Ruttenberg, Jonathan Rees, and Joanne Luciano. Experience using OWL DL
for the exchange of biological pathway information. In Proc. of the First OWL Ex-
periences and Directions Workshop, volume 188 of CEUR Workshop Proceedings.
CEUR (http://ceur-ws.org/), 2005.

[143] U. Sattler. A concept language extended with different kinds of transitive roles.
In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche
Intelligenz, volume 1137 of Lecture Notes in Artificial Intelligence. Springer Verlag,
1996.

44 3. Description Logics

[144] U. Sattler and M. Y. Vardi. The hybrid mu-calculus. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Proc. of the International Joint Conference on Automated
Reasoning (IJCAR-01), volume 2083 of Lecture Notes in Artificial Intelligence.
Springer Verlag, 2001.

[145] Klaus Schild. A correspondence theory for terminological logics: Preliminary re-
port. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages
466–471, 1991.

[146] Klaus Schild. Terminological cycles and the propositional µ-calculus. In Proc. of
the 4th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR’94), pages 509–520, 1994.

[147] Klaus Schild. Querying Knowledge and Data Bases by a Universal Description
Logic with Recursion. PhD thesis, Universität des Saarlandes, Germany, 1995.

[148] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the de-
bugging of description logic terminologies. In Georg Gottlob and Toby Walsh, edi-
tors, Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pages
355–362, Acapulco, Mexico, 2003. Morgan Kaufmann, Los Altos.

[149] Manfred Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In Ron J.
Brachman, Hector J. Levesque, and Ray Reiter, editors, Proc. of the 1st Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR’89), pages 421–
431. Morgan Kaufmann, Los Altos, 1989.

[150] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1–26, 1991.

[151] Amandeep Sidhu, Tharam Dillon, Elisabeth Chang, and Baldev Singh Sidhu. Pro-
tein ontology development using OWL. In Proc. of the First OWL Experiences
and Directions Workshop, volume 188 of CEUR Workshop Proceedings. CEUR
(http://ceur-ws.org/), 2005.

[152] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. To appear, 2005.

[153] Dagobert Soergel, Boris Lauser, Anita Liang, Frehiwot Fisseha, Johannes Keizer,
and Stephen Katz. Reengineering thesauri for new applications: The AGROVOC
example. J. of Digital Information, 4(4), 2004.

[154] K.A. Spackman, K.E. Campbell, and R.A. Cote. SNOMED RT: A reference termi-
nology for health care. J. of the American Medical Informatics Association, pages
640–644, 1997. Fall Symposium Supplement.

[155] P.-H. Speel, F. van Raalte, P. E. van der Vet, and N. J. I. Mars. Runtime and memory
usage performance of description logics. In G. Ellis, R. A. Levinson, A. Fall, and
V. Dahl, editors, Knowledge Retrieval, Use and Storage for Efficiency: Proc. of the
1st Int. KRUSE Symposium, pages 13–27, 1995.

[156] Larry Stockmeyer and Albert Meyer. Word problems requiring exponential
time(preliminary report). In Proc. of the 5th Annual ACM symposium on Theory
of computing (STOC’73), pages 1–9. ACM Press, 1973.

[157] Semantic web for earth and environmental terminology (SWEET). Jet Propul-
sion Laboratory, California Institute of Technology, 2006. http://sweet.jpl.
nasa.gov/.

[158] Sergio Tessaris. Questions and Answers: Reasoning and Querying in Description
Logic. PhD thesis, University of Manchester, Department of Computer Science,
April 2001.

Franz Baader, Ian Horrocks and Ulrike Sattler 45

[159] Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, chapter 4, pages 133–192. Else-
vier Science Publishers (North-Holland), Amsterdam, 1990.

[160] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, Germany, 2001.

[161] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System
description. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

[162] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics
of programs. J. of Computer and System Sciences, 32:183–221, 1986.

[163] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Infor-
mation and Computation, 115(1):1–37, 1994.

[164] William A. Woods. What’s in a link: Foundations for semantic networks. In D. G.
Bobrow and A. M. Collins, editors, Representation and Understanding: Studies in
Cognitive Science, pages 35–82. Academic Press, 1975. Republished in [39].

Index
ABox, 2, 7

realizing, 3
absorption, 16
accepted tree language, 24
acyclic automaton, 28
ALC, 5, 26
Answer Set Programming, 34
automata based approach, 21
automaton

acyclic, 28
looping, 23
tree, 23
word, 28

BACK, 4
backjumping, 16
bisimulation, 22
blocking, 13

CARIN, 34
CEL, 34
clash, 13
CLASSIC, 4, 34
completion forest, 13
completion tree, 13
concept

defined, 6, 28
description, 1, 5
primitive, 6, 28

concrete domain, 8, 32
consistency, 3, 7, 12
CRACK, 4

DAML+OIL, 31
datatype, 9, 32
defined concept, 6, 28
dependency directed backtracking, 16
DL system

BACK, 4
CEL, 34
CLASSIC, 4, 34
CRACK, 4
DLP, 5
FaCT, 5, 12, 31
FaCT++, 12, 33, 34
K-REP, 4
KAON2, 34
KL-ONE, 4
KRIS, 4
KRYPTON, 2, 4
LOOM, 4
Pellet, 12, 33, 34
RACE, 5
RACER, 12, 31, 33, 34

DL-safe rules, 34
DLP, 5

EL, 27, 29
emptiness test, 24
equivalence, 7
existential restriction, 2, 5
extension, 6

FaCT, 5, 12, 31
FaCT++, 12, 33, 34
FL0, 27, 28
forest model, 13
frames, 4

GALEN ontology, 33
GCI, 6
Gene Ontology, 30

Hintikka set, 25

ICom, 34
instance, 6

46

47

w.r.t. KB, 7
interpretation, 6

K-REP, 4
KAON2, 34
KL-ONE, 4
knowledge base, 7
KRIS, 4
KRYPTON, 2, 4

lazy unfolding, 15
LOOM, 4
looping automaton, 23

negation normal form, 12
nominal, 9, 20
non standard inference problems, 34
number restriction, 8

OIL, 31
OilEd, 34
ontology language

DAML+OIL, 31
OIL, 31
OWL, 31

optimisation techniques, 15
absorption, 16
backjumping, 16
dependency directed backtracking, 16

OWL, 31
DL, 31, 32
Full, 31
Lite, 31, 32

Pellet, 12, 33, 34
primitive concept, 6, 28
Protégé, 33, 34

QBF, 18
qualified number restriction, 8

RACE, 5
RACER, 12, 31, 33, 34
RDF, 31
realizing (an ABox), 3
resolution based approach, 21
restriction

existential, 2, 5

number, 8, 19
qualified number, 8
value, 2, 5

role
inverse, 8, 20
name, 5
sub-, 8
transitive, 8, 20

run, 24

satisfiability, 7
in ALC, 26

semantic networks, 4
SHIN , 32
SHIQ, 32
SHOIN , 32
SNOMED, 30
structural approach, 26
structural subsumption algorithm, 4, 21, 26
structured inheritance networks, 4
subsumption, 3, 7

hierarchy, 3
in EL, 29, 30
in FL0, 27, 28
structural algorithm, 4, 21

Swoop, 33

tableau algorithm, 4
tableau based approach, 12
tableau expansion rules, 13
TBox, 2, 6, 31

definitorial, 6, 15, 19, 28
general, 26, 28, 30

TopBraid Composer, 33
translation based approach, 21
tree automaton, 23
tree language, 24
tree model property, 22

unfolding, 15
lazy, 15

unraveling, 13, 22

value restriction, 2, 5

word automaton, 28

XML, 31
XML Schema, 32

